4223 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4223 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
 | |
| //
 | |
| // Software pipelining (SWP) is an instruction scheduling technique for loops
 | |
| // that overlap loop iterations and exploits ILP via a compiler transformation.
 | |
| //
 | |
| // Swing Modulo Scheduling is an implementation of software pipelining
 | |
| // that generates schedules that are near optimal in terms of initiation
 | |
| // interval, register requirements, and stage count. See the papers:
 | |
| //
 | |
| // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
 | |
| // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
 | |
| // Conference on Parallel Architectures and Compilation Techiniques.
 | |
| //
 | |
| // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
 | |
| // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
 | |
| // Transactions on Computers, Vol. 50, No. 3, 2001.
 | |
| //
 | |
| // "An Implementation of Swing Modulo Scheduling With Extensions for
 | |
| // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
 | |
| // Urbana-Chambpain, 2005.
 | |
| //
 | |
| //
 | |
| // The SMS algorithm consists of three main steps after computing the minimal
 | |
| // initiation interval (MII).
 | |
| // 1) Analyze the dependence graph and compute information about each
 | |
| //    instruction in the graph.
 | |
| // 2) Order the nodes (instructions) by priority based upon the heuristics
 | |
| //    described in the algorithm.
 | |
| // 3) Attempt to schedule the nodes in the specified order using the MII.
 | |
| //
 | |
| // This SMS implementation is a target-independent back-end pass. When enabled,
 | |
| // the pass runs just prior to the register allocation pass, while the machine
 | |
| // IR is in SSA form. If software pipelining is successful, then the original
 | |
| // loop is replaced by the optimized loop. The optimized loop contains one or
 | |
| // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
 | |
| // the instructions cannot be scheduled in a given MII, we increase the MII by
 | |
| // one and try again.
 | |
| //
 | |
| // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
 | |
| // represent loop carried dependences in the DAG as order edges to the Phi
 | |
| // nodes. We also perform several passes over the DAG to eliminate unnecessary
 | |
| // edges that inhibit the ability to pipeline. The implementation uses the
 | |
| // DFAPacketizer class to compute the minimum initiation interval and the check
 | |
| // where an instruction may be inserted in the pipelined schedule.
 | |
| //
 | |
| // In order for the SMS pass to work, several target specific hooks need to be
 | |
| // implemented to get information about the loop structure and to rewrite
 | |
| // instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/PriorityQueue.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/DFAPacketizer.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/RegisterPressure.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGMutation.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstdint>
 | |
| #include <deque>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "pipeliner"
 | |
| 
 | |
| STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
 | |
| STATISTIC(NumPipelined, "Number of loops software pipelined");
 | |
| STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
 | |
| 
 | |
| /// A command line option to turn software pipelining on or off.
 | |
| static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
 | |
|                                cl::ZeroOrMore,
 | |
|                                cl::desc("Enable Software Pipelining"));
 | |
| 
 | |
| /// A command line option to enable SWP at -Os.
 | |
| static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
 | |
|                                       cl::desc("Enable SWP at Os."), cl::Hidden,
 | |
|                                       cl::init(false));
 | |
| 
 | |
| /// A command line argument to limit minimum initial interval for pipelining.
 | |
| static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
 | |
|                               cl::desc("Size limit for the MII."),
 | |
|                               cl::Hidden, cl::init(27));
 | |
| 
 | |
| /// A command line argument to limit the number of stages in the pipeline.
 | |
| static cl::opt<int>
 | |
|     SwpMaxStages("pipeliner-max-stages",
 | |
|                  cl::desc("Maximum stages allowed in the generated scheduled."),
 | |
|                  cl::Hidden, cl::init(3));
 | |
| 
 | |
| /// A command line option to disable the pruning of chain dependences due to
 | |
| /// an unrelated Phi.
 | |
| static cl::opt<bool>
 | |
|     SwpPruneDeps("pipeliner-prune-deps",
 | |
|                  cl::desc("Prune dependences between unrelated Phi nodes."),
 | |
|                  cl::Hidden, cl::init(true));
 | |
| 
 | |
| /// A command line option to disable the pruning of loop carried order
 | |
| /// dependences.
 | |
| static cl::opt<bool>
 | |
|     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
 | |
|                         cl::desc("Prune loop carried order dependences."),
 | |
|                         cl::Hidden, cl::init(true));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
 | |
| #endif
 | |
| 
 | |
| static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
 | |
|                                      cl::ReallyHidden, cl::init(false),
 | |
|                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class NodeSet;
 | |
| class SMSchedule;
 | |
| 
 | |
| /// The main class in the implementation of the target independent
 | |
| /// software pipeliner pass.
 | |
| class MachinePipeliner : public MachineFunctionPass {
 | |
| public:
 | |
|   MachineFunction *MF = nullptr;
 | |
|   const MachineLoopInfo *MLI = nullptr;
 | |
|   const MachineDominatorTree *MDT = nullptr;
 | |
|   const InstrItineraryData *InstrItins;
 | |
|   const TargetInstrInfo *TII = nullptr;
 | |
|   RegisterClassInfo RegClassInfo;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   static int NumTries;
 | |
| #endif
 | |
| 
 | |
|   /// Cache the target analysis information about the loop.
 | |
|   struct LoopInfo {
 | |
|     MachineBasicBlock *TBB = nullptr;
 | |
|     MachineBasicBlock *FBB = nullptr;
 | |
|     SmallVector<MachineOperand, 4> BrCond;
 | |
|     MachineInstr *LoopInductionVar = nullptr;
 | |
|     MachineInstr *LoopCompare = nullptr;
 | |
|   };
 | |
|   LoopInfo LI;
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
|   MachinePipeliner() : MachineFunctionPass(ID) {
 | |
|     initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addPreserved<AAResultsWrapperPass>();
 | |
|     AU.addRequired<MachineLoopInfo>();
 | |
|     AU.addRequired<MachineDominatorTree>();
 | |
|     AU.addRequired<LiveIntervals>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void preprocessPhiNodes(MachineBasicBlock &B);
 | |
|   bool canPipelineLoop(MachineLoop &L);
 | |
|   bool scheduleLoop(MachineLoop &L);
 | |
|   bool swingModuloScheduler(MachineLoop &L);
 | |
| };
 | |
| 
 | |
| /// This class builds the dependence graph for the instructions in a loop,
 | |
| /// and attempts to schedule the instructions using the SMS algorithm.
 | |
| class SwingSchedulerDAG : public ScheduleDAGInstrs {
 | |
|   MachinePipeliner &Pass;
 | |
|   /// The minimum initiation interval between iterations for this schedule.
 | |
|   unsigned MII = 0;
 | |
|   /// Set to true if a valid pipelined schedule is found for the loop.
 | |
|   bool Scheduled = false;
 | |
|   MachineLoop &Loop;
 | |
|   LiveIntervals &LIS;
 | |
|   const RegisterClassInfo &RegClassInfo;
 | |
| 
 | |
|   /// A toplogical ordering of the SUnits, which is needed for changing
 | |
|   /// dependences and iterating over the SUnits.
 | |
|   ScheduleDAGTopologicalSort Topo;
 | |
| 
 | |
|   struct NodeInfo {
 | |
|     int ASAP = 0;
 | |
|     int ALAP = 0;
 | |
|     int ZeroLatencyDepth = 0;
 | |
|     int ZeroLatencyHeight = 0;
 | |
| 
 | |
|     NodeInfo() = default;
 | |
|   };
 | |
|   /// Computed properties for each node in the graph.
 | |
|   std::vector<NodeInfo> ScheduleInfo;
 | |
| 
 | |
|   enum OrderKind { BottomUp = 0, TopDown = 1 };
 | |
|   /// Computed node ordering for scheduling.
 | |
|   SetVector<SUnit *> NodeOrder;
 | |
| 
 | |
|   using NodeSetType = SmallVector<NodeSet, 8>;
 | |
|   using ValueMapTy = DenseMap<unsigned, unsigned>;
 | |
|   using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
 | |
|   using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
 | |
| 
 | |
|   /// Instructions to change when emitting the final schedule.
 | |
|   DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
 | |
| 
 | |
|   /// We may create a new instruction, so remember it because it
 | |
|   /// must be deleted when the pass is finished.
 | |
|   SmallPtrSet<MachineInstr *, 4> NewMIs;
 | |
| 
 | |
|   /// Ordered list of DAG postprocessing steps.
 | |
|   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
 | |
| 
 | |
|   /// Helper class to implement Johnson's circuit finding algorithm.
 | |
|   class Circuits {
 | |
|     std::vector<SUnit> &SUnits;
 | |
|     SetVector<SUnit *> Stack;
 | |
|     BitVector Blocked;
 | |
|     SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
 | |
|     SmallVector<SmallVector<int, 4>, 16> AdjK;
 | |
|     // Node to Index from ScheduleDAGTopologicalSort
 | |
|     std::vector<int> *Node2Idx;
 | |
|     unsigned NumPaths;
 | |
|     static unsigned MaxPaths;
 | |
| 
 | |
|   public:
 | |
|     Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
 | |
|         : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
 | |
|       Node2Idx = new std::vector<int>(SUs.size());
 | |
|       unsigned Idx = 0;
 | |
|       for (const auto &NodeNum : Topo)
 | |
|         Node2Idx->at(NodeNum) = Idx++;
 | |
|     }
 | |
| 
 | |
|     ~Circuits() { delete Node2Idx; }
 | |
| 
 | |
|     /// Reset the data structures used in the circuit algorithm.
 | |
|     void reset() {
 | |
|       Stack.clear();
 | |
|       Blocked.reset();
 | |
|       B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
 | |
|       NumPaths = 0;
 | |
|     }
 | |
| 
 | |
|     void createAdjacencyStructure(SwingSchedulerDAG *DAG);
 | |
|     bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
 | |
|     void unblock(int U);
 | |
|   };
 | |
| 
 | |
| public:
 | |
|   SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
 | |
|                     const RegisterClassInfo &rci)
 | |
|       : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
 | |
|         RegClassInfo(rci), Topo(SUnits, &ExitSU) {
 | |
|     P.MF->getSubtarget().getSMSMutations(Mutations);
 | |
|   }
 | |
| 
 | |
|   void schedule() override;
 | |
|   void finishBlock() override;
 | |
| 
 | |
|   /// Return true if the loop kernel has been scheduled.
 | |
|   bool hasNewSchedule() { return Scheduled; }
 | |
| 
 | |
|   /// Return the earliest time an instruction may be scheduled.
 | |
|   int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
 | |
| 
 | |
|   /// Return the latest time an instruction my be scheduled.
 | |
|   int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
 | |
| 
 | |
|   /// The mobility function, which the number of slots in which
 | |
|   /// an instruction may be scheduled.
 | |
|   int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
 | |
| 
 | |
|   /// The depth, in the dependence graph, for a node.
 | |
|   unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
 | |
| 
 | |
|   /// The maximum unweighted length of a path from an arbitrary node to the
 | |
|   /// given node in which each edge has latency 0
 | |
|   int getZeroLatencyDepth(SUnit *Node) {
 | |
|     return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
 | |
|   }
 | |
| 
 | |
|   /// The height, in the dependence graph, for a node.
 | |
|   unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
 | |
| 
 | |
|   /// The maximum unweighted length of a path from the given node to an
 | |
|   /// arbitrary node in which each edge has latency 0
 | |
|   int getZeroLatencyHeight(SUnit *Node) {
 | |
|     return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the dependence is a back-edge in the data dependence graph.
 | |
|   /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
 | |
|   /// using an anti dependence from a Phi to an instruction.
 | |
|   bool isBackedge(SUnit *Source, const SDep &Dep) {
 | |
|     if (Dep.getKind() != SDep::Anti)
 | |
|       return false;
 | |
|     return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
 | |
|   }
 | |
| 
 | |
|   bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
 | |
| 
 | |
|   /// The distance function, which indicates that operation V of iteration I
 | |
|   /// depends on operations U of iteration I-distance.
 | |
|   unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
 | |
|     // Instructions that feed a Phi have a distance of 1. Computing larger
 | |
|     // values for arrays requires data dependence information.
 | |
|     if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
 | |
|       return 1;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// Set the Minimum Initiation Interval for this schedule attempt.
 | |
|   void setMII(unsigned mii) { MII = mii; }
 | |
| 
 | |
|   void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
 | |
| 
 | |
|   void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
 | |
| 
 | |
|   /// Return the new base register that was stored away for the changed
 | |
|   /// instruction.
 | |
|   unsigned getInstrBaseReg(SUnit *SU) {
 | |
|     DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
 | |
|         InstrChanges.find(SU);
 | |
|     if (It != InstrChanges.end())
 | |
|       return It->second.first;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
 | |
|     Mutations.push_back(std::move(Mutation));
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void addLoopCarriedDependences(AliasAnalysis *AA);
 | |
|   void updatePhiDependences();
 | |
|   void changeDependences();
 | |
|   unsigned calculateResMII();
 | |
|   unsigned calculateRecMII(NodeSetType &RecNodeSets);
 | |
|   void findCircuits(NodeSetType &NodeSets);
 | |
|   void fuseRecs(NodeSetType &NodeSets);
 | |
|   void removeDuplicateNodes(NodeSetType &NodeSets);
 | |
|   void computeNodeFunctions(NodeSetType &NodeSets);
 | |
|   void registerPressureFilter(NodeSetType &NodeSets);
 | |
|   void colocateNodeSets(NodeSetType &NodeSets);
 | |
|   void checkNodeSets(NodeSetType &NodeSets);
 | |
|   void groupRemainingNodes(NodeSetType &NodeSets);
 | |
|   void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
 | |
|                          SetVector<SUnit *> &NodesAdded);
 | |
|   void computeNodeOrder(NodeSetType &NodeSets);
 | |
|   void checkValidNodeOrder(const NodeSetType &Circuits) const;
 | |
|   bool schedulePipeline(SMSchedule &Schedule);
 | |
|   void generatePipelinedLoop(SMSchedule &Schedule);
 | |
|   void generateProlog(SMSchedule &Schedule, unsigned LastStage,
 | |
|                       MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
 | |
|                       MBBVectorTy &PrologBBs);
 | |
|   void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
 | |
|                       MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
 | |
|                       MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
 | |
|   void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
 | |
|                             MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
 | |
|                             SMSchedule &Schedule, ValueMapTy *VRMap,
 | |
|                             InstrMapTy &InstrMap, unsigned LastStageNum,
 | |
|                             unsigned CurStageNum, bool IsLast);
 | |
|   void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
 | |
|                     MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
 | |
|                     SMSchedule &Schedule, ValueMapTy *VRMap,
 | |
|                     InstrMapTy &InstrMap, unsigned LastStageNum,
 | |
|                     unsigned CurStageNum, bool IsLast);
 | |
|   void removeDeadInstructions(MachineBasicBlock *KernelBB,
 | |
|                               MBBVectorTy &EpilogBBs);
 | |
|   void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
 | |
|                       SMSchedule &Schedule);
 | |
|   void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
 | |
|                    MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
 | |
|                    ValueMapTy *VRMap);
 | |
|   bool computeDelta(MachineInstr &MI, unsigned &Delta);
 | |
|   void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
 | |
|                          unsigned Num);
 | |
|   MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
 | |
|                            unsigned InstStageNum);
 | |
|   MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
 | |
|                                     unsigned InstStageNum,
 | |
|                                     SMSchedule &Schedule);
 | |
|   void updateInstruction(MachineInstr *NewMI, bool LastDef,
 | |
|                          unsigned CurStageNum, unsigned InstrStageNum,
 | |
|                          SMSchedule &Schedule, ValueMapTy *VRMap);
 | |
|   MachineInstr *findDefInLoop(unsigned Reg);
 | |
|   unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
 | |
|                          unsigned LoopStage, ValueMapTy *VRMap,
 | |
|                          MachineBasicBlock *BB);
 | |
|   void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
 | |
|                         SMSchedule &Schedule, ValueMapTy *VRMap,
 | |
|                         InstrMapTy &InstrMap);
 | |
|   void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
 | |
|                              InstrMapTy &InstrMap, unsigned CurStageNum,
 | |
|                              unsigned PhiNum, MachineInstr *Phi,
 | |
|                              unsigned OldReg, unsigned NewReg,
 | |
|                              unsigned PrevReg = 0);
 | |
|   bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
 | |
|                              unsigned &OffsetPos, unsigned &NewBase,
 | |
|                              int64_t &NewOffset);
 | |
|   void postprocessDAG();
 | |
| };
 | |
| 
 | |
| /// A NodeSet contains a set of SUnit DAG nodes with additional information
 | |
| /// that assigns a priority to the set.
 | |
| class NodeSet {
 | |
|   SetVector<SUnit *> Nodes;
 | |
|   bool HasRecurrence = false;
 | |
|   unsigned RecMII = 0;
 | |
|   int MaxMOV = 0;
 | |
|   unsigned MaxDepth = 0;
 | |
|   unsigned Colocate = 0;
 | |
|   SUnit *ExceedPressure = nullptr;
 | |
|   unsigned Latency = 0;
 | |
| 
 | |
| public:
 | |
|   using iterator = SetVector<SUnit *>::const_iterator;
 | |
| 
 | |
|   NodeSet() = default;
 | |
|   NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
 | |
|     Latency = 0;
 | |
|     for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
 | |
|       for (const SDep &Succ : Nodes[i]->Succs)
 | |
|         if (Nodes.count(Succ.getSUnit()))
 | |
|           Latency += Succ.getLatency();
 | |
|   }
 | |
| 
 | |
|   bool insert(SUnit *SU) { return Nodes.insert(SU); }
 | |
| 
 | |
|   void insert(iterator S, iterator E) { Nodes.insert(S, E); }
 | |
| 
 | |
|   template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
 | |
|     return Nodes.remove_if(P);
 | |
|   }
 | |
| 
 | |
|   unsigned count(SUnit *SU) const { return Nodes.count(SU); }
 | |
| 
 | |
|   bool hasRecurrence() { return HasRecurrence; };
 | |
| 
 | |
|   unsigned size() const { return Nodes.size(); }
 | |
| 
 | |
|   bool empty() const { return Nodes.empty(); }
 | |
| 
 | |
|   SUnit *getNode(unsigned i) const { return Nodes[i]; };
 | |
| 
 | |
|   void setRecMII(unsigned mii) { RecMII = mii; };
 | |
| 
 | |
|   void setColocate(unsigned c) { Colocate = c; };
 | |
| 
 | |
|   void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
 | |
| 
 | |
|   bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
 | |
| 
 | |
|   int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
 | |
| 
 | |
|   int getRecMII() { return RecMII; }
 | |
| 
 | |
|   /// Summarize node functions for the entire node set.
 | |
|   void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
 | |
|     for (SUnit *SU : *this) {
 | |
|       MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
 | |
|       MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned getLatency() { return Latency; }
 | |
| 
 | |
|   unsigned getMaxDepth() { return MaxDepth; }
 | |
| 
 | |
|   void clear() {
 | |
|     Nodes.clear();
 | |
|     RecMII = 0;
 | |
|     HasRecurrence = false;
 | |
|     MaxMOV = 0;
 | |
|     MaxDepth = 0;
 | |
|     Colocate = 0;
 | |
|     ExceedPressure = nullptr;
 | |
|   }
 | |
| 
 | |
|   operator SetVector<SUnit *> &() { return Nodes; }
 | |
| 
 | |
|   /// Sort the node sets by importance. First, rank them by recurrence MII,
 | |
|   /// then by mobility (least mobile done first), and finally by depth.
 | |
|   /// Each node set may contain a colocate value which is used as the first
 | |
|   /// tie breaker, if it's set.
 | |
|   bool operator>(const NodeSet &RHS) const {
 | |
|     if (RecMII == RHS.RecMII) {
 | |
|       if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
 | |
|         return Colocate < RHS.Colocate;
 | |
|       if (MaxMOV == RHS.MaxMOV)
 | |
|         return MaxDepth > RHS.MaxDepth;
 | |
|       return MaxMOV < RHS.MaxMOV;
 | |
|     }
 | |
|     return RecMII > RHS.RecMII;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const NodeSet &RHS) const {
 | |
|     return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
 | |
|            MaxDepth == RHS.MaxDepth;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
 | |
| 
 | |
|   iterator begin() { return Nodes.begin(); }
 | |
|   iterator end() { return Nodes.end(); }
 | |
| 
 | |
|   void print(raw_ostream &os) const {
 | |
|     os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
 | |
|        << " depth " << MaxDepth << " col " << Colocate << "\n";
 | |
|     for (const auto &I : Nodes)
 | |
|       os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
 | |
|     os << "\n";
 | |
|   }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /// This class represents the scheduled code.  The main data structure is a
 | |
| /// map from scheduled cycle to instructions.  During scheduling, the
 | |
| /// data structure explicitly represents all stages/iterations.   When
 | |
| /// the algorithm finshes, the schedule is collapsed into a single stage,
 | |
| /// which represents instructions from different loop iterations.
 | |
| ///
 | |
| /// The SMS algorithm allows negative values for cycles, so the first cycle
 | |
| /// in the schedule is the smallest cycle value.
 | |
| class SMSchedule {
 | |
| private:
 | |
|   /// Map from execution cycle to instructions.
 | |
|   DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
 | |
| 
 | |
|   /// Map from instruction to execution cycle.
 | |
|   std::map<SUnit *, int> InstrToCycle;
 | |
| 
 | |
|   /// Map for each register and the max difference between its uses and def.
 | |
|   /// The first element in the pair is the max difference in stages. The
 | |
|   /// second is true if the register defines a Phi value and loop value is
 | |
|   /// scheduled before the Phi.
 | |
|   std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
 | |
| 
 | |
|   /// Keep track of the first cycle value in the schedule.  It starts
 | |
|   /// as zero, but the algorithm allows negative values.
 | |
|   int FirstCycle = 0;
 | |
| 
 | |
|   /// Keep track of the last cycle value in the schedule.
 | |
|   int LastCycle = 0;
 | |
| 
 | |
|   /// The initiation interval (II) for the schedule.
 | |
|   int InitiationInterval = 0;
 | |
| 
 | |
|   /// Target machine information.
 | |
|   const TargetSubtargetInfo &ST;
 | |
| 
 | |
|   /// Virtual register information.
 | |
|   MachineRegisterInfo &MRI;
 | |
| 
 | |
|   std::unique_ptr<DFAPacketizer> Resources;
 | |
| 
 | |
| public:
 | |
|   SMSchedule(MachineFunction *mf)
 | |
|       : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
 | |
|         Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
 | |
| 
 | |
|   void reset() {
 | |
|     ScheduledInstrs.clear();
 | |
|     InstrToCycle.clear();
 | |
|     RegToStageDiff.clear();
 | |
|     FirstCycle = 0;
 | |
|     LastCycle = 0;
 | |
|     InitiationInterval = 0;
 | |
|   }
 | |
| 
 | |
|   /// Set the initiation interval for this schedule.
 | |
|   void setInitiationInterval(int ii) { InitiationInterval = ii; }
 | |
| 
 | |
|   /// Return the first cycle in the completed schedule.  This
 | |
|   /// can be a negative value.
 | |
|   int getFirstCycle() const { return FirstCycle; }
 | |
| 
 | |
|   /// Return the last cycle in the finalized schedule.
 | |
|   int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
 | |
| 
 | |
|   /// Return the cycle of the earliest scheduled instruction in the dependence
 | |
|   /// chain.
 | |
|   int earliestCycleInChain(const SDep &Dep);
 | |
| 
 | |
|   /// Return the cycle of the latest scheduled instruction in the dependence
 | |
|   /// chain.
 | |
|   int latestCycleInChain(const SDep &Dep);
 | |
| 
 | |
|   void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
 | |
|                     int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
 | |
|   bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
 | |
| 
 | |
|   /// Iterators for the cycle to instruction map.
 | |
|   using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
 | |
|   using const_sched_iterator =
 | |
|       DenseMap<int, std::deque<SUnit *>>::const_iterator;
 | |
| 
 | |
|   /// Return true if the instruction is scheduled at the specified stage.
 | |
|   bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
 | |
|     return (stageScheduled(SU) == (int)StageNum);
 | |
|   }
 | |
| 
 | |
|   /// Return the stage for a scheduled instruction.  Return -1 if
 | |
|   /// the instruction has not been scheduled.
 | |
|   int stageScheduled(SUnit *SU) const {
 | |
|     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
 | |
|     if (it == InstrToCycle.end())
 | |
|       return -1;
 | |
|     return (it->second - FirstCycle) / InitiationInterval;
 | |
|   }
 | |
| 
 | |
|   /// Return the cycle for a scheduled instruction. This function normalizes
 | |
|   /// the first cycle to be 0.
 | |
|   unsigned cycleScheduled(SUnit *SU) const {
 | |
|     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
 | |
|     assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
 | |
|     return (it->second - FirstCycle) % InitiationInterval;
 | |
|   }
 | |
| 
 | |
|   /// Return the maximum stage count needed for this schedule.
 | |
|   unsigned getMaxStageCount() {
 | |
|     return (LastCycle - FirstCycle) / InitiationInterval;
 | |
|   }
 | |
| 
 | |
|   /// Return the max. number of stages/iterations that can occur between a
 | |
|   /// register definition and its uses.
 | |
|   unsigned getStagesForReg(int Reg, unsigned CurStage) {
 | |
|     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
 | |
|     if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
 | |
|       return 1;
 | |
|     return Stages.first;
 | |
|   }
 | |
| 
 | |
|   /// The number of stages for a Phi is a little different than other
 | |
|   /// instructions. The minimum value computed in RegToStageDiff is 1
 | |
|   /// because we assume the Phi is needed for at least 1 iteration.
 | |
|   /// This is not the case if the loop value is scheduled prior to the
 | |
|   /// Phi in the same stage.  This function returns the number of stages
 | |
|   /// or iterations needed between the Phi definition and any uses.
 | |
|   unsigned getStagesForPhi(int Reg) {
 | |
|     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
 | |
|     if (Stages.second)
 | |
|       return Stages.first;
 | |
|     return Stages.first - 1;
 | |
|   }
 | |
| 
 | |
|   /// Return the instructions that are scheduled at the specified cycle.
 | |
|   std::deque<SUnit *> &getInstructions(int cycle) {
 | |
|     return ScheduledInstrs[cycle];
 | |
|   }
 | |
| 
 | |
|   bool isValidSchedule(SwingSchedulerDAG *SSD);
 | |
|   void finalizeSchedule(SwingSchedulerDAG *SSD);
 | |
|   void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
 | |
|                        std::deque<SUnit *> &Insts);
 | |
|   bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
 | |
|   bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
 | |
|                              MachineOperand &MO);
 | |
|   void print(raw_ostream &os) const;
 | |
|   void dump() const;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
 | |
| char MachinePipeliner::ID = 0;
 | |
| #ifndef NDEBUG
 | |
| int MachinePipeliner::NumTries = 0;
 | |
| #endif
 | |
| char &llvm::MachinePipelinerID = MachinePipeliner::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
 | |
|                       "Modulo Software Pipelining", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
 | |
|                     "Modulo Software Pipelining", false, false)
 | |
| 
 | |
| /// The "main" function for implementing Swing Modulo Scheduling.
 | |
| bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
 | |
|   if (skipFunction(mf.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   if (!EnableSWP)
 | |
|     return false;
 | |
| 
 | |
|   if (mf.getFunction().getAttributes().hasAttribute(
 | |
|           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
 | |
|       !EnableSWPOptSize.getPosition())
 | |
|     return false;
 | |
| 
 | |
|   MF = &mf;
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   TII = MF->getSubtarget().getInstrInfo();
 | |
|   RegClassInfo.runOnMachineFunction(*MF);
 | |
| 
 | |
|   for (auto &L : *MLI)
 | |
|     scheduleLoop(*L);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Attempt to perform the SMS algorithm on the specified loop. This function is
 | |
| /// the main entry point for the algorithm.  The function identifies candidate
 | |
| /// loops, calculates the minimum initiation interval, and attempts to schedule
 | |
| /// the loop.
 | |
| bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
 | |
|   bool Changed = false;
 | |
|   for (auto &InnerLoop : L)
 | |
|     Changed |= scheduleLoop(*InnerLoop);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Stop trying after reaching the limit (if any).
 | |
|   int Limit = SwpLoopLimit;
 | |
|   if (Limit >= 0) {
 | |
|     if (NumTries >= SwpLoopLimit)
 | |
|       return Changed;
 | |
|     NumTries++;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (!canPipelineLoop(L))
 | |
|     return Changed;
 | |
| 
 | |
|   ++NumTrytoPipeline;
 | |
| 
 | |
|   Changed = swingModuloScheduler(L);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Return true if the loop can be software pipelined.  The algorithm is
 | |
| /// restricted to loops with a single basic block.  Make sure that the
 | |
| /// branch in the loop can be analyzed.
 | |
| bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
 | |
|   if (L.getNumBlocks() != 1)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the branch can't be understood because we can't do pipelining
 | |
|   // if that's the case.
 | |
|   LI.TBB = nullptr;
 | |
|   LI.FBB = nullptr;
 | |
|   LI.BrCond.clear();
 | |
|   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
 | |
|     return false;
 | |
| 
 | |
|   LI.LoopInductionVar = nullptr;
 | |
|   LI.LoopCompare = nullptr;
 | |
|   if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
 | |
|     return false;
 | |
| 
 | |
|   if (!L.getLoopPreheader())
 | |
|     return false;
 | |
| 
 | |
|   // Remove any subregisters from inputs to phi nodes.
 | |
|   preprocessPhiNodes(*L.getHeader());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
 | |
| 
 | |
|   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
 | |
|     MachineOperand &DefOp = PI.getOperand(0);
 | |
|     assert(DefOp.getSubReg() == 0);
 | |
|     auto *RC = MRI.getRegClass(DefOp.getReg());
 | |
| 
 | |
|     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
 | |
|       MachineOperand &RegOp = PI.getOperand(i);
 | |
|       if (RegOp.getSubReg() == 0)
 | |
|         continue;
 | |
| 
 | |
|       // If the operand uses a subregister, replace it with a new register
 | |
|       // without subregisters, and generate a copy to the new register.
 | |
|       unsigned NewReg = MRI.createVirtualRegister(RC);
 | |
|       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
 | |
|       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
 | |
|       const DebugLoc &DL = PredB.findDebugLoc(At);
 | |
|       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
 | |
|                     .addReg(RegOp.getReg(), getRegState(RegOp),
 | |
|                             RegOp.getSubReg());
 | |
|       Slots.insertMachineInstrInMaps(*Copy);
 | |
|       RegOp.setReg(NewReg);
 | |
|       RegOp.setSubReg(0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// The SMS algorithm consists of the following main steps:
 | |
| /// 1. Computation and analysis of the dependence graph.
 | |
| /// 2. Ordering of the nodes (instructions).
 | |
| /// 3. Attempt to Schedule the loop.
 | |
| bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
 | |
|   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
 | |
| 
 | |
|   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
 | |
| 
 | |
|   MachineBasicBlock *MBB = L.getHeader();
 | |
|   // The kernel should not include any terminator instructions.  These
 | |
|   // will be added back later.
 | |
|   SMS.startBlock(MBB);
 | |
| 
 | |
|   // Compute the number of 'real' instructions in the basic block by
 | |
|   // ignoring terminators.
 | |
|   unsigned size = MBB->size();
 | |
|   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
 | |
|                                    E = MBB->instr_end();
 | |
|        I != E; ++I, --size)
 | |
|     ;
 | |
| 
 | |
|   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
 | |
|   SMS.schedule();
 | |
|   SMS.exitRegion();
 | |
| 
 | |
|   SMS.finishBlock();
 | |
|   return SMS.hasNewSchedule();
 | |
| }
 | |
| 
 | |
| /// We override the schedule function in ScheduleDAGInstrs to implement the
 | |
| /// scheduling part of the Swing Modulo Scheduling algorithm.
 | |
| void SwingSchedulerDAG::schedule() {
 | |
|   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   buildSchedGraph(AA);
 | |
|   addLoopCarriedDependences(AA);
 | |
|   updatePhiDependences();
 | |
|   Topo.InitDAGTopologicalSorting();
 | |
|   postprocessDAG();
 | |
|   changeDependences();
 | |
|   LLVM_DEBUG(dump());
 | |
| 
 | |
|   NodeSetType NodeSets;
 | |
|   findCircuits(NodeSets);
 | |
|   NodeSetType Circuits = NodeSets;
 | |
| 
 | |
|   // Calculate the MII.
 | |
|   unsigned ResMII = calculateResMII();
 | |
|   unsigned RecMII = calculateRecMII(NodeSets);
 | |
| 
 | |
|   fuseRecs(NodeSets);
 | |
| 
 | |
|   // This flag is used for testing and can cause correctness problems.
 | |
|   if (SwpIgnoreRecMII)
 | |
|     RecMII = 0;
 | |
| 
 | |
|   MII = std::max(ResMII, RecMII);
 | |
|   LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII
 | |
|                     << ", res=" << ResMII << ")\n");
 | |
| 
 | |
|   // Can't schedule a loop without a valid MII.
 | |
|   if (MII == 0)
 | |
|     return;
 | |
| 
 | |
|   // Don't pipeline large loops.
 | |
|   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
 | |
|     return;
 | |
| 
 | |
|   computeNodeFunctions(NodeSets);
 | |
| 
 | |
|   registerPressureFilter(NodeSets);
 | |
| 
 | |
|   colocateNodeSets(NodeSets);
 | |
| 
 | |
|   checkNodeSets(NodeSets);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     for (auto &I : NodeSets) {
 | |
|       dbgs() << "  Rec NodeSet ";
 | |
|       I.dump();
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
 | |
| 
 | |
|   groupRemainingNodes(NodeSets);
 | |
| 
 | |
|   removeDuplicateNodes(NodeSets);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     for (auto &I : NodeSets) {
 | |
|       dbgs() << "  NodeSet ";
 | |
|       I.dump();
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   computeNodeOrder(NodeSets);
 | |
| 
 | |
|   // check for node order issues
 | |
|   checkValidNodeOrder(Circuits);
 | |
| 
 | |
|   SMSchedule Schedule(Pass.MF);
 | |
|   Scheduled = schedulePipeline(Schedule);
 | |
| 
 | |
|   if (!Scheduled)
 | |
|     return;
 | |
| 
 | |
|   unsigned numStages = Schedule.getMaxStageCount();
 | |
|   // No need to generate pipeline if there are no overlapped iterations.
 | |
|   if (numStages == 0)
 | |
|     return;
 | |
| 
 | |
|   // Check that the maximum stage count is less than user-defined limit.
 | |
|   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
 | |
|     return;
 | |
| 
 | |
|   generatePipelinedLoop(Schedule);
 | |
|   ++NumPipelined;
 | |
| }
 | |
| 
 | |
| /// Clean up after the software pipeliner runs.
 | |
| void SwingSchedulerDAG::finishBlock() {
 | |
|   for (MachineInstr *I : NewMIs)
 | |
|     MF.DeleteMachineInstr(I);
 | |
|   NewMIs.clear();
 | |
| 
 | |
|   // Call the superclass.
 | |
|   ScheduleDAGInstrs::finishBlock();
 | |
| }
 | |
| 
 | |
| /// Return the register values for  the operands of a Phi instruction.
 | |
| /// This function assume the instruction is a Phi.
 | |
| static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
 | |
|                        unsigned &InitVal, unsigned &LoopVal) {
 | |
|   assert(Phi.isPHI() && "Expecting a Phi.");
 | |
| 
 | |
|   InitVal = 0;
 | |
|   LoopVal = 0;
 | |
|   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
 | |
|     if (Phi.getOperand(i + 1).getMBB() != Loop)
 | |
|       InitVal = Phi.getOperand(i).getReg();
 | |
|     else
 | |
|       LoopVal = Phi.getOperand(i).getReg();
 | |
| 
 | |
|   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
 | |
| }
 | |
| 
 | |
| /// Return the Phi register value that comes from the incoming block.
 | |
| static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
 | |
|   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
 | |
|     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
 | |
|       return Phi.getOperand(i).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Return the Phi register value that comes the loop block.
 | |
| static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
 | |
|   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
 | |
|     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
 | |
|       return Phi.getOperand(i).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Return true if SUb can be reached from SUa following the chain edges.
 | |
| static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
 | |
|   SmallPtrSet<SUnit *, 8> Visited;
 | |
|   SmallVector<SUnit *, 8> Worklist;
 | |
|   Worklist.push_back(SUa);
 | |
|   while (!Worklist.empty()) {
 | |
|     const SUnit *SU = Worklist.pop_back_val();
 | |
|     for (auto &SI : SU->Succs) {
 | |
|       SUnit *SuccSU = SI.getSUnit();
 | |
|       if (SI.getKind() == SDep::Order) {
 | |
|         if (Visited.count(SuccSU))
 | |
|           continue;
 | |
|         if (SuccSU == SUb)
 | |
|           return true;
 | |
|         Worklist.push_back(SuccSU);
 | |
|         Visited.insert(SuccSU);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if the instruction causes a chain between memory
 | |
| /// references before and after it.
 | |
| static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
 | |
|   return MI.isCall() || MI.hasUnmodeledSideEffects() ||
 | |
|          (MI.hasOrderedMemoryRef() &&
 | |
|           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
 | |
| }
 | |
| 
 | |
| /// Return the underlying objects for the memory references of an instruction.
 | |
| /// This function calls the code in ValueTracking, but first checks that the
 | |
| /// instruction has a memory operand.
 | |
| static void getUnderlyingObjects(MachineInstr *MI,
 | |
|                                  SmallVectorImpl<Value *> &Objs,
 | |
|                                  const DataLayout &DL) {
 | |
|   if (!MI->hasOneMemOperand())
 | |
|     return;
 | |
|   MachineMemOperand *MM = *MI->memoperands_begin();
 | |
|   if (!MM->getValue())
 | |
|     return;
 | |
|   GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
 | |
|   for (Value *V : Objs) {
 | |
|     if (!isIdentifiedObject(V)) {
 | |
|       Objs.clear();
 | |
|       return;
 | |
|     }
 | |
|     Objs.push_back(V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Add a chain edge between a load and store if the store can be an
 | |
| /// alias of the load on a subsequent iteration, i.e., a loop carried
 | |
| /// dependence. This code is very similar to the code in ScheduleDAGInstrs
 | |
| /// but that code doesn't create loop carried dependences.
 | |
| void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
 | |
|   MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
 | |
|   Value *UnknownValue =
 | |
|     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
 | |
|   for (auto &SU : SUnits) {
 | |
|     MachineInstr &MI = *SU.getInstr();
 | |
|     if (isDependenceBarrier(MI, AA))
 | |
|       PendingLoads.clear();
 | |
|     else if (MI.mayLoad()) {
 | |
|       SmallVector<Value *, 4> Objs;
 | |
|       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
 | |
|       if (Objs.empty())
 | |
|         Objs.push_back(UnknownValue);
 | |
|       for (auto V : Objs) {
 | |
|         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
 | |
|         SUs.push_back(&SU);
 | |
|       }
 | |
|     } else if (MI.mayStore()) {
 | |
|       SmallVector<Value *, 4> Objs;
 | |
|       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
 | |
|       if (Objs.empty())
 | |
|         Objs.push_back(UnknownValue);
 | |
|       for (auto V : Objs) {
 | |
|         MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
 | |
|             PendingLoads.find(V);
 | |
|         if (I == PendingLoads.end())
 | |
|           continue;
 | |
|         for (auto Load : I->second) {
 | |
|           if (isSuccOrder(Load, &SU))
 | |
|             continue;
 | |
|           MachineInstr &LdMI = *Load->getInstr();
 | |
|           // First, perform the cheaper check that compares the base register.
 | |
|           // If they are the same and the load offset is less than the store
 | |
|           // offset, then mark the dependence as loop carried potentially.
 | |
|           unsigned BaseReg1, BaseReg2;
 | |
|           int64_t Offset1, Offset2;
 | |
|           if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
 | |
|               TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
 | |
|             if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
 | |
|               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
 | |
|                      "What happened to the chain edge?");
 | |
|               SDep Dep(Load, SDep::Barrier);
 | |
|               Dep.setLatency(1);
 | |
|               SU.addPred(Dep);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|           // Second, the more expensive check that uses alias analysis on the
 | |
|           // base registers. If they alias, and the load offset is less than
 | |
|           // the store offset, the mark the dependence as loop carried.
 | |
|           if (!AA) {
 | |
|             SDep Dep(Load, SDep::Barrier);
 | |
|             Dep.setLatency(1);
 | |
|             SU.addPred(Dep);
 | |
|             continue;
 | |
|           }
 | |
|           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
 | |
|           MachineMemOperand *MMO2 = *MI.memoperands_begin();
 | |
|           if (!MMO1->getValue() || !MMO2->getValue()) {
 | |
|             SDep Dep(Load, SDep::Barrier);
 | |
|             Dep.setLatency(1);
 | |
|             SU.addPred(Dep);
 | |
|             continue;
 | |
|           }
 | |
|           if (MMO1->getValue() == MMO2->getValue() &&
 | |
|               MMO1->getOffset() <= MMO2->getOffset()) {
 | |
|             SDep Dep(Load, SDep::Barrier);
 | |
|             Dep.setLatency(1);
 | |
|             SU.addPred(Dep);
 | |
|             continue;
 | |
|           }
 | |
|           AliasResult AAResult = AA->alias(
 | |
|               MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
 | |
|                              MMO1->getAAInfo()),
 | |
|               MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
 | |
|                              MMO2->getAAInfo()));
 | |
| 
 | |
|           if (AAResult != NoAlias) {
 | |
|             SDep Dep(Load, SDep::Barrier);
 | |
|             Dep.setLatency(1);
 | |
|             SU.addPred(Dep);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
 | |
| /// processes dependences for PHIs. This function adds true dependences
 | |
| /// from a PHI to a use, and a loop carried dependence from the use to the
 | |
| /// PHI. The loop carried dependence is represented as an anti dependence
 | |
| /// edge. This function also removes chain dependences between unrelated
 | |
| /// PHIs.
 | |
| void SwingSchedulerDAG::updatePhiDependences() {
 | |
|   SmallVector<SDep, 4> RemoveDeps;
 | |
|   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
 | |
| 
 | |
|   // Iterate over each DAG node.
 | |
|   for (SUnit &I : SUnits) {
 | |
|     RemoveDeps.clear();
 | |
|     // Set to true if the instruction has an operand defined by a Phi.
 | |
|     unsigned HasPhiUse = 0;
 | |
|     unsigned HasPhiDef = 0;
 | |
|     MachineInstr *MI = I.getInstr();
 | |
|     // Iterate over each operand, and we process the definitions.
 | |
|     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | |
|                                     MOE = MI->operands_end();
 | |
|          MOI != MOE; ++MOI) {
 | |
|       if (!MOI->isReg())
 | |
|         continue;
 | |
|       unsigned Reg = MOI->getReg();
 | |
|       if (MOI->isDef()) {
 | |
|         // If the register is used by a Phi, then create an anti dependence.
 | |
|         for (MachineRegisterInfo::use_instr_iterator
 | |
|                  UI = MRI.use_instr_begin(Reg),
 | |
|                  UE = MRI.use_instr_end();
 | |
|              UI != UE; ++UI) {
 | |
|           MachineInstr *UseMI = &*UI;
 | |
|           SUnit *SU = getSUnit(UseMI);
 | |
|           if (SU != nullptr && UseMI->isPHI()) {
 | |
|             if (!MI->isPHI()) {
 | |
|               SDep Dep(SU, SDep::Anti, Reg);
 | |
|               Dep.setLatency(1);
 | |
|               I.addPred(Dep);
 | |
|             } else {
 | |
|               HasPhiDef = Reg;
 | |
|               // Add a chain edge to a dependent Phi that isn't an existing
 | |
|               // predecessor.
 | |
|               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
 | |
|                 I.addPred(SDep(SU, SDep::Barrier));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else if (MOI->isUse()) {
 | |
|         // If the register is defined by a Phi, then create a true dependence.
 | |
|         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
 | |
|         if (DefMI == nullptr)
 | |
|           continue;
 | |
|         SUnit *SU = getSUnit(DefMI);
 | |
|         if (SU != nullptr && DefMI->isPHI()) {
 | |
|           if (!MI->isPHI()) {
 | |
|             SDep Dep(SU, SDep::Data, Reg);
 | |
|             Dep.setLatency(0);
 | |
|             ST.adjustSchedDependency(SU, &I, Dep);
 | |
|             I.addPred(Dep);
 | |
|           } else {
 | |
|             HasPhiUse = Reg;
 | |
|             // Add a chain edge to a dependent Phi that isn't an existing
 | |
|             // predecessor.
 | |
|             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
 | |
|               I.addPred(SDep(SU, SDep::Barrier));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Remove order dependences from an unrelated Phi.
 | |
|     if (!SwpPruneDeps)
 | |
|       continue;
 | |
|     for (auto &PI : I.Preds) {
 | |
|       MachineInstr *PMI = PI.getSUnit()->getInstr();
 | |
|       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
 | |
|         if (I.getInstr()->isPHI()) {
 | |
|           if (PMI->getOperand(0).getReg() == HasPhiUse)
 | |
|             continue;
 | |
|           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
 | |
|             continue;
 | |
|         }
 | |
|         RemoveDeps.push_back(PI);
 | |
|       }
 | |
|     }
 | |
|     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
 | |
|       I.removePred(RemoveDeps[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Iterate over each DAG node and see if we can change any dependences
 | |
| /// in order to reduce the recurrence MII.
 | |
| void SwingSchedulerDAG::changeDependences() {
 | |
|   // See if an instruction can use a value from the previous iteration.
 | |
|   // If so, we update the base and offset of the instruction and change
 | |
|   // the dependences.
 | |
|   for (SUnit &I : SUnits) {
 | |
|     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
 | |
|     int64_t NewOffset = 0;
 | |
|     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
 | |
|                                NewOffset))
 | |
|       continue;
 | |
| 
 | |
|     // Get the MI and SUnit for the instruction that defines the original base.
 | |
|     unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
 | |
|     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
 | |
|     if (!DefMI)
 | |
|       continue;
 | |
|     SUnit *DefSU = getSUnit(DefMI);
 | |
|     if (!DefSU)
 | |
|       continue;
 | |
|     // Get the MI and SUnit for the instruction that defins the new base.
 | |
|     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
 | |
|     if (!LastMI)
 | |
|       continue;
 | |
|     SUnit *LastSU = getSUnit(LastMI);
 | |
|     if (!LastSU)
 | |
|       continue;
 | |
| 
 | |
|     if (Topo.IsReachable(&I, LastSU))
 | |
|       continue;
 | |
| 
 | |
|     // Remove the dependence. The value now depends on a prior iteration.
 | |
|     SmallVector<SDep, 4> Deps;
 | |
|     for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
 | |
|          ++P)
 | |
|       if (P->getSUnit() == DefSU)
 | |
|         Deps.push_back(*P);
 | |
|     for (int i = 0, e = Deps.size(); i != e; i++) {
 | |
|       Topo.RemovePred(&I, Deps[i].getSUnit());
 | |
|       I.removePred(Deps[i]);
 | |
|     }
 | |
|     // Remove the chain dependence between the instructions.
 | |
|     Deps.clear();
 | |
|     for (auto &P : LastSU->Preds)
 | |
|       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
 | |
|         Deps.push_back(P);
 | |
|     for (int i = 0, e = Deps.size(); i != e; i++) {
 | |
|       Topo.RemovePred(LastSU, Deps[i].getSUnit());
 | |
|       LastSU->removePred(Deps[i]);
 | |
|     }
 | |
| 
 | |
|     // Add a dependence between the new instruction and the instruction
 | |
|     // that defines the new base.
 | |
|     SDep Dep(&I, SDep::Anti, NewBase);
 | |
|     Topo.AddPred(LastSU, &I);
 | |
|     LastSU->addPred(Dep);
 | |
| 
 | |
|     // Remember the base and offset information so that we can update the
 | |
|     // instruction during code generation.
 | |
|     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // FuncUnitSorter - Comparison operator used to sort instructions by
 | |
| // the number of functional unit choices.
 | |
| struct FuncUnitSorter {
 | |
|   const InstrItineraryData *InstrItins;
 | |
|   DenseMap<unsigned, unsigned> Resources;
 | |
| 
 | |
|   FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
 | |
| 
 | |
|   // Compute the number of functional unit alternatives needed
 | |
|   // at each stage, and take the minimum value. We prioritize the
 | |
|   // instructions by the least number of choices first.
 | |
|   unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
 | |
|     unsigned schedClass = Inst->getDesc().getSchedClass();
 | |
|     unsigned min = UINT_MAX;
 | |
|     for (const InstrStage *IS = InstrItins->beginStage(schedClass),
 | |
|                           *IE = InstrItins->endStage(schedClass);
 | |
|          IS != IE; ++IS) {
 | |
|       unsigned funcUnits = IS->getUnits();
 | |
|       unsigned numAlternatives = countPopulation(funcUnits);
 | |
|       if (numAlternatives < min) {
 | |
|         min = numAlternatives;
 | |
|         F = funcUnits;
 | |
|       }
 | |
|     }
 | |
|     return min;
 | |
|   }
 | |
| 
 | |
|   // Compute the critical resources needed by the instruction. This
 | |
|   // function records the functional units needed by instructions that
 | |
|   // must use only one functional unit. We use this as a tie breaker
 | |
|   // for computing the resource MII. The instrutions that require
 | |
|   // the same, highly used, functional unit have high priority.
 | |
|   void calcCriticalResources(MachineInstr &MI) {
 | |
|     unsigned SchedClass = MI.getDesc().getSchedClass();
 | |
|     for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
 | |
|                           *IE = InstrItins->endStage(SchedClass);
 | |
|          IS != IE; ++IS) {
 | |
|       unsigned FuncUnits = IS->getUnits();
 | |
|       if (countPopulation(FuncUnits) == 1)
 | |
|         Resources[FuncUnits]++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Return true if IS1 has less priority than IS2.
 | |
|   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
 | |
|     unsigned F1 = 0, F2 = 0;
 | |
|     unsigned MFUs1 = minFuncUnits(IS1, F1);
 | |
|     unsigned MFUs2 = minFuncUnits(IS2, F2);
 | |
|     if (MFUs1 == 1 && MFUs2 == 1)
 | |
|       return Resources.lookup(F1) < Resources.lookup(F2);
 | |
|     return MFUs1 > MFUs2;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Calculate the resource constrained minimum initiation interval for the
 | |
| /// specified loop. We use the DFA to model the resources needed for
 | |
| /// each instruction, and we ignore dependences. A different DFA is created
 | |
| /// for each cycle that is required. When adding a new instruction, we attempt
 | |
| /// to add it to each existing DFA, until a legal space is found. If the
 | |
| /// instruction cannot be reserved in an existing DFA, we create a new one.
 | |
| unsigned SwingSchedulerDAG::calculateResMII() {
 | |
|   SmallVector<DFAPacketizer *, 8> Resources;
 | |
|   MachineBasicBlock *MBB = Loop.getHeader();
 | |
|   Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
 | |
| 
 | |
|   // Sort the instructions by the number of available choices for scheduling,
 | |
|   // least to most. Use the number of critical resources as the tie breaker.
 | |
|   FuncUnitSorter FUS =
 | |
|       FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
 | |
|   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
 | |
|                                    E = MBB->getFirstTerminator();
 | |
|        I != E; ++I)
 | |
|     FUS.calcCriticalResources(*I);
 | |
|   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
 | |
|       FuncUnitOrder(FUS);
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
 | |
|                                    E = MBB->getFirstTerminator();
 | |
|        I != E; ++I)
 | |
|     FuncUnitOrder.push(&*I);
 | |
| 
 | |
|   while (!FuncUnitOrder.empty()) {
 | |
|     MachineInstr *MI = FuncUnitOrder.top();
 | |
|     FuncUnitOrder.pop();
 | |
|     if (TII->isZeroCost(MI->getOpcode()))
 | |
|       continue;
 | |
|     // Attempt to reserve the instruction in an existing DFA. At least one
 | |
|     // DFA is needed for each cycle.
 | |
|     unsigned NumCycles = getSUnit(MI)->Latency;
 | |
|     unsigned ReservedCycles = 0;
 | |
|     SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
 | |
|     SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
 | |
|     for (unsigned C = 0; C < NumCycles; ++C)
 | |
|       while (RI != RE) {
 | |
|         if ((*RI++)->canReserveResources(*MI)) {
 | |
|           ++ReservedCycles;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     // Start reserving resources using existing DFAs.
 | |
|     for (unsigned C = 0; C < ReservedCycles; ++C) {
 | |
|       --RI;
 | |
|       (*RI)->reserveResources(*MI);
 | |
|     }
 | |
|     // Add new DFAs, if needed, to reserve resources.
 | |
|     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
 | |
|       DFAPacketizer *NewResource =
 | |
|           TII->CreateTargetScheduleState(MF.getSubtarget());
 | |
|       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
 | |
|       NewResource->reserveResources(*MI);
 | |
|       Resources.push_back(NewResource);
 | |
|     }
 | |
|   }
 | |
|   int Resmii = Resources.size();
 | |
|   // Delete the memory for each of the DFAs that were created earlier.
 | |
|   for (DFAPacketizer *RI : Resources) {
 | |
|     DFAPacketizer *D = RI;
 | |
|     delete D;
 | |
|   }
 | |
|   Resources.clear();
 | |
|   return Resmii;
 | |
| }
 | |
| 
 | |
| /// Calculate the recurrence-constrainted minimum initiation interval.
 | |
| /// Iterate over each circuit.  Compute the delay(c) and distance(c)
 | |
| /// for each circuit. The II needs to satisfy the inequality
 | |
| /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
 | |
| /// II that satisfies the inequality, and the RecMII is the maximum
 | |
| /// of those values.
 | |
| unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
 | |
|   unsigned RecMII = 0;
 | |
| 
 | |
|   for (NodeSet &Nodes : NodeSets) {
 | |
|     if (Nodes.empty())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Delay = Nodes.getLatency();
 | |
|     unsigned Distance = 1;
 | |
| 
 | |
|     // ii = ceil(delay / distance)
 | |
|     unsigned CurMII = (Delay + Distance - 1) / Distance;
 | |
|     Nodes.setRecMII(CurMII);
 | |
|     if (CurMII > RecMII)
 | |
|       RecMII = CurMII;
 | |
|   }
 | |
| 
 | |
|   return RecMII;
 | |
| }
 | |
| 
 | |
| /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
 | |
| /// but we do this to find the circuits, and then change them back.
 | |
| static void swapAntiDependences(std::vector<SUnit> &SUnits) {
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
 | |
|          IP != EP; ++IP) {
 | |
|       if (IP->getKind() != SDep::Anti)
 | |
|         continue;
 | |
|       DepsAdded.push_back(std::make_pair(SU, *IP));
 | |
|     }
 | |
|   }
 | |
|   for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
 | |
|                                                           E = DepsAdded.end();
 | |
|        I != E; ++I) {
 | |
|     // Remove this anti dependency and add one in the reverse direction.
 | |
|     SUnit *SU = I->first;
 | |
|     SDep &D = I->second;
 | |
|     SUnit *TargetSU = D.getSUnit();
 | |
|     unsigned Reg = D.getReg();
 | |
|     unsigned Lat = D.getLatency();
 | |
|     SU->removePred(D);
 | |
|     SDep Dep(SU, SDep::Anti, Reg);
 | |
|     Dep.setLatency(Lat);
 | |
|     TargetSU->addPred(Dep);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create the adjacency structure of the nodes in the graph.
 | |
| void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
 | |
|     SwingSchedulerDAG *DAG) {
 | |
|   BitVector Added(SUnits.size());
 | |
|   DenseMap<int, int> OutputDeps;
 | |
|   for (int i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     Added.reset();
 | |
|     // Add any successor to the adjacency matrix and exclude duplicates.
 | |
|     for (auto &SI : SUnits[i].Succs) {
 | |
|       // Only create a back-edge on the first and last nodes of a dependence
 | |
|       // chain. This records any chains and adds them later.
 | |
|       if (SI.getKind() == SDep::Output) {
 | |
|         int N = SI.getSUnit()->NodeNum;
 | |
|         int BackEdge = i;
 | |
|         auto Dep = OutputDeps.find(BackEdge);
 | |
|         if (Dep != OutputDeps.end()) {
 | |
|           BackEdge = Dep->second;
 | |
|           OutputDeps.erase(Dep);
 | |
|         }
 | |
|         OutputDeps[N] = BackEdge;
 | |
|       }
 | |
|       // Do not process a boundary node and a back-edge is processed only
 | |
|       // if it goes to a Phi.
 | |
|       if (SI.getSUnit()->isBoundaryNode() ||
 | |
|           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
 | |
|         continue;
 | |
|       int N = SI.getSUnit()->NodeNum;
 | |
|       if (!Added.test(N)) {
 | |
|         AdjK[i].push_back(N);
 | |
|         Added.set(N);
 | |
|       }
 | |
|     }
 | |
|     // A chain edge between a store and a load is treated as a back-edge in the
 | |
|     // adjacency matrix.
 | |
|     for (auto &PI : SUnits[i].Preds) {
 | |
|       if (!SUnits[i].getInstr()->mayStore() ||
 | |
|           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
 | |
|         continue;
 | |
|       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
 | |
|         int N = PI.getSUnit()->NodeNum;
 | |
|         if (!Added.test(N)) {
 | |
|           AdjK[i].push_back(N);
 | |
|           Added.set(N);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Add back-eges in the adjacency matrix for the output dependences.
 | |
|   for (auto &OD : OutputDeps)
 | |
|     if (!Added.test(OD.second)) {
 | |
|       AdjK[OD.first].push_back(OD.second);
 | |
|       Added.set(OD.second);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Identify an elementary circuit in the dependence graph starting at the
 | |
| /// specified node.
 | |
| bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
 | |
|                                           bool HasBackedge) {
 | |
|   SUnit *SV = &SUnits[V];
 | |
|   bool F = false;
 | |
|   Stack.insert(SV);
 | |
|   Blocked.set(V);
 | |
| 
 | |
|   for (auto W : AdjK[V]) {
 | |
|     if (NumPaths > MaxPaths)
 | |
|       break;
 | |
|     if (W < S)
 | |
|       continue;
 | |
|     if (W == S) {
 | |
|       if (!HasBackedge)
 | |
|         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
 | |
|       F = true;
 | |
|       ++NumPaths;
 | |
|       break;
 | |
|     } else if (!Blocked.test(W)) {
 | |
|       if (circuit(W, S, NodeSets,
 | |
|                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
 | |
|         F = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (F)
 | |
|     unblock(V);
 | |
|   else {
 | |
|     for (auto W : AdjK[V]) {
 | |
|       if (W < S)
 | |
|         continue;
 | |
|       if (B[W].count(SV) == 0)
 | |
|         B[W].insert(SV);
 | |
|     }
 | |
|   }
 | |
|   Stack.pop_back();
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| /// Unblock a node in the circuit finding algorithm.
 | |
| void SwingSchedulerDAG::Circuits::unblock(int U) {
 | |
|   Blocked.reset(U);
 | |
|   SmallPtrSet<SUnit *, 4> &BU = B[U];
 | |
|   while (!BU.empty()) {
 | |
|     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
 | |
|     assert(SI != BU.end() && "Invalid B set.");
 | |
|     SUnit *W = *SI;
 | |
|     BU.erase(W);
 | |
|     if (Blocked.test(W->NodeNum))
 | |
|       unblock(W->NodeNum);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Identify all the elementary circuits in the dependence graph using
 | |
| /// Johnson's circuit algorithm.
 | |
| void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
 | |
|   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
 | |
|   // but we do this to find the circuits, and then change them back.
 | |
|   swapAntiDependences(SUnits);
 | |
| 
 | |
|   Circuits Cir(SUnits, Topo);
 | |
|   // Create the adjacency structure.
 | |
|   Cir.createAdjacencyStructure(this);
 | |
|   for (int i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     Cir.reset();
 | |
|     Cir.circuit(i, i, NodeSets);
 | |
|   }
 | |
| 
 | |
|   // Change the dependences back so that we've created a DAG again.
 | |
|   swapAntiDependences(SUnits);
 | |
| }
 | |
| 
 | |
| /// Return true for DAG nodes that we ignore when computing the cost functions.
 | |
| /// We ignore the back-edge recurrence in order to avoid unbounded recursion
 | |
| /// in the calculation of the ASAP, ALAP, etc functions.
 | |
| static bool ignoreDependence(const SDep &D, bool isPred) {
 | |
|   if (D.isArtificial())
 | |
|     return true;
 | |
|   return D.getKind() == SDep::Anti && isPred;
 | |
| }
 | |
| 
 | |
| /// Compute several functions need to order the nodes for scheduling.
 | |
| ///  ASAP - Earliest time to schedule a node.
 | |
| ///  ALAP - Latest time to schedule a node.
 | |
| ///  MOV - Mobility function, difference between ALAP and ASAP.
 | |
| ///  D - Depth of each node.
 | |
| ///  H - Height of each node.
 | |
| void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
 | |
|   ScheduleInfo.resize(SUnits.size());
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
 | |
|                                                     E = Topo.end();
 | |
|          I != E; ++I) {
 | |
|       const SUnit &SU = SUnits[*I];
 | |
|       dumpNode(SU);
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   int maxASAP = 0;
 | |
|   // Compute ASAP and ZeroLatencyDepth.
 | |
|   for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
 | |
|                                                   E = Topo.end();
 | |
|        I != E; ++I) {
 | |
|     int asap = 0;
 | |
|     int zeroLatencyDepth = 0;
 | |
|     SUnit *SU = &SUnits[*I];
 | |
|     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
 | |
|                                     EP = SU->Preds.end();
 | |
|          IP != EP; ++IP) {
 | |
|       SUnit *pred = IP->getSUnit();
 | |
|       if (IP->getLatency() == 0)
 | |
|         zeroLatencyDepth =
 | |
|             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
 | |
|       if (ignoreDependence(*IP, true))
 | |
|         continue;
 | |
|       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
 | |
|                                   getDistance(pred, SU, *IP) * MII));
 | |
|     }
 | |
|     maxASAP = std::max(maxASAP, asap);
 | |
|     ScheduleInfo[*I].ASAP = asap;
 | |
|     ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
 | |
|   }
 | |
| 
 | |
|   // Compute ALAP, ZeroLatencyHeight, and MOV.
 | |
|   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
 | |
|                                                           E = Topo.rend();
 | |
|        I != E; ++I) {
 | |
|     int alap = maxASAP;
 | |
|     int zeroLatencyHeight = 0;
 | |
|     SUnit *SU = &SUnits[*I];
 | |
|     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
 | |
|                                     ES = SU->Succs.end();
 | |
|          IS != ES; ++IS) {
 | |
|       SUnit *succ = IS->getSUnit();
 | |
|       if (IS->getLatency() == 0)
 | |
|         zeroLatencyHeight =
 | |
|             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
 | |
|       if (ignoreDependence(*IS, true))
 | |
|         continue;
 | |
|       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
 | |
|                                   getDistance(SU, succ, *IS) * MII));
 | |
|     }
 | |
| 
 | |
|     ScheduleInfo[*I].ALAP = alap;
 | |
|     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
 | |
|   }
 | |
| 
 | |
|   // After computing the node functions, compute the summary for each node set.
 | |
|   for (NodeSet &I : NodeSets)
 | |
|     I.computeNodeSetInfo(this);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     for (unsigned i = 0; i < SUnits.size(); i++) {
 | |
|       dbgs() << "\tNode " << i << ":\n";
 | |
|       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
 | |
|       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
 | |
|       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
 | |
|       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
 | |
|       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
 | |
|       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
 | |
|       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
 | |
|     }
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
 | |
| /// as the predecessors of the elements of NodeOrder that are not also in
 | |
| /// NodeOrder.
 | |
| static bool pred_L(SetVector<SUnit *> &NodeOrder,
 | |
|                    SmallSetVector<SUnit *, 8> &Preds,
 | |
|                    const NodeSet *S = nullptr) {
 | |
|   Preds.clear();
 | |
|   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
 | |
|        I != E; ++I) {
 | |
|     for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
 | |
|          PI != PE; ++PI) {
 | |
|       if (S && S->count(PI->getSUnit()) == 0)
 | |
|         continue;
 | |
|       if (ignoreDependence(*PI, true))
 | |
|         continue;
 | |
|       if (NodeOrder.count(PI->getSUnit()) == 0)
 | |
|         Preds.insert(PI->getSUnit());
 | |
|     }
 | |
|     // Back-edges are predecessors with an anti-dependence.
 | |
|     for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
 | |
|                                     ES = (*I)->Succs.end();
 | |
|          IS != ES; ++IS) {
 | |
|       if (IS->getKind() != SDep::Anti)
 | |
|         continue;
 | |
|       if (S && S->count(IS->getSUnit()) == 0)
 | |
|         continue;
 | |
|       if (NodeOrder.count(IS->getSUnit()) == 0)
 | |
|         Preds.insert(IS->getSUnit());
 | |
|     }
 | |
|   }
 | |
|   return !Preds.empty();
 | |
| }
 | |
| 
 | |
| /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
 | |
| /// as the successors of the elements of NodeOrder that are not also in
 | |
| /// NodeOrder.
 | |
| static bool succ_L(SetVector<SUnit *> &NodeOrder,
 | |
|                    SmallSetVector<SUnit *, 8> &Succs,
 | |
|                    const NodeSet *S = nullptr) {
 | |
|   Succs.clear();
 | |
|   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
 | |
|        I != E; ++I) {
 | |
|     for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
 | |
|          SI != SE; ++SI) {
 | |
|       if (S && S->count(SI->getSUnit()) == 0)
 | |
|         continue;
 | |
|       if (ignoreDependence(*SI, false))
 | |
|         continue;
 | |
|       if (NodeOrder.count(SI->getSUnit()) == 0)
 | |
|         Succs.insert(SI->getSUnit());
 | |
|     }
 | |
|     for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
 | |
|                                     PE = (*I)->Preds.end();
 | |
|          PI != PE; ++PI) {
 | |
|       if (PI->getKind() != SDep::Anti)
 | |
|         continue;
 | |
|       if (S && S->count(PI->getSUnit()) == 0)
 | |
|         continue;
 | |
|       if (NodeOrder.count(PI->getSUnit()) == 0)
 | |
|         Succs.insert(PI->getSUnit());
 | |
|     }
 | |
|   }
 | |
|   return !Succs.empty();
 | |
| }
 | |
| 
 | |
| /// Return true if there is a path from the specified node to any of the nodes
 | |
| /// in DestNodes. Keep track and return the nodes in any path.
 | |
| static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
 | |
|                         SetVector<SUnit *> &DestNodes,
 | |
|                         SetVector<SUnit *> &Exclude,
 | |
|                         SmallPtrSet<SUnit *, 8> &Visited) {
 | |
|   if (Cur->isBoundaryNode())
 | |
|     return false;
 | |
|   if (Exclude.count(Cur) != 0)
 | |
|     return false;
 | |
|   if (DestNodes.count(Cur) != 0)
 | |
|     return true;
 | |
|   if (!Visited.insert(Cur).second)
 | |
|     return Path.count(Cur) != 0;
 | |
|   bool FoundPath = false;
 | |
|   for (auto &SI : Cur->Succs)
 | |
|     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
 | |
|   for (auto &PI : Cur->Preds)
 | |
|     if (PI.getKind() == SDep::Anti)
 | |
|       FoundPath |=
 | |
|           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
 | |
|   if (FoundPath)
 | |
|     Path.insert(Cur);
 | |
|   return FoundPath;
 | |
| }
 | |
| 
 | |
| /// Return true if Set1 is a subset of Set2.
 | |
| template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
 | |
|   for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
 | |
|     if (Set2.count(*I) == 0)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Compute the live-out registers for the instructions in a node-set.
 | |
| /// The live-out registers are those that are defined in the node-set,
 | |
| /// but not used. Except for use operands of Phis.
 | |
| static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
 | |
|                             NodeSet &NS) {
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
 | |
|   SmallSet<unsigned, 4> Uses;
 | |
|   for (SUnit *SU : NS) {
 | |
|     const MachineInstr *MI = SU->getInstr();
 | |
|     if (MI->isPHI())
 | |
|       continue;
 | |
|     for (const MachineOperand &MO : MI->operands())
 | |
|       if (MO.isReg() && MO.isUse()) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|           Uses.insert(Reg);
 | |
|         else if (MRI.isAllocatable(Reg))
 | |
|           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
 | |
|             Uses.insert(*Units);
 | |
|       }
 | |
|   }
 | |
|   for (SUnit *SU : NS)
 | |
|     for (const MachineOperand &MO : SU->getInstr()->operands())
 | |
|       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|           if (!Uses.count(Reg))
 | |
|             LiveOutRegs.push_back(RegisterMaskPair(Reg,
 | |
|                                                    LaneBitmask::getNone()));
 | |
|         } else if (MRI.isAllocatable(Reg)) {
 | |
|           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
 | |
|             if (!Uses.count(*Units))
 | |
|               LiveOutRegs.push_back(RegisterMaskPair(*Units,
 | |
|                                                      LaneBitmask::getNone()));
 | |
|         }
 | |
|       }
 | |
|   RPTracker.addLiveRegs(LiveOutRegs);
 | |
| }
 | |
| 
 | |
| /// A heuristic to filter nodes in recurrent node-sets if the register
 | |
| /// pressure of a set is too high.
 | |
| void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
 | |
|   for (auto &NS : NodeSets) {
 | |
|     // Skip small node-sets since they won't cause register pressure problems.
 | |
|     if (NS.size() <= 2)
 | |
|       continue;
 | |
|     IntervalPressure RecRegPressure;
 | |
|     RegPressureTracker RecRPTracker(RecRegPressure);
 | |
|     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
 | |
|     computeLiveOuts(MF, RecRPTracker, NS);
 | |
|     RecRPTracker.closeBottom();
 | |
| 
 | |
|     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
 | |
|     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
 | |
|       return A->NodeNum > B->NodeNum;
 | |
|     });
 | |
| 
 | |
|     for (auto &SU : SUnits) {
 | |
|       // Since we're computing the register pressure for a subset of the
 | |
|       // instructions in a block, we need to set the tracker for each
 | |
|       // instruction in the node-set. The tracker is set to the instruction
 | |
|       // just after the one we're interested in.
 | |
|       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
 | |
|       RecRPTracker.setPos(std::next(CurInstI));
 | |
| 
 | |
|       RegPressureDelta RPDelta;
 | |
|       ArrayRef<PressureChange> CriticalPSets;
 | |
|       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
 | |
|                                              CriticalPSets,
 | |
|                                              RecRegPressure.MaxSetPressure);
 | |
|       if (RPDelta.Excess.isValid()) {
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
 | |
|                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
 | |
|                    << ":" << RPDelta.Excess.getUnitInc());
 | |
|         NS.setExceedPressure(SU);
 | |
|         break;
 | |
|       }
 | |
|       RecRPTracker.recede();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// A heuristic to colocate node sets that have the same set of
 | |
| /// successors.
 | |
| void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
 | |
|   unsigned Colocate = 0;
 | |
|   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
 | |
|     NodeSet &N1 = NodeSets[i];
 | |
|     SmallSetVector<SUnit *, 8> S1;
 | |
|     if (N1.empty() || !succ_L(N1, S1))
 | |
|       continue;
 | |
|     for (int j = i + 1; j < e; ++j) {
 | |
|       NodeSet &N2 = NodeSets[j];
 | |
|       if (N1.compareRecMII(N2) != 0)
 | |
|         continue;
 | |
|       SmallSetVector<SUnit *, 8> S2;
 | |
|       if (N2.empty() || !succ_L(N2, S2))
 | |
|         continue;
 | |
|       if (isSubset(S1, S2) && S1.size() == S2.size()) {
 | |
|         N1.setColocate(++Colocate);
 | |
|         N2.setColocate(Colocate);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check if the existing node-sets are profitable. If not, then ignore the
 | |
| /// recurrent node-sets, and attempt to schedule all nodes together. This is
 | |
| /// a heuristic. If the MII is large and all the recurrent node-sets are small,
 | |
| /// then it's best to try to schedule all instructions together instead of
 | |
| /// starting with the recurrent node-sets.
 | |
| void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
 | |
|   // Look for loops with a large MII.
 | |
|   if (MII < 17)
 | |
|     return;
 | |
|   // Check if the node-set contains only a simple add recurrence.
 | |
|   for (auto &NS : NodeSets) {
 | |
|     if (NS.getRecMII() > 2)
 | |
|       return;
 | |
|     if (NS.getMaxDepth() > MII)
 | |
|       return;
 | |
|   }
 | |
|   NodeSets.clear();
 | |
|   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// Add the nodes that do not belong to a recurrence set into groups
 | |
| /// based upon connected componenets.
 | |
| void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
 | |
|   SetVector<SUnit *> NodesAdded;
 | |
|   SmallPtrSet<SUnit *, 8> Visited;
 | |
|   // Add the nodes that are on a path between the previous node sets and
 | |
|   // the current node set.
 | |
|   for (NodeSet &I : NodeSets) {
 | |
|     SmallSetVector<SUnit *, 8> N;
 | |
|     // Add the nodes from the current node set to the previous node set.
 | |
|     if (succ_L(I, N)) {
 | |
|       SetVector<SUnit *> Path;
 | |
|       for (SUnit *NI : N) {
 | |
|         Visited.clear();
 | |
|         computePath(NI, Path, NodesAdded, I, Visited);
 | |
|       }
 | |
|       if (!Path.empty())
 | |
|         I.insert(Path.begin(), Path.end());
 | |
|     }
 | |
|     // Add the nodes from the previous node set to the current node set.
 | |
|     N.clear();
 | |
|     if (succ_L(NodesAdded, N)) {
 | |
|       SetVector<SUnit *> Path;
 | |
|       for (SUnit *NI : N) {
 | |
|         Visited.clear();
 | |
|         computePath(NI, Path, I, NodesAdded, Visited);
 | |
|       }
 | |
|       if (!Path.empty())
 | |
|         I.insert(Path.begin(), Path.end());
 | |
|     }
 | |
|     NodesAdded.insert(I.begin(), I.end());
 | |
|   }
 | |
| 
 | |
|   // Create a new node set with the connected nodes of any successor of a node
 | |
|   // in a recurrent set.
 | |
|   NodeSet NewSet;
 | |
|   SmallSetVector<SUnit *, 8> N;
 | |
|   if (succ_L(NodesAdded, N))
 | |
|     for (SUnit *I : N)
 | |
|       addConnectedNodes(I, NewSet, NodesAdded);
 | |
|   if (!NewSet.empty())
 | |
|     NodeSets.push_back(NewSet);
 | |
| 
 | |
|   // Create a new node set with the connected nodes of any predecessor of a node
 | |
|   // in a recurrent set.
 | |
|   NewSet.clear();
 | |
|   if (pred_L(NodesAdded, N))
 | |
|     for (SUnit *I : N)
 | |
|       addConnectedNodes(I, NewSet, NodesAdded);
 | |
|   if (!NewSet.empty())
 | |
|     NodeSets.push_back(NewSet);
 | |
| 
 | |
|   // Create new nodes sets with the connected nodes any remaining node that
 | |
|   // has no predecessor.
 | |
|   for (unsigned i = 0; i < SUnits.size(); ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     if (NodesAdded.count(SU) == 0) {
 | |
|       NewSet.clear();
 | |
|       addConnectedNodes(SU, NewSet, NodesAdded);
 | |
|       if (!NewSet.empty())
 | |
|         NodeSets.push_back(NewSet);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Add the node to the set, and add all is its connected nodes to the set.
 | |
| void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
 | |
|                                           SetVector<SUnit *> &NodesAdded) {
 | |
|   NewSet.insert(SU);
 | |
|   NodesAdded.insert(SU);
 | |
|   for (auto &SI : SU->Succs) {
 | |
|     SUnit *Successor = SI.getSUnit();
 | |
|     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
 | |
|       addConnectedNodes(Successor, NewSet, NodesAdded);
 | |
|   }
 | |
|   for (auto &PI : SU->Preds) {
 | |
|     SUnit *Predecessor = PI.getSUnit();
 | |
|     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
 | |
|       addConnectedNodes(Predecessor, NewSet, NodesAdded);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if Set1 contains elements in Set2. The elements in common
 | |
| /// are returned in a different container.
 | |
| static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
 | |
|                         SmallSetVector<SUnit *, 8> &Result) {
 | |
|   Result.clear();
 | |
|   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
 | |
|     SUnit *SU = Set1[i];
 | |
|     if (Set2.count(SU) != 0)
 | |
|       Result.insert(SU);
 | |
|   }
 | |
|   return !Result.empty();
 | |
| }
 | |
| 
 | |
| /// Merge the recurrence node sets that have the same initial node.
 | |
| void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
 | |
|   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
 | |
|        ++I) {
 | |
|     NodeSet &NI = *I;
 | |
|     for (NodeSetType::iterator J = I + 1; J != E;) {
 | |
|       NodeSet &NJ = *J;
 | |
|       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
 | |
|         if (NJ.compareRecMII(NI) > 0)
 | |
|           NI.setRecMII(NJ.getRecMII());
 | |
|         for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
 | |
|              ++NII)
 | |
|           I->insert(*NII);
 | |
|         NodeSets.erase(J);
 | |
|         E = NodeSets.end();
 | |
|       } else {
 | |
|         ++J;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove nodes that have been scheduled in previous NodeSets.
 | |
| void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
 | |
|   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
 | |
|        ++I)
 | |
|     for (NodeSetType::iterator J = I + 1; J != E;) {
 | |
|       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
 | |
| 
 | |
|       if (J->empty()) {
 | |
|         NodeSets.erase(J);
 | |
|         E = NodeSets.end();
 | |
|       } else {
 | |
|         ++J;
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Compute an ordered list of the dependence graph nodes, which
 | |
| /// indicates the order that the nodes will be scheduled.  This is a
 | |
| /// two-level algorithm. First, a partial order is created, which
 | |
| /// consists of a list of sets ordered from highest to lowest priority.
 | |
| void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
 | |
|   SmallSetVector<SUnit *, 8> R;
 | |
|   NodeOrder.clear();
 | |
| 
 | |
|   for (auto &Nodes : NodeSets) {
 | |
|     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
 | |
|     OrderKind Order;
 | |
|     SmallSetVector<SUnit *, 8> N;
 | |
|     if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
 | |
|       R.insert(N.begin(), N.end());
 | |
|       Order = BottomUp;
 | |
|       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
 | |
|     } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
 | |
|       R.insert(N.begin(), N.end());
 | |
|       Order = TopDown;
 | |
|       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
 | |
|     } else if (isIntersect(N, Nodes, R)) {
 | |
|       // If some of the successors are in the existing node-set, then use the
 | |
|       // top-down ordering.
 | |
|       Order = TopDown;
 | |
|       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
 | |
|     } else if (NodeSets.size() == 1) {
 | |
|       for (auto &N : Nodes)
 | |
|         if (N->Succs.size() == 0)
 | |
|           R.insert(N);
 | |
|       Order = BottomUp;
 | |
|       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
 | |
|     } else {
 | |
|       // Find the node with the highest ASAP.
 | |
|       SUnit *maxASAP = nullptr;
 | |
|       for (SUnit *SU : Nodes) {
 | |
|         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
 | |
|             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
 | |
|           maxASAP = SU;
 | |
|       }
 | |
|       R.insert(maxASAP);
 | |
|       Order = BottomUp;
 | |
|       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
 | |
|     }
 | |
| 
 | |
|     while (!R.empty()) {
 | |
|       if (Order == TopDown) {
 | |
|         // Choose the node with the maximum height.  If more than one, choose
 | |
|         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
 | |
|         // choose the node with the lowest MOV.
 | |
|         while (!R.empty()) {
 | |
|           SUnit *maxHeight = nullptr;
 | |
|           for (SUnit *I : R) {
 | |
|             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
 | |
|               maxHeight = I;
 | |
|             else if (getHeight(I) == getHeight(maxHeight) &&
 | |
|                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
 | |
|               maxHeight = I;
 | |
|             else if (getHeight(I) == getHeight(maxHeight) &&
 | |
|                      getZeroLatencyHeight(I) ==
 | |
|                          getZeroLatencyHeight(maxHeight) &&
 | |
|                      getMOV(I) < getMOV(maxHeight))
 | |
|               maxHeight = I;
 | |
|           }
 | |
|           NodeOrder.insert(maxHeight);
 | |
|           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
 | |
|           R.remove(maxHeight);
 | |
|           for (const auto &I : maxHeight->Succs) {
 | |
|             if (Nodes.count(I.getSUnit()) == 0)
 | |
|               continue;
 | |
|             if (NodeOrder.count(I.getSUnit()) != 0)
 | |
|               continue;
 | |
|             if (ignoreDependence(I, false))
 | |
|               continue;
 | |
|             R.insert(I.getSUnit());
 | |
|           }
 | |
|           // Back-edges are predecessors with an anti-dependence.
 | |
|           for (const auto &I : maxHeight->Preds) {
 | |
|             if (I.getKind() != SDep::Anti)
 | |
|               continue;
 | |
|             if (Nodes.count(I.getSUnit()) == 0)
 | |
|               continue;
 | |
|             if (NodeOrder.count(I.getSUnit()) != 0)
 | |
|               continue;
 | |
|             R.insert(I.getSUnit());
 | |
|           }
 | |
|         }
 | |
|         Order = BottomUp;
 | |
|         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
 | |
|         SmallSetVector<SUnit *, 8> N;
 | |
|         if (pred_L(NodeOrder, N, &Nodes))
 | |
|           R.insert(N.begin(), N.end());
 | |
|       } else {
 | |
|         // Choose the node with the maximum depth.  If more than one, choose
 | |
|         // the node with the maximum ZeroLatencyDepth. If still more than one,
 | |
|         // choose the node with the lowest MOV.
 | |
|         while (!R.empty()) {
 | |
|           SUnit *maxDepth = nullptr;
 | |
|           for (SUnit *I : R) {
 | |
|             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
 | |
|               maxDepth = I;
 | |
|             else if (getDepth(I) == getDepth(maxDepth) &&
 | |
|                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
 | |
|               maxDepth = I;
 | |
|             else if (getDepth(I) == getDepth(maxDepth) &&
 | |
|                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
 | |
|                      getMOV(I) < getMOV(maxDepth))
 | |
|               maxDepth = I;
 | |
|           }
 | |
|           NodeOrder.insert(maxDepth);
 | |
|           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
 | |
|           R.remove(maxDepth);
 | |
|           if (Nodes.isExceedSU(maxDepth)) {
 | |
|             Order = TopDown;
 | |
|             R.clear();
 | |
|             R.insert(Nodes.getNode(0));
 | |
|             break;
 | |
|           }
 | |
|           for (const auto &I : maxDepth->Preds) {
 | |
|             if (Nodes.count(I.getSUnit()) == 0)
 | |
|               continue;
 | |
|             if (NodeOrder.count(I.getSUnit()) != 0)
 | |
|               continue;
 | |
|             R.insert(I.getSUnit());
 | |
|           }
 | |
|           // Back-edges are predecessors with an anti-dependence.
 | |
|           for (const auto &I : maxDepth->Succs) {
 | |
|             if (I.getKind() != SDep::Anti)
 | |
|               continue;
 | |
|             if (Nodes.count(I.getSUnit()) == 0)
 | |
|               continue;
 | |
|             if (NodeOrder.count(I.getSUnit()) != 0)
 | |
|               continue;
 | |
|             R.insert(I.getSUnit());
 | |
|           }
 | |
|         }
 | |
|         Order = TopDown;
 | |
|         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
 | |
|         SmallSetVector<SUnit *, 8> N;
 | |
|         if (succ_L(NodeOrder, N, &Nodes))
 | |
|           R.insert(N.begin(), N.end());
 | |
|       }
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Node order: ";
 | |
|     for (SUnit *I : NodeOrder)
 | |
|       dbgs() << " " << I->NodeNum << " ";
 | |
|     dbgs() << "\n";
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Process the nodes in the computed order and create the pipelined schedule
 | |
| /// of the instructions, if possible. Return true if a schedule is found.
 | |
| bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
 | |
|   if (NodeOrder.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool scheduleFound = false;
 | |
|   // Keep increasing II until a valid schedule is found.
 | |
|   for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
 | |
|     Schedule.reset();
 | |
|     Schedule.setInitiationInterval(II);
 | |
|     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
 | |
| 
 | |
|     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
 | |
|     SetVector<SUnit *>::iterator NE = NodeOrder.end();
 | |
|     do {
 | |
|       SUnit *SU = *NI;
 | |
| 
 | |
|       // Compute the schedule time for the instruction, which is based
 | |
|       // upon the scheduled time for any predecessors/successors.
 | |
|       int EarlyStart = INT_MIN;
 | |
|       int LateStart = INT_MAX;
 | |
|       // These values are set when the size of the schedule window is limited
 | |
|       // due to chain dependences.
 | |
|       int SchedEnd = INT_MAX;
 | |
|       int SchedStart = INT_MIN;
 | |
|       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
 | |
|                             II, this);
 | |
|       LLVM_DEBUG({
 | |
|         dbgs() << "Inst (" << SU->NodeNum << ") ";
 | |
|         SU->getInstr()->dump();
 | |
|         dbgs() << "\n";
 | |
|       });
 | |
|       LLVM_DEBUG({
 | |
|         dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
 | |
|                << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
 | |
|       });
 | |
| 
 | |
|       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
 | |
|           SchedStart > LateStart)
 | |
|         scheduleFound = false;
 | |
|       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
 | |
|         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
 | |
|         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
 | |
|       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
 | |
|         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
 | |
|         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
 | |
|       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
 | |
|         SchedEnd =
 | |
|             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
 | |
|         // When scheduling a Phi it is better to start at the late cycle and go
 | |
|         // backwards. The default order may insert the Phi too far away from
 | |
|         // its first dependence.
 | |
|         if (SU->getInstr()->isPHI())
 | |
|           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
 | |
|         else
 | |
|           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
 | |
|       } else {
 | |
|         int FirstCycle = Schedule.getFirstCycle();
 | |
|         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
 | |
|                                         FirstCycle + getASAP(SU) + II - 1, II);
 | |
|       }
 | |
|       // Even if we find a schedule, make sure the schedule doesn't exceed the
 | |
|       // allowable number of stages. We keep trying if this happens.
 | |
|       if (scheduleFound)
 | |
|         if (SwpMaxStages > -1 &&
 | |
|             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
 | |
|           scheduleFound = false;
 | |
| 
 | |
|       LLVM_DEBUG({
 | |
|         if (!scheduleFound)
 | |
|           dbgs() << "\tCan't schedule\n";
 | |
|       });
 | |
|     } while (++NI != NE && scheduleFound);
 | |
| 
 | |
|     // If a schedule is found, check if it is a valid schedule too.
 | |
|     if (scheduleFound)
 | |
|       scheduleFound = Schedule.isValidSchedule(this);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
 | |
| 
 | |
|   if (scheduleFound)
 | |
|     Schedule.finalizeSchedule(this);
 | |
|   else
 | |
|     Schedule.reset();
 | |
| 
 | |
|   return scheduleFound && Schedule.getMaxStageCount() > 0;
 | |
| }
 | |
| 
 | |
| /// Given a schedule for the loop, generate a new version of the loop,
 | |
| /// and replace the old version.  This function generates a prolog
 | |
| /// that contains the initial iterations in the pipeline, and kernel
 | |
| /// loop, and the epilogue that contains the code for the final
 | |
| /// iterations.
 | |
| void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
 | |
|   // Create a new basic block for the kernel and add it to the CFG.
 | |
|   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
 | |
| 
 | |
|   unsigned MaxStageCount = Schedule.getMaxStageCount();
 | |
| 
 | |
|   // Remember the registers that are used in different stages. The index is
 | |
|   // the iteration, or stage, that the instruction is scheduled in.  This is
 | |
|   // a map between register names in the original block and the names created
 | |
|   // in each stage of the pipelined loop.
 | |
|   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
 | |
|   InstrMapTy InstrMap;
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> PrologBBs;
 | |
|   // Generate the prolog instructions that set up the pipeline.
 | |
|   generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
 | |
|   MF.insert(BB->getIterator(), KernelBB);
 | |
| 
 | |
|   // Rearrange the instructions to generate the new, pipelined loop,
 | |
|   // and update register names as needed.
 | |
|   for (int Cycle = Schedule.getFirstCycle(),
 | |
|            LastCycle = Schedule.getFinalCycle();
 | |
|        Cycle <= LastCycle; ++Cycle) {
 | |
|     std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
 | |
|     // This inner loop schedules each instruction in the cycle.
 | |
|     for (SUnit *CI : CycleInstrs) {
 | |
|       if (CI->getInstr()->isPHI())
 | |
|         continue;
 | |
|       unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
 | |
|       MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
 | |
|       updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
 | |
|       KernelBB->push_back(NewMI);
 | |
|       InstrMap[NewMI] = CI->getInstr();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Copy any terminator instructions to the new kernel, and update
 | |
|   // names as needed.
 | |
|   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
 | |
|                                    E = BB->instr_end();
 | |
|        I != E; ++I) {
 | |
|     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
 | |
|     updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
 | |
|     KernelBB->push_back(NewMI);
 | |
|     InstrMap[NewMI] = &*I;
 | |
|   }
 | |
| 
 | |
|   KernelBB->transferSuccessors(BB);
 | |
|   KernelBB->replaceSuccessor(BB, KernelBB);
 | |
| 
 | |
|   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
 | |
|                        VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
 | |
|   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
 | |
|                InstrMap, MaxStageCount, MaxStageCount, false);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
 | |
|   // Generate the epilog instructions to complete the pipeline.
 | |
|   generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
 | |
|                  PrologBBs);
 | |
| 
 | |
|   // We need this step because the register allocation doesn't handle some
 | |
|   // situations well, so we insert copies to help out.
 | |
|   splitLifetimes(KernelBB, EpilogBBs, Schedule);
 | |
| 
 | |
|   // Remove dead instructions due to loop induction variables.
 | |
|   removeDeadInstructions(KernelBB, EpilogBBs);
 | |
| 
 | |
|   // Add branches between prolog and epilog blocks.
 | |
|   addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
 | |
| 
 | |
|   // Remove the original loop since it's no longer referenced.
 | |
|   for (auto &I : *BB)
 | |
|     LIS.RemoveMachineInstrFromMaps(I);
 | |
|   BB->clear();
 | |
|   BB->eraseFromParent();
 | |
| 
 | |
|   delete[] VRMap;
 | |
| }
 | |
| 
 | |
| /// Generate the pipeline prolog code.
 | |
| void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
 | |
|                                        MachineBasicBlock *KernelBB,
 | |
|                                        ValueMapTy *VRMap,
 | |
|                                        MBBVectorTy &PrologBBs) {
 | |
|   MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
 | |
|   assert(PreheaderBB != nullptr &&
 | |
|          "Need to add code to handle loops w/o preheader");
 | |
|   MachineBasicBlock *PredBB = PreheaderBB;
 | |
|   InstrMapTy InstrMap;
 | |
| 
 | |
|   // Generate a basic block for each stage, not including the last stage,
 | |
|   // which will be generated in the kernel. Each basic block may contain
 | |
|   // instructions from multiple stages/iterations.
 | |
|   for (unsigned i = 0; i < LastStage; ++i) {
 | |
|     // Create and insert the prolog basic block prior to the original loop
 | |
|     // basic block.  The original loop is removed later.
 | |
|     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
 | |
|     PrologBBs.push_back(NewBB);
 | |
|     MF.insert(BB->getIterator(), NewBB);
 | |
|     NewBB->transferSuccessors(PredBB);
 | |
|     PredBB->addSuccessor(NewBB);
 | |
|     PredBB = NewBB;
 | |
| 
 | |
|     // Generate instructions for each appropriate stage. Process instructions
 | |
|     // in original program order.
 | |
|     for (int StageNum = i; StageNum >= 0; --StageNum) {
 | |
|       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
 | |
|                                        BBE = BB->getFirstTerminator();
 | |
|            BBI != BBE; ++BBI) {
 | |
|         if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
 | |
|           if (BBI->isPHI())
 | |
|             continue;
 | |
|           MachineInstr *NewMI =
 | |
|               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
 | |
|           updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
 | |
|                             VRMap);
 | |
|           NewBB->push_back(NewMI);
 | |
|           InstrMap[NewMI] = &*BBI;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "prolog:\n";
 | |
|       NewBB->dump();
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   PredBB->replaceSuccessor(BB, KernelBB);
 | |
| 
 | |
|   // Check if we need to remove the branch from the preheader to the original
 | |
|   // loop, and replace it with a branch to the new loop.
 | |
|   unsigned numBranches = TII->removeBranch(*PreheaderBB);
 | |
|   if (numBranches) {
 | |
|     SmallVector<MachineOperand, 0> Cond;
 | |
|     TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate the pipeline epilog code. The epilog code finishes the iterations
 | |
| /// that were started in either the prolog or the kernel.  We create a basic
 | |
| /// block for each stage that needs to complete.
 | |
| void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
 | |
|                                        MachineBasicBlock *KernelBB,
 | |
|                                        ValueMapTy *VRMap,
 | |
|                                        MBBVectorTy &EpilogBBs,
 | |
|                                        MBBVectorTy &PrologBBs) {
 | |
|   // We need to change the branch from the kernel to the first epilog block, so
 | |
|   // this call to analyze branch uses the kernel rather than the original BB.
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
 | |
|   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
 | |
|   if (checkBranch)
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
 | |
|   if (*LoopExitI == KernelBB)
 | |
|     ++LoopExitI;
 | |
|   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
 | |
|   MachineBasicBlock *LoopExitBB = *LoopExitI;
 | |
| 
 | |
|   MachineBasicBlock *PredBB = KernelBB;
 | |
|   MachineBasicBlock *EpilogStart = LoopExitBB;
 | |
|   InstrMapTy InstrMap;
 | |
| 
 | |
|   // Generate a basic block for each stage, not including the last stage,
 | |
|   // which was generated for the kernel.  Each basic block may contain
 | |
|   // instructions from multiple stages/iterations.
 | |
|   int EpilogStage = LastStage + 1;
 | |
|   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
 | |
|     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
 | |
|     EpilogBBs.push_back(NewBB);
 | |
|     MF.insert(BB->getIterator(), NewBB);
 | |
| 
 | |
|     PredBB->replaceSuccessor(LoopExitBB, NewBB);
 | |
|     NewBB->addSuccessor(LoopExitBB);
 | |
| 
 | |
|     if (EpilogStart == LoopExitBB)
 | |
|       EpilogStart = NewBB;
 | |
| 
 | |
|     // Add instructions to the epilog depending on the current block.
 | |
|     // Process instructions in original program order.
 | |
|     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
 | |
|       for (auto &BBI : *BB) {
 | |
|         if (BBI.isPHI())
 | |
|           continue;
 | |
|         MachineInstr *In = &BBI;
 | |
|         if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
 | |
|           // Instructions with memoperands in the epilog are updated with
 | |
|           // conservative values.
 | |
|           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
 | |
|           updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
 | |
|           NewBB->push_back(NewMI);
 | |
|           InstrMap[NewMI] = In;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
 | |
|                          VRMap, InstrMap, LastStage, EpilogStage, i == 1);
 | |
|     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
 | |
|                  InstrMap, LastStage, EpilogStage, i == 1);
 | |
|     PredBB = NewBB;
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "epilog:\n";
 | |
|       NewBB->dump();
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // Fix any Phi nodes in the loop exit block.
 | |
|   for (MachineInstr &MI : *LoopExitBB) {
 | |
|     if (!MI.isPHI())
 | |
|       break;
 | |
|     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (MO.getMBB() == BB)
 | |
|         MO.setMBB(PredBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a branch to the new epilog from the kernel.
 | |
|   // Remove the original branch and add a new branch to the epilog.
 | |
|   TII->removeBranch(*KernelBB);
 | |
|   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
 | |
|   // Add a branch to the loop exit.
 | |
|   if (EpilogBBs.size() > 0) {
 | |
|     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
 | |
|     SmallVector<MachineOperand, 4> Cond1;
 | |
|     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Replace all uses of FromReg that appear outside the specified
 | |
| /// basic block with ToReg.
 | |
| static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
 | |
|                                     MachineBasicBlock *MBB,
 | |
|                                     MachineRegisterInfo &MRI,
 | |
|                                     LiveIntervals &LIS) {
 | |
|   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
 | |
|                                          E = MRI.use_end();
 | |
|        I != E;) {
 | |
|     MachineOperand &O = *I;
 | |
|     ++I;
 | |
|     if (O.getParent()->getParent() != MBB)
 | |
|       O.setReg(ToReg);
 | |
|   }
 | |
|   if (!LIS.hasInterval(ToReg))
 | |
|     LIS.createEmptyInterval(ToReg);
 | |
| }
 | |
| 
 | |
| /// Return true if the register has a use that occurs outside the
 | |
| /// specified loop.
 | |
| static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
 | |
|                             MachineRegisterInfo &MRI) {
 | |
|   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
 | |
|                                          E = MRI.use_end();
 | |
|        I != E; ++I)
 | |
|     if (I->getParent()->getParent() != BB)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Generate Phis for the specific block in the generated pipelined code.
 | |
| /// This function looks at the Phis from the original code to guide the
 | |
| /// creation of new Phis.
 | |
| void SwingSchedulerDAG::generateExistingPhis(
 | |
|     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
 | |
|     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
 | |
|     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
 | |
|     bool IsLast) {
 | |
|   // Compute the stage number for the initial value of the Phi, which
 | |
|   // comes from the prolog. The prolog to use depends on to which kernel/
 | |
|   // epilog that we're adding the Phi.
 | |
|   unsigned PrologStage = 0;
 | |
|   unsigned PrevStage = 0;
 | |
|   bool InKernel = (LastStageNum == CurStageNum);
 | |
|   if (InKernel) {
 | |
|     PrologStage = LastStageNum - 1;
 | |
|     PrevStage = CurStageNum;
 | |
|   } else {
 | |
|     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
 | |
|     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
 | |
|                                    BBE = BB->getFirstNonPHI();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     unsigned Def = BBI->getOperand(0).getReg();
 | |
| 
 | |
|     unsigned InitVal = 0;
 | |
|     unsigned LoopVal = 0;
 | |
|     getPhiRegs(*BBI, BB, InitVal, LoopVal);
 | |
| 
 | |
|     unsigned PhiOp1 = 0;
 | |
|     // The Phi value from the loop body typically is defined in the loop, but
 | |
|     // not always. So, we need to check if the value is defined in the loop.
 | |
|     unsigned PhiOp2 = LoopVal;
 | |
|     if (VRMap[LastStageNum].count(LoopVal))
 | |
|       PhiOp2 = VRMap[LastStageNum][LoopVal];
 | |
| 
 | |
|     int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
 | |
|     int LoopValStage =
 | |
|         Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
 | |
|     unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
 | |
|     if (NumStages == 0) {
 | |
|       // We don't need to generate a Phi anymore, but we need to rename any uses
 | |
|       // of the Phi value.
 | |
|       unsigned NewReg = VRMap[PrevStage][LoopVal];
 | |
|       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
 | |
|                             Def, InitVal, NewReg);
 | |
|       if (VRMap[CurStageNum].count(LoopVal))
 | |
|         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
 | |
|     }
 | |
|     // Adjust the number of Phis needed depending on the number of prologs left,
 | |
|     // and the distance from where the Phi is first scheduled. The number of
 | |
|     // Phis cannot exceed the number of prolog stages. Each stage can
 | |
|     // potentially define two values.
 | |
|     unsigned MaxPhis = PrologStage + 2;
 | |
|     if (!InKernel && (int)PrologStage <= LoopValStage)
 | |
|       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
 | |
|     unsigned NumPhis = std::min(NumStages, MaxPhis);
 | |
| 
 | |
|     unsigned NewReg = 0;
 | |
|     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
 | |
|     // In the epilog, we may need to look back one stage to get the correct
 | |
|     // Phi name because the epilog and prolog blocks execute the same stage.
 | |
|     // The correct name is from the previous block only when the Phi has
 | |
|     // been completely scheduled prior to the epilog, and Phi value is not
 | |
|     // needed in multiple stages.
 | |
|     int StageDiff = 0;
 | |
|     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
 | |
|         NumPhis == 1)
 | |
|       StageDiff = 1;
 | |
|     // Adjust the computations below when the phi and the loop definition
 | |
|     // are scheduled in different stages.
 | |
|     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
 | |
|       StageDiff = StageScheduled - LoopValStage;
 | |
|     for (unsigned np = 0; np < NumPhis; ++np) {
 | |
|       // If the Phi hasn't been scheduled, then use the initial Phi operand
 | |
|       // value. Otherwise, use the scheduled version of the instruction. This
 | |
|       // is a little complicated when a Phi references another Phi.
 | |
|       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
 | |
|         PhiOp1 = InitVal;
 | |
|       // Check if the Phi has already been scheduled in a prolog stage.
 | |
|       else if (PrologStage >= AccessStage + StageDiff + np &&
 | |
|                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
 | |
|         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
 | |
|       // Check if the Phi has already been scheduled, but the loop intruction
 | |
|       // is either another Phi, or doesn't occur in the loop.
 | |
|       else if (PrologStage >= AccessStage + StageDiff + np) {
 | |
|         // If the Phi references another Phi, we need to examine the other
 | |
|         // Phi to get the correct value.
 | |
|         PhiOp1 = LoopVal;
 | |
|         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
 | |
|         int Indirects = 1;
 | |
|         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
 | |
|           int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
 | |
|           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
 | |
|             PhiOp1 = getInitPhiReg(*InstOp1, BB);
 | |
|           else
 | |
|             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
 | |
|           InstOp1 = MRI.getVRegDef(PhiOp1);
 | |
|           int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
 | |
|           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
 | |
|           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
 | |
|               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
 | |
|             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
 | |
|             break;
 | |
|           }
 | |
|           ++Indirects;
 | |
|         }
 | |
|       } else
 | |
|         PhiOp1 = InitVal;
 | |
|       // If this references a generated Phi in the kernel, get the Phi operand
 | |
|       // from the incoming block.
 | |
|       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
 | |
|         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
 | |
|           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
 | |
| 
 | |
|       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
 | |
|       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
 | |
|       // In the epilog, a map lookup is needed to get the value from the kernel,
 | |
|       // or previous epilog block. How is does this depends on if the
 | |
|       // instruction is scheduled in the previous block.
 | |
|       if (!InKernel) {
 | |
|         int StageDiffAdj = 0;
 | |
|         if (LoopValStage != -1 && StageScheduled > LoopValStage)
 | |
|           StageDiffAdj = StageScheduled - LoopValStage;
 | |
|         // Use the loop value defined in the kernel, unless the kernel
 | |
|         // contains the last definition of the Phi.
 | |
|         if (np == 0 && PrevStage == LastStageNum &&
 | |
|             (StageScheduled != 0 || LoopValStage != 0) &&
 | |
|             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
 | |
|           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
 | |
|         // Use the value defined by the Phi. We add one because we switch
 | |
|         // from looking at the loop value to the Phi definition.
 | |
|         else if (np > 0 && PrevStage == LastStageNum &&
 | |
|                  VRMap[PrevStage - np + 1].count(Def))
 | |
|           PhiOp2 = VRMap[PrevStage - np + 1][Def];
 | |
|         // Use the loop value defined in the kernel.
 | |
|         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
 | |
|                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
 | |
|           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
 | |
|         // Use the value defined by the Phi, unless we're generating the first
 | |
|         // epilog and the Phi refers to a Phi in a different stage.
 | |
|         else if (VRMap[PrevStage - np].count(Def) &&
 | |
|                  (!LoopDefIsPhi || PrevStage != LastStageNum))
 | |
|           PhiOp2 = VRMap[PrevStage - np][Def];
 | |
|       }
 | |
| 
 | |
|       // Check if we can reuse an existing Phi. This occurs when a Phi
 | |
|       // references another Phi, and the other Phi is scheduled in an
 | |
|       // earlier stage. We can try to reuse an existing Phi up until the last
 | |
|       // stage of the current Phi.
 | |
|       if (LoopDefIsPhi) {
 | |
|         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
 | |
|           int LVNumStages = Schedule.getStagesForPhi(LoopVal);
 | |
|           int StageDiff = (StageScheduled - LoopValStage);
 | |
|           LVNumStages -= StageDiff;
 | |
|           // Make sure the loop value Phi has been processed already.
 | |
|           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
 | |
|             NewReg = PhiOp2;
 | |
|             unsigned ReuseStage = CurStageNum;
 | |
|             if (Schedule.isLoopCarried(this, *PhiInst))
 | |
|               ReuseStage -= LVNumStages;
 | |
|             // Check if the Phi to reuse has been generated yet. If not, then
 | |
|             // there is nothing to reuse.
 | |
|             if (VRMap[ReuseStage - np].count(LoopVal)) {
 | |
|               NewReg = VRMap[ReuseStage - np][LoopVal];
 | |
| 
 | |
|               rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
 | |
|                                     &*BBI, Def, NewReg);
 | |
|               // Update the map with the new Phi name.
 | |
|               VRMap[CurStageNum - np][Def] = NewReg;
 | |
|               PhiOp2 = NewReg;
 | |
|               if (VRMap[LastStageNum - np - 1].count(LoopVal))
 | |
|                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
 | |
| 
 | |
|               if (IsLast && np == NumPhis - 1)
 | |
|                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if (InKernel && StageDiff > 0 &&
 | |
|             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
 | |
|           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
 | |
|       }
 | |
| 
 | |
|       const TargetRegisterClass *RC = MRI.getRegClass(Def);
 | |
|       NewReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|       MachineInstrBuilder NewPhi =
 | |
|           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
 | |
|                   TII->get(TargetOpcode::PHI), NewReg);
 | |
|       NewPhi.addReg(PhiOp1).addMBB(BB1);
 | |
|       NewPhi.addReg(PhiOp2).addMBB(BB2);
 | |
|       if (np == 0)
 | |
|         InstrMap[NewPhi] = &*BBI;
 | |
| 
 | |
|       // We define the Phis after creating the new pipelined code, so
 | |
|       // we need to rename the Phi values in scheduled instructions.
 | |
| 
 | |
|       unsigned PrevReg = 0;
 | |
|       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
 | |
|         PrevReg = VRMap[PrevStage - np][LoopVal];
 | |
|       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
 | |
|                             Def, NewReg, PrevReg);
 | |
|       // If the Phi has been scheduled, use the new name for rewriting.
 | |
|       if (VRMap[CurStageNum - np].count(Def)) {
 | |
|         unsigned R = VRMap[CurStageNum - np][Def];
 | |
|         rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
 | |
|                               R, NewReg);
 | |
|       }
 | |
| 
 | |
|       // Check if we need to rename any uses that occurs after the loop. The
 | |
|       // register to replace depends on whether the Phi is scheduled in the
 | |
|       // epilog.
 | |
|       if (IsLast && np == NumPhis - 1)
 | |
|         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
 | |
| 
 | |
|       // In the kernel, a dependent Phi uses the value from this Phi.
 | |
|       if (InKernel)
 | |
|         PhiOp2 = NewReg;
 | |
| 
 | |
|       // Update the map with the new Phi name.
 | |
|       VRMap[CurStageNum - np][Def] = NewReg;
 | |
|     }
 | |
| 
 | |
|     while (NumPhis++ < NumStages) {
 | |
|       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
 | |
|                             &*BBI, Def, NewReg, 0);
 | |
|     }
 | |
| 
 | |
|     // Check if we need to rename a Phi that has been eliminated due to
 | |
|     // scheduling.
 | |
|     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
 | |
|       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate Phis for the specified block in the generated pipelined code.
 | |
| /// These are new Phis needed because the definition is scheduled after the
 | |
| /// use in the pipelined sequence.
 | |
| void SwingSchedulerDAG::generatePhis(
 | |
|     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
 | |
|     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
 | |
|     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
 | |
|     bool IsLast) {
 | |
|   // Compute the stage number that contains the initial Phi value, and
 | |
|   // the Phi from the previous stage.
 | |
|   unsigned PrologStage = 0;
 | |
|   unsigned PrevStage = 0;
 | |
|   unsigned StageDiff = CurStageNum - LastStageNum;
 | |
|   bool InKernel = (StageDiff == 0);
 | |
|   if (InKernel) {
 | |
|     PrologStage = LastStageNum - 1;
 | |
|     PrevStage = CurStageNum;
 | |
|   } else {
 | |
|     PrologStage = LastStageNum - StageDiff;
 | |
|     PrevStage = LastStageNum + StageDiff - 1;
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
 | |
|                                    BBE = BB->instr_end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = BBI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef() ||
 | |
|           !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
 | |
|       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
 | |
|       unsigned Def = MO.getReg();
 | |
|       unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
 | |
|       // An instruction scheduled in stage 0 and is used after the loop
 | |
|       // requires a phi in the epilog for the last definition from either
 | |
|       // the kernel or prolog.
 | |
|       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
 | |
|           hasUseAfterLoop(Def, BB, MRI))
 | |
|         NumPhis = 1;
 | |
|       if (!InKernel && (unsigned)StageScheduled > PrologStage)
 | |
|         continue;
 | |
| 
 | |
|       unsigned PhiOp2 = VRMap[PrevStage][Def];
 | |
|       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
 | |
|         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
 | |
|           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
 | |
|       // The number of Phis can't exceed the number of prolog stages. The
 | |
|       // prolog stage number is zero based.
 | |
|       if (NumPhis > PrologStage + 1 - StageScheduled)
 | |
|         NumPhis = PrologStage + 1 - StageScheduled;
 | |
|       for (unsigned np = 0; np < NumPhis; ++np) {
 | |
|         unsigned PhiOp1 = VRMap[PrologStage][Def];
 | |
|         if (np <= PrologStage)
 | |
|           PhiOp1 = VRMap[PrologStage - np][Def];
 | |
|         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
 | |
|           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
 | |
|             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
 | |
|           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
 | |
|             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
 | |
|         }
 | |
|         if (!InKernel)
 | |
|           PhiOp2 = VRMap[PrevStage - np][Def];
 | |
| 
 | |
|         const TargetRegisterClass *RC = MRI.getRegClass(Def);
 | |
|         unsigned NewReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|         MachineInstrBuilder NewPhi =
 | |
|             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
 | |
|                     TII->get(TargetOpcode::PHI), NewReg);
 | |
|         NewPhi.addReg(PhiOp1).addMBB(BB1);
 | |
|         NewPhi.addReg(PhiOp2).addMBB(BB2);
 | |
|         if (np == 0)
 | |
|           InstrMap[NewPhi] = &*BBI;
 | |
| 
 | |
|         // Rewrite uses and update the map. The actions depend upon whether
 | |
|         // we generating code for the kernel or epilog blocks.
 | |
|         if (InKernel) {
 | |
|           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
 | |
|                                 &*BBI, PhiOp1, NewReg);
 | |
|           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
 | |
|                                 &*BBI, PhiOp2, NewReg);
 | |
| 
 | |
|           PhiOp2 = NewReg;
 | |
|           VRMap[PrevStage - np - 1][Def] = NewReg;
 | |
|         } else {
 | |
|           VRMap[CurStageNum - np][Def] = NewReg;
 | |
|           if (np == NumPhis - 1)
 | |
|             rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
 | |
|                                   &*BBI, Def, NewReg);
 | |
|         }
 | |
|         if (IsLast && np == NumPhis - 1)
 | |
|           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove instructions that generate values with no uses.
 | |
| /// Typically, these are induction variable operations that generate values
 | |
| /// used in the loop itself.  A dead instruction has a definition with
 | |
| /// no uses, or uses that occur in the original loop only.
 | |
| void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
 | |
|                                                MBBVectorTy &EpilogBBs) {
 | |
|   // For each epilog block, check that the value defined by each instruction
 | |
|   // is used.  If not, delete it.
 | |
|   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
 | |
|                                      MBE = EpilogBBs.rend();
 | |
|        MBB != MBE; ++MBB)
 | |
|     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
 | |
|                                                    ME = (*MBB)->instr_rend();
 | |
|          MI != ME;) {
 | |
|       // From DeadMachineInstructionElem. Don't delete inline assembly.
 | |
|       if (MI->isInlineAsm()) {
 | |
|         ++MI;
 | |
|         continue;
 | |
|       }
 | |
|       bool SawStore = false;
 | |
|       // Check if it's safe to remove the instruction due to side effects.
 | |
|       // We can, and want to, remove Phis here.
 | |
|       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
 | |
|         ++MI;
 | |
|         continue;
 | |
|       }
 | |
|       bool used = true;
 | |
|       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | |
|                                       MOE = MI->operands_end();
 | |
|            MOI != MOE; ++MOI) {
 | |
|         if (!MOI->isReg() || !MOI->isDef())
 | |
|           continue;
 | |
|         unsigned reg = MOI->getReg();
 | |
|         // Assume physical registers are used, unless they are marked dead.
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(reg)) {
 | |
|           used = !MOI->isDead();
 | |
|           if (used)
 | |
|             break;
 | |
|           continue;
 | |
|         }
 | |
|         unsigned realUses = 0;
 | |
|         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
 | |
|                                                EI = MRI.use_end();
 | |
|              UI != EI; ++UI) {
 | |
|           // Check if there are any uses that occur only in the original
 | |
|           // loop.  If so, that's not a real use.
 | |
|           if (UI->getParent()->getParent() != BB) {
 | |
|             realUses++;
 | |
|             used = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (realUses > 0)
 | |
|           break;
 | |
|         used = false;
 | |
|       }
 | |
|       if (!used) {
 | |
|         LIS.RemoveMachineInstrFromMaps(*MI);
 | |
|         MI++->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       ++MI;
 | |
|     }
 | |
|   // In the kernel block, check if we can remove a Phi that generates a value
 | |
|   // used in an instruction removed in the epilog block.
 | |
|   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
 | |
|                                    BBE = KernelBB->getFirstNonPHI();
 | |
|        BBI != BBE;) {
 | |
|     MachineInstr *MI = &*BBI;
 | |
|     ++BBI;
 | |
|     unsigned reg = MI->getOperand(0).getReg();
 | |
|     if (MRI.use_begin(reg) == MRI.use_end()) {
 | |
|       LIS.RemoveMachineInstrFromMaps(*MI);
 | |
|       MI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For loop carried definitions, we split the lifetime of a virtual register
 | |
| /// that has uses past the definition in the next iteration. A copy with a new
 | |
| /// virtual register is inserted before the definition, which helps with
 | |
| /// generating a better register assignment.
 | |
| ///
 | |
| ///   v1 = phi(a, v2)     v1 = phi(a, v2)
 | |
| ///   v2 = phi(b, v3)     v2 = phi(b, v3)
 | |
| ///   v3 = ..             v4 = copy v1
 | |
| ///   .. = V1             v3 = ..
 | |
| ///                       .. = v4
 | |
| void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
 | |
|                                        MBBVectorTy &EpilogBBs,
 | |
|                                        SMSchedule &Schedule) {
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   for (auto &PHI : KernelBB->phis()) {
 | |
|     unsigned Def = PHI.getOperand(0).getReg();
 | |
|     // Check for any Phi definition that used as an operand of another Phi
 | |
|     // in the same block.
 | |
|     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
 | |
|                                                  E = MRI.use_instr_end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isPHI() && I->getParent() == KernelBB) {
 | |
|         // Get the loop carried definition.
 | |
|         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
 | |
|         if (!LCDef)
 | |
|           continue;
 | |
|         MachineInstr *MI = MRI.getVRegDef(LCDef);
 | |
|         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
 | |
|           continue;
 | |
|         // Search through the rest of the block looking for uses of the Phi
 | |
|         // definition. If one occurs, then split the lifetime.
 | |
|         unsigned SplitReg = 0;
 | |
|         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
 | |
|                                     KernelBB->instr_end()))
 | |
|           if (BBJ.readsRegister(Def)) {
 | |
|             // We split the lifetime when we find the first use.
 | |
|             if (SplitReg == 0) {
 | |
|               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
 | |
|               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
 | |
|                       TII->get(TargetOpcode::COPY), SplitReg)
 | |
|                   .addReg(Def);
 | |
|             }
 | |
|             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
 | |
|           }
 | |
|         if (!SplitReg)
 | |
|           continue;
 | |
|         // Search through each of the epilog blocks for any uses to be renamed.
 | |
|         for (auto &Epilog : EpilogBBs)
 | |
|           for (auto &I : *Epilog)
 | |
|             if (I.readsRegister(Def))
 | |
|               I.substituteRegister(Def, SplitReg, 0, *TRI);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove the incoming block from the Phis in a basic block.
 | |
| static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
 | |
|   for (MachineInstr &MI : *BB) {
 | |
|     if (!MI.isPHI())
 | |
|       break;
 | |
|     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
 | |
|       if (MI.getOperand(i + 1).getMBB() == Incoming) {
 | |
|         MI.RemoveOperand(i + 1);
 | |
|         MI.RemoveOperand(i);
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create branches from each prolog basic block to the appropriate epilog
 | |
| /// block.  These edges are needed if the loop ends before reaching the
 | |
| /// kernel.
 | |
| void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
 | |
|                                     MachineBasicBlock *KernelBB,
 | |
|                                     MBBVectorTy &EpilogBBs,
 | |
|                                     SMSchedule &Schedule, ValueMapTy *VRMap) {
 | |
|   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
 | |
|   MachineInstr *IndVar = Pass.LI.LoopInductionVar;
 | |
|   MachineInstr *Cmp = Pass.LI.LoopCompare;
 | |
|   MachineBasicBlock *LastPro = KernelBB;
 | |
|   MachineBasicBlock *LastEpi = KernelBB;
 | |
| 
 | |
|   // Start from the blocks connected to the kernel and work "out"
 | |
|   // to the first prolog and the last epilog blocks.
 | |
|   SmallVector<MachineInstr *, 4> PrevInsts;
 | |
|   unsigned MaxIter = PrologBBs.size() - 1;
 | |
|   unsigned LC = UINT_MAX;
 | |
|   unsigned LCMin = UINT_MAX;
 | |
|   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
 | |
|     // Add branches to the prolog that go to the corresponding
 | |
|     // epilog, and the fall-thru prolog/kernel block.
 | |
|     MachineBasicBlock *Prolog = PrologBBs[j];
 | |
|     MachineBasicBlock *Epilog = EpilogBBs[i];
 | |
|     // We've executed one iteration, so decrement the loop count and check for
 | |
|     // the loop end.
 | |
|     SmallVector<MachineOperand, 4> Cond;
 | |
|     // Check if the LOOP0 has already been removed. If so, then there is no need
 | |
|     // to reduce the trip count.
 | |
|     if (LC != 0)
 | |
|       LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
 | |
|                                 MaxIter);
 | |
| 
 | |
|     // Record the value of the first trip count, which is used to determine if
 | |
|     // branches and blocks can be removed for constant trip counts.
 | |
|     if (LCMin == UINT_MAX)
 | |
|       LCMin = LC;
 | |
| 
 | |
|     unsigned numAdded = 0;
 | |
|     if (TargetRegisterInfo::isVirtualRegister(LC)) {
 | |
|       Prolog->addSuccessor(Epilog);
 | |
|       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
 | |
|     } else if (j >= LCMin) {
 | |
|       Prolog->addSuccessor(Epilog);
 | |
|       Prolog->removeSuccessor(LastPro);
 | |
|       LastEpi->removeSuccessor(Epilog);
 | |
|       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
 | |
|       removePhis(Epilog, LastEpi);
 | |
|       // Remove the blocks that are no longer referenced.
 | |
|       if (LastPro != LastEpi) {
 | |
|         LastEpi->clear();
 | |
|         LastEpi->eraseFromParent();
 | |
|       }
 | |
|       LastPro->clear();
 | |
|       LastPro->eraseFromParent();
 | |
|     } else {
 | |
|       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
 | |
|       removePhis(Epilog, Prolog);
 | |
|     }
 | |
|     LastPro = Prolog;
 | |
|     LastEpi = Epilog;
 | |
|     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
 | |
|                                                    E = Prolog->instr_rend();
 | |
|          I != E && numAdded > 0; ++I, --numAdded)
 | |
|       updateInstruction(&*I, false, j, 0, Schedule, VRMap);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if we can compute the amount the instruction changes
 | |
| /// during each iteration. Set Delta to the amount of the change.
 | |
| bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   unsigned BaseReg;
 | |
|   int64_t Offset;
 | |
|   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
 | |
|     return false;
 | |
| 
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   // Check if there is a Phi. If so, get the definition in the loop.
 | |
|   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
 | |
|   if (BaseDef && BaseDef->isPHI()) {
 | |
|     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
 | |
|     BaseDef = MRI.getVRegDef(BaseReg);
 | |
|   }
 | |
|   if (!BaseDef)
 | |
|     return false;
 | |
| 
 | |
|   int D = 0;
 | |
|   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
 | |
|     return false;
 | |
| 
 | |
|   Delta = D;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Update the memory operand with a new offset when the pipeliner
 | |
| /// generates a new copy of the instruction that refers to a
 | |
| /// different memory location.
 | |
| void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
 | |
|                                           MachineInstr &OldMI, unsigned Num) {
 | |
|   if (Num == 0)
 | |
|     return;
 | |
|   // If the instruction has memory operands, then adjust the offset
 | |
|   // when the instruction appears in different stages.
 | |
|   if (NewMI.memoperands_empty())
 | |
|     return;
 | |
|   SmallVector<MachineMemOperand *, 2> NewMMOs;
 | |
|   for (MachineMemOperand *MMO : NewMI.memoperands()) {
 | |
|     if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
 | |
|         (!MMO->getValue())) {
 | |
|       NewMMOs.push_back(MMO);
 | |
|       continue;
 | |
|     }
 | |
|     unsigned Delta;
 | |
|     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
 | |
|       int64_t AdjOffset = Delta * Num;
 | |
|       NewMMOs.push_back(
 | |
|           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
 | |
|     } else {
 | |
|       NewMMOs.push_back(
 | |
|           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
 | |
|     }
 | |
|   }
 | |
|   NewMI.setMemRefs(MF, NewMMOs);
 | |
| }
 | |
| 
 | |
| /// Clone the instruction for the new pipelined loop and update the
 | |
| /// memory operands, if needed.
 | |
| MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
 | |
|                                             unsigned CurStageNum,
 | |
|                                             unsigned InstStageNum) {
 | |
|   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
 | |
|   // Check for tied operands in inline asm instructions. This should be handled
 | |
|   // elsewhere, but I'm not sure of the best solution.
 | |
|   if (OldMI->isInlineAsm())
 | |
|     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
 | |
|       const auto &MO = OldMI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isUse())
 | |
|         break;
 | |
|       unsigned UseIdx;
 | |
|       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
 | |
|         NewMI->tieOperands(i, UseIdx);
 | |
|     }
 | |
|   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// Clone the instruction for the new pipelined loop. If needed, this
 | |
| /// function updates the instruction using the values saved in the
 | |
| /// InstrChanges structure.
 | |
| MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
 | |
|                                                      unsigned CurStageNum,
 | |
|                                                      unsigned InstStageNum,
 | |
|                                                      SMSchedule &Schedule) {
 | |
|   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
 | |
|   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
 | |
|       InstrChanges.find(getSUnit(OldMI));
 | |
|   if (It != InstrChanges.end()) {
 | |
|     std::pair<unsigned, int64_t> RegAndOffset = It->second;
 | |
|     unsigned BasePos, OffsetPos;
 | |
|     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
 | |
|       return nullptr;
 | |
|     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
 | |
|     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
 | |
|     if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
 | |
|       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
 | |
|     NewMI->getOperand(OffsetPos).setImm(NewOffset);
 | |
|   }
 | |
|   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// Update the machine instruction with new virtual registers.  This
 | |
| /// function may change the defintions and/or uses.
 | |
| void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
 | |
|                                           unsigned CurStageNum,
 | |
|                                           unsigned InstrStageNum,
 | |
|                                           SMSchedule &Schedule,
 | |
|                                           ValueMapTy *VRMap) {
 | |
|   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = NewMI->getOperand(i);
 | |
|     if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|       continue;
 | |
|     unsigned reg = MO.getReg();
 | |
|     if (MO.isDef()) {
 | |
|       // Create a new virtual register for the definition.
 | |
|       const TargetRegisterClass *RC = MRI.getRegClass(reg);
 | |
|       unsigned NewReg = MRI.createVirtualRegister(RC);
 | |
|       MO.setReg(NewReg);
 | |
|       VRMap[CurStageNum][reg] = NewReg;
 | |
|       if (LastDef)
 | |
|         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
 | |
|     } else if (MO.isUse()) {
 | |
|       MachineInstr *Def = MRI.getVRegDef(reg);
 | |
|       // Compute the stage that contains the last definition for instruction.
 | |
|       int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
 | |
|       unsigned StageNum = CurStageNum;
 | |
|       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
 | |
|         // Compute the difference in stages between the defintion and the use.
 | |
|         unsigned StageDiff = (InstrStageNum - DefStageNum);
 | |
|         // Make an adjustment to get the last definition.
 | |
|         StageNum -= StageDiff;
 | |
|       }
 | |
|       if (VRMap[StageNum].count(reg))
 | |
|         MO.setReg(VRMap[StageNum][reg]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return the instruction in the loop that defines the register.
 | |
| /// If the definition is a Phi, then follow the Phi operand to
 | |
| /// the instruction in the loop.
 | |
| MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
 | |
|   SmallPtrSet<MachineInstr *, 8> Visited;
 | |
|   MachineInstr *Def = MRI.getVRegDef(Reg);
 | |
|   while (Def->isPHI()) {
 | |
|     if (!Visited.insert(Def).second)
 | |
|       break;
 | |
|     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
 | |
|       if (Def->getOperand(i + 1).getMBB() == BB) {
 | |
|         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| /// Return the new name for the value from the previous stage.
 | |
| unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
 | |
|                                           unsigned LoopVal, unsigned LoopStage,
 | |
|                                           ValueMapTy *VRMap,
 | |
|                                           MachineBasicBlock *BB) {
 | |
|   unsigned PrevVal = 0;
 | |
|   if (StageNum > PhiStage) {
 | |
|     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
 | |
|     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
 | |
|       // The name is defined in the previous stage.
 | |
|       PrevVal = VRMap[StageNum - 1][LoopVal];
 | |
|     else if (VRMap[StageNum].count(LoopVal))
 | |
|       // The previous name is defined in the current stage when the instruction
 | |
|       // order is swapped.
 | |
|       PrevVal = VRMap[StageNum][LoopVal];
 | |
|     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
 | |
|       // The loop value hasn't yet been scheduled.
 | |
|       PrevVal = LoopVal;
 | |
|     else if (StageNum == PhiStage + 1)
 | |
|       // The loop value is another phi, which has not been scheduled.
 | |
|       PrevVal = getInitPhiReg(*LoopInst, BB);
 | |
|     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
 | |
|       // The loop value is another phi, which has been scheduled.
 | |
|       PrevVal =
 | |
|           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
 | |
|                         LoopStage, VRMap, BB);
 | |
|   }
 | |
|   return PrevVal;
 | |
| }
 | |
| 
 | |
| /// Rewrite the Phi values in the specified block to use the mappings
 | |
| /// from the initial operand. Once the Phi is scheduled, we switch
 | |
| /// to using the loop value instead of the Phi value, so those names
 | |
| /// do not need to be rewritten.
 | |
| void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
 | |
|                                          unsigned StageNum,
 | |
|                                          SMSchedule &Schedule,
 | |
|                                          ValueMapTy *VRMap,
 | |
|                                          InstrMapTy &InstrMap) {
 | |
|   for (auto &PHI : BB->phis()) {
 | |
|     unsigned InitVal = 0;
 | |
|     unsigned LoopVal = 0;
 | |
|     getPhiRegs(PHI, BB, InitVal, LoopVal);
 | |
|     unsigned PhiDef = PHI.getOperand(0).getReg();
 | |
| 
 | |
|     unsigned PhiStage =
 | |
|         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
 | |
|     unsigned LoopStage =
 | |
|         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
 | |
|     unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
 | |
|     if (NumPhis > StageNum)
 | |
|       NumPhis = StageNum;
 | |
|     for (unsigned np = 0; np <= NumPhis; ++np) {
 | |
|       unsigned NewVal =
 | |
|           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
 | |
|       if (!NewVal)
 | |
|         NewVal = InitVal;
 | |
|       rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
 | |
|                             PhiDef, NewVal);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Rewrite a previously scheduled instruction to use the register value
 | |
| /// from the new instruction. Make sure the instruction occurs in the
 | |
| /// basic block, and we don't change the uses in the new instruction.
 | |
| void SwingSchedulerDAG::rewriteScheduledInstr(
 | |
|     MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
 | |
|     unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
 | |
|     unsigned NewReg, unsigned PrevReg) {
 | |
|   bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
 | |
|   int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
 | |
|   // Rewrite uses that have been scheduled already to use the new
 | |
|   // Phi register.
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
 | |
|                                          EI = MRI.use_end();
 | |
|        UI != EI;) {
 | |
|     MachineOperand &UseOp = *UI;
 | |
|     MachineInstr *UseMI = UseOp.getParent();
 | |
|     ++UI;
 | |
|     if (UseMI->getParent() != BB)
 | |
|       continue;
 | |
|     if (UseMI->isPHI()) {
 | |
|       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
 | |
|         continue;
 | |
|       if (getLoopPhiReg(*UseMI, BB) != OldReg)
 | |
|         continue;
 | |
|     }
 | |
|     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
 | |
|     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
 | |
|     SUnit *OrigMISU = getSUnit(OrigInstr->second);
 | |
|     int StageSched = Schedule.stageScheduled(OrigMISU);
 | |
|     int CycleSched = Schedule.cycleScheduled(OrigMISU);
 | |
|     unsigned ReplaceReg = 0;
 | |
|     // This is the stage for the scheduled instruction.
 | |
|     if (StagePhi == StageSched && Phi->isPHI()) {
 | |
|       int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
 | |
|       if (PrevReg && InProlog)
 | |
|         ReplaceReg = PrevReg;
 | |
|       else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
 | |
|                (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
 | |
|         ReplaceReg = PrevReg;
 | |
|       else
 | |
|         ReplaceReg = NewReg;
 | |
|     }
 | |
|     // The scheduled instruction occurs before the scheduled Phi, and the
 | |
|     // Phi is not loop carried.
 | |
|     if (!InProlog && StagePhi + 1 == StageSched &&
 | |
|         !Schedule.isLoopCarried(this, *Phi))
 | |
|       ReplaceReg = NewReg;
 | |
|     if (StagePhi > StageSched && Phi->isPHI())
 | |
|       ReplaceReg = NewReg;
 | |
|     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
 | |
|       ReplaceReg = NewReg;
 | |
|     if (ReplaceReg) {
 | |
|       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
 | |
|       UseOp.setReg(ReplaceReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check if we can change the instruction to use an offset value from the
 | |
| /// previous iteration. If so, return true and set the base and offset values
 | |
| /// so that we can rewrite the load, if necessary.
 | |
| ///   v1 = Phi(v0, v3)
 | |
| ///   v2 = load v1, 0
 | |
| ///   v3 = post_store v1, 4, x
 | |
| /// This function enables the load to be rewritten as v2 = load v3, 4.
 | |
| bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
 | |
|                                               unsigned &BasePos,
 | |
|                                               unsigned &OffsetPos,
 | |
|                                               unsigned &NewBase,
 | |
|                                               int64_t &Offset) {
 | |
|   // Get the load instruction.
 | |
|   if (TII->isPostIncrement(*MI))
 | |
|     return false;
 | |
|   unsigned BasePosLd, OffsetPosLd;
 | |
|   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
 | |
|     return false;
 | |
|   unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
 | |
| 
 | |
|   // Look for the Phi instruction.
 | |
|   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
 | |
|   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
 | |
|   if (!Phi || !Phi->isPHI())
 | |
|     return false;
 | |
|   // Get the register defined in the loop block.
 | |
|   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
 | |
|   if (!PrevReg)
 | |
|     return false;
 | |
| 
 | |
|   // Check for the post-increment load/store instruction.
 | |
|   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
 | |
|   if (!PrevDef || PrevDef == MI)
 | |
|     return false;
 | |
| 
 | |
|   if (!TII->isPostIncrement(*PrevDef))
 | |
|     return false;
 | |
| 
 | |
|   unsigned BasePos1 = 0, OffsetPos1 = 0;
 | |
|   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that the instructions do not access the same memory location in
 | |
|   // the next iteration.
 | |
|   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
 | |
|   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
 | |
|   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
 | |
|   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
 | |
|   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
 | |
|   MF.DeleteMachineInstr(NewMI);
 | |
|   if (!Disjoint)
 | |
|     return false;
 | |
| 
 | |
|   // Set the return value once we determine that we return true.
 | |
|   BasePos = BasePosLd;
 | |
|   OffsetPos = OffsetPosLd;
 | |
|   NewBase = PrevReg;
 | |
|   Offset = StoreOffset;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Apply changes to the instruction if needed. The changes are need
 | |
| /// to improve the scheduling and depend up on the final schedule.
 | |
| void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
 | |
|                                          SMSchedule &Schedule) {
 | |
|   SUnit *SU = getSUnit(MI);
 | |
|   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
 | |
|       InstrChanges.find(SU);
 | |
|   if (It != InstrChanges.end()) {
 | |
|     std::pair<unsigned, int64_t> RegAndOffset = It->second;
 | |
|     unsigned BasePos, OffsetPos;
 | |
|     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
 | |
|       return;
 | |
|     unsigned BaseReg = MI->getOperand(BasePos).getReg();
 | |
|     MachineInstr *LoopDef = findDefInLoop(BaseReg);
 | |
|     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
 | |
|     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
 | |
|     int BaseStageNum = Schedule.stageScheduled(SU);
 | |
|     int BaseCycleNum = Schedule.cycleScheduled(SU);
 | |
|     if (BaseStageNum < DefStageNum) {
 | |
|       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
 | |
|       int OffsetDiff = DefStageNum - BaseStageNum;
 | |
|       if (DefCycleNum < BaseCycleNum) {
 | |
|         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
 | |
|         if (OffsetDiff > 0)
 | |
|           --OffsetDiff;
 | |
|       }
 | |
|       int64_t NewOffset =
 | |
|           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
 | |
|       NewMI->getOperand(OffsetPos).setImm(NewOffset);
 | |
|       SU->setInstr(NewMI);
 | |
|       MISUnitMap[NewMI] = SU;
 | |
|       NewMIs.insert(NewMI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true for an order or output dependence that is loop carried
 | |
| /// potentially. A dependence is loop carried if the destination defines a valu
 | |
| /// that may be used or defined by the source in a subsequent iteration.
 | |
| bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
 | |
|                                          bool isSucc) {
 | |
|   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
 | |
|       Dep.isArtificial())
 | |
|     return false;
 | |
| 
 | |
|   if (!SwpPruneLoopCarried)
 | |
|     return true;
 | |
| 
 | |
|   if (Dep.getKind() == SDep::Output)
 | |
|     return true;
 | |
| 
 | |
|   MachineInstr *SI = Source->getInstr();
 | |
|   MachineInstr *DI = Dep.getSUnit()->getInstr();
 | |
|   if (!isSucc)
 | |
|     std::swap(SI, DI);
 | |
|   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
 | |
| 
 | |
|   // Assume ordered loads and stores may have a loop carried dependence.
 | |
|   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
 | |
|       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
 | |
|     return true;
 | |
| 
 | |
|   // Only chain dependences between a load and store can be loop carried.
 | |
|   if (!DI->mayStore() || !SI->mayLoad())
 | |
|     return false;
 | |
| 
 | |
|   unsigned DeltaS, DeltaD;
 | |
|   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
 | |
|     return true;
 | |
| 
 | |
|   unsigned BaseRegS, BaseRegD;
 | |
|   int64_t OffsetS, OffsetD;
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
 | |
|       !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
 | |
|     return true;
 | |
| 
 | |
|   if (BaseRegS != BaseRegD)
 | |
|     return true;
 | |
| 
 | |
|   // Check that the base register is incremented by a constant value for each
 | |
|   // iteration.
 | |
|   MachineInstr *Def = MRI.getVRegDef(BaseRegS);
 | |
|   if (!Def || !Def->isPHI())
 | |
|     return true;
 | |
|   unsigned InitVal = 0;
 | |
|   unsigned LoopVal = 0;
 | |
|   getPhiRegs(*Def, BB, InitVal, LoopVal);
 | |
|   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
 | |
|   int D = 0;
 | |
|   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
 | |
|     return true;
 | |
| 
 | |
|   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
 | |
|   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
 | |
| 
 | |
|   // This is the main test, which checks the offset values and the loop
 | |
|   // increment value to determine if the accesses may be loop carried.
 | |
|   if (OffsetS >= OffsetD)
 | |
|     return OffsetS + AccessSizeS > DeltaS;
 | |
|   else
 | |
|     return OffsetD + AccessSizeD > DeltaD;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SwingSchedulerDAG::postprocessDAG() {
 | |
|   for (auto &M : Mutations)
 | |
|     M->apply(this);
 | |
| }
 | |
| 
 | |
| /// Try to schedule the node at the specified StartCycle and continue
 | |
| /// until the node is schedule or the EndCycle is reached.  This function
 | |
| /// returns true if the node is scheduled.  This routine may search either
 | |
| /// forward or backward for a place to insert the instruction based upon
 | |
| /// the relative values of StartCycle and EndCycle.
 | |
| bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
 | |
|   bool forward = true;
 | |
|   if (StartCycle > EndCycle)
 | |
|     forward = false;
 | |
| 
 | |
|   // The terminating condition depends on the direction.
 | |
|   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
 | |
|   for (int curCycle = StartCycle; curCycle != termCycle;
 | |
|        forward ? ++curCycle : --curCycle) {
 | |
| 
 | |
|     // Add the already scheduled instructions at the specified cycle to the DFA.
 | |
|     Resources->clearResources();
 | |
|     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
 | |
|          checkCycle <= LastCycle; checkCycle += II) {
 | |
|       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
 | |
| 
 | |
|       for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
 | |
|                                          E = cycleInstrs.end();
 | |
|            I != E; ++I) {
 | |
|         if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
 | |
|           continue;
 | |
|         assert(Resources->canReserveResources(*(*I)->getInstr()) &&
 | |
|                "These instructions have already been scheduled.");
 | |
|         Resources->reserveResources(*(*I)->getInstr());
 | |
|       }
 | |
|     }
 | |
|     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
 | |
|         Resources->canReserveResources(*SU->getInstr())) {
 | |
|       LLVM_DEBUG({
 | |
|         dbgs() << "\tinsert at cycle " << curCycle << " ";
 | |
|         SU->getInstr()->dump();
 | |
|       });
 | |
| 
 | |
|       ScheduledInstrs[curCycle].push_back(SU);
 | |
|       InstrToCycle.insert(std::make_pair(SU, curCycle));
 | |
|       if (curCycle > LastCycle)
 | |
|         LastCycle = curCycle;
 | |
|       if (curCycle < FirstCycle)
 | |
|         FirstCycle = curCycle;
 | |
|       return true;
 | |
|     }
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
 | |
|       SU->getInstr()->dump();
 | |
|     });
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return the cycle of the earliest scheduled instruction in the chain.
 | |
| int SMSchedule::earliestCycleInChain(const SDep &Dep) {
 | |
|   SmallPtrSet<SUnit *, 8> Visited;
 | |
|   SmallVector<SDep, 8> Worklist;
 | |
|   Worklist.push_back(Dep);
 | |
|   int EarlyCycle = INT_MAX;
 | |
|   while (!Worklist.empty()) {
 | |
|     const SDep &Cur = Worklist.pop_back_val();
 | |
|     SUnit *PrevSU = Cur.getSUnit();
 | |
|     if (Visited.count(PrevSU))
 | |
|       continue;
 | |
|     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
 | |
|     if (it == InstrToCycle.end())
 | |
|       continue;
 | |
|     EarlyCycle = std::min(EarlyCycle, it->second);
 | |
|     for (const auto &PI : PrevSU->Preds)
 | |
|       if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
 | |
|         Worklist.push_back(PI);
 | |
|     Visited.insert(PrevSU);
 | |
|   }
 | |
|   return EarlyCycle;
 | |
| }
 | |
| 
 | |
| // Return the cycle of the latest scheduled instruction in the chain.
 | |
| int SMSchedule::latestCycleInChain(const SDep &Dep) {
 | |
|   SmallPtrSet<SUnit *, 8> Visited;
 | |
|   SmallVector<SDep, 8> Worklist;
 | |
|   Worklist.push_back(Dep);
 | |
|   int LateCycle = INT_MIN;
 | |
|   while (!Worklist.empty()) {
 | |
|     const SDep &Cur = Worklist.pop_back_val();
 | |
|     SUnit *SuccSU = Cur.getSUnit();
 | |
|     if (Visited.count(SuccSU))
 | |
|       continue;
 | |
|     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
 | |
|     if (it == InstrToCycle.end())
 | |
|       continue;
 | |
|     LateCycle = std::max(LateCycle, it->second);
 | |
|     for (const auto &SI : SuccSU->Succs)
 | |
|       if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
 | |
|         Worklist.push_back(SI);
 | |
|     Visited.insert(SuccSU);
 | |
|   }
 | |
|   return LateCycle;
 | |
| }
 | |
| 
 | |
| /// If an instruction has a use that spans multiple iterations, then
 | |
| /// return true. These instructions are characterized by having a back-ege
 | |
| /// to a Phi, which contains a reference to another Phi.
 | |
| static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
 | |
|   for (auto &P : SU->Preds)
 | |
|     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
 | |
|       for (auto &S : P.getSUnit()->Succs)
 | |
|         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
 | |
|           return P.getSUnit();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Compute the scheduling start slot for the instruction.  The start slot
 | |
| /// depends on any predecessor or successor nodes scheduled already.
 | |
| void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
 | |
|                               int *MinEnd, int *MaxStart, int II,
 | |
|                               SwingSchedulerDAG *DAG) {
 | |
|   // Iterate over each instruction that has been scheduled already.  The start
 | |
|   // slot computation depends on whether the previously scheduled instruction
 | |
|   // is a predecessor or successor of the specified instruction.
 | |
|   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
 | |
| 
 | |
|     // Iterate over each instruction in the current cycle.
 | |
|     for (SUnit *I : getInstructions(cycle)) {
 | |
|       // Because we're processing a DAG for the dependences, we recognize
 | |
|       // the back-edge in recurrences by anti dependences.
 | |
|       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
 | |
|         const SDep &Dep = SU->Preds[i];
 | |
|         if (Dep.getSUnit() == I) {
 | |
|           if (!DAG->isBackedge(SU, Dep)) {
 | |
|             int EarlyStart = cycle + Dep.getLatency() -
 | |
|                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
 | |
|             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
 | |
|             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
 | |
|               int End = earliestCycleInChain(Dep) + (II - 1);
 | |
|               *MinEnd = std::min(*MinEnd, End);
 | |
|             }
 | |
|           } else {
 | |
|             int LateStart = cycle - Dep.getLatency() +
 | |
|                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
 | |
|             *MinLateStart = std::min(*MinLateStart, LateStart);
 | |
|           }
 | |
|         }
 | |
|         // For instruction that requires multiple iterations, make sure that
 | |
|         // the dependent instruction is not scheduled past the definition.
 | |
|         SUnit *BE = multipleIterations(I, DAG);
 | |
|         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
 | |
|             !SU->isPred(I))
 | |
|           *MinLateStart = std::min(*MinLateStart, cycle);
 | |
|       }
 | |
|       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
 | |
|         if (SU->Succs[i].getSUnit() == I) {
 | |
|           const SDep &Dep = SU->Succs[i];
 | |
|           if (!DAG->isBackedge(SU, Dep)) {
 | |
|             int LateStart = cycle - Dep.getLatency() +
 | |
|                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
 | |
|             *MinLateStart = std::min(*MinLateStart, LateStart);
 | |
|             if (DAG->isLoopCarriedDep(SU, Dep)) {
 | |
|               int Start = latestCycleInChain(Dep) + 1 - II;
 | |
|               *MaxStart = std::max(*MaxStart, Start);
 | |
|             }
 | |
|           } else {
 | |
|             int EarlyStart = cycle + Dep.getLatency() -
 | |
|                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
 | |
|             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Order the instructions within a cycle so that the definitions occur
 | |
| /// before the uses. Returns true if the instruction is added to the start
 | |
| /// of the list, or false if added to the end.
 | |
| void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
 | |
|                                  std::deque<SUnit *> &Insts) {
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
|   bool OrderBeforeUse = false;
 | |
|   bool OrderAfterDef = false;
 | |
|   bool OrderBeforeDef = false;
 | |
|   unsigned MoveDef = 0;
 | |
|   unsigned MoveUse = 0;
 | |
|   int StageInst1 = stageScheduled(SU);
 | |
| 
 | |
|   unsigned Pos = 0;
 | |
|   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
 | |
|        ++I, ++Pos) {
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       unsigned Reg = MO.getReg();
 | |
|       unsigned BasePos, OffsetPos;
 | |
|       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
 | |
|         if (MI->getOperand(BasePos).getReg() == Reg)
 | |
|           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
 | |
|             Reg = NewReg;
 | |
|       bool Reads, Writes;
 | |
|       std::tie(Reads, Writes) =
 | |
|           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
 | |
|       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
 | |
|         OrderBeforeUse = true;
 | |
|         if (MoveUse == 0)
 | |
|           MoveUse = Pos;
 | |
|       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
 | |
|         // Add the instruction after the scheduled instruction.
 | |
|         OrderAfterDef = true;
 | |
|         MoveDef = Pos;
 | |
|       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
 | |
|         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
 | |
|           OrderBeforeUse = true;
 | |
|           if (MoveUse == 0)
 | |
|             MoveUse = Pos;
 | |
|         } else {
 | |
|           OrderAfterDef = true;
 | |
|           MoveDef = Pos;
 | |
|         }
 | |
|       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
 | |
|         OrderBeforeUse = true;
 | |
|         if (MoveUse == 0)
 | |
|           MoveUse = Pos;
 | |
|         if (MoveUse != 0) {
 | |
|           OrderAfterDef = true;
 | |
|           MoveDef = Pos - 1;
 | |
|         }
 | |
|       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
 | |
|         // Add the instruction before the scheduled instruction.
 | |
|         OrderBeforeUse = true;
 | |
|         if (MoveUse == 0)
 | |
|           MoveUse = Pos;
 | |
|       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
 | |
|                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
 | |
|         if (MoveUse == 0) {
 | |
|           OrderBeforeDef = true;
 | |
|           MoveUse = Pos;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Check for order dependences between instructions. Make sure the source
 | |
|     // is ordered before the destination.
 | |
|     for (auto &S : SU->Succs) {
 | |
|       if (S.getSUnit() != *I)
 | |
|         continue;
 | |
|       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
 | |
|         OrderBeforeUse = true;
 | |
|         if (Pos < MoveUse)
 | |
|           MoveUse = Pos;
 | |
|       }
 | |
|     }
 | |
|     for (auto &P : SU->Preds) {
 | |
|       if (P.getSUnit() != *I)
 | |
|         continue;
 | |
|       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
 | |
|         OrderAfterDef = true;
 | |
|         MoveDef = Pos;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // A circular dependence.
 | |
|   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
 | |
|     OrderBeforeUse = false;
 | |
| 
 | |
|   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
 | |
|   // to a loop-carried dependence.
 | |
|   if (OrderBeforeDef)
 | |
|     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
 | |
| 
 | |
|   // The uncommon case when the instruction order needs to be updated because
 | |
|   // there is both a use and def.
 | |
|   if (OrderBeforeUse && OrderAfterDef) {
 | |
|     SUnit *UseSU = Insts.at(MoveUse);
 | |
|     SUnit *DefSU = Insts.at(MoveDef);
 | |
|     if (MoveUse > MoveDef) {
 | |
|       Insts.erase(Insts.begin() + MoveUse);
 | |
|       Insts.erase(Insts.begin() + MoveDef);
 | |
|     } else {
 | |
|       Insts.erase(Insts.begin() + MoveDef);
 | |
|       Insts.erase(Insts.begin() + MoveUse);
 | |
|     }
 | |
|     orderDependence(SSD, UseSU, Insts);
 | |
|     orderDependence(SSD, SU, Insts);
 | |
|     orderDependence(SSD, DefSU, Insts);
 | |
|     return;
 | |
|   }
 | |
|   // Put the new instruction first if there is a use in the list. Otherwise,
 | |
|   // put it at the end of the list.
 | |
|   if (OrderBeforeUse)
 | |
|     Insts.push_front(SU);
 | |
|   else
 | |
|     Insts.push_back(SU);
 | |
| }
 | |
| 
 | |
| /// Return true if the scheduled Phi has a loop carried operand.
 | |
| bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
 | |
|   if (!Phi.isPHI())
 | |
|     return false;
 | |
|   assert(Phi.isPHI() && "Expecting a Phi.");
 | |
|   SUnit *DefSU = SSD->getSUnit(&Phi);
 | |
|   unsigned DefCycle = cycleScheduled(DefSU);
 | |
|   int DefStage = stageScheduled(DefSU);
 | |
| 
 | |
|   unsigned InitVal = 0;
 | |
|   unsigned LoopVal = 0;
 | |
|   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
 | |
|   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
 | |
|   if (!UseSU)
 | |
|     return true;
 | |
|   if (UseSU->getInstr()->isPHI())
 | |
|     return true;
 | |
|   unsigned LoopCycle = cycleScheduled(UseSU);
 | |
|   int LoopStage = stageScheduled(UseSU);
 | |
|   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
 | |
| }
 | |
| 
 | |
| /// Return true if the instruction is a definition that is loop carried
 | |
| /// and defines the use on the next iteration.
 | |
| ///        v1 = phi(v2, v3)
 | |
| ///  (Def) v3 = op v1
 | |
| ///  (MO)   = v1
 | |
| /// If MO appears before Def, then then v1 and v3 may get assigned to the same
 | |
| /// register.
 | |
| bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
 | |
|                                        MachineInstr *Def, MachineOperand &MO) {
 | |
|   if (!MO.isReg())
 | |
|     return false;
 | |
|   if (Def->isPHI())
 | |
|     return false;
 | |
|   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
 | |
|   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
 | |
|     return false;
 | |
|   if (!isLoopCarried(SSD, *Phi))
 | |
|     return false;
 | |
|   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
 | |
|   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &DMO = Def->getOperand(i);
 | |
|     if (!DMO.isReg() || !DMO.isDef())
 | |
|       continue;
 | |
|     if (DMO.getReg() == LoopReg)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if the generated schedule is valid. This function checks if
 | |
| // an instruction that uses a physical register is scheduled in a
 | |
| // different stage than the definition. The pipeliner does not handle
 | |
| // physical register values that may cross a basic block boundary.
 | |
| bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
 | |
|   for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
 | |
|     SUnit &SU = SSD->SUnits[i];
 | |
|     if (!SU.hasPhysRegDefs)
 | |
|       continue;
 | |
|     int StageDef = stageScheduled(&SU);
 | |
|     assert(StageDef != -1 && "Instruction should have been scheduled.");
 | |
|     for (auto &SI : SU.Succs)
 | |
|       if (SI.isAssignedRegDep())
 | |
|         if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
 | |
|           if (stageScheduled(SI.getSUnit()) != StageDef)
 | |
|             return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// A property of the node order in swing-modulo-scheduling is
 | |
| /// that for nodes outside circuits the following holds:
 | |
| /// none of them is scheduled after both a successor and a
 | |
| /// predecessor.
 | |
| /// The method below checks whether the property is met.
 | |
| /// If not, debug information is printed and statistics information updated.
 | |
| /// Note that we do not use an assert statement.
 | |
| /// The reason is that although an invalid node oder may prevent
 | |
| /// the pipeliner from finding a pipelined schedule for arbitrary II,
 | |
| /// it does not lead to the generation of incorrect code.
 | |
| void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
 | |
| 
 | |
|   // a sorted vector that maps each SUnit to its index in the NodeOrder
 | |
|   typedef std::pair<SUnit *, unsigned> UnitIndex;
 | |
|   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
 | |
| 
 | |
|   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
 | |
|     Indices.push_back(std::make_pair(NodeOrder[i], i));
 | |
| 
 | |
|   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
 | |
|     return std::get<0>(i1) < std::get<0>(i2);
 | |
|   };
 | |
| 
 | |
|   // sort, so that we can perform a binary search
 | |
|   llvm::sort(Indices, CompareKey);
 | |
| 
 | |
|   bool Valid = true;
 | |
|   (void)Valid;
 | |
|   // for each SUnit in the NodeOrder, check whether
 | |
|   // it appears after both a successor and a predecessor
 | |
|   // of the SUnit. If this is the case, and the SUnit
 | |
|   // is not part of circuit, then the NodeOrder is not
 | |
|   // valid.
 | |
|   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
 | |
|     SUnit *SU = NodeOrder[i];
 | |
|     unsigned Index = i;
 | |
| 
 | |
|     bool PredBefore = false;
 | |
|     bool SuccBefore = false;
 | |
| 
 | |
|     SUnit *Succ;
 | |
|     SUnit *Pred;
 | |
|     (void)Succ;
 | |
|     (void)Pred;
 | |
| 
 | |
|     for (SDep &PredEdge : SU->Preds) {
 | |
|       SUnit *PredSU = PredEdge.getSUnit();
 | |
|       unsigned PredIndex =
 | |
|           std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
 | |
|                                         std::make_pair(PredSU, 0), CompareKey));
 | |
|       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
 | |
|         PredBefore = true;
 | |
|         Pred = PredSU;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (SDep &SuccEdge : SU->Succs) {
 | |
|       SUnit *SuccSU = SuccEdge.getSUnit();
 | |
|       unsigned SuccIndex =
 | |
|           std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
 | |
|                                         std::make_pair(SuccSU, 0), CompareKey));
 | |
|       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
 | |
|         SuccBefore = true;
 | |
|         Succ = SuccSU;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
 | |
|       // instructions in circuits are allowed to be scheduled
 | |
|       // after both a successor and predecessor.
 | |
|       bool InCircuit = std::any_of(
 | |
|           Circuits.begin(), Circuits.end(),
 | |
|           [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
 | |
|       if (InCircuit)
 | |
|         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
 | |
|       else {
 | |
|         Valid = false;
 | |
|         NumNodeOrderIssues++;
 | |
|         LLVM_DEBUG(dbgs() << "Predecessor ";);
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
 | |
|                         << " are scheduled before node " << SU->NodeNum
 | |
|                         << "\n";);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     if (!Valid)
 | |
|       dbgs() << "Invalid node order found!\n";
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Attempt to fix the degenerate cases when the instruction serialization
 | |
| /// causes the register lifetimes to overlap. For example,
 | |
| ///   p' = store_pi(p, b)
 | |
| ///      = load p, offset
 | |
| /// In this case p and p' overlap, which means that two registers are needed.
 | |
| /// Instead, this function changes the load to use p' and updates the offset.
 | |
| void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
 | |
|   unsigned OverlapReg = 0;
 | |
|   unsigned NewBaseReg = 0;
 | |
|   for (SUnit *SU : Instrs) {
 | |
|     MachineInstr *MI = SU->getInstr();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
|       // Look for an instruction that uses p. The instruction occurs in the
 | |
|       // same cycle but occurs later in the serialized order.
 | |
|       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
 | |
|         // Check that the instruction appears in the InstrChanges structure,
 | |
|         // which contains instructions that can have the offset updated.
 | |
|         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
 | |
|           InstrChanges.find(SU);
 | |
|         if (It != InstrChanges.end()) {
 | |
|           unsigned BasePos, OffsetPos;
 | |
|           // Update the base register and adjust the offset.
 | |
|           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
 | |
|             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
 | |
|             NewMI->getOperand(BasePos).setReg(NewBaseReg);
 | |
|             int64_t NewOffset =
 | |
|                 MI->getOperand(OffsetPos).getImm() - It->second.second;
 | |
|             NewMI->getOperand(OffsetPos).setImm(NewOffset);
 | |
|             SU->setInstr(NewMI);
 | |
|             MISUnitMap[NewMI] = SU;
 | |
|             NewMIs.insert(NewMI);
 | |
|           }
 | |
|         }
 | |
|         OverlapReg = 0;
 | |
|         NewBaseReg = 0;
 | |
|         break;
 | |
|       }
 | |
|       // Look for an instruction of the form p' = op(p), which uses and defines
 | |
|       // two virtual registers that get allocated to the same physical register.
 | |
|       unsigned TiedUseIdx = 0;
 | |
|       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
 | |
|         // OverlapReg is p in the example above.
 | |
|         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
 | |
|         // NewBaseReg is p' in the example above.
 | |
|         NewBaseReg = MI->getOperand(i).getReg();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// After the schedule has been formed, call this function to combine
 | |
| /// the instructions from the different stages/cycles.  That is, this
 | |
| /// function creates a schedule that represents a single iteration.
 | |
| void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
 | |
|   // Move all instructions to the first stage from later stages.
 | |
|   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
 | |
|     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
 | |
|          ++stage) {
 | |
|       std::deque<SUnit *> &cycleInstrs =
 | |
|           ScheduledInstrs[cycle + (stage * InitiationInterval)];
 | |
|       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
 | |
|                                                  E = cycleInstrs.rend();
 | |
|            I != E; ++I)
 | |
|         ScheduledInstrs[cycle].push_front(*I);
 | |
|     }
 | |
|   }
 | |
|   // Iterate over the definitions in each instruction, and compute the
 | |
|   // stage difference for each use.  Keep the maximum value.
 | |
|   for (auto &I : InstrToCycle) {
 | |
|     int DefStage = stageScheduled(I.first);
 | |
|     MachineInstr *MI = I.first->getInstr();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || !Op.isDef())
 | |
|         continue;
 | |
| 
 | |
|       unsigned Reg = Op.getReg();
 | |
|       unsigned MaxDiff = 0;
 | |
|       bool PhiIsSwapped = false;
 | |
|       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
 | |
|                                              EI = MRI.use_end();
 | |
|            UI != EI; ++UI) {
 | |
|         MachineOperand &UseOp = *UI;
 | |
|         MachineInstr *UseMI = UseOp.getParent();
 | |
|         SUnit *SUnitUse = SSD->getSUnit(UseMI);
 | |
|         int UseStage = stageScheduled(SUnitUse);
 | |
|         unsigned Diff = 0;
 | |
|         if (UseStage != -1 && UseStage >= DefStage)
 | |
|           Diff = UseStage - DefStage;
 | |
|         if (MI->isPHI()) {
 | |
|           if (isLoopCarried(SSD, *MI))
 | |
|             ++Diff;
 | |
|           else
 | |
|             PhiIsSwapped = true;
 | |
|         }
 | |
|         MaxDiff = std::max(Diff, MaxDiff);
 | |
|       }
 | |
|       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Erase all the elements in the later stages. Only one iteration should
 | |
|   // remain in the scheduled list, and it contains all the instructions.
 | |
|   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
 | |
|     ScheduledInstrs.erase(cycle);
 | |
| 
 | |
|   // Change the registers in instruction as specified in the InstrChanges
 | |
|   // map. We need to use the new registers to create the correct order.
 | |
|   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
 | |
|     SUnit *SU = &SSD->SUnits[i];
 | |
|     SSD->applyInstrChange(SU->getInstr(), *this);
 | |
|   }
 | |
| 
 | |
|   // Reorder the instructions in each cycle to fix and improve the
 | |
|   // generated code.
 | |
|   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
 | |
|     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
 | |
|     std::deque<SUnit *> newOrderPhi;
 | |
|     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
 | |
|       SUnit *SU = cycleInstrs[i];
 | |
|       if (SU->getInstr()->isPHI())
 | |
|         newOrderPhi.push_back(SU);
 | |
|     }
 | |
|     std::deque<SUnit *> newOrderI;
 | |
|     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
 | |
|       SUnit *SU = cycleInstrs[i];
 | |
|       if (!SU->getInstr()->isPHI())
 | |
|         orderDependence(SSD, SU, newOrderI);
 | |
|     }
 | |
|     // Replace the old order with the new order.
 | |
|     cycleInstrs.swap(newOrderPhi);
 | |
|     cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
 | |
|     SSD->fixupRegisterOverlaps(cycleInstrs);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dump(););
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| /// Print the schedule information to the given output.
 | |
| void SMSchedule::print(raw_ostream &os) const {
 | |
|   // Iterate over each cycle.
 | |
|   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
 | |
|     // Iterate over each instruction in the cycle.
 | |
|     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
 | |
|     for (SUnit *CI : cycleInstrs->second) {
 | |
|       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
 | |
|       os << "(" << CI->NodeNum << ") ";
 | |
|       CI->getInstr()->print(os);
 | |
|       os << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Utility function used for debugging to print the schedule.
 | |
| LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
 | |
| #endif
 |