1857 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1857 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the SplitAnalysis class as well as mutator functions for
 | |
| // live range splitting.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SplitKit.h"
 | |
| #include "LiveRangeCalc.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/LiveRangeEdit.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/BlockFrequency.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| 
 | |
| STATISTIC(NumFinished, "Number of splits finished");
 | |
| STATISTIC(NumSimple,   "Number of splits that were simple");
 | |
| STATISTIC(NumCopies,   "Number of copies inserted for splitting");
 | |
| STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
 | |
| STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Last Insert Point Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
 | |
|                                          unsigned BBNum)
 | |
|     : LIS(lis), LastInsertPoint(BBNum) {}
 | |
| 
 | |
| SlotIndex
 | |
| InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
 | |
|                                             const MachineBasicBlock &MBB) {
 | |
|   unsigned Num = MBB.getNumber();
 | |
|   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
 | |
|   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
 | |
| 
 | |
|   SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
 | |
|   for (const MachineBasicBlock *SMBB : MBB.successors())
 | |
|     if (SMBB->isEHPad())
 | |
|       EHPadSuccessors.push_back(SMBB);
 | |
| 
 | |
|   // Compute insert points on the first call. The pair is independent of the
 | |
|   // current live interval.
 | |
|   if (!LIP.first.isValid()) {
 | |
|     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
 | |
|     if (FirstTerm == MBB.end())
 | |
|       LIP.first = MBBEnd;
 | |
|     else
 | |
|       LIP.first = LIS.getInstructionIndex(*FirstTerm);
 | |
| 
 | |
|     // If there is a landing pad successor, also find the call instruction.
 | |
|     if (EHPadSuccessors.empty())
 | |
|       return LIP.first;
 | |
|     // There may not be a call instruction (?) in which case we ignore LPad.
 | |
|     LIP.second = LIP.first;
 | |
|     for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
 | |
|          I != E;) {
 | |
|       --I;
 | |
|       if (I->isCall()) {
 | |
|         LIP.second = LIS.getInstructionIndex(*I);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If CurLI is live into a landing pad successor, move the last insert point
 | |
|   // back to the call that may throw.
 | |
|   if (!LIP.second)
 | |
|     return LIP.first;
 | |
| 
 | |
|   if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
 | |
|         return LIS.isLiveInToMBB(CurLI, EHPad);
 | |
|       }))
 | |
|     return LIP.first;
 | |
| 
 | |
|   // Find the value leaving MBB.
 | |
|   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
 | |
|   if (!VNI)
 | |
|     return LIP.first;
 | |
| 
 | |
|   // If the value leaving MBB was defined after the call in MBB, it can't
 | |
|   // really be live-in to the landing pad.  This can happen if the landing pad
 | |
|   // has a PHI, and this register is undef on the exceptional edge.
 | |
|   // <rdar://problem/10664933>
 | |
|   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
 | |
|     return LIP.first;
 | |
| 
 | |
|   // Value is properly live-in to the landing pad.
 | |
|   // Only allow inserts before the call.
 | |
|   return LIP.second;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
 | |
|                                             MachineBasicBlock &MBB) {
 | |
|   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
 | |
|   if (LIP == LIS.getMBBEndIdx(&MBB))
 | |
|     return MBB.end();
 | |
|   return LIS.getInstructionFromIndex(LIP);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                 Split Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
 | |
|                              const MachineLoopInfo &mli)
 | |
|     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
 | |
|       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
 | |
| 
 | |
| void SplitAnalysis::clear() {
 | |
|   UseSlots.clear();
 | |
|   UseBlocks.clear();
 | |
|   ThroughBlocks.clear();
 | |
|   CurLI = nullptr;
 | |
|   DidRepairRange = false;
 | |
| }
 | |
| 
 | |
| /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
 | |
| void SplitAnalysis::analyzeUses() {
 | |
|   assert(UseSlots.empty() && "Call clear first");
 | |
| 
 | |
|   // First get all the defs from the interval values. This provides the correct
 | |
|   // slots for early clobbers.
 | |
|   for (const VNInfo *VNI : CurLI->valnos)
 | |
|     if (!VNI->isPHIDef() && !VNI->isUnused())
 | |
|       UseSlots.push_back(VNI->def);
 | |
| 
 | |
|   // Get use slots form the use-def chain.
 | |
|   const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
 | |
|     if (!MO.isUndef())
 | |
|       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
 | |
| 
 | |
|   array_pod_sort(UseSlots.begin(), UseSlots.end());
 | |
| 
 | |
|   // Remove duplicates, keeping the smaller slot for each instruction.
 | |
|   // That is what we want for early clobbers.
 | |
|   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
 | |
|                              SlotIndex::isSameInstr),
 | |
|                  UseSlots.end());
 | |
| 
 | |
|   // Compute per-live block info.
 | |
|   if (!calcLiveBlockInfo()) {
 | |
|     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
 | |
|     // I am looking at you, RegisterCoalescer!
 | |
|     DidRepairRange = true;
 | |
|     ++NumRepairs;
 | |
|     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
 | |
|     const_cast<LiveIntervals&>(LIS)
 | |
|       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
 | |
|     UseBlocks.clear();
 | |
|     ThroughBlocks.clear();
 | |
|     bool fixed = calcLiveBlockInfo();
 | |
|     (void)fixed;
 | |
|     assert(fixed && "Couldn't fix broken live interval");
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
 | |
|                     << UseBlocks.size() << " blocks, through "
 | |
|                     << NumThroughBlocks << " blocks.\n");
 | |
| }
 | |
| 
 | |
| /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
 | |
| /// where CurLI is live.
 | |
| bool SplitAnalysis::calcLiveBlockInfo() {
 | |
|   ThroughBlocks.resize(MF.getNumBlockIDs());
 | |
|   NumThroughBlocks = NumGapBlocks = 0;
 | |
|   if (CurLI->empty())
 | |
|     return true;
 | |
| 
 | |
|   LiveInterval::const_iterator LVI = CurLI->begin();
 | |
|   LiveInterval::const_iterator LVE = CurLI->end();
 | |
| 
 | |
|   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
 | |
|   UseI = UseSlots.begin();
 | |
|   UseE = UseSlots.end();
 | |
| 
 | |
|   // Loop over basic blocks where CurLI is live.
 | |
|   MachineFunction::iterator MFI =
 | |
|       LIS.getMBBFromIndex(LVI->start)->getIterator();
 | |
|   while (true) {
 | |
|     BlockInfo BI;
 | |
|     BI.MBB = &*MFI;
 | |
|     SlotIndex Start, Stop;
 | |
|     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | |
| 
 | |
|     // If the block contains no uses, the range must be live through. At one
 | |
|     // point, RegisterCoalescer could create dangling ranges that ended
 | |
|     // mid-block.
 | |
|     if (UseI == UseE || *UseI >= Stop) {
 | |
|       ++NumThroughBlocks;
 | |
|       ThroughBlocks.set(BI.MBB->getNumber());
 | |
|       // The range shouldn't end mid-block if there are no uses. This shouldn't
 | |
|       // happen.
 | |
|       if (LVI->end < Stop)
 | |
|         return false;
 | |
|     } else {
 | |
|       // This block has uses. Find the first and last uses in the block.
 | |
|       BI.FirstInstr = *UseI;
 | |
|       assert(BI.FirstInstr >= Start);
 | |
|       do ++UseI;
 | |
|       while (UseI != UseE && *UseI < Stop);
 | |
|       BI.LastInstr = UseI[-1];
 | |
|       assert(BI.LastInstr < Stop);
 | |
| 
 | |
|       // LVI is the first live segment overlapping MBB.
 | |
|       BI.LiveIn = LVI->start <= Start;
 | |
| 
 | |
|       // When not live in, the first use should be a def.
 | |
|       if (!BI.LiveIn) {
 | |
|         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
 | |
|         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
 | |
|         BI.FirstDef = BI.FirstInstr;
 | |
|       }
 | |
| 
 | |
|       // Look for gaps in the live range.
 | |
|       BI.LiveOut = true;
 | |
|       while (LVI->end < Stop) {
 | |
|         SlotIndex LastStop = LVI->end;
 | |
|         if (++LVI == LVE || LVI->start >= Stop) {
 | |
|           BI.LiveOut = false;
 | |
|           BI.LastInstr = LastStop;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (LastStop < LVI->start) {
 | |
|           // There is a gap in the live range. Create duplicate entries for the
 | |
|           // live-in snippet and the live-out snippet.
 | |
|           ++NumGapBlocks;
 | |
| 
 | |
|           // Push the Live-in part.
 | |
|           BI.LiveOut = false;
 | |
|           UseBlocks.push_back(BI);
 | |
|           UseBlocks.back().LastInstr = LastStop;
 | |
| 
 | |
|           // Set up BI for the live-out part.
 | |
|           BI.LiveIn = false;
 | |
|           BI.LiveOut = true;
 | |
|           BI.FirstInstr = BI.FirstDef = LVI->start;
 | |
|         }
 | |
| 
 | |
|         // A Segment that starts in the middle of the block must be a def.
 | |
|         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
 | |
|         if (!BI.FirstDef)
 | |
|           BI.FirstDef = LVI->start;
 | |
|       }
 | |
| 
 | |
|       UseBlocks.push_back(BI);
 | |
| 
 | |
|       // LVI is now at LVE or LVI->end >= Stop.
 | |
|       if (LVI == LVE)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Live segment ends exactly at Stop. Move to the next segment.
 | |
|     if (LVI->end == Stop && ++LVI == LVE)
 | |
|       break;
 | |
| 
 | |
|     // Pick the next basic block.
 | |
|     if (LVI->start < Stop)
 | |
|       ++MFI;
 | |
|     else
 | |
|       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
 | |
|   }
 | |
| 
 | |
|   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
 | |
|   if (cli->empty())
 | |
|     return 0;
 | |
|   LiveInterval *li = const_cast<LiveInterval*>(cli);
 | |
|   LiveInterval::iterator LVI = li->begin();
 | |
|   LiveInterval::iterator LVE = li->end();
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   // Loop over basic blocks where li is live.
 | |
|   MachineFunction::const_iterator MFI =
 | |
|       LIS.getMBBFromIndex(LVI->start)->getIterator();
 | |
|   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
 | |
|   while (true) {
 | |
|     ++Count;
 | |
|     LVI = li->advanceTo(LVI, Stop);
 | |
|     if (LVI == LVE)
 | |
|       return Count;
 | |
|     do {
 | |
|       ++MFI;
 | |
|       Stop = LIS.getMBBEndIdx(&*MFI);
 | |
|     } while (Stop <= LVI->start);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
 | |
|   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
 | |
|   const LiveInterval &Orig = LIS.getInterval(OrigReg);
 | |
|   assert(!Orig.empty() && "Splitting empty interval?");
 | |
|   LiveInterval::const_iterator I = Orig.find(Idx);
 | |
| 
 | |
|   // Range containing Idx should begin at Idx.
 | |
|   if (I != Orig.end() && I->start <= Idx)
 | |
|     return I->start == Idx;
 | |
| 
 | |
|   // Range does not contain Idx, previous must end at Idx.
 | |
|   return I != Orig.begin() && (--I)->end == Idx;
 | |
| }
 | |
| 
 | |
| void SplitAnalysis::analyze(const LiveInterval *li) {
 | |
|   clear();
 | |
|   CurLI = li;
 | |
|   analyzeUses();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Split Editor
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
 | |
| SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
 | |
|                          LiveIntervals &lis, VirtRegMap &vrm,
 | |
|                          MachineDominatorTree &mdt,
 | |
|                          MachineBlockFrequencyInfo &mbfi)
 | |
|     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
 | |
|       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
 | |
|       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
 | |
|       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
 | |
|       MBFI(mbfi), RegAssign(Allocator) {}
 | |
| 
 | |
| void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
 | |
|   Edit = &LRE;
 | |
|   SpillMode = SM;
 | |
|   OpenIdx = 0;
 | |
|   RegAssign.clear();
 | |
|   Values.clear();
 | |
| 
 | |
|   // Reset the LiveRangeCalc instances needed for this spill mode.
 | |
|   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | |
|                   &LIS.getVNInfoAllocator());
 | |
|   if (SpillMode)
 | |
|     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | |
|                     &LIS.getVNInfoAllocator());
 | |
| 
 | |
|   // We don't need an AliasAnalysis since we will only be performing
 | |
|   // cheap-as-a-copy remats anyway.
 | |
|   Edit->anyRematerializable(nullptr);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void SplitEditor::dump() const {
 | |
|   if (RegAssign.empty()) {
 | |
|     dbgs() << " empty\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
 | |
|     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
 | |
|                                                         LiveInterval &LI) {
 | |
|   for (LiveInterval::SubRange &S : LI.subranges())
 | |
|     if (S.LaneMask == LM)
 | |
|       return S;
 | |
|   llvm_unreachable("SubRange for this mask not found");
 | |
| }
 | |
| 
 | |
| void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
 | |
|   if (!LI.hasSubRanges()) {
 | |
|     LI.createDeadDef(VNI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SlotIndex Def = VNI->def;
 | |
|   if (Original) {
 | |
|     // If we are transferring a def from the original interval, make sure
 | |
|     // to only update the subranges for which the original subranges had
 | |
|     // a def at this location.
 | |
|     for (LiveInterval::SubRange &S : LI.subranges()) {
 | |
|       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
 | |
|       VNInfo *PV = PS.getVNInfoAt(Def);
 | |
|       if (PV != nullptr && PV->def == Def)
 | |
|         S.createDeadDef(Def, LIS.getVNInfoAllocator());
 | |
|     }
 | |
|   } else {
 | |
|     // This is a new def: either from rematerialization, or from an inserted
 | |
|     // copy. Since rematerialization can regenerate a definition of a sub-
 | |
|     // register, we need to check which subranges need to be updated.
 | |
|     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
 | |
|     assert(DefMI != nullptr);
 | |
|     LaneBitmask LM;
 | |
|     for (const MachineOperand &DefOp : DefMI->defs()) {
 | |
|       unsigned R = DefOp.getReg();
 | |
|       if (R != LI.reg)
 | |
|         continue;
 | |
|       if (unsigned SR = DefOp.getSubReg())
 | |
|         LM |= TRI.getSubRegIndexLaneMask(SR);
 | |
|       else {
 | |
|         LM = MRI.getMaxLaneMaskForVReg(R);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     for (LiveInterval::SubRange &S : LI.subranges())
 | |
|       if ((S.LaneMask & LM).any())
 | |
|         S.createDeadDef(Def, LIS.getVNInfoAllocator());
 | |
|   }
 | |
| }
 | |
| 
 | |
| VNInfo *SplitEditor::defValue(unsigned RegIdx,
 | |
|                               const VNInfo *ParentVNI,
 | |
|                               SlotIndex Idx,
 | |
|                               bool Original) {
 | |
|   assert(ParentVNI && "Mapping  NULL value");
 | |
|   assert(Idx.isValid() && "Invalid SlotIndex");
 | |
|   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
 | |
|   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
 | |
| 
 | |
|   // Create a new value.
 | |
|   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
 | |
| 
 | |
|   bool Force = LI->hasSubRanges();
 | |
|   ValueForcePair FP(Force ? nullptr : VNI, Force);
 | |
|   // Use insert for lookup, so we can add missing values with a second lookup.
 | |
|   std::pair<ValueMap::iterator, bool> InsP =
 | |
|     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
 | |
| 
 | |
|   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
 | |
|   // forced. Keep it as a simple def without any liveness.
 | |
|   if (!Force && InsP.second)
 | |
|     return VNI;
 | |
| 
 | |
|   // If the previous value was a simple mapping, add liveness for it now.
 | |
|   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
 | |
|     addDeadDef(*LI, OldVNI, Original);
 | |
| 
 | |
|     // No longer a simple mapping.  Switch to a complex mapping. If the
 | |
|     // interval has subranges, make it a forced mapping.
 | |
|     InsP.first->second = ValueForcePair(nullptr, Force);
 | |
|   }
 | |
| 
 | |
|   // This is a complex mapping, add liveness for VNI
 | |
|   addDeadDef(*LI, VNI, Original);
 | |
|   return VNI;
 | |
| }
 | |
| 
 | |
| void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
 | |
|   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
 | |
|   VNInfo *VNI = VFP.getPointer();
 | |
| 
 | |
|   // ParentVNI was either unmapped or already complex mapped. Either way, just
 | |
|   // set the force bit.
 | |
|   if (!VNI) {
 | |
|     VFP.setInt(true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // This was previously a single mapping. Make sure the old def is represented
 | |
|   // by a trivial live range.
 | |
|   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
 | |
| 
 | |
|   // Mark as complex mapped, forced.
 | |
|   VFP = ValueForcePair(nullptr, true);
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
 | |
|     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
 | |
|   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
 | |
|   bool FirstCopy = !Def.isValid();
 | |
|   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
 | |
|       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
 | |
|               | getInternalReadRegState(!FirstCopy), SubIdx)
 | |
|       .addReg(FromReg, 0, SubIdx);
 | |
| 
 | |
|   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
 | |
|   if (FirstCopy) {
 | |
|     SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | |
|     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
 | |
|   } else {
 | |
|     CopyMI->bundleWithPred();
 | |
|   }
 | |
|   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
 | |
|   DestLI.refineSubRanges(Allocator, LaneMask,
 | |
|                          [Def, &Allocator](LiveInterval::SubRange& SR) {
 | |
|     SR.createDeadDef(Def, Allocator);
 | |
|   });
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
 | |
|     LaneBitmask LaneMask, MachineBasicBlock &MBB,
 | |
|     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
 | |
|   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
 | |
|   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
 | |
|     // The full vreg is copied.
 | |
|     MachineInstr *CopyMI =
 | |
|         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
 | |
|     SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | |
|     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
 | |
|   }
 | |
| 
 | |
|   // Only a subset of lanes needs to be copied. The following is a simple
 | |
|   // heuristic to construct a sequence of COPYs. We could add a target
 | |
|   // specific callback if this turns out to be suboptimal.
 | |
|   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
 | |
| 
 | |
|   // First pass: Try to find a perfectly matching subregister index. If none
 | |
|   // exists find the one covering the most lanemask bits.
 | |
|   SmallVector<unsigned, 8> PossibleIndexes;
 | |
|   unsigned BestIdx = 0;
 | |
|   unsigned BestCover = 0;
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
 | |
|   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
 | |
|   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
 | |
|     // Is this index even compatible with the given class?
 | |
|     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
 | |
|       continue;
 | |
|     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
 | |
|     // Early exit if we found a perfect match.
 | |
|     if (SubRegMask == LaneMask) {
 | |
|       BestIdx = Idx;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // The index must not cover any lanes outside \p LaneMask.
 | |
|     if ((SubRegMask & ~LaneMask).any())
 | |
|       continue;
 | |
| 
 | |
|     unsigned PopCount = SubRegMask.getNumLanes();
 | |
|     PossibleIndexes.push_back(Idx);
 | |
|     if (PopCount > BestCover) {
 | |
|       BestCover = PopCount;
 | |
|       BestIdx = Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Abort if we cannot possibly implement the COPY with the given indexes.
 | |
|   if (BestIdx == 0)
 | |
|     report_fatal_error("Impossible to implement partial COPY");
 | |
| 
 | |
|   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
 | |
|                                         BestIdx, DestLI, Late, SlotIndex());
 | |
| 
 | |
|   // Greedy heuristic: Keep iterating keeping the best covering subreg index
 | |
|   // each time.
 | |
|   LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
 | |
|   while (LanesLeft.any()) {
 | |
|     unsigned BestIdx = 0;
 | |
|     int BestCover = std::numeric_limits<int>::min();
 | |
|     for (unsigned Idx : PossibleIndexes) {
 | |
|       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
 | |
|       // Early exit if we found a perfect match.
 | |
|       if (SubRegMask == LanesLeft) {
 | |
|         BestIdx = Idx;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Try to cover as much of the remaining lanes as possible but
 | |
|       // as few of the already covered lanes as possible.
 | |
|       int Cover = (SubRegMask & LanesLeft).getNumLanes()
 | |
|                 - (SubRegMask & ~LanesLeft).getNumLanes();
 | |
|       if (Cover > BestCover) {
 | |
|         BestCover = Cover;
 | |
|         BestIdx = Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BestIdx == 0)
 | |
|       report_fatal_error("Impossible to implement partial COPY");
 | |
| 
 | |
|     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
 | |
|                           DestLI, Late, Def);
 | |
|     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
 | |
|   }
 | |
| 
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
 | |
|                                    VNInfo *ParentVNI,
 | |
|                                    SlotIndex UseIdx,
 | |
|                                    MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator I) {
 | |
|   SlotIndex Def;
 | |
|   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
 | |
| 
 | |
|   // We may be trying to avoid interference that ends at a deleted instruction,
 | |
|   // so always begin RegIdx 0 early and all others late.
 | |
|   bool Late = RegIdx != 0;
 | |
| 
 | |
|   // Attempt cheap-as-a-copy rematerialization.
 | |
|   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
 | |
|   LiveInterval &OrigLI = LIS.getInterval(Original);
 | |
|   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
 | |
| 
 | |
|   unsigned Reg = LI->reg;
 | |
|   bool DidRemat = false;
 | |
|   if (OrigVNI) {
 | |
|     LiveRangeEdit::Remat RM(ParentVNI);
 | |
|     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
 | |
|     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
 | |
|       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
 | |
|       ++NumRemats;
 | |
|       DidRemat = true;
 | |
|     }
 | |
|   }
 | |
|   if (!DidRemat) {
 | |
|     LaneBitmask LaneMask;
 | |
|     if (LI->hasSubRanges()) {
 | |
|       LaneMask = LaneBitmask::getNone();
 | |
|       for (LiveInterval::SubRange &S : LI->subranges())
 | |
|         LaneMask |= S.LaneMask;
 | |
|     } else {
 | |
|       LaneMask = LaneBitmask::getAll();
 | |
|     }
 | |
| 
 | |
|     ++NumCopies;
 | |
|     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
 | |
|   }
 | |
| 
 | |
|   // Define the value in Reg.
 | |
|   return defValue(RegIdx, ParentVNI, Def, false);
 | |
| }
 | |
| 
 | |
| /// Create a new virtual register and live interval.
 | |
| unsigned SplitEditor::openIntv() {
 | |
|   // Create the complement as index 0.
 | |
|   if (Edit->empty())
 | |
|     Edit->createEmptyInterval();
 | |
| 
 | |
|   // Create the open interval.
 | |
|   OpenIdx = Edit->size();
 | |
|   Edit->createEmptyInterval();
 | |
|   return OpenIdx;
 | |
| }
 | |
| 
 | |
| void SplitEditor::selectIntv(unsigned Idx) {
 | |
|   assert(Idx != 0 && "Cannot select the complement interval");
 | |
|   assert(Idx < Edit->size() && "Can only select previously opened interval");
 | |
|   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
 | |
|   OpenIdx = Idx;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before enterIntvBefore");
 | |
|   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
 | |
|   Idx = Idx.getBaseIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     LLVM_DEBUG(dbgs() << ": not live\n");
 | |
|     return Idx;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "enterIntvBefore called with invalid index");
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before enterIntvAfter");
 | |
|   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
 | |
|   Idx = Idx.getBoundaryIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     LLVM_DEBUG(dbgs() << ": not live\n");
 | |
|     return Idx;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "enterIntvAfter called with invalid index");
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
 | |
|                               std::next(MachineBasicBlock::iterator(MI)));
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
 | |
|   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
 | |
|   SlotIndex End = LIS.getMBBEndIdx(&MBB);
 | |
|   SlotIndex Last = End.getPrevSlot();
 | |
|   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
 | |
|                     << Last);
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
 | |
|   if (!ParentVNI) {
 | |
|     LLVM_DEBUG(dbgs() << ": not live\n");
 | |
|     return End;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | |
|   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
 | |
|                               SA.getLastSplitPointIter(&MBB));
 | |
|   RegAssign.insert(VNI->def, End, OpenIdx);
 | |
|   LLVM_DEBUG(dump());
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| /// useIntv - indicate that all instructions in MBB should use OpenLI.
 | |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
 | |
|   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
 | |
| }
 | |
| 
 | |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
 | |
|   assert(OpenIdx && "openIntv not called before useIntv");
 | |
|   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
 | |
|   RegAssign.insert(Start, End, OpenIdx);
 | |
|   LLVM_DEBUG(dump());
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
 | |
|   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
 | |
| 
 | |
|   // The interval must be live beyond the instruction at Idx.
 | |
|   SlotIndex Boundary = Idx.getBoundaryIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
 | |
|   if (!ParentVNI) {
 | |
|     LLVM_DEBUG(dbgs() << ": not live\n");
 | |
|     return Boundary.getNextSlot();
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
 | |
|   assert(MI && "No instruction at index");
 | |
| 
 | |
|   // In spill mode, make live ranges as short as possible by inserting the copy
 | |
|   // before MI.  This is only possible if that instruction doesn't redefine the
 | |
|   // value.  The inserted COPY is not a kill, and we don't need to recompute
 | |
|   // the source live range.  The spiller also won't try to hoist this copy.
 | |
|   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
 | |
|       MI->readsVirtualRegister(Edit->getReg())) {
 | |
|     forceRecompute(0, *ParentVNI);
 | |
|     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
 | |
|     return Idx;
 | |
|   }
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
 | |
|                               std::next(MachineBasicBlock::iterator(MI)));
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
 | |
|   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
 | |
| 
 | |
|   // The interval must be live into the instruction at Idx.
 | |
|   Idx = Idx.getBaseIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     LLVM_DEBUG(dbgs() << ": not live\n");
 | |
|     return Idx.getNextSlot();
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
| 
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "No instruction at index");
 | |
|   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
 | |
|   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
 | |
|   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
 | |
|   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
 | |
|                     << Start);
 | |
| 
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | |
|   if (!ParentVNI) {
 | |
|     LLVM_DEBUG(dbgs() << ": not live\n");
 | |
|     return Start;
 | |
|   }
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
 | |
|                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
 | |
|   RegAssign.insert(Start, VNI->def, OpenIdx);
 | |
|   LLVM_DEBUG(dump());
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
 | |
|   assert(OpenIdx && "openIntv not called before overlapIntv");
 | |
|   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | |
|   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
 | |
|          "Parent changes value in extended range");
 | |
|   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
 | |
|          "Range cannot span basic blocks");
 | |
| 
 | |
|   // The complement interval will be extended as needed by LRCalc.extend().
 | |
|   if (ParentVNI)
 | |
|     forceRecompute(0, *ParentVNI);
 | |
|   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
 | |
|   RegAssign.insert(Start, End, OpenIdx);
 | |
|   LLVM_DEBUG(dump());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                  Spill modes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
 | |
|   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
 | |
|   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
 | |
|   RegAssignMap::iterator AssignI;
 | |
|   AssignI.setMap(RegAssign);
 | |
| 
 | |
|   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
 | |
|     SlotIndex Def = Copies[i]->def;
 | |
|     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
 | |
|     assert(MI && "No instruction for back-copy");
 | |
| 
 | |
|     MachineBasicBlock *MBB = MI->getParent();
 | |
|     MachineBasicBlock::iterator MBBI(MI);
 | |
|     bool AtBegin;
 | |
|     do AtBegin = MBBI == MBB->begin();
 | |
|     while (!AtBegin && (--MBBI)->isDebugInstr());
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
 | |
|     LIS.removeVRegDefAt(*LI, Def);
 | |
|     LIS.RemoveMachineInstrFromMaps(*MI);
 | |
|     MI->eraseFromParent();
 | |
| 
 | |
|     // Adjust RegAssign if a register assignment is killed at Def. We want to
 | |
|     // avoid calculating the live range of the source register if possible.
 | |
|     AssignI.find(Def.getPrevSlot());
 | |
|     if (!AssignI.valid() || AssignI.start() >= Def)
 | |
|       continue;
 | |
|     // If MI doesn't kill the assigned register, just leave it.
 | |
|     if (AssignI.stop() != Def)
 | |
|       continue;
 | |
|     unsigned RegIdx = AssignI.value();
 | |
|     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
 | |
|       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
 | |
|                         << '\n');
 | |
|       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
 | |
|     } else {
 | |
|       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
 | |
|       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
 | |
|       AssignI.setStop(Kill);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock*
 | |
| SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock *DefMBB) {
 | |
|   if (MBB == DefMBB)
 | |
|     return MBB;
 | |
|   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
 | |
| 
 | |
|   const MachineLoopInfo &Loops = SA.Loops;
 | |
|   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
 | |
|   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
 | |
| 
 | |
|   // Best candidate so far.
 | |
|   MachineBasicBlock *BestMBB = MBB;
 | |
|   unsigned BestDepth = std::numeric_limits<unsigned>::max();
 | |
| 
 | |
|   while (true) {
 | |
|     const MachineLoop *Loop = Loops.getLoopFor(MBB);
 | |
| 
 | |
|     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
 | |
|     // higher frequency by definition.
 | |
|     if (!Loop) {
 | |
|       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
 | |
|                         << " dominates " << printMBBReference(*MBB)
 | |
|                         << " at depth 0\n");
 | |
|       return MBB;
 | |
|     }
 | |
| 
 | |
|     // We'll never be able to exit the DefLoop.
 | |
|     if (Loop == DefLoop) {
 | |
|       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
 | |
|                         << " dominates " << printMBBReference(*MBB)
 | |
|                         << " in the same loop\n");
 | |
|       return MBB;
 | |
|     }
 | |
| 
 | |
|     // Least busy dominator seen so far.
 | |
|     unsigned Depth = Loop->getLoopDepth();
 | |
|     if (Depth < BestDepth) {
 | |
|       BestMBB = MBB;
 | |
|       BestDepth = Depth;
 | |
|       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
 | |
|                         << " dominates " << printMBBReference(*MBB)
 | |
|                         << " at depth " << Depth << '\n');
 | |
|     }
 | |
| 
 | |
|     // Leave loop by going to the immediate dominator of the loop header.
 | |
|     // This is a bigger stride than simply walking up the dominator tree.
 | |
|     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
 | |
| 
 | |
|     // Too far up the dominator tree?
 | |
|     if (!IDom || !MDT.dominates(DefDomNode, IDom))
 | |
|       return BestMBB;
 | |
| 
 | |
|     MBB = IDom->getBlock();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitEditor::computeRedundantBackCopies(
 | |
|     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
 | |
|   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
 | |
|   LiveInterval *Parent = &Edit->getParent();
 | |
|   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
 | |
|   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
 | |
| 
 | |
|   // Aggregate VNIs having the same value as ParentVNI.
 | |
|   for (VNInfo *VNI : LI->valnos) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
 | |
|     EqualVNs[ParentVNI->id].insert(VNI);
 | |
|   }
 | |
| 
 | |
|   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
 | |
|   // redundant VNIs to BackCopies.
 | |
|   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
 | |
|     VNInfo *ParentVNI = Parent->getValNumInfo(i);
 | |
|     if (!NotToHoistSet.count(ParentVNI->id))
 | |
|       continue;
 | |
|     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
 | |
|     SmallPtrSetIterator<VNInfo *> It2 = It1;
 | |
|     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
 | |
|       It2 = It1;
 | |
|       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
 | |
|         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
 | |
|           continue;
 | |
| 
 | |
|         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
 | |
|         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
 | |
|         if (MBB1 == MBB2) {
 | |
|           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
 | |
|         } else if (MDT.dominates(MBB1, MBB2)) {
 | |
|           DominatedVNIs.insert(*It2);
 | |
|         } else if (MDT.dominates(MBB2, MBB1)) {
 | |
|           DominatedVNIs.insert(*It1);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!DominatedVNIs.empty()) {
 | |
|       forceRecompute(0, *ParentVNI);
 | |
|       for (auto VNI : DominatedVNIs) {
 | |
|         BackCopies.push_back(VNI);
 | |
|       }
 | |
|       DominatedVNIs.clear();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For SM_Size mode, find a common dominator for all the back-copies for
 | |
| /// the same ParentVNI and hoist the backcopies to the dominator BB.
 | |
| /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
 | |
| /// to do the hoisting, simply remove the dominated backcopies for the same
 | |
| /// ParentVNI.
 | |
| void SplitEditor::hoistCopies() {
 | |
|   // Get the complement interval, always RegIdx 0.
 | |
|   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
 | |
|   LiveInterval *Parent = &Edit->getParent();
 | |
| 
 | |
|   // Track the nearest common dominator for all back-copies for each ParentVNI,
 | |
|   // indexed by ParentVNI->id.
 | |
|   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
 | |
|   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
 | |
|   // The total cost of all the back-copies for each ParentVNI.
 | |
|   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
 | |
|   // The ParentVNI->id set for which hoisting back-copies are not beneficial
 | |
|   // for Speed.
 | |
|   DenseSet<unsigned> NotToHoistSet;
 | |
| 
 | |
|   // Find the nearest common dominator for parent values with multiple
 | |
|   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
 | |
|   for (VNInfo *VNI : LI->valnos) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
 | |
|     assert(ParentVNI && "Parent not live at complement def");
 | |
| 
 | |
|     // Don't hoist remats.  The complement is probably going to disappear
 | |
|     // completely anyway.
 | |
|     if (Edit->didRematerialize(ParentVNI))
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
 | |
| 
 | |
|     DomPair &Dom = NearestDom[ParentVNI->id];
 | |
| 
 | |
|     // Keep directly defined parent values.  This is either a PHI or an
 | |
|     // instruction in the complement range.  All other copies of ParentVNI
 | |
|     // should be eliminated.
 | |
|     if (VNI->def == ParentVNI->def) {
 | |
|       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
 | |
|       Dom = DomPair(ValMBB, VNI->def);
 | |
|       continue;
 | |
|     }
 | |
|     // Skip the singly mapped values.  There is nothing to gain from hoisting a
 | |
|     // single back-copy.
 | |
|     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
 | |
|       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!Dom.first) {
 | |
|       // First time we see ParentVNI.  VNI dominates itself.
 | |
|       Dom = DomPair(ValMBB, VNI->def);
 | |
|     } else if (Dom.first == ValMBB) {
 | |
|       // Two defs in the same block.  Pick the earlier def.
 | |
|       if (!Dom.second.isValid() || VNI->def < Dom.second)
 | |
|         Dom.second = VNI->def;
 | |
|     } else {
 | |
|       // Different basic blocks. Check if one dominates.
 | |
|       MachineBasicBlock *Near =
 | |
|         MDT.findNearestCommonDominator(Dom.first, ValMBB);
 | |
|       if (Near == ValMBB)
 | |
|         // Def ValMBB dominates.
 | |
|         Dom = DomPair(ValMBB, VNI->def);
 | |
|       else if (Near != Dom.first)
 | |
|         // None dominate. Hoist to common dominator, need new def.
 | |
|         Dom = DomPair(Near, SlotIndex());
 | |
|       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
 | |
|                       << VNI->def << " for parent " << ParentVNI->id << '@'
 | |
|                       << ParentVNI->def << " hoist to "
 | |
|                       << printMBBReference(*Dom.first) << ' ' << Dom.second
 | |
|                       << '\n');
 | |
|   }
 | |
| 
 | |
|   // Insert the hoisted copies.
 | |
|   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
 | |
|     DomPair &Dom = NearestDom[i];
 | |
|     if (!Dom.first || Dom.second.isValid())
 | |
|       continue;
 | |
|     // This value needs a hoisted copy inserted at the end of Dom.first.
 | |
|     VNInfo *ParentVNI = Parent->getValNumInfo(i);
 | |
|     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
 | |
|     // Get a less loopy dominator than Dom.first.
 | |
|     Dom.first = findShallowDominator(Dom.first, DefMBB);
 | |
|     if (SpillMode == SM_Speed &&
 | |
|         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
 | |
|       NotToHoistSet.insert(ParentVNI->id);
 | |
|       continue;
 | |
|     }
 | |
|     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
 | |
|     Dom.second =
 | |
|       defFromParent(0, ParentVNI, Last, *Dom.first,
 | |
|                     SA.getLastSplitPointIter(Dom.first))->def;
 | |
|   }
 | |
| 
 | |
|   // Remove redundant back-copies that are now known to be dominated by another
 | |
|   // def with the same value.
 | |
|   SmallVector<VNInfo*, 8> BackCopies;
 | |
|   for (VNInfo *VNI : LI->valnos) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
 | |
|     const DomPair &Dom = NearestDom[ParentVNI->id];
 | |
|     if (!Dom.first || Dom.second == VNI->def ||
 | |
|         NotToHoistSet.count(ParentVNI->id))
 | |
|       continue;
 | |
|     BackCopies.push_back(VNI);
 | |
|     forceRecompute(0, *ParentVNI);
 | |
|   }
 | |
| 
 | |
|   // If it is not beneficial to hoist all the BackCopies, simply remove
 | |
|   // redundant BackCopies in speed mode.
 | |
|   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
 | |
|     computeRedundantBackCopies(NotToHoistSet, BackCopies);
 | |
| 
 | |
|   removeBackCopies(BackCopies);
 | |
| }
 | |
| 
 | |
| /// transferValues - Transfer all possible values to the new live ranges.
 | |
| /// Values that were rematerialized are left alone, they need LRCalc.extend().
 | |
| bool SplitEditor::transferValues() {
 | |
|   bool Skipped = false;
 | |
|   RegAssignMap::const_iterator AssignI = RegAssign.begin();
 | |
|   for (const LiveRange::Segment &S : Edit->getParent()) {
 | |
|     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
 | |
|     VNInfo *ParentVNI = S.valno;
 | |
|     // RegAssign has holes where RegIdx 0 should be used.
 | |
|     SlotIndex Start = S.start;
 | |
|     AssignI.advanceTo(Start);
 | |
|     do {
 | |
|       unsigned RegIdx;
 | |
|       SlotIndex End = S.end;
 | |
|       if (!AssignI.valid()) {
 | |
|         RegIdx = 0;
 | |
|       } else if (AssignI.start() <= Start) {
 | |
|         RegIdx = AssignI.value();
 | |
|         if (AssignI.stop() < End) {
 | |
|           End = AssignI.stop();
 | |
|           ++AssignI;
 | |
|         }
 | |
|       } else {
 | |
|         RegIdx = 0;
 | |
|         End = std::min(End, AssignI.start());
 | |
|       }
 | |
| 
 | |
|       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
 | |
|       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
 | |
|                         << printReg(Edit->get(RegIdx)) << ')');
 | |
|       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | |
| 
 | |
|       // Check for a simply defined value that can be blitted directly.
 | |
|       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
 | |
|       if (VNInfo *VNI = VFP.getPointer()) {
 | |
|         LLVM_DEBUG(dbgs() << ':' << VNI->id);
 | |
|         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
 | |
|         Start = End;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Skip values with forced recomputation.
 | |
|       if (VFP.getInt()) {
 | |
|         LLVM_DEBUG(dbgs() << "(recalc)");
 | |
|         Skipped = true;
 | |
|         Start = End;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       LiveRangeCalc &LRC = getLRCalc(RegIdx);
 | |
| 
 | |
|       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
 | |
|       // so the live range is accurate. Add live-in blocks in [Start;End) to the
 | |
|       // LiveInBlocks.
 | |
|       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
 | |
|       SlotIndex BlockStart, BlockEnd;
 | |
|       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
 | |
| 
 | |
|       // The first block may be live-in, or it may have its own def.
 | |
|       if (Start != BlockStart) {
 | |
|         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
 | |
|         assert(VNI && "Missing def for complex mapped value");
 | |
|         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
 | |
|         // MBB has its own def. Is it also live-out?
 | |
|         if (BlockEnd <= End)
 | |
|           LRC.setLiveOutValue(&*MBB, VNI);
 | |
| 
 | |
|         // Skip to the next block for live-in.
 | |
|         ++MBB;
 | |
|         BlockStart = BlockEnd;
 | |
|       }
 | |
| 
 | |
|       // Handle the live-in blocks covered by [Start;End).
 | |
|       assert(Start <= BlockStart && "Expected live-in block");
 | |
|       while (BlockStart < End) {
 | |
|         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
 | |
|         BlockEnd = LIS.getMBBEndIdx(&*MBB);
 | |
|         if (BlockStart == ParentVNI->def) {
 | |
|           // This block has the def of a parent PHI, so it isn't live-in.
 | |
|           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
 | |
|           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
 | |
|           assert(VNI && "Missing def for complex mapped parent PHI");
 | |
|           if (End >= BlockEnd)
 | |
|             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
 | |
|         } else {
 | |
|           // This block needs a live-in value.  The last block covered may not
 | |
|           // be live-out.
 | |
|           if (End < BlockEnd)
 | |
|             LRC.addLiveInBlock(LI, MDT[&*MBB], End);
 | |
|           else {
 | |
|             // Live-through, and we don't know the value.
 | |
|             LRC.addLiveInBlock(LI, MDT[&*MBB]);
 | |
|             LRC.setLiveOutValue(&*MBB, nullptr);
 | |
|           }
 | |
|         }
 | |
|         BlockStart = BlockEnd;
 | |
|         ++MBB;
 | |
|       }
 | |
|       Start = End;
 | |
|     } while (Start != S.end);
 | |
|     LLVM_DEBUG(dbgs() << '\n');
 | |
|   }
 | |
| 
 | |
|   LRCalc[0].calculateValues();
 | |
|   if (SpillMode)
 | |
|     LRCalc[1].calculateValues();
 | |
| 
 | |
|   return Skipped;
 | |
| }
 | |
| 
 | |
| static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
 | |
|   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
 | |
|   if (Seg == nullptr)
 | |
|     return true;
 | |
|   if (Seg->end != Def.getDeadSlot())
 | |
|     return false;
 | |
|   // This is a dead PHI. Remove it.
 | |
|   LR.removeSegment(*Seg, true);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
 | |
|                                  LiveRange &LR, LaneBitmask LM,
 | |
|                                  ArrayRef<SlotIndex> Undefs) {
 | |
|   for (MachineBasicBlock *P : B.predecessors()) {
 | |
|     SlotIndex End = LIS.getMBBEndIdx(P);
 | |
|     SlotIndex LastUse = End.getPrevSlot();
 | |
|     // The predecessor may not have a live-out value. That is OK, like an
 | |
|     // undef PHI operand.
 | |
|     LiveInterval &PLI = Edit->getParent();
 | |
|     // Need the cast because the inputs to ?: would otherwise be deemed
 | |
|     // "incompatible": SubRange vs LiveInterval.
 | |
|     LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
 | |
|                                : static_cast<LiveRange&>(PLI);
 | |
|     if (PSR.liveAt(LastUse))
 | |
|       LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitEditor::extendPHIKillRanges() {
 | |
|   // Extend live ranges to be live-out for successor PHI values.
 | |
| 
 | |
|   // Visit each PHI def slot in the parent live interval. If the def is dead,
 | |
|   // remove it. Otherwise, extend the live interval to reach the end indexes
 | |
|   // of all predecessor blocks.
 | |
| 
 | |
|   LiveInterval &ParentLI = Edit->getParent();
 | |
|   for (const VNInfo *V : ParentLI.valnos) {
 | |
|     if (V->isUnused() || !V->isPHIDef())
 | |
|       continue;
 | |
| 
 | |
|     unsigned RegIdx = RegAssign.lookup(V->def);
 | |
|     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | |
|     LiveRangeCalc &LRC = getLRCalc(RegIdx);
 | |
|     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
 | |
|     if (!removeDeadSegment(V->def, LI))
 | |
|       extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
 | |
|   }
 | |
| 
 | |
|   SmallVector<SlotIndex, 4> Undefs;
 | |
|   LiveRangeCalc SubLRC;
 | |
| 
 | |
|   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
 | |
|     for (const VNInfo *V : PS.valnos) {
 | |
|       if (V->isUnused() || !V->isPHIDef())
 | |
|         continue;
 | |
|       unsigned RegIdx = RegAssign.lookup(V->def);
 | |
|       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | |
|       LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
 | |
|       if (removeDeadSegment(V->def, S))
 | |
|         continue;
 | |
| 
 | |
|       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
 | |
|       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | |
|                    &LIS.getVNInfoAllocator());
 | |
|       Undefs.clear();
 | |
|       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
 | |
|       extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// rewriteAssigned - Rewrite all uses of Edit->getReg().
 | |
| void SplitEditor::rewriteAssigned(bool ExtendRanges) {
 | |
|   struct ExtPoint {
 | |
|     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
 | |
|       : MO(O), RegIdx(R), Next(N) {}
 | |
| 
 | |
|     MachineOperand MO;
 | |
|     unsigned RegIdx;
 | |
|     SlotIndex Next;
 | |
|   };
 | |
| 
 | |
|   SmallVector<ExtPoint,4> ExtPoints;
 | |
| 
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
 | |
|        RE = MRI.reg_end(); RI != RE;) {
 | |
|     MachineOperand &MO = *RI;
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     ++RI;
 | |
|     // LiveDebugVariables should have handled all DBG_VALUE instructions.
 | |
|     if (MI->isDebugValue()) {
 | |
|       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
 | |
|       MO.setReg(0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // <undef> operands don't really read the register, so it doesn't matter
 | |
|     // which register we choose.  When the use operand is tied to a def, we must
 | |
|     // use the same register as the def, so just do that always.
 | |
|     SlotIndex Idx = LIS.getInstructionIndex(*MI);
 | |
|     if (MO.isDef() || MO.isUndef())
 | |
|       Idx = Idx.getRegSlot(MO.isEarlyClobber());
 | |
| 
 | |
|     // Rewrite to the mapped register at Idx.
 | |
|     unsigned RegIdx = RegAssign.lookup(Idx);
 | |
|     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | |
|     MO.setReg(LI.reg);
 | |
|     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
 | |
|                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
 | |
| 
 | |
|     // Extend liveness to Idx if the instruction reads reg.
 | |
|     if (!ExtendRanges || MO.isUndef())
 | |
|       continue;
 | |
| 
 | |
|     // Skip instructions that don't read Reg.
 | |
|     if (MO.isDef()) {
 | |
|       if (!MO.getSubReg() && !MO.isEarlyClobber())
 | |
|         continue;
 | |
|       // We may want to extend a live range for a partial redef, or for a use
 | |
|       // tied to an early clobber.
 | |
|       Idx = Idx.getPrevSlot();
 | |
|       if (!Edit->getParent().liveAt(Idx))
 | |
|         continue;
 | |
|     } else
 | |
|       Idx = Idx.getRegSlot(true);
 | |
| 
 | |
|     SlotIndex Next = Idx.getNextSlot();
 | |
|     if (LI.hasSubRanges()) {
 | |
|       // We have to delay extending subranges until we have seen all operands
 | |
|       // defining the register. This is because a <def,read-undef> operand
 | |
|       // will create an "undef" point, and we cannot extend any subranges
 | |
|       // until all of them have been accounted for.
 | |
|       if (MO.isUse())
 | |
|         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
 | |
|     } else {
 | |
|       LiveRangeCalc &LRC = getLRCalc(RegIdx);
 | |
|       LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (ExtPoint &EP : ExtPoints) {
 | |
|     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
 | |
|     assert(LI.hasSubRanges());
 | |
| 
 | |
|     LiveRangeCalc SubLRC;
 | |
|     unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
 | |
|     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
 | |
|                               : MRI.getMaxLaneMaskForVReg(Reg);
 | |
|     for (LiveInterval::SubRange &S : LI.subranges()) {
 | |
|       if ((S.LaneMask & LM).none())
 | |
|         continue;
 | |
|       // The problem here can be that the new register may have been created
 | |
|       // for a partially defined original register. For example:
 | |
|       //   %0:subreg_hireg<def,read-undef> = ...
 | |
|       //   ...
 | |
|       //   %1 = COPY %0
 | |
|       if (S.empty())
 | |
|         continue;
 | |
|       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | |
|                    &LIS.getVNInfoAllocator());
 | |
|       SmallVector<SlotIndex, 4> Undefs;
 | |
|       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
 | |
|       SubLRC.extend(S, EP.Next, 0, Undefs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned R : *Edit) {
 | |
|     LiveInterval &LI = LIS.getInterval(R);
 | |
|     if (!LI.hasSubRanges())
 | |
|       continue;
 | |
|     LI.clear();
 | |
|     LI.removeEmptySubRanges();
 | |
|     LIS.constructMainRangeFromSubranges(LI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitEditor::deleteRematVictims() {
 | |
|   SmallVector<MachineInstr*, 8> Dead;
 | |
|   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
 | |
|     LiveInterval *LI = &LIS.getInterval(*I);
 | |
|     for (const LiveRange::Segment &S : LI->segments) {
 | |
|       // Dead defs end at the dead slot.
 | |
|       if (S.end != S.valno->def.getDeadSlot())
 | |
|         continue;
 | |
|       if (S.valno->isPHIDef())
 | |
|         continue;
 | |
|       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
 | |
|       assert(MI && "Missing instruction for dead def");
 | |
|       MI->addRegisterDead(LI->reg, &TRI);
 | |
| 
 | |
|       if (!MI->allDefsAreDead())
 | |
|         continue;
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
 | |
|       Dead.push_back(MI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Dead.empty())
 | |
|     return;
 | |
| 
 | |
|   Edit->eliminateDeadDefs(Dead, None, &AA);
 | |
| }
 | |
| 
 | |
| void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
 | |
|   // Fast-path for common case.
 | |
|   if (!ParentVNI.isPHIDef()) {
 | |
|     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
 | |
|       forceRecompute(I, ParentVNI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Trace value through phis.
 | |
|   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
 | |
|   SmallVector<const VNInfo *, 4> WorkList;
 | |
|   Visited.insert(&ParentVNI);
 | |
|   WorkList.push_back(&ParentVNI);
 | |
| 
 | |
|   const LiveInterval &ParentLI = Edit->getParent();
 | |
|   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | |
|   do {
 | |
|     const VNInfo &VNI = *WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
 | |
|       forceRecompute(I, VNI);
 | |
|     if (!VNI.isPHIDef())
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
 | |
|     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
 | |
|       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
 | |
|       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
 | |
|       assert(PredVNI && "Value available in PhiVNI predecessor");
 | |
|       if (Visited.insert(PredVNI).second)
 | |
|         WorkList.push_back(PredVNI);
 | |
|     }
 | |
|   } while(!WorkList.empty());
 | |
| }
 | |
| 
 | |
| void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
 | |
|   ++NumFinished;
 | |
| 
 | |
|   // At this point, the live intervals in Edit contain VNInfos corresponding to
 | |
|   // the inserted copies.
 | |
| 
 | |
|   // Add the original defs from the parent interval.
 | |
|   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
 | |
|     if (ParentVNI->isUnused())
 | |
|       continue;
 | |
|     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
 | |
|     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
 | |
| 
 | |
|     // Force rematted values to be recomputed everywhere.
 | |
|     // The new live ranges may be truncated.
 | |
|     if (Edit->didRematerialize(ParentVNI))
 | |
|       forceRecomputeVNI(*ParentVNI);
 | |
|   }
 | |
| 
 | |
|   // Hoist back-copies to the complement interval when in spill mode.
 | |
|   switch (SpillMode) {
 | |
|   case SM_Partition:
 | |
|     // Leave all back-copies as is.
 | |
|     break;
 | |
|   case SM_Size:
 | |
|   case SM_Speed:
 | |
|     // hoistCopies will behave differently between size and speed.
 | |
|     hoistCopies();
 | |
|   }
 | |
| 
 | |
|   // Transfer the simply mapped values, check if any are skipped.
 | |
|   bool Skipped = transferValues();
 | |
| 
 | |
|   // Rewrite virtual registers, possibly extending ranges.
 | |
|   rewriteAssigned(Skipped);
 | |
| 
 | |
|   if (Skipped)
 | |
|     extendPHIKillRanges();
 | |
|   else
 | |
|     ++NumSimple;
 | |
| 
 | |
|   // Delete defs that were rematted everywhere.
 | |
|   if (Skipped)
 | |
|     deleteRematVictims();
 | |
| 
 | |
|   // Get rid of unused values and set phi-kill flags.
 | |
|   for (unsigned Reg : *Edit) {
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     LI.removeEmptySubRanges();
 | |
|     LI.RenumberValues();
 | |
|   }
 | |
| 
 | |
|   // Provide a reverse mapping from original indices to Edit ranges.
 | |
|   if (LRMap) {
 | |
|     LRMap->clear();
 | |
|     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
 | |
|       LRMap->push_back(i);
 | |
|   }
 | |
| 
 | |
|   // Now check if any registers were separated into multiple components.
 | |
|   ConnectedVNInfoEqClasses ConEQ(LIS);
 | |
|   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
 | |
|     // Don't use iterators, they are invalidated by create() below.
 | |
|     unsigned VReg = Edit->get(i);
 | |
|     LiveInterval &LI = LIS.getInterval(VReg);
 | |
|     SmallVector<LiveInterval*, 8> SplitLIs;
 | |
|     LIS.splitSeparateComponents(LI, SplitLIs);
 | |
|     unsigned Original = VRM.getOriginal(VReg);
 | |
|     for (LiveInterval *SplitLI : SplitLIs)
 | |
|       VRM.setIsSplitFromReg(SplitLI->reg, Original);
 | |
| 
 | |
|     // The new intervals all map back to i.
 | |
|     if (LRMap)
 | |
|       LRMap->resize(Edit->size(), i);
 | |
|   }
 | |
| 
 | |
|   // Calculate spill weight and allocation hints for new intervals.
 | |
|   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
 | |
| 
 | |
|   assert(!LRMap || LRMap->size() == Edit->size());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Single Block Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
 | |
|                                            bool SingleInstrs) const {
 | |
|   // Always split for multiple instructions.
 | |
|   if (!BI.isOneInstr())
 | |
|     return true;
 | |
|   // Don't split for single instructions unless explicitly requested.
 | |
|   if (!SingleInstrs)
 | |
|     return false;
 | |
|   // Splitting a live-through range always makes progress.
 | |
|   if (BI.LiveIn && BI.LiveOut)
 | |
|     return true;
 | |
|   // No point in isolating a copy. It has no register class constraints.
 | |
|   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
 | |
|     return false;
 | |
|   // Finally, don't isolate an end point that was created by earlier splits.
 | |
|   return isOriginalEndpoint(BI.FirstInstr);
 | |
| }
 | |
| 
 | |
| void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
 | |
|   openIntv();
 | |
|   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
 | |
|   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
 | |
|     LastSplitPoint));
 | |
|   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
 | |
|     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
 | |
|   } else {
 | |
|       // The last use is after the last valid split point.
 | |
|     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
 | |
|     useIntv(SegStart, SegStop);
 | |
|     overlapIntv(SegStop, BI.LastInstr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    Global Live Range Splitting Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // These methods support a method of global live range splitting that uses a
 | |
| // global algorithm to decide intervals for CFG edges. They will insert split
 | |
| // points and color intervals in basic blocks while avoiding interference.
 | |
| //
 | |
| // Note that splitSingleBlock is also useful for blocks where both CFG edges
 | |
| // are on the stack.
 | |
| 
 | |
| void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
 | |
|                                         unsigned IntvIn, SlotIndex LeaveBefore,
 | |
|                                         unsigned IntvOut, SlotIndex EnterAfter){
 | |
|   SlotIndex Start, Stop;
 | |
|   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
 | |
|                     << ") intf " << LeaveBefore << '-' << EnterAfter
 | |
|                     << ", live-through " << IntvIn << " -> " << IntvOut);
 | |
| 
 | |
|   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
 | |
| 
 | |
|   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
 | |
|   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
 | |
|   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
 | |
| 
 | |
|   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
 | |
| 
 | |
|   if (!IntvOut) {
 | |
|     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
 | |
|     //
 | |
|     //        <<<<<<<<<    Possible LeaveBefore interference.
 | |
|     //    |-----------|    Live through.
 | |
|     //    -____________    Spill on entry.
 | |
|     //
 | |
|     selectIntv(IntvIn);
 | |
|     SlotIndex Idx = leaveIntvAtTop(*MBB);
 | |
|     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | |
|     (void)Idx;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!IntvIn) {
 | |
|     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
 | |
|     //
 | |
|     //    >>>>>>>          Possible EnterAfter interference.
 | |
|     //    |-----------|    Live through.
 | |
|     //    ___________--    Reload on exit.
 | |
|     //
 | |
|     selectIntv(IntvOut);
 | |
|     SlotIndex Idx = enterIntvAtEnd(*MBB);
 | |
|     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | |
|     (void)Idx;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
 | |
|     LLVM_DEBUG(dbgs() << ", straight through.\n");
 | |
|     //
 | |
|     //    |-----------|    Live through.
 | |
|     //    -------------    Straight through, same intv, no interference.
 | |
|     //
 | |
|     selectIntv(IntvOut);
 | |
|     useIntv(Start, Stop);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We cannot legally insert splits after LSP.
 | |
|   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
 | |
|   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
 | |
| 
 | |
|   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
 | |
|                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
 | |
|     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
 | |
|     //
 | |
|     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
 | |
|     //    |-----------|    Live through.
 | |
|     //    ------=======    Switch intervals between interference.
 | |
|     //
 | |
|     selectIntv(IntvOut);
 | |
|     SlotIndex Idx;
 | |
|     if (LeaveBefore && LeaveBefore < LSP) {
 | |
|       Idx = enterIntvBefore(LeaveBefore);
 | |
|       useIntv(Idx, Stop);
 | |
|     } else {
 | |
|       Idx = enterIntvAtEnd(*MBB);
 | |
|     }
 | |
|     selectIntv(IntvIn);
 | |
|     useIntv(Start, Idx);
 | |
|     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | |
|     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
 | |
|   //
 | |
|   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
 | |
|   //    |-----------|    Live through.
 | |
|   //    ==---------==    Switch intervals before/after interference.
 | |
|   //
 | |
|   assert(LeaveBefore <= EnterAfter && "Missed case");
 | |
| 
 | |
|   selectIntv(IntvOut);
 | |
|   SlotIndex Idx = enterIntvAfter(EnterAfter);
 | |
|   useIntv(Idx, Stop);
 | |
|   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | |
| 
 | |
|   selectIntv(IntvIn);
 | |
|   Idx = leaveIntvBefore(LeaveBefore);
 | |
|   useIntv(Start, Idx);
 | |
|   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | |
| }
 | |
| 
 | |
| void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
 | |
|                                   unsigned IntvIn, SlotIndex LeaveBefore) {
 | |
|   SlotIndex Start, Stop;
 | |
|   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
 | |
|                     << Stop << "), uses " << BI.FirstInstr << '-'
 | |
|                     << BI.LastInstr << ", reg-in " << IntvIn
 | |
|                     << ", leave before " << LeaveBefore
 | |
|                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
 | |
| 
 | |
|   assert(IntvIn && "Must have register in");
 | |
|   assert(BI.LiveIn && "Must be live-in");
 | |
|   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
 | |
| 
 | |
|   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
 | |
|     LLVM_DEBUG(dbgs() << " before interference.\n");
 | |
|     //
 | |
|     //               <<<    Interference after kill.
 | |
|     //     |---o---x   |    Killed in block.
 | |
|     //     =========        Use IntvIn everywhere.
 | |
|     //
 | |
|     selectIntv(IntvIn);
 | |
|     useIntv(Start, BI.LastInstr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
 | |
| 
 | |
|   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
 | |
|     //
 | |
|     //               <<<    Possible interference after last use.
 | |
|     //     |---o---o---|    Live-out on stack.
 | |
|     //     =========____    Leave IntvIn after last use.
 | |
|     //
 | |
|     //                 <    Interference after last use.
 | |
|     //     |---o---o--o|    Live-out on stack, late last use.
 | |
|     //     ============     Copy to stack after LSP, overlap IntvIn.
 | |
|     //            \_____    Stack interval is live-out.
 | |
|     //
 | |
|     if (BI.LastInstr < LSP) {
 | |
|       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
 | |
|       selectIntv(IntvIn);
 | |
|       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
 | |
|       useIntv(Start, Idx);
 | |
|       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | |
|     } else {
 | |
|       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
 | |
|       selectIntv(IntvIn);
 | |
|       SlotIndex Idx = leaveIntvBefore(LSP);
 | |
|       overlapIntv(Idx, BI.LastInstr);
 | |
|       useIntv(Start, Idx);
 | |
|       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The interference is overlapping somewhere we wanted to use IntvIn. That
 | |
|   // means we need to create a local interval that can be allocated a
 | |
|   // different register.
 | |
|   unsigned LocalIntv = openIntv();
 | |
|   (void)LocalIntv;
 | |
|   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
 | |
| 
 | |
|   if (!BI.LiveOut || BI.LastInstr < LSP) {
 | |
|     //
 | |
|     //           <<<<<<<    Interference overlapping uses.
 | |
|     //     |---o---o---|    Live-out on stack.
 | |
|     //     =====----____    Leave IntvIn before interference, then spill.
 | |
|     //
 | |
|     SlotIndex To = leaveIntvAfter(BI.LastInstr);
 | |
|     SlotIndex From = enterIntvBefore(LeaveBefore);
 | |
|     useIntv(From, To);
 | |
|     selectIntv(IntvIn);
 | |
|     useIntv(Start, From);
 | |
|     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //           <<<<<<<    Interference overlapping uses.
 | |
|   //     |---o---o--o|    Live-out on stack, late last use.
 | |
|   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
 | |
|   //            \_____    Stack interval is live-out.
 | |
|   //
 | |
|   SlotIndex To = leaveIntvBefore(LSP);
 | |
|   overlapIntv(To, BI.LastInstr);
 | |
|   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
 | |
|   useIntv(From, To);
 | |
|   selectIntv(IntvIn);
 | |
|   useIntv(Start, From);
 | |
|   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
 | |
| }
 | |
| 
 | |
| void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
 | |
|                                    unsigned IntvOut, SlotIndex EnterAfter) {
 | |
|   SlotIndex Start, Stop;
 | |
|   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
 | |
|                     << Stop << "), uses " << BI.FirstInstr << '-'
 | |
|                     << BI.LastInstr << ", reg-out " << IntvOut
 | |
|                     << ", enter after " << EnterAfter
 | |
|                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
 | |
| 
 | |
|   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
 | |
| 
 | |
|   assert(IntvOut && "Must have register out");
 | |
|   assert(BI.LiveOut && "Must be live-out");
 | |
|   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
 | |
| 
 | |
|   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
 | |
|     LLVM_DEBUG(dbgs() << " after interference.\n");
 | |
|     //
 | |
|     //    >>>>             Interference before def.
 | |
|     //    |   o---o---|    Defined in block.
 | |
|     //        =========    Use IntvOut everywhere.
 | |
|     //
 | |
|     selectIntv(IntvOut);
 | |
|     useIntv(BI.FirstInstr, Stop);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
 | |
|     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
 | |
|     //
 | |
|     //    >>>>             Interference before def.
 | |
|     //    |---o---o---|    Live-through, stack-in.
 | |
|     //    ____=========    Enter IntvOut before first use.
 | |
|     //
 | |
|     selectIntv(IntvOut);
 | |
|     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
 | |
|     useIntv(Idx, Stop);
 | |
|     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The interference is overlapping somewhere we wanted to use IntvOut. That
 | |
|   // means we need to create a local interval that can be allocated a
 | |
|   // different register.
 | |
|   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
 | |
|   //
 | |
|   //    >>>>>>>          Interference overlapping uses.
 | |
|   //    |---o---o---|    Live-through, stack-in.
 | |
|   //    ____---======    Create local interval for interference range.
 | |
|   //
 | |
|   selectIntv(IntvOut);
 | |
|   SlotIndex Idx = enterIntvAfter(EnterAfter);
 | |
|   useIntv(Idx, Stop);
 | |
|   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | |
| 
 | |
|   openIntv();
 | |
|   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
 | |
|   useIntv(From, Idx);
 | |
| }
 |