1860 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1860 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLoweringBase class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> JumpIsExpensiveOverride(
 | |
|     "jump-is-expensive", cl::init(false),
 | |
|     cl::desc("Do not create extra branches to split comparison logic."),
 | |
|     cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> MinimumJumpTableEntries
 | |
|   ("min-jump-table-entries", cl::init(4), cl::Hidden,
 | |
|    cl::desc("Set minimum number of entries to use a jump table."));
 | |
| 
 | |
| static cl::opt<unsigned> MaximumJumpTableSize
 | |
|   ("max-jump-table-size", cl::init(0), cl::Hidden,
 | |
|    cl::desc("Set maximum size of jump tables; zero for no limit."));
 | |
| 
 | |
| /// Minimum jump table density for normal functions.
 | |
| static cl::opt<unsigned>
 | |
|     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
 | |
|                      cl::desc("Minimum density for building a jump table in "
 | |
|                               "a normal function"));
 | |
| 
 | |
| /// Minimum jump table density for -Os or -Oz functions.
 | |
| static cl::opt<unsigned> OptsizeJumpTableDensity(
 | |
|     "optsize-jump-table-density", cl::init(40), cl::Hidden,
 | |
|     cl::desc("Minimum density for building a jump table in "
 | |
|              "an optsize function"));
 | |
| 
 | |
| static bool darwinHasSinCos(const Triple &TT) {
 | |
|   assert(TT.isOSDarwin() && "should be called with darwin triple");
 | |
|   // Don't bother with 32 bit x86.
 | |
|   if (TT.getArch() == Triple::x86)
 | |
|     return false;
 | |
|   // Macos < 10.9 has no sincos_stret.
 | |
|   if (TT.isMacOSX())
 | |
|     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
 | |
|   // iOS < 7.0 has no sincos_stret.
 | |
|   if (TT.isiOS())
 | |
|     return !TT.isOSVersionLT(7, 0);
 | |
|   // Any other darwin such as WatchOS/TvOS is new enough.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Although this default value is arbitrary, it is not random. It is assumed
 | |
| // that a condition that evaluates the same way by a higher percentage than this
 | |
| // is best represented as control flow. Therefore, the default value N should be
 | |
| // set such that the win from N% correct executions is greater than the loss
 | |
| // from (100 - N)% mispredicted executions for the majority of intended targets.
 | |
| static cl::opt<int> MinPercentageForPredictableBranch(
 | |
|     "min-predictable-branch", cl::init(99),
 | |
|     cl::desc("Minimum percentage (0-100) that a condition must be either true "
 | |
|              "or false to assume that the condition is predictable"),
 | |
|     cl::Hidden);
 | |
| 
 | |
| void TargetLoweringBase::InitLibcalls(const Triple &TT) {
 | |
| #define HANDLE_LIBCALL(code, name) \
 | |
|   setLibcallName(RTLIB::code, name);
 | |
| #include "llvm/IR/RuntimeLibcalls.def"
 | |
| #undef HANDLE_LIBCALL
 | |
|   // Initialize calling conventions to their default.
 | |
|   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
 | |
|     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
 | |
| 
 | |
|   // A few names are different on particular architectures or environments.
 | |
|   if (TT.isOSDarwin()) {
 | |
|     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
 | |
|     // of the gnueabi-style __gnu_*_ieee.
 | |
|     // FIXME: What about other targets?
 | |
|     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
 | |
|     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
 | |
| 
 | |
|     // Some darwins have an optimized __bzero/bzero function.
 | |
|     switch (TT.getArch()) {
 | |
|     case Triple::x86:
 | |
|     case Triple::x86_64:
 | |
|       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
 | |
|         setLibcallName(RTLIB::BZERO, "__bzero");
 | |
|       break;
 | |
|     case Triple::aarch64:
 | |
|       setLibcallName(RTLIB::BZERO, "bzero");
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (darwinHasSinCos(TT)) {
 | |
|       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
 | |
|       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
 | |
|       if (TT.isWatchABI()) {
 | |
|         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
 | |
|                               CallingConv::ARM_AAPCS_VFP);
 | |
|         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
 | |
|                               CallingConv::ARM_AAPCS_VFP);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
 | |
|     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
 | |
|   }
 | |
| 
 | |
|   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
 | |
|       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
 | |
|     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
 | |
|     setLibcallName(RTLIB::SINCOS_F64, "sincos");
 | |
|     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
 | |
|     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
 | |
|     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
 | |
|   }
 | |
| 
 | |
|   if (TT.isOSOpenBSD()) {
 | |
|     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFPEXT - Return the FPEXT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f16) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return FPEXT_F16_F32;
 | |
|   } else if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::f64)
 | |
|       return FPEXT_F32_F64;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return FPEXT_F32_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return FPEXT_F32_PPCF128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::f128)
 | |
|       return FPEXT_F64_F128;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return FPEXT_F64_PPCF128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::f128)
 | |
|       return FPEXT_F80_F128;
 | |
|   }
 | |
| 
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPROUND - Return the FPROUND_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
 | |
|   if (RetVT == MVT::f16) {
 | |
|     if (OpVT == MVT::f32)
 | |
|       return FPROUND_F32_F16;
 | |
|     if (OpVT == MVT::f64)
 | |
|       return FPROUND_F64_F16;
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F16;
 | |
|     if (OpVT == MVT::f128)
 | |
|       return FPROUND_F128_F16;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F16;
 | |
|   } else if (RetVT == MVT::f32) {
 | |
|     if (OpVT == MVT::f64)
 | |
|       return FPROUND_F64_F32;
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F32;
 | |
|     if (OpVT == MVT::f128)
 | |
|       return FPROUND_F128_F32;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F32;
 | |
|   } else if (RetVT == MVT::f64) {
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F64;
 | |
|     if (OpVT == MVT::f128)
 | |
|       return FPROUND_F128_F64;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F64;
 | |
|   } else if (RetVT == MVT::f80) {
 | |
|     if (OpVT == MVT::f128)
 | |
|       return FPROUND_F128_F80;
 | |
|   }
 | |
| 
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F32_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F32_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F32_I128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F64_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F64_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F64_I128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F80_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F80_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F80_I128;
 | |
|   } else if (OpVT == MVT::f128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F128_I128;
 | |
|   } else if (OpVT == MVT::ppcf128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_PPCF128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_PPCF128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_PPCF128_I128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F32_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F32_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F32_I128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F64_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F64_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F64_I128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F80_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F80_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F80_I128;
 | |
|   } else if (OpVT == MVT::f128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F128_I128;
 | |
|   } else if (OpVT == MVT::ppcf128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_PPCF128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_PPCF128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_PPCF128_I128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::i32) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I32_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I32_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I32_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return SINTTOFP_I32_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I32_PPCF128;
 | |
|   } else if (OpVT == MVT::i64) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I64_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I64_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I64_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return SINTTOFP_I64_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I64_PPCF128;
 | |
|   } else if (OpVT == MVT::i128) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I128_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I128_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I128_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return SINTTOFP_I128_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I128_PPCF128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::i32) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I32_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I32_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I32_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return UINTTOFP_I32_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I32_PPCF128;
 | |
|   } else if (OpVT == MVT::i64) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I64_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I64_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I64_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return UINTTOFP_I64_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I64_PPCF128;
 | |
|   } else if (OpVT == MVT::i128) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I128_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I128_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I128_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return UINTTOFP_I128_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I128_PPCF128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
 | |
| #define OP_TO_LIBCALL(Name, Enum)                                              \
 | |
|   case Name:                                                                   \
 | |
|     switch (VT.SimpleTy) {                                                     \
 | |
|     default:                                                                   \
 | |
|       return UNKNOWN_LIBCALL;                                                  \
 | |
|     case MVT::i8:                                                              \
 | |
|       return Enum##_1;                                                         \
 | |
|     case MVT::i16:                                                             \
 | |
|       return Enum##_2;                                                         \
 | |
|     case MVT::i32:                                                             \
 | |
|       return Enum##_4;                                                         \
 | |
|     case MVT::i64:                                                             \
 | |
|       return Enum##_8;                                                         \
 | |
|     case MVT::i128:                                                            \
 | |
|       return Enum##_16;                                                        \
 | |
|     }
 | |
| 
 | |
|   switch (Opc) {
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
 | |
|     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
 | |
|   }
 | |
| 
 | |
| #undef OP_TO_LIBCALL
 | |
| 
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
 | |
|   switch (ElementSize) {
 | |
|   case 1:
 | |
|     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
 | |
|   case 2:
 | |
|     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
 | |
|   case 4:
 | |
|     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
 | |
|   case 8:
 | |
|     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
 | |
|   case 16:
 | |
|     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
 | |
|   default:
 | |
|     return UNKNOWN_LIBCALL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
 | |
|   switch (ElementSize) {
 | |
|   case 1:
 | |
|     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
 | |
|   case 2:
 | |
|     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
 | |
|   case 4:
 | |
|     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
 | |
|   case 8:
 | |
|     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
 | |
|   case 16:
 | |
|     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
 | |
|   default:
 | |
|     return UNKNOWN_LIBCALL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
 | |
|   switch (ElementSize) {
 | |
|   case 1:
 | |
|     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
 | |
|   case 2:
 | |
|     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
 | |
|   case 4:
 | |
|     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
 | |
|   case 8:
 | |
|     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
 | |
|   case 16:
 | |
|     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
 | |
|   default:
 | |
|     return UNKNOWN_LIBCALL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InitCmpLibcallCCs - Set default comparison libcall CC.
 | |
| static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
 | |
|   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
 | |
|   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
 | |
|   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
 | |
|   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
 | |
|   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
 | |
|   CCs[RTLIB::UNE_F32] = ISD::SETNE;
 | |
|   CCs[RTLIB::UNE_F64] = ISD::SETNE;
 | |
|   CCs[RTLIB::UNE_F128] = ISD::SETNE;
 | |
|   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
 | |
|   CCs[RTLIB::OGE_F32] = ISD::SETGE;
 | |
|   CCs[RTLIB::OGE_F64] = ISD::SETGE;
 | |
|   CCs[RTLIB::OGE_F128] = ISD::SETGE;
 | |
|   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
 | |
|   CCs[RTLIB::OLT_F32] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLT_F64] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLT_F128] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLE_F32] = ISD::SETLE;
 | |
|   CCs[RTLIB::OLE_F64] = ISD::SETLE;
 | |
|   CCs[RTLIB::OLE_F128] = ISD::SETLE;
 | |
|   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
 | |
|   CCs[RTLIB::OGT_F32] = ISD::SETGT;
 | |
|   CCs[RTLIB::OGT_F64] = ISD::SETGT;
 | |
|   CCs[RTLIB::OGT_F128] = ISD::SETGT;
 | |
|   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
 | |
|   CCs[RTLIB::UO_F32] = ISD::SETNE;
 | |
|   CCs[RTLIB::UO_F64] = ISD::SETNE;
 | |
|   CCs[RTLIB::UO_F128] = ISD::SETNE;
 | |
|   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
 | |
|   CCs[RTLIB::O_F32] = ISD::SETEQ;
 | |
|   CCs[RTLIB::O_F64] = ISD::SETEQ;
 | |
|   CCs[RTLIB::O_F128] = ISD::SETEQ;
 | |
|   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
 | |
| }
 | |
| 
 | |
| /// NOTE: The TargetMachine owns TLOF.
 | |
| TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
 | |
|   initActions();
 | |
| 
 | |
|   // Perform these initializations only once.
 | |
|   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
 | |
|       MaxLoadsPerMemcmp = 8;
 | |
|   MaxGluedStoresPerMemcpy = 0;
 | |
|   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
 | |
|       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
 | |
|   UseUnderscoreSetJmp = false;
 | |
|   UseUnderscoreLongJmp = false;
 | |
|   HasMultipleConditionRegisters = false;
 | |
|   HasExtractBitsInsn = false;
 | |
|   JumpIsExpensive = JumpIsExpensiveOverride;
 | |
|   PredictableSelectIsExpensive = false;
 | |
|   EnableExtLdPromotion = false;
 | |
|   HasFloatingPointExceptions = true;
 | |
|   StackPointerRegisterToSaveRestore = 0;
 | |
|   BooleanContents = UndefinedBooleanContent;
 | |
|   BooleanFloatContents = UndefinedBooleanContent;
 | |
|   BooleanVectorContents = UndefinedBooleanContent;
 | |
|   SchedPreferenceInfo = Sched::ILP;
 | |
|   JumpBufSize = 0;
 | |
|   JumpBufAlignment = 0;
 | |
|   MinFunctionAlignment = 0;
 | |
|   PrefFunctionAlignment = 0;
 | |
|   PrefLoopAlignment = 0;
 | |
|   GatherAllAliasesMaxDepth = 18;
 | |
|   MinStackArgumentAlignment = 1;
 | |
|   // TODO: the default will be switched to 0 in the next commit, along
 | |
|   // with the Target-specific changes necessary.
 | |
|   MaxAtomicSizeInBitsSupported = 1024;
 | |
| 
 | |
|   MinCmpXchgSizeInBits = 0;
 | |
|   SupportsUnalignedAtomics = false;
 | |
| 
 | |
|   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
 | |
| 
 | |
|   InitLibcalls(TM.getTargetTriple());
 | |
|   InitCmpLibcallCCs(CmpLibcallCCs);
 | |
| }
 | |
| 
 | |
| void TargetLoweringBase::initActions() {
 | |
|   // All operations default to being supported.
 | |
|   memset(OpActions, 0, sizeof(OpActions));
 | |
|   memset(LoadExtActions, 0, sizeof(LoadExtActions));
 | |
|   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
 | |
|   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
 | |
|   memset(CondCodeActions, 0, sizeof(CondCodeActions));
 | |
|   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
 | |
|   std::fill(std::begin(TargetDAGCombineArray),
 | |
|             std::end(TargetDAGCombineArray), 0);
 | |
| 
 | |
|   // Set default actions for various operations.
 | |
|   for (MVT VT : MVT::all_valuetypes()) {
 | |
|     // Default all indexed load / store to expand.
 | |
|     for (unsigned IM = (unsigned)ISD::PRE_INC;
 | |
|          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
 | |
|       setIndexedLoadAction(IM, VT, Expand);
 | |
|       setIndexedStoreAction(IM, VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // Most backends expect to see the node which just returns the value loaded.
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
 | |
| 
 | |
|     // These operations default to expand.
 | |
|     setOperationAction(ISD::FGETSIGN, VT, Expand);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
 | |
|     setOperationAction(ISD::FMINNUM, VT, Expand);
 | |
|     setOperationAction(ISD::FMAXNUM, VT, Expand);
 | |
|     setOperationAction(ISD::FMINNAN, VT, Expand);
 | |
|     setOperationAction(ISD::FMAXNAN, VT, Expand);
 | |
|     setOperationAction(ISD::FMAD, VT, Expand);
 | |
|     setOperationAction(ISD::SMIN, VT, Expand);
 | |
|     setOperationAction(ISD::SMAX, VT, Expand);
 | |
|     setOperationAction(ISD::UMIN, VT, Expand);
 | |
|     setOperationAction(ISD::UMAX, VT, Expand);
 | |
|     setOperationAction(ISD::ABS, VT, Expand);
 | |
| 
 | |
|     // Overflow operations default to expand
 | |
|     setOperationAction(ISD::SADDO, VT, Expand);
 | |
|     setOperationAction(ISD::SSUBO, VT, Expand);
 | |
|     setOperationAction(ISD::UADDO, VT, Expand);
 | |
|     setOperationAction(ISD::USUBO, VT, Expand);
 | |
|     setOperationAction(ISD::SMULO, VT, Expand);
 | |
|     setOperationAction(ISD::UMULO, VT, Expand);
 | |
| 
 | |
|     // ADDCARRY operations default to expand
 | |
|     setOperationAction(ISD::ADDCARRY, VT, Expand);
 | |
|     setOperationAction(ISD::SUBCARRY, VT, Expand);
 | |
|     setOperationAction(ISD::SETCCCARRY, VT, Expand);
 | |
| 
 | |
|     // ADDC/ADDE/SUBC/SUBE default to expand.
 | |
|     setOperationAction(ISD::ADDC, VT, Expand);
 | |
|     setOperationAction(ISD::ADDE, VT, Expand);
 | |
|     setOperationAction(ISD::SUBC, VT, Expand);
 | |
|     setOperationAction(ISD::SUBE, VT, Expand);
 | |
| 
 | |
|     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
 | |
|     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::BITREVERSE, VT, Expand);
 | |
| 
 | |
|     // These library functions default to expand.
 | |
|     setOperationAction(ISD::FROUND, VT, Expand);
 | |
|     setOperationAction(ISD::FPOWI, VT, Expand);
 | |
| 
 | |
|     // These operations default to expand for vector types.
 | |
|     if (VT.isVector()) {
 | |
|       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
 | |
|       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
 | |
|       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // For most targets @llvm.get.dynamic.area.offset just returns 0.
 | |
|     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // Most targets ignore the @llvm.prefetch intrinsic.
 | |
|   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
 | |
| 
 | |
|   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
 | |
|   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
 | |
| 
 | |
|   // ConstantFP nodes default to expand.  Targets can either change this to
 | |
|   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
 | |
|   // to optimize expansions for certain constants.
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
 | |
| 
 | |
|   // These library functions default to expand.
 | |
|   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
 | |
|     setOperationAction(ISD::FCBRT,      VT, Expand);
 | |
|     setOperationAction(ISD::FLOG ,      VT, Expand);
 | |
|     setOperationAction(ISD::FLOG2,      VT, Expand);
 | |
|     setOperationAction(ISD::FLOG10,     VT, Expand);
 | |
|     setOperationAction(ISD::FEXP ,      VT, Expand);
 | |
|     setOperationAction(ISD::FEXP2,      VT, Expand);
 | |
|     setOperationAction(ISD::FFLOOR,     VT, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | |
|     setOperationAction(ISD::FCEIL,      VT, Expand);
 | |
|     setOperationAction(ISD::FRINT,      VT, Expand);
 | |
|     setOperationAction(ISD::FTRUNC,     VT, Expand);
 | |
|     setOperationAction(ISD::FROUND,     VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // Default ISD::TRAP to expand (which turns it into abort).
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Expand);
 | |
| 
 | |
|   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
 | |
|   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
 | |
|   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
 | |
| }
 | |
| 
 | |
| MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
 | |
|                                                EVT) const {
 | |
|   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
 | |
| }
 | |
| 
 | |
| EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
 | |
|                                          bool LegalTypes) const {
 | |
|   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
 | |
|   if (LHSTy.isVector())
 | |
|     return LHSTy;
 | |
|   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
 | |
|                     : getPointerTy(DL);
 | |
| }
 | |
| 
 | |
| bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
 | |
|   assert(isTypeLegal(VT));
 | |
|   switch (Op) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ISD::SDIV:
 | |
|   case ISD::UDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::UREM:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
 | |
|   // If the command-line option was specified, ignore this request.
 | |
|   if (!JumpIsExpensiveOverride.getNumOccurrences())
 | |
|     JumpIsExpensive = isExpensive;
 | |
| }
 | |
| 
 | |
| TargetLoweringBase::LegalizeKind
 | |
| TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
 | |
|   // If this is a simple type, use the ComputeRegisterProp mechanism.
 | |
|   if (VT.isSimple()) {
 | |
|     MVT SVT = VT.getSimpleVT();
 | |
|     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
 | |
|     MVT NVT = TransformToType[SVT.SimpleTy];
 | |
|     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
 | |
| 
 | |
|     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
 | |
|             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
 | |
|            "Promote may not follow Expand or Promote");
 | |
| 
 | |
|     if (LA == TypeSplitVector)
 | |
|       return LegalizeKind(LA,
 | |
|                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
 | |
|                                            SVT.getVectorNumElements() / 2));
 | |
|     if (LA == TypeScalarizeVector)
 | |
|       return LegalizeKind(LA, SVT.getVectorElementType());
 | |
|     return LegalizeKind(LA, NVT);
 | |
|   }
 | |
| 
 | |
|   // Handle Extended Scalar Types.
 | |
|   if (!VT.isVector()) {
 | |
|     assert(VT.isInteger() && "Float types must be simple");
 | |
|     unsigned BitSize = VT.getSizeInBits();
 | |
|     // First promote to a power-of-two size, then expand if necessary.
 | |
|     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
 | |
|       EVT NVT = VT.getRoundIntegerType(Context);
 | |
|       assert(NVT != VT && "Unable to round integer VT");
 | |
|       LegalizeKind NextStep = getTypeConversion(Context, NVT);
 | |
|       // Avoid multi-step promotion.
 | |
|       if (NextStep.first == TypePromoteInteger)
 | |
|         return NextStep;
 | |
|       // Return rounded integer type.
 | |
|       return LegalizeKind(TypePromoteInteger, NVT);
 | |
|     }
 | |
| 
 | |
|     return LegalizeKind(TypeExpandInteger,
 | |
|                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
 | |
|   }
 | |
| 
 | |
|   // Handle vector types.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
| 
 | |
|   // Vectors with only one element are always scalarized.
 | |
|   if (NumElts == 1)
 | |
|     return LegalizeKind(TypeScalarizeVector, EltVT);
 | |
| 
 | |
|   // Try to widen vector elements until the element type is a power of two and
 | |
|   // promote it to a legal type later on, for example:
 | |
|   // <3 x i8> -> <4 x i8> -> <4 x i32>
 | |
|   if (EltVT.isInteger()) {
 | |
|     // Vectors with a number of elements that is not a power of two are always
 | |
|     // widened, for example <3 x i8> -> <4 x i8>.
 | |
|     if (!VT.isPow2VectorType()) {
 | |
|       NumElts = (unsigned)NextPowerOf2(NumElts);
 | |
|       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
 | |
|       return LegalizeKind(TypeWidenVector, NVT);
 | |
|     }
 | |
| 
 | |
|     // Examine the element type.
 | |
|     LegalizeKind LK = getTypeConversion(Context, EltVT);
 | |
| 
 | |
|     // If type is to be expanded, split the vector.
 | |
|     //  <4 x i140> -> <2 x i140>
 | |
|     if (LK.first == TypeExpandInteger)
 | |
|       return LegalizeKind(TypeSplitVector,
 | |
|                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
 | |
| 
 | |
|     // Promote the integer element types until a legal vector type is found
 | |
|     // or until the element integer type is too big. If a legal type was not
 | |
|     // found, fallback to the usual mechanism of widening/splitting the
 | |
|     // vector.
 | |
|     EVT OldEltVT = EltVT;
 | |
|     while (true) {
 | |
|       // Increase the bitwidth of the element to the next pow-of-two
 | |
|       // (which is greater than 8 bits).
 | |
|       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
 | |
|                   .getRoundIntegerType(Context);
 | |
| 
 | |
|       // Stop trying when getting a non-simple element type.
 | |
|       // Note that vector elements may be greater than legal vector element
 | |
|       // types. Example: X86 XMM registers hold 64bit element on 32bit
 | |
|       // systems.
 | |
|       if (!EltVT.isSimple())
 | |
|         break;
 | |
| 
 | |
|       // Build a new vector type and check if it is legal.
 | |
|       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
 | |
|       // Found a legal promoted vector type.
 | |
|       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
 | |
|         return LegalizeKind(TypePromoteInteger,
 | |
|                             EVT::getVectorVT(Context, EltVT, NumElts));
 | |
|     }
 | |
| 
 | |
|     // Reset the type to the unexpanded type if we did not find a legal vector
 | |
|     // type with a promoted vector element type.
 | |
|     EltVT = OldEltVT;
 | |
|   }
 | |
| 
 | |
|   // Try to widen the vector until a legal type is found.
 | |
|   // If there is no wider legal type, split the vector.
 | |
|   while (true) {
 | |
|     // Round up to the next power of 2.
 | |
|     NumElts = (unsigned)NextPowerOf2(NumElts);
 | |
| 
 | |
|     // If there is no simple vector type with this many elements then there
 | |
|     // cannot be a larger legal vector type.  Note that this assumes that
 | |
|     // there are no skipped intermediate vector types in the simple types.
 | |
|     if (!EltVT.isSimple())
 | |
|       break;
 | |
|     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
 | |
|     if (LargerVector == MVT())
 | |
|       break;
 | |
| 
 | |
|     // If this type is legal then widen the vector.
 | |
|     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
 | |
|       return LegalizeKind(TypeWidenVector, LargerVector);
 | |
|   }
 | |
| 
 | |
|   // Widen odd vectors to next power of two.
 | |
|   if (!VT.isPow2VectorType()) {
 | |
|     EVT NVT = VT.getPow2VectorType(Context);
 | |
|     return LegalizeKind(TypeWidenVector, NVT);
 | |
|   }
 | |
| 
 | |
|   // Vectors with illegal element types are expanded.
 | |
|   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
 | |
|   return LegalizeKind(TypeSplitVector, NVT);
 | |
| }
 | |
| 
 | |
| static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
 | |
|                                           unsigned &NumIntermediates,
 | |
|                                           MVT &RegisterVT,
 | |
|                                           TargetLoweringBase *TLI) {
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType();
 | |
| 
 | |
|   unsigned NumVectorRegs = 1;
 | |
| 
 | |
|   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
 | |
|   // could break down into LHS/RHS like LegalizeDAG does.
 | |
|   if (!isPowerOf2_32(NumElts)) {
 | |
|     NumVectorRegs = NumElts;
 | |
|     NumElts = 1;
 | |
|   }
 | |
| 
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
| 
 | |
|   NumIntermediates = NumVectorRegs;
 | |
| 
 | |
|   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
 | |
|   if (!TLI->isTypeLegal(NewVT))
 | |
|     NewVT = EltTy;
 | |
|   IntermediateVT = NewVT;
 | |
| 
 | |
|   unsigned NewVTSize = NewVT.getSizeInBits();
 | |
| 
 | |
|   // Convert sizes such as i33 to i64.
 | |
|   if (!isPowerOf2_32(NewVTSize))
 | |
|     NewVTSize = NextPowerOf2(NewVTSize);
 | |
| 
 | |
|   MVT DestVT = TLI->getRegisterType(NewVT);
 | |
|   RegisterVT = DestVT;
 | |
|   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
 | |
| 
 | |
|   // Otherwise, promotion or legal types use the same number of registers as
 | |
|   // the vector decimated to the appropriate level.
 | |
|   return NumVectorRegs;
 | |
| }
 | |
| 
 | |
| /// isLegalRC - Return true if the value types that can be represented by the
 | |
| /// specified register class are all legal.
 | |
| bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
 | |
|                                    const TargetRegisterClass &RC) const {
 | |
|   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
 | |
|     if (isTypeLegal(*I))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Replace/modify any TargetFrameIndex operands with a targte-dependent
 | |
| /// sequence of memory operands that is recognized by PrologEpilogInserter.
 | |
| MachineBasicBlock *
 | |
| TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
 | |
|                                    MachineBasicBlock *MBB) const {
 | |
|   MachineInstr *MI = &InitialMI;
 | |
|   MachineFunction &MF = *MI->getMF();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   // We're handling multiple types of operands here:
 | |
|   // PATCHPOINT MetaArgs - live-in, read only, direct
 | |
|   // STATEPOINT Deopt Spill - live-through, read only, indirect
 | |
|   // STATEPOINT Deopt Alloca - live-through, read only, direct
 | |
|   // (We're currently conservative and mark the deopt slots read/write in
 | |
|   // practice.)
 | |
|   // STATEPOINT GC Spill - live-through, read/write, indirect
 | |
|   // STATEPOINT GC Alloca - live-through, read/write, direct
 | |
|   // The live-in vs live-through is handled already (the live through ones are
 | |
|   // all stack slots), but we need to handle the different type of stackmap
 | |
|   // operands and memory effects here.
 | |
| 
 | |
|   // MI changes inside this loop as we grow operands.
 | |
|   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
 | |
|     MachineOperand &MO = MI->getOperand(OperIdx);
 | |
|     if (!MO.isFI())
 | |
|       continue;
 | |
| 
 | |
|     // foldMemoryOperand builds a new MI after replacing a single FI operand
 | |
|     // with the canonical set of five x86 addressing-mode operands.
 | |
|     int FI = MO.getIndex();
 | |
|     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
 | |
| 
 | |
|     // Copy operands before the frame-index.
 | |
|     for (unsigned i = 0; i < OperIdx; ++i)
 | |
|       MIB.add(MI->getOperand(i));
 | |
|     // Add frame index operands recognized by stackmaps.cpp
 | |
|     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
 | |
|       // indirect-mem-ref tag, size, #FI, offset.
 | |
|       // Used for spills inserted by StatepointLowering.  This codepath is not
 | |
|       // used for patchpoints/stackmaps at all, for these spilling is done via
 | |
|       // foldMemoryOperand callback only.
 | |
|       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
 | |
|       MIB.addImm(StackMaps::IndirectMemRefOp);
 | |
|       MIB.addImm(MFI.getObjectSize(FI));
 | |
|       MIB.add(MI->getOperand(OperIdx));
 | |
|       MIB.addImm(0);
 | |
|     } else {
 | |
|       // direct-mem-ref tag, #FI, offset.
 | |
|       // Used by patchpoint, and direct alloca arguments to statepoints
 | |
|       MIB.addImm(StackMaps::DirectMemRefOp);
 | |
|       MIB.add(MI->getOperand(OperIdx));
 | |
|       MIB.addImm(0);
 | |
|     }
 | |
|     // Copy the operands after the frame index.
 | |
|     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
 | |
|       MIB.add(MI->getOperand(i));
 | |
| 
 | |
|     // Inherit previous memory operands.
 | |
|     MIB.cloneMemRefs(*MI);
 | |
|     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
 | |
| 
 | |
|     // Add a new memory operand for this FI.
 | |
|     assert(MFI.getObjectOffset(FI) != -1);
 | |
| 
 | |
|     auto Flags = MachineMemOperand::MOLoad;
 | |
|     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
 | |
|       Flags |= MachineMemOperand::MOStore;
 | |
|       Flags |= MachineMemOperand::MOVolatile;
 | |
|     }
 | |
|     MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|         MachinePointerInfo::getFixedStack(MF, FI), Flags,
 | |
|         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
 | |
|     MIB->addMemOperand(MF, MMO);
 | |
| 
 | |
|     // Replace the instruction and update the operand index.
 | |
|     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
 | |
|     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
 | |
|     MI->eraseFromParent();
 | |
|     MI = MIB;
 | |
|   }
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
 | |
|                                         MachineBasicBlock *MBB) const {
 | |
|   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
 | |
|          "Called emitXRayCustomEvent on the wrong MI!");
 | |
|   auto &MF = *MI.getMF();
 | |
|   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
 | |
|   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
 | |
|     MIB.add(MI.getOperand(OpIdx));
 | |
| 
 | |
|   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
 | |
|   MI.eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
 | |
|                                        MachineBasicBlock *MBB) const {
 | |
|   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
 | |
|          "Called emitXRayTypedEvent on the wrong MI!");
 | |
|   auto &MF = *MI.getMF();
 | |
|   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
 | |
|   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
 | |
|     MIB.add(MI.getOperand(OpIdx));
 | |
| 
 | |
|   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
 | |
|   MI.eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| /// findRepresentativeClass - Return the largest legal super-reg register class
 | |
| /// of the register class for the specified type and its associated "cost".
 | |
| // This function is in TargetLowering because it uses RegClassForVT which would
 | |
| // need to be moved to TargetRegisterInfo and would necessitate moving
 | |
| // isTypeLegal over as well - a massive change that would just require
 | |
| // TargetLowering having a TargetRegisterInfo class member that it would use.
 | |
| std::pair<const TargetRegisterClass *, uint8_t>
 | |
| TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
 | |
|                                             MVT VT) const {
 | |
|   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
 | |
|   if (!RC)
 | |
|     return std::make_pair(RC, 0);
 | |
| 
 | |
|   // Compute the set of all super-register classes.
 | |
|   BitVector SuperRegRC(TRI->getNumRegClasses());
 | |
|   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
 | |
|     SuperRegRC.setBitsInMask(RCI.getMask());
 | |
| 
 | |
|   // Find the first legal register class with the largest spill size.
 | |
|   const TargetRegisterClass *BestRC = RC;
 | |
|   for (unsigned i : SuperRegRC.set_bits()) {
 | |
|     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
 | |
|     // We want the largest possible spill size.
 | |
|     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
 | |
|       continue;
 | |
|     if (!isLegalRC(*TRI, *SuperRC))
 | |
|       continue;
 | |
|     BestRC = SuperRC;
 | |
|   }
 | |
|   return std::make_pair(BestRC, 1);
 | |
| }
 | |
| 
 | |
| /// computeRegisterProperties - Once all of the register classes are added,
 | |
| /// this allows us to compute derived properties we expose.
 | |
| void TargetLoweringBase::computeRegisterProperties(
 | |
|     const TargetRegisterInfo *TRI) {
 | |
|   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
 | |
|                 "Too many value types for ValueTypeActions to hold!");
 | |
| 
 | |
|   // Everything defaults to needing one register.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
 | |
|     NumRegistersForVT[i] = 1;
 | |
|     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
 | |
|   }
 | |
|   // ...except isVoid, which doesn't need any registers.
 | |
|   NumRegistersForVT[MVT::isVoid] = 0;
 | |
| 
 | |
|   // Find the largest integer register class.
 | |
|   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
 | |
|   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
 | |
|     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
 | |
| 
 | |
|   // Every integer value type larger than this largest register takes twice as
 | |
|   // many registers to represent as the previous ValueType.
 | |
|   for (unsigned ExpandedReg = LargestIntReg + 1;
 | |
|        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
 | |
|     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
 | |
|     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
 | |
|     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
 | |
|     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
 | |
|                                    TypeExpandInteger);
 | |
|   }
 | |
| 
 | |
|   // Inspect all of the ValueType's smaller than the largest integer
 | |
|   // register to see which ones need promotion.
 | |
|   unsigned LegalIntReg = LargestIntReg;
 | |
|   for (unsigned IntReg = LargestIntReg - 1;
 | |
|        IntReg >= (unsigned)MVT::i1; --IntReg) {
 | |
|     MVT IVT = (MVT::SimpleValueType)IntReg;
 | |
|     if (isTypeLegal(IVT)) {
 | |
|       LegalIntReg = IntReg;
 | |
|     } else {
 | |
|       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
 | |
|         (const MVT::SimpleValueType)LegalIntReg;
 | |
|       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ppcf128 type is really two f64's.
 | |
|   if (!isTypeLegal(MVT::ppcf128)) {
 | |
|     if (isTypeLegal(MVT::f64)) {
 | |
|       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
 | |
|       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
 | |
|       TransformToType[MVT::ppcf128] = MVT::f64;
 | |
|       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
 | |
|     } else {
 | |
|       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
 | |
|       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
 | |
|       TransformToType[MVT::ppcf128] = MVT::i128;
 | |
|       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f128. If the target does not have native f128 support,
 | |
|   // expand it to i128 and we will be generating soft float library calls.
 | |
|   if (!isTypeLegal(MVT::f128)) {
 | |
|     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
 | |
|     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
 | |
|     TransformToType[MVT::f128] = MVT::i128;
 | |
|     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f64. If the target does not have native f64 support,
 | |
|   // expand it to i64 and we will be generating soft float library calls.
 | |
|   if (!isTypeLegal(MVT::f64)) {
 | |
|     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
 | |
|     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
 | |
|     TransformToType[MVT::f64] = MVT::i64;
 | |
|     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f32. If the target does not have native f32 support,
 | |
|   // expand it to i32 and we will be generating soft float library calls.
 | |
|   if (!isTypeLegal(MVT::f32)) {
 | |
|     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
 | |
|     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
 | |
|     TransformToType[MVT::f32] = MVT::i32;
 | |
|     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f16. If the target does not have native f16 support,
 | |
|   // promote it to f32, because there are no f16 library calls (except for
 | |
|   // conversions).
 | |
|   if (!isTypeLegal(MVT::f16)) {
 | |
|     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
 | |
|     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
 | |
|     TransformToType[MVT::f16] = MVT::f32;
 | |
|     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the vector value types to see which need transformations.
 | |
|   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|     MVT VT = (MVT::SimpleValueType) i;
 | |
|     if (isTypeLegal(VT))
 | |
|       continue;
 | |
| 
 | |
|     MVT EltVT = VT.getVectorElementType();
 | |
|     unsigned NElts = VT.getVectorNumElements();
 | |
|     bool IsLegalWiderType = false;
 | |
|     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
 | |
|     switch (PreferredAction) {
 | |
|     case TypePromoteInteger:
 | |
|       // Try to promote the elements of integer vectors. If no legal
 | |
|       // promotion was found, fall through to the widen-vector method.
 | |
|       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
 | |
|         MVT SVT = (MVT::SimpleValueType) nVT;
 | |
|         // Promote vectors of integers to vectors with the same number
 | |
|         // of elements, with a wider element type.
 | |
|         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
 | |
|             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
 | |
|           TransformToType[i] = SVT;
 | |
|           RegisterTypeForVT[i] = SVT;
 | |
|           NumRegistersForVT[i] = 1;
 | |
|           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
 | |
|           IsLegalWiderType = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (IsLegalWiderType)
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
| 
 | |
|     case TypeWidenVector:
 | |
|       // Try to widen the vector.
 | |
|       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
 | |
|         MVT SVT = (MVT::SimpleValueType) nVT;
 | |
|         if (SVT.getVectorElementType() == EltVT
 | |
|             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
 | |
|           TransformToType[i] = SVT;
 | |
|           RegisterTypeForVT[i] = SVT;
 | |
|           NumRegistersForVT[i] = 1;
 | |
|           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
 | |
|           IsLegalWiderType = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (IsLegalWiderType)
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
| 
 | |
|     case TypeSplitVector:
 | |
|     case TypeScalarizeVector: {
 | |
|       MVT IntermediateVT;
 | |
|       MVT RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
 | |
|           NumIntermediates, RegisterVT, this);
 | |
|       RegisterTypeForVT[i] = RegisterVT;
 | |
| 
 | |
|       MVT NVT = VT.getPow2VectorType();
 | |
|       if (NVT == VT) {
 | |
|         // Type is already a power of 2.  The default action is to split.
 | |
|         TransformToType[i] = MVT::Other;
 | |
|         if (PreferredAction == TypeScalarizeVector)
 | |
|           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
 | |
|         else if (PreferredAction == TypeSplitVector)
 | |
|           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
 | |
|         else
 | |
|           // Set type action according to the number of elements.
 | |
|           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
 | |
|                                                         : TypeSplitVector);
 | |
|       } else {
 | |
|         TransformToType[i] = NVT;
 | |
|         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown vector legalization action!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine the 'representative' register class for each value type.
 | |
|   // An representative register class is the largest (meaning one which is
 | |
|   // not a sub-register class / subreg register class) legal register class for
 | |
|   // a group of value types. For example, on i386, i8, i16, and i32
 | |
|   // representative would be GR32; while on x86_64 it's GR64.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
 | |
|     const TargetRegisterClass* RRC;
 | |
|     uint8_t Cost;
 | |
|     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
 | |
|     RepRegClassForVT[i] = RRC;
 | |
|     RepRegClassCostForVT[i] = Cost;
 | |
|   }
 | |
| }
 | |
| 
 | |
| EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
 | |
|                                            EVT VT) const {
 | |
|   assert(!VT.isVector() && "No default SetCC type for vectors!");
 | |
|   return getPointerTy(DL).SimpleTy;
 | |
| }
 | |
| 
 | |
| MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
 | |
|   return MVT::i32; // return the default value
 | |
| }
 | |
| 
 | |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of
 | |
| /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
 | |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
 | |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
 | |
| ///
 | |
| /// This method returns the number of registers needed, and the VT for each
 | |
| /// register.  It also returns the VT and quantity of the intermediate values
 | |
| /// before they are promoted/expanded.
 | |
| unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 | |
|                                                 EVT &IntermediateVT,
 | |
|                                                 unsigned &NumIntermediates,
 | |
|                                                 MVT &RegisterVT) const {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   // If there is a wider vector type with the same element type as this one,
 | |
|   // or a promoted vector type that has the same number of elements which
 | |
|   // are wider, then we should convert to that legal vector type.
 | |
|   // This handles things like <2 x float> -> <4 x float> and
 | |
|   // <4 x i1> -> <4 x i32>.
 | |
|   LegalizeTypeAction TA = getTypeAction(Context, VT);
 | |
|   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
 | |
|     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
 | |
|     if (isTypeLegal(RegisterEVT)) {
 | |
|       IntermediateVT = RegisterEVT;
 | |
|       RegisterVT = RegisterEVT.getSimpleVT();
 | |
|       NumIntermediates = 1;
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   EVT EltTy = VT.getVectorElementType();
 | |
| 
 | |
|   unsigned NumVectorRegs = 1;
 | |
| 
 | |
|   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
 | |
|   // could break down into LHS/RHS like LegalizeDAG does.
 | |
|   if (!isPowerOf2_32(NumElts)) {
 | |
|     NumVectorRegs = NumElts;
 | |
|     NumElts = 1;
 | |
|   }
 | |
| 
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !isTypeLegal(
 | |
|                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
| 
 | |
|   NumIntermediates = NumVectorRegs;
 | |
| 
 | |
|   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
 | |
|   if (!isTypeLegal(NewVT))
 | |
|     NewVT = EltTy;
 | |
|   IntermediateVT = NewVT;
 | |
| 
 | |
|   MVT DestVT = getRegisterType(Context, NewVT);
 | |
|   RegisterVT = DestVT;
 | |
|   unsigned NewVTSize = NewVT.getSizeInBits();
 | |
| 
 | |
|   // Convert sizes such as i33 to i64.
 | |
|   if (!isPowerOf2_32(NewVTSize))
 | |
|     NewVTSize = NextPowerOf2(NewVTSize);
 | |
| 
 | |
|   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
 | |
| 
 | |
|   // Otherwise, promotion or legal types use the same number of registers as
 | |
|   // the vector decimated to the appropriate level.
 | |
|   return NumVectorRegs;
 | |
| }
 | |
| 
 | |
| /// Get the EVTs and ArgFlags collections that represent the legalized return
 | |
| /// type of the given function.  This does not require a DAG or a return value,
 | |
| /// and is suitable for use before any DAGs for the function are constructed.
 | |
| /// TODO: Move this out of TargetLowering.cpp.
 | |
| void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
 | |
|                          AttributeList attr,
 | |
|                          SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                          const TargetLowering &TLI, const DataLayout &DL) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0) return;
 | |
| 
 | |
|   for (unsigned j = 0, f = NumValues; j != f; ++j) {
 | |
|     EVT VT = ValueVTs[j];
 | |
|     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
 | |
|       ExtendKind = ISD::SIGN_EXTEND;
 | |
|     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
 | |
|       ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|     // FIXME: C calling convention requires the return type to be promoted to
 | |
|     // at least 32-bit. But this is not necessary for non-C calling
 | |
|     // conventions. The frontend should mark functions whose return values
 | |
|     // require promoting with signext or zeroext attributes.
 | |
|     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
 | |
|       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
 | |
|       if (VT.bitsLT(MinVT))
 | |
|         VT = MinVT;
 | |
|     }
 | |
| 
 | |
|     unsigned NumParts =
 | |
|         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
 | |
|     MVT PartVT =
 | |
|         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
 | |
| 
 | |
|     // 'inreg' on function refers to return value
 | |
|     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
 | |
|       Flags.setInReg();
 | |
| 
 | |
|     // Propagate extension type if any
 | |
|     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
 | |
|       Flags.setSExt();
 | |
|     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
 | |
|       Flags.setZExt();
 | |
| 
 | |
|     for (unsigned i = 0; i < NumParts; ++i)
 | |
|       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area.  This is the actual
 | |
| /// alignment, not its logarithm.
 | |
| unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
 | |
|                                                    const DataLayout &DL) const {
 | |
|   return DL.getABITypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
 | |
|                                             const DataLayout &DL, EVT VT,
 | |
|                                             unsigned AddrSpace,
 | |
|                                             unsigned Alignment,
 | |
|                                             bool *Fast) const {
 | |
|   // Check if the specified alignment is sufficient based on the data layout.
 | |
|   // TODO: While using the data layout works in practice, a better solution
 | |
|   // would be to implement this check directly (make this a virtual function).
 | |
|   // For example, the ABI alignment may change based on software platform while
 | |
|   // this function should only be affected by hardware implementation.
 | |
|   Type *Ty = VT.getTypeForEVT(Context);
 | |
|   if (Alignment >= DL.getABITypeAlignment(Ty)) {
 | |
|     // Assume that an access that meets the ABI-specified alignment is fast.
 | |
|     if (Fast != nullptr)
 | |
|       *Fast = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This is a misaligned access.
 | |
|   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
 | |
| }
 | |
| 
 | |
| BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
 | |
|   return BranchProbability(MinPercentageForPredictableBranch, 100);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  TargetTransformInfo Helpers
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
 | |
|   enum InstructionOpcodes {
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
 | |
| #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
 | |
| #include "llvm/IR/Instruction.def"
 | |
|   };
 | |
|   switch (static_cast<InstructionOpcodes>(Opcode)) {
 | |
|   case Ret:            return 0;
 | |
|   case Br:             return 0;
 | |
|   case Switch:         return 0;
 | |
|   case IndirectBr:     return 0;
 | |
|   case Invoke:         return 0;
 | |
|   case Resume:         return 0;
 | |
|   case Unreachable:    return 0;
 | |
|   case CleanupRet:     return 0;
 | |
|   case CatchRet:       return 0;
 | |
|   case CatchPad:       return 0;
 | |
|   case CatchSwitch:    return 0;
 | |
|   case CleanupPad:     return 0;
 | |
|   case Add:            return ISD::ADD;
 | |
|   case FAdd:           return ISD::FADD;
 | |
|   case Sub:            return ISD::SUB;
 | |
|   case FSub:           return ISD::FSUB;
 | |
|   case Mul:            return ISD::MUL;
 | |
|   case FMul:           return ISD::FMUL;
 | |
|   case UDiv:           return ISD::UDIV;
 | |
|   case SDiv:           return ISD::SDIV;
 | |
|   case FDiv:           return ISD::FDIV;
 | |
|   case URem:           return ISD::UREM;
 | |
|   case SRem:           return ISD::SREM;
 | |
|   case FRem:           return ISD::FREM;
 | |
|   case Shl:            return ISD::SHL;
 | |
|   case LShr:           return ISD::SRL;
 | |
|   case AShr:           return ISD::SRA;
 | |
|   case And:            return ISD::AND;
 | |
|   case Or:             return ISD::OR;
 | |
|   case Xor:            return ISD::XOR;
 | |
|   case Alloca:         return 0;
 | |
|   case Load:           return ISD::LOAD;
 | |
|   case Store:          return ISD::STORE;
 | |
|   case GetElementPtr:  return 0;
 | |
|   case Fence:          return 0;
 | |
|   case AtomicCmpXchg:  return 0;
 | |
|   case AtomicRMW:      return 0;
 | |
|   case Trunc:          return ISD::TRUNCATE;
 | |
|   case ZExt:           return ISD::ZERO_EXTEND;
 | |
|   case SExt:           return ISD::SIGN_EXTEND;
 | |
|   case FPToUI:         return ISD::FP_TO_UINT;
 | |
|   case FPToSI:         return ISD::FP_TO_SINT;
 | |
|   case UIToFP:         return ISD::UINT_TO_FP;
 | |
|   case SIToFP:         return ISD::SINT_TO_FP;
 | |
|   case FPTrunc:        return ISD::FP_ROUND;
 | |
|   case FPExt:          return ISD::FP_EXTEND;
 | |
|   case PtrToInt:       return ISD::BITCAST;
 | |
|   case IntToPtr:       return ISD::BITCAST;
 | |
|   case BitCast:        return ISD::BITCAST;
 | |
|   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
 | |
|   case ICmp:           return ISD::SETCC;
 | |
|   case FCmp:           return ISD::SETCC;
 | |
|   case PHI:            return 0;
 | |
|   case Call:           return 0;
 | |
|   case Select:         return ISD::SELECT;
 | |
|   case UserOp1:        return 0;
 | |
|   case UserOp2:        return 0;
 | |
|   case VAArg:          return 0;
 | |
|   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
 | |
|   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
 | |
|   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
 | |
|   case ExtractValue:   return ISD::MERGE_VALUES;
 | |
|   case InsertValue:    return ISD::MERGE_VALUES;
 | |
|   case LandingPad:     return 0;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown instruction type encountered!");
 | |
| }
 | |
| 
 | |
| std::pair<int, MVT>
 | |
| TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
 | |
|                                             Type *Ty) const {
 | |
|   LLVMContext &C = Ty->getContext();
 | |
|   EVT MTy = getValueType(DL, Ty);
 | |
| 
 | |
|   int Cost = 1;
 | |
|   // We keep legalizing the type until we find a legal kind. We assume that
 | |
|   // the only operation that costs anything is the split. After splitting
 | |
|   // we need to handle two types.
 | |
|   while (true) {
 | |
|     LegalizeKind LK = getTypeConversion(C, MTy);
 | |
| 
 | |
|     if (LK.first == TypeLegal)
 | |
|       return std::make_pair(Cost, MTy.getSimpleVT());
 | |
| 
 | |
|     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
 | |
|       Cost *= 2;
 | |
| 
 | |
|     // Do not loop with f128 type.
 | |
|     if (MTy == LK.second)
 | |
|       return std::make_pair(Cost, MTy.getSimpleVT());
 | |
| 
 | |
|     // Keep legalizing the type.
 | |
|     MTy = LK.second;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
 | |
|                                                               bool UseTLS) const {
 | |
|   // compiler-rt provides a variable with a magic name.  Targets that do not
 | |
|   // link with compiler-rt may also provide such a variable.
 | |
|   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
 | |
|   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
 | |
|   auto UnsafeStackPtr =
 | |
|       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
 | |
| 
 | |
|   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
 | |
| 
 | |
|   if (!UnsafeStackPtr) {
 | |
|     auto TLSModel = UseTLS ?
 | |
|         GlobalValue::InitialExecTLSModel :
 | |
|         GlobalValue::NotThreadLocal;
 | |
|     // The global variable is not defined yet, define it ourselves.
 | |
|     // We use the initial-exec TLS model because we do not support the
 | |
|     // variable living anywhere other than in the main executable.
 | |
|     UnsafeStackPtr = new GlobalVariable(
 | |
|         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
 | |
|         UnsafeStackPtrVar, nullptr, TLSModel);
 | |
|   } else {
 | |
|     // The variable exists, check its type and attributes.
 | |
|     if (UnsafeStackPtr->getValueType() != StackPtrTy)
 | |
|       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
 | |
|     if (UseTLS != UnsafeStackPtr->isThreadLocal())
 | |
|       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
 | |
|                          (UseTLS ? "" : "not ") + "be thread-local");
 | |
|   }
 | |
|   return UnsafeStackPtr;
 | |
| }
 | |
| 
 | |
| Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
 | |
|   if (!TM.getTargetTriple().isAndroid())
 | |
|     return getDefaultSafeStackPointerLocation(IRB, true);
 | |
| 
 | |
|   // Android provides a libc function to retrieve the address of the current
 | |
|   // thread's unsafe stack pointer.
 | |
|   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
 | |
|   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
 | |
|   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
 | |
|                                      StackPtrTy->getPointerTo(0));
 | |
|   return IRB.CreateCall(Fn);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Loop Strength Reduction hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                                const AddrMode &AM, Type *Ty,
 | |
|                                                unsigned AS, Instruction *I) const {
 | |
|   // The default implementation of this implements a conservative RISCy, r+r and
 | |
|   // r+i addr mode.
 | |
| 
 | |
|   // Allows a sign-extended 16-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | |
|     return false;
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // Only support r+r,
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   default: // Don't allow n * r
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Stack Protector
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // For OpenBSD return its special guard variable. Otherwise return nullptr,
 | |
| // so that SelectionDAG handle SSP.
 | |
| Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
 | |
|   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
 | |
|     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
 | |
|     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
 | |
|     return M.getOrInsertGlobal("__guard_local", PtrTy);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Currently only support "standard" __stack_chk_guard.
 | |
| // TODO: add LOAD_STACK_GUARD support.
 | |
| void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
 | |
|   if (!M.getNamedValue("__stack_chk_guard"))
 | |
|     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
 | |
|                        GlobalVariable::ExternalLinkage,
 | |
|                        nullptr, "__stack_chk_guard");
 | |
| }
 | |
| 
 | |
| // Currently only support "standard" __stack_chk_guard.
 | |
| // TODO: add LOAD_STACK_GUARD support.
 | |
| Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
 | |
|   return M.getNamedValue("__stack_chk_guard");
 | |
| }
 | |
| 
 | |
| Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
 | |
|   return MinimumJumpTableEntries;
 | |
| }
 | |
| 
 | |
| void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
 | |
|   MinimumJumpTableEntries = Val;
 | |
| }
 | |
| 
 | |
| unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
 | |
|   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
 | |
| }
 | |
| 
 | |
| unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
 | |
|   return MaximumJumpTableSize;
 | |
| }
 | |
| 
 | |
| void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
 | |
|   MaximumJumpTableSize = Val;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Reciprocal Estimates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Get the reciprocal estimate attribute string for a function that will
 | |
| /// override the target defaults.
 | |
| static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
 | |
|   const Function &F = MF.getFunction();
 | |
|   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
 | |
| }
 | |
| 
 | |
| /// Construct a string for the given reciprocal operation of the given type.
 | |
| /// This string should match the corresponding option to the front-end's
 | |
| /// "-mrecip" flag assuming those strings have been passed through in an
 | |
| /// attribute string. For example, "vec-divf" for a division of a vXf32.
 | |
| static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
 | |
|   std::string Name = VT.isVector() ? "vec-" : "";
 | |
| 
 | |
|   Name += IsSqrt ? "sqrt" : "div";
 | |
| 
 | |
|   // TODO: Handle "half" or other float types?
 | |
|   if (VT.getScalarType() == MVT::f64) {
 | |
|     Name += "d";
 | |
|   } else {
 | |
|     assert(VT.getScalarType() == MVT::f32 &&
 | |
|            "Unexpected FP type for reciprocal estimate");
 | |
|     Name += "f";
 | |
|   }
 | |
| 
 | |
|   return Name;
 | |
| }
 | |
| 
 | |
| /// Return the character position and value (a single numeric character) of a
 | |
| /// customized refinement operation in the input string if it exists. Return
 | |
| /// false if there is no customized refinement step count.
 | |
| static bool parseRefinementStep(StringRef In, size_t &Position,
 | |
|                                 uint8_t &Value) {
 | |
|   const char RefStepToken = ':';
 | |
|   Position = In.find(RefStepToken);
 | |
|   if (Position == StringRef::npos)
 | |
|     return false;
 | |
| 
 | |
|   StringRef RefStepString = In.substr(Position + 1);
 | |
|   // Allow exactly one numeric character for the additional refinement
 | |
|   // step parameter.
 | |
|   if (RefStepString.size() == 1) {
 | |
|     char RefStepChar = RefStepString[0];
 | |
|     if (RefStepChar >= '0' && RefStepChar <= '9') {
 | |
|       Value = RefStepChar - '0';
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   report_fatal_error("Invalid refinement step for -recip.");
 | |
| }
 | |
| 
 | |
| /// For the input attribute string, return one of the ReciprocalEstimate enum
 | |
| /// status values (enabled, disabled, or not specified) for this operation on
 | |
| /// the specified data type.
 | |
| static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
 | |
|   if (Override.empty())
 | |
|     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
 | |
| 
 | |
|   SmallVector<StringRef, 4> OverrideVector;
 | |
|   Override.split(OverrideVector, ',');
 | |
|   unsigned NumArgs = OverrideVector.size();
 | |
| 
 | |
|   // Check if "all", "none", or "default" was specified.
 | |
|   if (NumArgs == 1) {
 | |
|     // Look for an optional setting of the number of refinement steps needed
 | |
|     // for this type of reciprocal operation.
 | |
|     size_t RefPos;
 | |
|     uint8_t RefSteps;
 | |
|     if (parseRefinementStep(Override, RefPos, RefSteps)) {
 | |
|       // Split the string for further processing.
 | |
|       Override = Override.substr(0, RefPos);
 | |
|     }
 | |
| 
 | |
|     // All reciprocal types are enabled.
 | |
|     if (Override == "all")
 | |
|       return TargetLoweringBase::ReciprocalEstimate::Enabled;
 | |
| 
 | |
|     // All reciprocal types are disabled.
 | |
|     if (Override == "none")
 | |
|       return TargetLoweringBase::ReciprocalEstimate::Disabled;
 | |
| 
 | |
|     // Target defaults for enablement are used.
 | |
|     if (Override == "default")
 | |
|       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
 | |
|   }
 | |
| 
 | |
|   // The attribute string may omit the size suffix ('f'/'d').
 | |
|   std::string VTName = getReciprocalOpName(IsSqrt, VT);
 | |
|   std::string VTNameNoSize = VTName;
 | |
|   VTNameNoSize.pop_back();
 | |
|   static const char DisabledPrefix = '!';
 | |
| 
 | |
|   for (StringRef RecipType : OverrideVector) {
 | |
|     size_t RefPos;
 | |
|     uint8_t RefSteps;
 | |
|     if (parseRefinementStep(RecipType, RefPos, RefSteps))
 | |
|       RecipType = RecipType.substr(0, RefPos);
 | |
| 
 | |
|     // Ignore the disablement token for string matching.
 | |
|     bool IsDisabled = RecipType[0] == DisabledPrefix;
 | |
|     if (IsDisabled)
 | |
|       RecipType = RecipType.substr(1);
 | |
| 
 | |
|     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
 | |
|       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
 | |
|                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
 | |
|   }
 | |
| 
 | |
|   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
 | |
| }
 | |
| 
 | |
| /// For the input attribute string, return the customized refinement step count
 | |
| /// for this operation on the specified data type. If the step count does not
 | |
| /// exist, return the ReciprocalEstimate enum value for unspecified.
 | |
| static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
 | |
|   if (Override.empty())
 | |
|     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
 | |
| 
 | |
|   SmallVector<StringRef, 4> OverrideVector;
 | |
|   Override.split(OverrideVector, ',');
 | |
|   unsigned NumArgs = OverrideVector.size();
 | |
| 
 | |
|   // Check if "all", "default", or "none" was specified.
 | |
|   if (NumArgs == 1) {
 | |
|     // Look for an optional setting of the number of refinement steps needed
 | |
|     // for this type of reciprocal operation.
 | |
|     size_t RefPos;
 | |
|     uint8_t RefSteps;
 | |
|     if (!parseRefinementStep(Override, RefPos, RefSteps))
 | |
|       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
 | |
| 
 | |
|     // Split the string for further processing.
 | |
|     Override = Override.substr(0, RefPos);
 | |
|     assert(Override != "none" &&
 | |
|            "Disabled reciprocals, but specifed refinement steps?");
 | |
| 
 | |
|     // If this is a general override, return the specified number of steps.
 | |
|     if (Override == "all" || Override == "default")
 | |
|       return RefSteps;
 | |
|   }
 | |
| 
 | |
|   // The attribute string may omit the size suffix ('f'/'d').
 | |
|   std::string VTName = getReciprocalOpName(IsSqrt, VT);
 | |
|   std::string VTNameNoSize = VTName;
 | |
|   VTNameNoSize.pop_back();
 | |
| 
 | |
|   for (StringRef RecipType : OverrideVector) {
 | |
|     size_t RefPos;
 | |
|     uint8_t RefSteps;
 | |
|     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
 | |
|       continue;
 | |
| 
 | |
|     RecipType = RecipType.substr(0, RefPos);
 | |
|     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
 | |
|       return RefSteps;
 | |
|   }
 | |
| 
 | |
|   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
 | |
| }
 | |
| 
 | |
| int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
 | |
|                                                     MachineFunction &MF) const {
 | |
|   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
 | |
| }
 | |
| 
 | |
| int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
 | |
|                                                    MachineFunction &MF) const {
 | |
|   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
 | |
| }
 | |
| 
 | |
| int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
 | |
|                                                MachineFunction &MF) const {
 | |
|   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
 | |
| }
 | |
| 
 | |
| int TargetLoweringBase::getDivRefinementSteps(EVT VT,
 | |
|                                               MachineFunction &MF) const {
 | |
|   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
 | |
| }
 | |
| 
 | |
| void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
 | |
|   MF.getRegInfo().freezeReservedRegs(MF);
 | |
| }
 |