894 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			894 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Run a sanity check on the IR to ensure that Safepoints - if they've been
 | |
| // inserted - were inserted correctly.  In particular, look for use of
 | |
| // non-relocated values after a safepoint.  It's primary use is to check the
 | |
| // correctness of safepoint insertion immediately after insertion, but it can
 | |
| // also be used to verify that later transforms have not found a way to break
 | |
| // safepoint semenatics.
 | |
| //
 | |
| // In its current form, this verify checks a property which is sufficient, but
 | |
| // not neccessary for correctness.  There are some cases where an unrelocated
 | |
| // pointer can be used after the safepoint.  Consider this example:
 | |
| //
 | |
| //    a = ...
 | |
| //    b = ...
 | |
| //    (a',b') = safepoint(a,b)
 | |
| //    c = cmp eq a b
 | |
| //    br c, ..., ....
 | |
| //
 | |
| // Because it is valid to reorder 'c' above the safepoint, this is legal.  In
 | |
| // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
 | |
| // idioms like this.  The verifier knows about these cases and avoids reporting
 | |
| // false positives.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/SafepointIRVerifier.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| #define DEBUG_TYPE "safepoint-ir-verifier"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// This option is used for writing test cases.  Instead of crashing the program
 | |
| /// when verification fails, report a message to the console (for FileCheck
 | |
| /// usage) and continue execution as if nothing happened.
 | |
| static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
 | |
|                                cl::init(false));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
 | |
| /// of blocks unreachable from entry then propagates deadness using foldable
 | |
| /// conditional branches without modifying CFG. So GVN does but it changes CFG
 | |
| /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
 | |
| /// clean up dead blocks, but in some cases, like verification or loop passes
 | |
| /// it's not possible.
 | |
| class CFGDeadness {
 | |
|   const DominatorTree *DT = nullptr;
 | |
|   SetVector<const BasicBlock *> DeadBlocks;
 | |
|   SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
 | |
| 
 | |
| public:
 | |
|   /// Return the edge that coresponds to the predecessor.
 | |
|   static const Use& getEdge(const_pred_iterator &PredIt) {
 | |
|     auto &PU = PredIt.getUse();
 | |
|     return PU.getUser()->getOperandUse(PU.getOperandNo());
 | |
|   }
 | |
| 
 | |
|   /// Return true if there is at least one live edge that corresponds to the
 | |
|   /// basic block InBB listed in the phi node.
 | |
|   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
 | |
|     assert(!isDeadBlock(InBB) && "block must be live");
 | |
|     const BasicBlock* BB = PN->getParent();
 | |
|     bool Listed = false;
 | |
|     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
 | |
|       if (InBB == *PredIt) {
 | |
|         if (!isDeadEdge(&getEdge(PredIt)))
 | |
|           return true;
 | |
|         Listed = true;
 | |
|       }
 | |
|     }
 | |
|     (void)Listed;
 | |
|     assert(Listed && "basic block is not found among incoming blocks");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool isDeadBlock(const BasicBlock *BB) const {
 | |
|     return DeadBlocks.count(BB);
 | |
|   }
 | |
| 
 | |
|   bool isDeadEdge(const Use *U) const {
 | |
|     assert(dyn_cast<Instruction>(U->getUser())->isTerminator() &&
 | |
|            "edge must be operand of terminator");
 | |
|     assert(cast_or_null<BasicBlock>(U->get()) &&
 | |
|            "edge must refer to basic block");
 | |
|     assert(!isDeadBlock(dyn_cast<Instruction>(U->getUser())->getParent()) &&
 | |
|            "isDeadEdge() must be applied to edge from live block");
 | |
|     return DeadEdges.count(U);
 | |
|   }
 | |
| 
 | |
|   bool hasLiveIncomingEdges(const BasicBlock *BB) const {
 | |
|     // Check if all incoming edges are dead.
 | |
|     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
 | |
|       auto &PU = PredIt.getUse();
 | |
|       const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
 | |
|       if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
 | |
|         return true; // Found a live edge.
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void processFunction(const Function &F, const DominatorTree &DT) {
 | |
|     this->DT = &DT;
 | |
| 
 | |
|     // Start with all blocks unreachable from entry.
 | |
|     for (const BasicBlock &BB : F)
 | |
|       if (!DT.isReachableFromEntry(&BB))
 | |
|         DeadBlocks.insert(&BB);
 | |
| 
 | |
|     // Top-down walk of the dominator tree
 | |
|     ReversePostOrderTraversal<const Function *> RPOT(&F);
 | |
|     for (const BasicBlock *BB : RPOT) {
 | |
|       const TerminatorInst *TI = BB->getTerminator();
 | |
|       assert(TI && "blocks must be well formed");
 | |
| 
 | |
|       // For conditional branches, we can perform simple conditional propagation on
 | |
|       // the condition value itself.
 | |
|       const BranchInst *BI = dyn_cast<BranchInst>(TI);
 | |
|       if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
 | |
|         continue;
 | |
| 
 | |
|       // If a branch has two identical successors, we cannot declare either dead.
 | |
|       if (BI->getSuccessor(0) == BI->getSuccessor(1))
 | |
|         continue;
 | |
| 
 | |
|       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
 | |
|       if (!Cond)
 | |
|         continue;
 | |
| 
 | |
|       addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   void addDeadBlock(const BasicBlock *BB) {
 | |
|     SmallVector<const BasicBlock *, 4> NewDead;
 | |
|     SmallSetVector<const BasicBlock *, 4> DF;
 | |
| 
 | |
|     NewDead.push_back(BB);
 | |
|     while (!NewDead.empty()) {
 | |
|       const BasicBlock *D = NewDead.pop_back_val();
 | |
|       if (isDeadBlock(D))
 | |
|         continue;
 | |
| 
 | |
|       // All blocks dominated by D are dead.
 | |
|       SmallVector<BasicBlock *, 8> Dom;
 | |
|       DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
 | |
|       // Do not need to mark all in and out edges dead
 | |
|       // because BB is marked dead and this is enough
 | |
|       // to run further.
 | |
|       DeadBlocks.insert(Dom.begin(), Dom.end());
 | |
| 
 | |
|       // Figure out the dominance-frontier(D).
 | |
|       for (BasicBlock *B : Dom)
 | |
|         for (BasicBlock *S : successors(B))
 | |
|           if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
 | |
|             NewDead.push_back(S);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void addDeadEdge(const Use &DeadEdge) {
 | |
|     if (!DeadEdges.insert(&DeadEdge))
 | |
|       return;
 | |
| 
 | |
|     BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
 | |
|     if (hasLiveIncomingEdges(BB))
 | |
|       return;
 | |
| 
 | |
|     addDeadBlock(BB);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static void Verify(const Function &F, const DominatorTree &DT,
 | |
|                    const CFGDeadness &CD);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct SafepointIRVerifier : public FunctionPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   SafepointIRVerifier() : FunctionPass(ID) {
 | |
|     initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     CFGDeadness CD;
 | |
|     CD.processFunction(F, DT);
 | |
|     Verify(F, DT, CD);
 | |
|     return false; // no modifications
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequiredID(DominatorTreeWrapperPass::ID);
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| 
 | |
|   StringRef getPassName() const override { return "safepoint verifier"; }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| void llvm::verifySafepointIR(Function &F) {
 | |
|   SafepointIRVerifier pass;
 | |
|   pass.runOnFunction(F);
 | |
| }
 | |
| 
 | |
| char SafepointIRVerifier::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createSafepointIRVerifierPass() {
 | |
|   return new SafepointIRVerifier();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
 | |
|                       "Safepoint IR Verifier", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
 | |
|                     "Safepoint IR Verifier", false, false)
 | |
| 
 | |
| static bool isGCPointerType(Type *T) {
 | |
|   if (auto *PT = dyn_cast<PointerType>(T))
 | |
|     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
 | |
|     // GC managed heap.  We know that a pointer into this heap needs to be
 | |
|     // updated and that no other pointer does.
 | |
|     return (1 == PT->getAddressSpace());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool containsGCPtrType(Type *Ty) {
 | |
|   if (isGCPointerType(Ty))
 | |
|     return true;
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ty))
 | |
|     return isGCPointerType(VT->getScalarType());
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
 | |
|     return containsGCPtrType(AT->getElementType());
 | |
|   if (StructType *ST = dyn_cast<StructType>(Ty))
 | |
|     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
 | |
|                        containsGCPtrType);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Debugging aid -- prints a [Begin, End) range of values.
 | |
| template<typename IteratorTy>
 | |
| static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
 | |
|   OS << "[ ";
 | |
|   while (Begin != End) {
 | |
|     OS << **Begin << " ";
 | |
|     ++Begin;
 | |
|   }
 | |
|   OS << "]";
 | |
| }
 | |
| 
 | |
| /// The verifier algorithm is phrased in terms of availability.  The set of
 | |
| /// values "available" at a given point in the control flow graph is the set of
 | |
| /// correctly relocated value at that point, and is a subset of the set of
 | |
| /// definitions dominating that point.
 | |
| 
 | |
| using AvailableValueSet = DenseSet<const Value *>;
 | |
| 
 | |
| /// State we compute and track per basic block.
 | |
| struct BasicBlockState {
 | |
|   // Set of values available coming in, before the phi nodes
 | |
|   AvailableValueSet AvailableIn;
 | |
| 
 | |
|   // Set of values available going out
 | |
|   AvailableValueSet AvailableOut;
 | |
| 
 | |
|   // AvailableOut minus AvailableIn.
 | |
|   // All elements are Instructions
 | |
|   AvailableValueSet Contribution;
 | |
| 
 | |
|   // True if this block contains a safepoint and thus AvailableIn does not
 | |
|   // contribute to AvailableOut.
 | |
|   bool Cleared = false;
 | |
| };
 | |
| 
 | |
| /// A given derived pointer can have multiple base pointers through phi/selects.
 | |
| /// This type indicates when the base pointer is exclusively constant
 | |
| /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
 | |
| /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
 | |
| /// NonConstant.
 | |
| enum BaseType {
 | |
|   NonConstant = 1, // Base pointers is not exclusively constant.
 | |
|   ExclusivelyNull,
 | |
|   ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
 | |
|                           // set of constants, but they are not exclusively
 | |
|                           // null.
 | |
| };
 | |
| 
 | |
| /// Return the baseType for Val which states whether Val is exclusively
 | |
| /// derived from constant/null, or not exclusively derived from constant.
 | |
| /// Val is exclusively derived off a constant base when all operands of phi and
 | |
| /// selects are derived off a constant base.
 | |
| static enum BaseType getBaseType(const Value *Val) {
 | |
| 
 | |
|   SmallVector<const Value *, 32> Worklist;
 | |
|   DenseSet<const Value *> Visited;
 | |
|   bool isExclusivelyDerivedFromNull = true;
 | |
|   Worklist.push_back(Val);
 | |
|   // Strip through all the bitcasts and geps to get base pointer. Also check for
 | |
|   // the exclusive value when there can be multiple base pointers (through phis
 | |
|   // or selects).
 | |
|   while(!Worklist.empty()) {
 | |
|     const Value *V = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(V).second)
 | |
|       continue;
 | |
| 
 | |
|     if (const auto *CI = dyn_cast<CastInst>(V)) {
 | |
|       Worklist.push_back(CI->stripPointerCasts());
 | |
|       continue;
 | |
|     }
 | |
|     if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
 | |
|       Worklist.push_back(GEP->getPointerOperand());
 | |
|       continue;
 | |
|     }
 | |
|     // Push all the incoming values of phi node into the worklist for
 | |
|     // processing.
 | |
|     if (const auto *PN = dyn_cast<PHINode>(V)) {
 | |
|       for (Value *InV: PN->incoming_values())
 | |
|         Worklist.push_back(InV);
 | |
|       continue;
 | |
|     }
 | |
|     if (const auto *SI = dyn_cast<SelectInst>(V)) {
 | |
|       // Push in the true and false values
 | |
|       Worklist.push_back(SI->getTrueValue());
 | |
|       Worklist.push_back(SI->getFalseValue());
 | |
|       continue;
 | |
|     }
 | |
|     if (isa<Constant>(V)) {
 | |
|       // We found at least one base pointer which is non-null, so this derived
 | |
|       // pointer is not exclusively derived from null.
 | |
|       if (V != Constant::getNullValue(V->getType()))
 | |
|         isExclusivelyDerivedFromNull = false;
 | |
|       // Continue processing the remaining values to make sure it's exclusively
 | |
|       // constant.
 | |
|       continue;
 | |
|     }
 | |
|     // At this point, we know that the base pointer is not exclusively
 | |
|     // constant.
 | |
|     return BaseType::NonConstant;
 | |
|   }
 | |
|   // Now, we know that the base pointer is exclusively constant, but we need to
 | |
|   // differentiate between exclusive null constant and non-null constant.
 | |
|   return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
 | |
|                                       : BaseType::ExclusivelySomeConstant;
 | |
| }
 | |
| 
 | |
| static bool isNotExclusivelyConstantDerived(const Value *V) {
 | |
|   return getBaseType(V) == BaseType::NonConstant;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class InstructionVerifier;
 | |
| 
 | |
| /// Builds BasicBlockState for each BB of the function.
 | |
| /// It can traverse function for verification and provides all required
 | |
| /// information.
 | |
| ///
 | |
| /// GC pointer may be in one of three states: relocated, unrelocated and
 | |
| /// poisoned.
 | |
| /// Relocated pointer may be used without any restrictions.
 | |
| /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
 | |
| /// or returned. Unrelocated pointer may be safely compared against another
 | |
| /// unrelocated pointer or against a pointer exclusively derived from null.
 | |
| /// Poisoned pointers are produced when we somehow derive pointer from relocated
 | |
| /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
 | |
| /// used in a very limited number of situations. Currently the only way to use
 | |
| /// it is comparison against constant exclusively derived from null. All
 | |
| /// limitations arise due to their undefined state: this pointers should be
 | |
| /// treated as relocated and unrelocated simultaneously.
 | |
| /// Rules of deriving:
 | |
| /// R + U = P - that's where the poisoned pointers come from
 | |
| /// P + X = P
 | |
| /// U + U = U
 | |
| /// R + R = R
 | |
| /// X + C = X
 | |
| /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
 | |
| /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
 | |
| /// nothing (in case when "+" is unary operation).
 | |
| /// Deriving of pointers by itself is always safe.
 | |
| /// NOTE: when we are making decision on the status of instruction's result:
 | |
| /// a) for phi we need to check status of each input *at the end of
 | |
| ///    corresponding predecessor BB*.
 | |
| /// b) for other instructions we need to check status of each input *at the
 | |
| ///    current point*.
 | |
| ///
 | |
| /// FIXME: This works fairly well except one case
 | |
| ///     bb1:
 | |
| ///     p = *some GC-ptr def*
 | |
| ///     p1 = gep p, offset
 | |
| ///         /     |
 | |
| ///        /      |
 | |
| ///    bb2:       |
 | |
| ///    safepoint  |
 | |
| ///        \      |
 | |
| ///         \     |
 | |
| ///      bb3:
 | |
| ///      p2 = phi [p, bb2] [p1, bb1]
 | |
| ///      p3 = phi [p, bb2] [p, bb1]
 | |
| ///      here p and p1 is unrelocated
 | |
| ///           p2 and p3 is poisoned (though they shouldn't be)
 | |
| ///
 | |
| /// This leads to some weird results:
 | |
| ///      cmp eq p, p2 - illegal instruction (false-positive)
 | |
| ///      cmp eq p1, p2 - illegal instruction (false-positive)
 | |
| ///      cmp eq p, p3 - illegal instruction (false-positive)
 | |
| ///      cmp eq p, p1 - ok
 | |
| /// To fix this we need to introduce conception of generations and be able to
 | |
| /// check if two values belong to one generation or not. This way p2 will be
 | |
| /// considered to be unrelocated and no false alarm will happen.
 | |
| class GCPtrTracker {
 | |
|   const Function &F;
 | |
|   const CFGDeadness &CD;
 | |
|   SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
 | |
|   DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
 | |
|   // This set contains defs of unrelocated pointers that are proved to be legal
 | |
|   // and don't need verification.
 | |
|   DenseSet<const Instruction *> ValidUnrelocatedDefs;
 | |
|   // This set contains poisoned defs. They can be safely ignored during
 | |
|   // verification too.
 | |
|   DenseSet<const Value *> PoisonedDefs;
 | |
| 
 | |
| public:
 | |
|   GCPtrTracker(const Function &F, const DominatorTree &DT,
 | |
|                const CFGDeadness &CD);
 | |
| 
 | |
|   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
 | |
|     return CD.hasLiveIncomingEdge(PN, InBB);
 | |
|   }
 | |
| 
 | |
|   BasicBlockState *getBasicBlockState(const BasicBlock *BB);
 | |
|   const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
 | |
| 
 | |
|   bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
 | |
| 
 | |
|   /// Traverse each BB of the function and call
 | |
|   /// InstructionVerifier::verifyInstruction for each possibly invalid
 | |
|   /// instruction.
 | |
|   /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
 | |
|   /// in order to prohibit further usages of GCPtrTracker as it'll be in
 | |
|   /// inconsistent state.
 | |
|   static void verifyFunction(GCPtrTracker &&Tracker,
 | |
|                              InstructionVerifier &Verifier);
 | |
| 
 | |
|   /// Returns true for reachable and live blocks.
 | |
|   bool isMapped(const BasicBlock *BB) const {
 | |
|     return BlockMap.find(BB) != BlockMap.end();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Returns true if the instruction may be safely skipped during verification.
 | |
|   bool instructionMayBeSkipped(const Instruction *I) const;
 | |
| 
 | |
|   /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
 | |
|   /// each of them until it converges.
 | |
|   void recalculateBBsStates();
 | |
| 
 | |
|   /// Remove from Contribution all defs that legally produce unrelocated
 | |
|   /// pointers and saves them to ValidUnrelocatedDefs.
 | |
|   /// Though Contribution should belong to BBS it is passed separately with
 | |
|   /// different const-modifier in order to emphasize (and guarantee) that only
 | |
|   /// Contribution will be changed.
 | |
|   /// Returns true if Contribution was changed otherwise false.
 | |
|   bool removeValidUnrelocatedDefs(const BasicBlock *BB,
 | |
|                                   const BasicBlockState *BBS,
 | |
|                                   AvailableValueSet &Contribution);
 | |
| 
 | |
|   /// Gather all the definitions dominating the start of BB into Result. This is
 | |
|   /// simply the defs introduced by every dominating basic block and the
 | |
|   /// function arguments.
 | |
|   void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
 | |
|                             const DominatorTree &DT);
 | |
| 
 | |
|   /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
 | |
|   /// which is the BasicBlockState for BB.
 | |
|   /// ContributionChanged is set when the verifier runs for the first time
 | |
|   /// (in this case Contribution was changed from 'empty' to its initial state)
 | |
|   /// or when Contribution of this BB was changed since last computation.
 | |
|   static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
 | |
|                             bool ContributionChanged);
 | |
| 
 | |
|   /// Model the effect of an instruction on the set of available values.
 | |
|   static void transferInstruction(const Instruction &I, bool &Cleared,
 | |
|                                   AvailableValueSet &Available);
 | |
| };
 | |
| 
 | |
| /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
 | |
| /// instruction (which uses heap reference) is legal or not, given our safepoint
 | |
| /// semantics.
 | |
| class InstructionVerifier {
 | |
|   bool AnyInvalidUses = false;
 | |
| 
 | |
| public:
 | |
|   void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
 | |
|                          const AvailableValueSet &AvailableSet);
 | |
| 
 | |
|   bool hasAnyInvalidUses() const { return AnyInvalidUses; }
 | |
| 
 | |
| private:
 | |
|   void reportInvalidUse(const Value &V, const Instruction &I);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
 | |
|                            const CFGDeadness &CD) : F(F), CD(CD) {
 | |
|   // Calculate Contribution of each live BB.
 | |
|   // Allocate BB states for live blocks.
 | |
|   for (const BasicBlock &BB : F)
 | |
|     if (!CD.isDeadBlock(&BB)) {
 | |
|       BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
 | |
|       for (const auto &I : BB)
 | |
|         transferInstruction(I, BBS->Cleared, BBS->Contribution);
 | |
|       BlockMap[&BB] = BBS;
 | |
|     }
 | |
| 
 | |
|   // Initialize AvailableIn/Out sets of each BB using only information about
 | |
|   // dominating BBs.
 | |
|   for (auto &BBI : BlockMap) {
 | |
|     gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
 | |
|     transferBlock(BBI.first, *BBI.second, true);
 | |
|   }
 | |
| 
 | |
|   // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
 | |
|   // sets of each BB until it converges. If any def is proved to be an
 | |
|   // unrelocated pointer, it will be removed from all BBSs.
 | |
|   recalculateBBsStates();
 | |
| }
 | |
| 
 | |
| BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
 | |
|   auto it = BlockMap.find(BB);
 | |
|   return it != BlockMap.end() ? it->second : nullptr;
 | |
| }
 | |
| 
 | |
| const BasicBlockState *GCPtrTracker::getBasicBlockState(
 | |
|     const BasicBlock *BB) const {
 | |
|   return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
 | |
| }
 | |
| 
 | |
| bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
 | |
|   // Poisoned defs are skipped since they are always safe by itself by
 | |
|   // definition (for details see comment to this class).
 | |
|   return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
 | |
| }
 | |
| 
 | |
| void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
 | |
|                                   InstructionVerifier &Verifier) {
 | |
|   // We need RPO here to a) report always the first error b) report errors in
 | |
|   // same order from run to run.
 | |
|   ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
 | |
|   for (const BasicBlock *BB : RPOT) {
 | |
|     BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
 | |
|     if (!BBS)
 | |
|       continue;
 | |
| 
 | |
|     // We destructively modify AvailableIn as we traverse the block instruction
 | |
|     // by instruction.
 | |
|     AvailableValueSet &AvailableSet = BBS->AvailableIn;
 | |
|     for (const Instruction &I : *BB) {
 | |
|       if (Tracker.instructionMayBeSkipped(&I))
 | |
|         continue; // This instruction shouldn't be added to AvailableSet.
 | |
| 
 | |
|       Verifier.verifyInstruction(&Tracker, I, AvailableSet);
 | |
| 
 | |
|       // Model the effect of current instruction on AvailableSet to keep the set
 | |
|       // relevant at each point of BB.
 | |
|       bool Cleared = false;
 | |
|       transferInstruction(I, Cleared, AvailableSet);
 | |
|       (void)Cleared;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void GCPtrTracker::recalculateBBsStates() {
 | |
|   SetVector<const BasicBlock *> Worklist;
 | |
|   // TODO: This order is suboptimal, it's better to replace it with priority
 | |
|   // queue where priority is RPO number of BB.
 | |
|   for (auto &BBI : BlockMap)
 | |
|     Worklist.insert(BBI.first);
 | |
| 
 | |
|   // This loop iterates the AvailableIn/Out sets until it converges.
 | |
|   // The AvailableIn and AvailableOut sets decrease as we iterate.
 | |
|   while (!Worklist.empty()) {
 | |
|     const BasicBlock *BB = Worklist.pop_back_val();
 | |
|     BasicBlockState *BBS = getBasicBlockState(BB);
 | |
|     if (!BBS)
 | |
|       continue; // Ignore dead successors.
 | |
| 
 | |
|     size_t OldInCount = BBS->AvailableIn.size();
 | |
|     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
 | |
|       const BasicBlock *PBB = *PredIt;
 | |
|       BasicBlockState *PBBS = getBasicBlockState(PBB);
 | |
|       if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
 | |
|         set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
 | |
|     }
 | |
| 
 | |
|     assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
 | |
| 
 | |
|     bool InputsChanged = OldInCount != BBS->AvailableIn.size();
 | |
|     bool ContributionChanged =
 | |
|         removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
 | |
|     if (!InputsChanged && !ContributionChanged)
 | |
|       continue;
 | |
| 
 | |
|     size_t OldOutCount = BBS->AvailableOut.size();
 | |
|     transferBlock(BB, *BBS, ContributionChanged);
 | |
|     if (OldOutCount != BBS->AvailableOut.size()) {
 | |
|       assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
 | |
|       Worklist.insert(succ_begin(BB), succ_end(BB));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
 | |
|                                               const BasicBlockState *BBS,
 | |
|                                               AvailableValueSet &Contribution) {
 | |
|   assert(&BBS->Contribution == &Contribution &&
 | |
|          "Passed Contribution should be from the passed BasicBlockState!");
 | |
|   AvailableValueSet AvailableSet = BBS->AvailableIn;
 | |
|   bool ContributionChanged = false;
 | |
|   // For explanation why instructions are processed this way see
 | |
|   // "Rules of deriving" in the comment to this class.
 | |
|   for (const Instruction &I : *BB) {
 | |
|     bool ValidUnrelocatedPointerDef = false;
 | |
|     bool PoisonedPointerDef = false;
 | |
|     // TODO: `select` instructions should be handled here too.
 | |
|     if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
 | |
|       if (containsGCPtrType(PN->getType())) {
 | |
|         // If both is true, output is poisoned.
 | |
|         bool HasRelocatedInputs = false;
 | |
|         bool HasUnrelocatedInputs = false;
 | |
|         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|           const BasicBlock *InBB = PN->getIncomingBlock(i);
 | |
|           if (!isMapped(InBB) ||
 | |
|               !CD.hasLiveIncomingEdge(PN, InBB))
 | |
|             continue; // Skip dead block or dead edge.
 | |
| 
 | |
|           const Value *InValue = PN->getIncomingValue(i);
 | |
| 
 | |
|           if (isNotExclusivelyConstantDerived(InValue)) {
 | |
|             if (isValuePoisoned(InValue)) {
 | |
|               // If any of inputs is poisoned, output is always poisoned too.
 | |
|               HasRelocatedInputs = true;
 | |
|               HasUnrelocatedInputs = true;
 | |
|               break;
 | |
|             }
 | |
|             if (BlockMap[InBB]->AvailableOut.count(InValue))
 | |
|               HasRelocatedInputs = true;
 | |
|             else
 | |
|               HasUnrelocatedInputs = true;
 | |
|           }
 | |
|         }
 | |
|         if (HasUnrelocatedInputs) {
 | |
|           if (HasRelocatedInputs)
 | |
|             PoisonedPointerDef = true;
 | |
|           else
 | |
|             ValidUnrelocatedPointerDef = true;
 | |
|         }
 | |
|       }
 | |
|     } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
 | |
|                containsGCPtrType(I.getType())) {
 | |
|       // GEP/bitcast of unrelocated pointer is legal by itself but this def
 | |
|       // shouldn't appear in any AvailableSet.
 | |
|       for (const Value *V : I.operands())
 | |
|         if (containsGCPtrType(V->getType()) &&
 | |
|             isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
 | |
|           if (isValuePoisoned(V))
 | |
|             PoisonedPointerDef = true;
 | |
|           else
 | |
|             ValidUnrelocatedPointerDef = true;
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
|     assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
 | |
|            "Value cannot be both unrelocated and poisoned!");
 | |
|     if (ValidUnrelocatedPointerDef) {
 | |
|       // Remove def of unrelocated pointer from Contribution of this BB and
 | |
|       // trigger update of all its successors.
 | |
|       Contribution.erase(&I);
 | |
|       PoisonedDefs.erase(&I);
 | |
|       ValidUnrelocatedDefs.insert(&I);
 | |
|       LLVM_DEBUG(dbgs() << "Removing urelocated " << I
 | |
|                         << " from Contribution of " << BB->getName() << "\n");
 | |
|       ContributionChanged = true;
 | |
|     } else if (PoisonedPointerDef) {
 | |
|       // Mark pointer as poisoned, remove its def from Contribution and trigger
 | |
|       // update of all successors.
 | |
|       Contribution.erase(&I);
 | |
|       PoisonedDefs.insert(&I);
 | |
|       LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
 | |
|                         << BB->getName() << "\n");
 | |
|       ContributionChanged = true;
 | |
|     } else {
 | |
|       bool Cleared = false;
 | |
|       transferInstruction(I, Cleared, AvailableSet);
 | |
|       (void)Cleared;
 | |
|     }
 | |
|   }
 | |
|   return ContributionChanged;
 | |
| }
 | |
| 
 | |
| void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
 | |
|                                         AvailableValueSet &Result,
 | |
|                                         const DominatorTree &DT) {
 | |
|   DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
 | |
| 
 | |
|   assert(DTN && "Unreachable blocks are ignored");
 | |
|   while (DTN->getIDom()) {
 | |
|     DTN = DTN->getIDom();
 | |
|     auto BBS = getBasicBlockState(DTN->getBlock());
 | |
|     assert(BBS && "immediate dominator cannot be dead for a live block");
 | |
|     const auto &Defs = BBS->Contribution;
 | |
|     Result.insert(Defs.begin(), Defs.end());
 | |
|     // If this block is 'Cleared', then nothing LiveIn to this block can be
 | |
|     // available after this block completes.  Note: This turns out to be
 | |
|     // really important for reducing memory consuption of the initial available
 | |
|     // sets and thus peak memory usage by this verifier.
 | |
|     if (BBS->Cleared)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   for (const Argument &A : BB->getParent()->args())
 | |
|     if (containsGCPtrType(A.getType()))
 | |
|       Result.insert(&A);
 | |
| }
 | |
| 
 | |
| void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
 | |
|                                  bool ContributionChanged) {
 | |
|   const AvailableValueSet &AvailableIn = BBS.AvailableIn;
 | |
|   AvailableValueSet &AvailableOut = BBS.AvailableOut;
 | |
| 
 | |
|   if (BBS.Cleared) {
 | |
|     // AvailableOut will change only when Contribution changed.
 | |
|     if (ContributionChanged)
 | |
|       AvailableOut = BBS.Contribution;
 | |
|   } else {
 | |
|     // Otherwise, we need to reduce the AvailableOut set by things which are no
 | |
|     // longer in our AvailableIn
 | |
|     AvailableValueSet Temp = BBS.Contribution;
 | |
|     set_union(Temp, AvailableIn);
 | |
|     AvailableOut = std::move(Temp);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
 | |
|              PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
 | |
|              dbgs() << " to ";
 | |
|              PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
 | |
|              dbgs() << "\n";);
 | |
| }
 | |
| 
 | |
| void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
 | |
|                                        AvailableValueSet &Available) {
 | |
|   if (isStatepoint(I)) {
 | |
|     Cleared = true;
 | |
|     Available.clear();
 | |
|   } else if (containsGCPtrType(I.getType()))
 | |
|     Available.insert(&I);
 | |
| }
 | |
| 
 | |
| void InstructionVerifier::verifyInstruction(
 | |
|     const GCPtrTracker *Tracker, const Instruction &I,
 | |
|     const AvailableValueSet &AvailableSet) {
 | |
|   if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
 | |
|     if (containsGCPtrType(PN->getType()))
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         const BasicBlock *InBB = PN->getIncomingBlock(i);
 | |
|         const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
 | |
|         if (!InBBS ||
 | |
|             !Tracker->hasLiveIncomingEdge(PN, InBB))
 | |
|           continue; // Skip dead block or dead edge.
 | |
| 
 | |
|         const Value *InValue = PN->getIncomingValue(i);
 | |
| 
 | |
|         if (isNotExclusivelyConstantDerived(InValue) &&
 | |
|             !InBBS->AvailableOut.count(InValue))
 | |
|           reportInvalidUse(*InValue, *PN);
 | |
|       }
 | |
|   } else if (isa<CmpInst>(I) &&
 | |
|              containsGCPtrType(I.getOperand(0)->getType())) {
 | |
|     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|     enum BaseType baseTyLHS = getBaseType(LHS),
 | |
|                   baseTyRHS = getBaseType(RHS);
 | |
| 
 | |
|     // Returns true if LHS and RHS are unrelocated pointers and they are
 | |
|     // valid unrelocated uses.
 | |
|     auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
 | |
|                                    &LHS, &RHS] () {
 | |
|         // A cmp instruction has valid unrelocated pointer operands only if
 | |
|         // both operands are unrelocated pointers.
 | |
|         // In the comparison between two pointers, if one is an unrelocated
 | |
|         // use, the other *should be* an unrelocated use, for this
 | |
|         // instruction to contain valid unrelocated uses. This unrelocated
 | |
|         // use can be a null constant as well, or another unrelocated
 | |
|         // pointer.
 | |
|         if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
 | |
|           return false;
 | |
|         // Constant pointers (that are not exclusively null) may have
 | |
|         // meaning in different VMs, so we cannot reorder the compare
 | |
|         // against constant pointers before the safepoint. In other words,
 | |
|         // comparison of an unrelocated use against a non-null constant
 | |
|         // maybe invalid.
 | |
|         if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
 | |
|              baseTyRHS == BaseType::NonConstant) ||
 | |
|             (baseTyLHS == BaseType::NonConstant &&
 | |
|              baseTyRHS == BaseType::ExclusivelySomeConstant))
 | |
|           return false;
 | |
| 
 | |
|         // If one of pointers is poisoned and other is not exclusively derived
 | |
|         // from null it is an invalid expression: it produces poisoned result
 | |
|         // and unless we want to track all defs (not only gc pointers) the only
 | |
|         // option is to prohibit such instructions.
 | |
|         if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
 | |
|             (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
 | |
|             return false;
 | |
| 
 | |
|         // All other cases are valid cases enumerated below:
 | |
|         // 1. Comparison between an exclusively derived null pointer and a
 | |
|         // constant base pointer.
 | |
|         // 2. Comparison between an exclusively derived null pointer and a
 | |
|         // non-constant unrelocated base pointer.
 | |
|         // 3. Comparison between 2 unrelocated pointers.
 | |
|         // 4. Comparison between a pointer exclusively derived from null and a
 | |
|         // non-constant poisoned pointer.
 | |
|         return true;
 | |
|     };
 | |
|     if (!hasValidUnrelocatedUse()) {
 | |
|       // Print out all non-constant derived pointers that are unrelocated
 | |
|       // uses, which are invalid.
 | |
|       if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
 | |
|         reportInvalidUse(*LHS, I);
 | |
|       if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
 | |
|         reportInvalidUse(*RHS, I);
 | |
|     }
 | |
|   } else {
 | |
|     for (const Value *V : I.operands())
 | |
|       if (containsGCPtrType(V->getType()) &&
 | |
|           isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
 | |
|         reportInvalidUse(*V, I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InstructionVerifier::reportInvalidUse(const Value &V,
 | |
|                                            const Instruction &I) {
 | |
|   errs() << "Illegal use of unrelocated value found!\n";
 | |
|   errs() << "Def: " << V << "\n";
 | |
|   errs() << "Use: " << I << "\n";
 | |
|   if (!PrintOnly)
 | |
|     abort();
 | |
|   AnyInvalidUses = true;
 | |
| }
 | |
| 
 | |
| static void Verify(const Function &F, const DominatorTree &DT,
 | |
|                    const CFGDeadness &CD) {
 | |
|   LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
 | |
|                     << "\n");
 | |
|   if (PrintOnly)
 | |
|     dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
 | |
| 
 | |
|   GCPtrTracker Tracker(F, DT, CD);
 | |
| 
 | |
|   // We now have all the information we need to decide if the use of a heap
 | |
|   // reference is legal or not, given our safepoint semantics.
 | |
| 
 | |
|   InstructionVerifier Verifier;
 | |
|   GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
 | |
| 
 | |
|   if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
 | |
|     dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
 | |
|            << "\n";
 | |
|   }
 | |
| }
 |