1125 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1125 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/MC/MCAssembler.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/MC/MCAsmBackend.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCAsmLayout.h"
 | |
| #include "llvm/MC/MCCodeEmitter.h"
 | |
| #include "llvm/MC/MCCodeView.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCDwarf.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCFixup.h"
 | |
| #include "llvm/MC/MCFixupKindInfo.h"
 | |
| #include "llvm/MC/MCFragment.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/MC/MCObjectWriter.h"
 | |
| #include "llvm/MC/MCSection.h"
 | |
| #include "llvm/MC/MCSectionELF.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/MC/MCValue.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/LEB128.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "assembler"
 | |
| 
 | |
| namespace {
 | |
| namespace stats {
 | |
| 
 | |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
 | |
| STATISTIC(EmittedRelaxableFragments,
 | |
|           "Number of emitted assembler fragments - relaxable");
 | |
| STATISTIC(EmittedDataFragments,
 | |
|           "Number of emitted assembler fragments - data");
 | |
| STATISTIC(EmittedCompactEncodedInstFragments,
 | |
|           "Number of emitted assembler fragments - compact encoded inst");
 | |
| STATISTIC(EmittedAlignFragments,
 | |
|           "Number of emitted assembler fragments - align");
 | |
| STATISTIC(EmittedFillFragments,
 | |
|           "Number of emitted assembler fragments - fill");
 | |
| STATISTIC(EmittedOrgFragments,
 | |
|           "Number of emitted assembler fragments - org");
 | |
| STATISTIC(evaluateFixup, "Number of evaluated fixups");
 | |
| STATISTIC(FragmentLayouts, "Number of fragment layouts");
 | |
| STATISTIC(ObjectBytes, "Number of emitted object file bytes");
 | |
| STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
 | |
| STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
 | |
| STATISTIC(PaddingFragmentsRelaxations,
 | |
|           "Number of Padding Fragments relaxations");
 | |
| STATISTIC(PaddingFragmentsBytes,
 | |
|           "Total size of all padding from adding Fragments");
 | |
| 
 | |
| } // end namespace stats
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // FIXME FIXME FIXME: There are number of places in this file where we convert
 | |
| // what is a 64-bit assembler value used for computation into a value in the
 | |
| // object file, which may truncate it. We should detect that truncation where
 | |
| // invalid and report errors back.
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCAssembler::MCAssembler(MCContext &Context,
 | |
|                          std::unique_ptr<MCAsmBackend> Backend,
 | |
|                          std::unique_ptr<MCCodeEmitter> Emitter,
 | |
|                          std::unique_ptr<MCObjectWriter> Writer)
 | |
|     : Context(Context), Backend(std::move(Backend)),
 | |
|       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
 | |
|       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
 | |
|       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
 | |
|   VersionInfo.Major = 0; // Major version == 0 for "none specified"
 | |
| }
 | |
| 
 | |
| MCAssembler::~MCAssembler() = default;
 | |
| 
 | |
| void MCAssembler::reset() {
 | |
|   Sections.clear();
 | |
|   Symbols.clear();
 | |
|   IndirectSymbols.clear();
 | |
|   DataRegions.clear();
 | |
|   LinkerOptions.clear();
 | |
|   FileNames.clear();
 | |
|   ThumbFuncs.clear();
 | |
|   BundleAlignSize = 0;
 | |
|   RelaxAll = false;
 | |
|   SubsectionsViaSymbols = false;
 | |
|   IncrementalLinkerCompatible = false;
 | |
|   ELFHeaderEFlags = 0;
 | |
|   LOHContainer.reset();
 | |
|   VersionInfo.Major = 0;
 | |
| 
 | |
|   // reset objects owned by us
 | |
|   if (getBackendPtr())
 | |
|     getBackendPtr()->reset();
 | |
|   if (getEmitterPtr())
 | |
|     getEmitterPtr()->reset();
 | |
|   if (getWriterPtr())
 | |
|     getWriterPtr()->reset();
 | |
|   getLOHContainer().reset();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::registerSection(MCSection &Section) {
 | |
|   if (Section.isRegistered())
 | |
|     return false;
 | |
|   Sections.push_back(&Section);
 | |
|   Section.setIsRegistered(true);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
 | |
|   if (ThumbFuncs.count(Symbol))
 | |
|     return true;
 | |
| 
 | |
|   if (!Symbol->isVariable())
 | |
|     return false;
 | |
| 
 | |
|   const MCExpr *Expr = Symbol->getVariableValue();
 | |
| 
 | |
|   MCValue V;
 | |
|   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
 | |
|     return false;
 | |
| 
 | |
|   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
 | |
|     return false;
 | |
| 
 | |
|   const MCSymbolRefExpr *Ref = V.getSymA();
 | |
|   if (!Ref)
 | |
|     return false;
 | |
| 
 | |
|   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
 | |
|     return false;
 | |
| 
 | |
|   const MCSymbol &Sym = Ref->getSymbol();
 | |
|   if (!isThumbFunc(&Sym))
 | |
|     return false;
 | |
| 
 | |
|   ThumbFuncs.insert(Symbol); // Cache it.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
 | |
|   // Non-temporary labels should always be visible to the linker.
 | |
|   if (!Symbol.isTemporary())
 | |
|     return true;
 | |
| 
 | |
|   // Absolute temporary labels are never visible.
 | |
|   if (!Symbol.isInSection())
 | |
|     return false;
 | |
| 
 | |
|   if (Symbol.isUsedInReloc())
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
 | |
|   // Linker visible symbols define atoms.
 | |
|   if (isSymbolLinkerVisible(S))
 | |
|     return &S;
 | |
| 
 | |
|   // Absolute and undefined symbols have no defining atom.
 | |
|   if (!S.isInSection())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Non-linker visible symbols in sections which can't be atomized have no
 | |
|   // defining atom.
 | |
|   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
 | |
|           *S.getFragment()->getParent()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, return the atom for the containing fragment.
 | |
|   return S.getFragment()->getAtom();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
 | |
|                                 const MCFixup &Fixup, const MCFragment *DF,
 | |
|                                 MCValue &Target, uint64_t &Value,
 | |
|                                 bool &WasForced) const {
 | |
|   ++stats::evaluateFixup;
 | |
| 
 | |
|   // FIXME: This code has some duplication with recordRelocation. We should
 | |
|   // probably merge the two into a single callback that tries to evaluate a
 | |
|   // fixup and records a relocation if one is needed.
 | |
| 
 | |
|   // On error claim to have completely evaluated the fixup, to prevent any
 | |
|   // further processing from being done.
 | |
|   const MCExpr *Expr = Fixup.getValue();
 | |
|   MCContext &Ctx = getContext();
 | |
|   Value = 0;
 | |
|   WasForced = false;
 | |
|   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
 | |
|     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
 | |
|     return true;
 | |
|   }
 | |
|   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
 | |
|     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
 | |
|       Ctx.reportError(Fixup.getLoc(),
 | |
|                       "unsupported subtraction of qualified symbol");
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
 | |
|                  MCFixupKindInfo::FKF_IsPCRel;
 | |
| 
 | |
|   bool IsResolved = false;
 | |
|   if (IsPCRel) {
 | |
|     if (Target.getSymB()) {
 | |
|       IsResolved = false;
 | |
|     } else if (!Target.getSymA()) {
 | |
|       IsResolved = false;
 | |
|     } else {
 | |
|       const MCSymbolRefExpr *A = Target.getSymA();
 | |
|       const MCSymbol &SA = A->getSymbol();
 | |
|       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
 | |
|         IsResolved = false;
 | |
|       } else if (auto *Writer = getWriterPtr()) {
 | |
|         IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
 | |
|             *this, SA, *DF, false, true);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     IsResolved = Target.isAbsolute();
 | |
|   }
 | |
| 
 | |
|   Value = Target.getConstant();
 | |
| 
 | |
|   if (const MCSymbolRefExpr *A = Target.getSymA()) {
 | |
|     const MCSymbol &Sym = A->getSymbol();
 | |
|     if (Sym.isDefined())
 | |
|       Value += Layout.getSymbolOffset(Sym);
 | |
|   }
 | |
|   if (const MCSymbolRefExpr *B = Target.getSymB()) {
 | |
|     const MCSymbol &Sym = B->getSymbol();
 | |
|     if (Sym.isDefined())
 | |
|       Value -= Layout.getSymbolOffset(Sym);
 | |
|   }
 | |
| 
 | |
|   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
 | |
|                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
 | |
|   assert((ShouldAlignPC ? IsPCRel : true) &&
 | |
|     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
 | |
| 
 | |
|   if (IsPCRel) {
 | |
|     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
 | |
| 
 | |
|     // A number of ARM fixups in Thumb mode require that the effective PC
 | |
|     // address be determined as the 32-bit aligned version of the actual offset.
 | |
|     if (ShouldAlignPC) Offset &= ~0x3;
 | |
|     Value -= Offset;
 | |
|   }
 | |
| 
 | |
|   // Let the backend force a relocation if needed.
 | |
|   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
 | |
|     IsResolved = false;
 | |
|     WasForced = true;
 | |
|   }
 | |
| 
 | |
|   return IsResolved;
 | |
| }
 | |
| 
 | |
| uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
 | |
|                                           const MCFragment &F) const {
 | |
|   assert(getBackendPtr() && "Requires assembler backend");
 | |
|   switch (F.getKind()) {
 | |
|   case MCFragment::FT_Data:
 | |
|     return cast<MCDataFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_Relaxable:
 | |
|     return cast<MCRelaxableFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_CompactEncodedInst:
 | |
|     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_Fill: {
 | |
|     auto &FF = cast<MCFillFragment>(F);
 | |
|     int64_t NumValues = 0;
 | |
|     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
 | |
|       getContext().reportError(FF.getLoc(),
 | |
|                                "expected assembly-time absolute expression");
 | |
|       return 0;
 | |
|     }
 | |
|     int64_t Size = NumValues * FF.getValueSize();
 | |
|     if (Size < 0) {
 | |
|       getContext().reportError(FF.getLoc(), "invalid number of bytes");
 | |
|       return 0;
 | |
|     }
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_LEB:
 | |
|     return cast<MCLEBFragment>(F).getContents().size();
 | |
| 
 | |
|   case MCFragment::FT_Padding:
 | |
|     return cast<MCPaddingFragment>(F).getSize();
 | |
| 
 | |
|   case MCFragment::FT_SymbolId:
 | |
|     return 4;
 | |
| 
 | |
|   case MCFragment::FT_Align: {
 | |
|     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | |
|     unsigned Offset = Layout.getFragmentOffset(&AF);
 | |
|     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
 | |
|     // If we are padding with nops, force the padding to be larger than the
 | |
|     // minimum nop size.
 | |
|     if (Size > 0 && AF.hasEmitNops()) {
 | |
|       while (Size % getBackend().getMinimumNopSize())
 | |
|         Size += AF.getAlignment();
 | |
|     }
 | |
|     if (Size > AF.getMaxBytesToEmit())
 | |
|       return 0;
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Org: {
 | |
|     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | |
|     MCValue Value;
 | |
|     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
 | |
|       getContext().reportError(OF.getLoc(),
 | |
|                                "expected assembly-time absolute expression");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
 | |
|     int64_t TargetLocation = Value.getConstant();
 | |
|     if (const MCSymbolRefExpr *A = Value.getSymA()) {
 | |
|       uint64_t Val;
 | |
|       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
 | |
|         getContext().reportError(OF.getLoc(), "expected absolute expression");
 | |
|         return 0;
 | |
|       }
 | |
|       TargetLocation += Val;
 | |
|     }
 | |
|     int64_t Size = TargetLocation - FragmentOffset;
 | |
|     if (Size < 0 || Size >= 0x40000000) {
 | |
|       getContext().reportError(
 | |
|           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
 | |
|                            "' (at offset '" + Twine(FragmentOffset) + "')");
 | |
|       return 0;
 | |
|     }
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Dwarf:
 | |
|     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_DwarfFrame:
 | |
|     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_CVInlineLines:
 | |
|     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_CVDefRange:
 | |
|     return cast<MCCVDefRangeFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_Dummy:
 | |
|     llvm_unreachable("Should not have been added");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("invalid fragment kind");
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::layoutFragment(MCFragment *F) {
 | |
|   MCFragment *Prev = F->getPrevNode();
 | |
| 
 | |
|   // We should never try to recompute something which is valid.
 | |
|   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
 | |
|   // We should never try to compute the fragment layout if its predecessor
 | |
|   // isn't valid.
 | |
|   assert((!Prev || isFragmentValid(Prev)) &&
 | |
|          "Attempt to compute fragment before its predecessor!");
 | |
| 
 | |
|   ++stats::FragmentLayouts;
 | |
| 
 | |
|   // Compute fragment offset and size.
 | |
|   if (Prev)
 | |
|     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
 | |
|   else
 | |
|     F->Offset = 0;
 | |
|   LastValidFragment[F->getParent()] = F;
 | |
| 
 | |
|   // If bundling is enabled and this fragment has instructions in it, it has to
 | |
|   // obey the bundling restrictions. With padding, we'll have:
 | |
|   //
 | |
|   //
 | |
|   //        BundlePadding
 | |
|   //             |||
 | |
|   // -------------------------------------
 | |
|   //   Prev  |##########|       F        |
 | |
|   // -------------------------------------
 | |
|   //                    ^
 | |
|   //                    |
 | |
|   //                    F->Offset
 | |
|   //
 | |
|   // The fragment's offset will point to after the padding, and its computed
 | |
|   // size won't include the padding.
 | |
|   //
 | |
|   // When the -mc-relax-all flag is used, we optimize bundling by writting the
 | |
|   // padding directly into fragments when the instructions are emitted inside
 | |
|   // the streamer. When the fragment is larger than the bundle size, we need to
 | |
|   // ensure that it's bundle aligned. This means that if we end up with
 | |
|   // multiple fragments, we must emit bundle padding between fragments.
 | |
|   //
 | |
|   // ".align N" is an example of a directive that introduces multiple
 | |
|   // fragments. We could add a special case to handle ".align N" by emitting
 | |
|   // within-fragment padding (which would produce less padding when N is less
 | |
|   // than the bundle size), but for now we don't.
 | |
|   //
 | |
|   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
 | |
|     assert(isa<MCEncodedFragment>(F) &&
 | |
|            "Only MCEncodedFragment implementations have instructions");
 | |
|     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
 | |
|     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
 | |
| 
 | |
|     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
 | |
|       report_fatal_error("Fragment can't be larger than a bundle size");
 | |
| 
 | |
|     uint64_t RequiredBundlePadding =
 | |
|         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
 | |
|     if (RequiredBundlePadding > UINT8_MAX)
 | |
|       report_fatal_error("Padding cannot exceed 255 bytes");
 | |
|     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
 | |
|     EF->Offset += RequiredBundlePadding;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
 | |
|   bool New = !Symbol.isRegistered();
 | |
|   if (Created)
 | |
|     *Created = New;
 | |
|   if (New) {
 | |
|     Symbol.setIsRegistered(true);
 | |
|     Symbols.push_back(&Symbol);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MCAssembler::writeFragmentPadding(raw_ostream &OS,
 | |
|                                        const MCEncodedFragment &EF,
 | |
|                                        uint64_t FSize) const {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   // Should NOP padding be written out before this fragment?
 | |
|   unsigned BundlePadding = EF.getBundlePadding();
 | |
|   if (BundlePadding > 0) {
 | |
|     assert(isBundlingEnabled() &&
 | |
|            "Writing bundle padding with disabled bundling");
 | |
|     assert(EF.hasInstructions() &&
 | |
|            "Writing bundle padding for a fragment without instructions");
 | |
| 
 | |
|     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
 | |
|     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
 | |
|       // If the padding itself crosses a bundle boundary, it must be emitted
 | |
|       // in 2 pieces, since even nop instructions must not cross boundaries.
 | |
|       //             v--------------v   <- BundleAlignSize
 | |
|       //        v---------v             <- BundlePadding
 | |
|       // ----------------------------
 | |
|       // | Prev |####|####|    F    |
 | |
|       // ----------------------------
 | |
|       //        ^-------------------^   <- TotalLength
 | |
|       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
 | |
|       if (!getBackend().writeNopData(OS, DistanceToBoundary))
 | |
|         report_fatal_error("unable to write NOP sequence of " +
 | |
|                            Twine(DistanceToBoundary) + " bytes");
 | |
|       BundlePadding -= DistanceToBoundary;
 | |
|     }
 | |
|     if (!getBackend().writeNopData(OS, BundlePadding))
 | |
|       report_fatal_error("unable to write NOP sequence of " +
 | |
|                          Twine(BundlePadding) + " bytes");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Write the fragment \p F to the output file.
 | |
| static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
 | |
|                           const MCAsmLayout &Layout, const MCFragment &F) {
 | |
|   // FIXME: Embed in fragments instead?
 | |
|   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
 | |
| 
 | |
|   support::endianness Endian = Asm.getBackend().Endian;
 | |
| 
 | |
|   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
 | |
|     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
 | |
| 
 | |
|   // This variable (and its dummy usage) is to participate in the assert at
 | |
|   // the end of the function.
 | |
|   uint64_t Start = OS.tell();
 | |
|   (void) Start;
 | |
| 
 | |
|   ++stats::EmittedFragments;
 | |
| 
 | |
|   switch (F.getKind()) {
 | |
|   case MCFragment::FT_Align: {
 | |
|     ++stats::EmittedAlignFragments;
 | |
|     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | |
|     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | |
| 
 | |
|     uint64_t Count = FragmentSize / AF.getValueSize();
 | |
| 
 | |
|     // FIXME: This error shouldn't actually occur (the front end should emit
 | |
|     // multiple .align directives to enforce the semantics it wants), but is
 | |
|     // severe enough that we want to report it. How to handle this?
 | |
|     if (Count * AF.getValueSize() != FragmentSize)
 | |
|       report_fatal_error("undefined .align directive, value size '" +
 | |
|                         Twine(AF.getValueSize()) +
 | |
|                         "' is not a divisor of padding size '" +
 | |
|                         Twine(FragmentSize) + "'");
 | |
| 
 | |
|     // See if we are aligning with nops, and if so do that first to try to fill
 | |
|     // the Count bytes.  Then if that did not fill any bytes or there are any
 | |
|     // bytes left to fill use the Value and ValueSize to fill the rest.
 | |
|     // If we are aligning with nops, ask that target to emit the right data.
 | |
|     if (AF.hasEmitNops()) {
 | |
|       if (!Asm.getBackend().writeNopData(OS, Count))
 | |
|         report_fatal_error("unable to write nop sequence of " +
 | |
|                           Twine(Count) + " bytes");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, write out in multiples of the value size.
 | |
|     for (uint64_t i = 0; i != Count; ++i) {
 | |
|       switch (AF.getValueSize()) {
 | |
|       default: llvm_unreachable("Invalid size!");
 | |
|       case 1: OS << char(AF.getValue()); break;
 | |
|       case 2:
 | |
|         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
 | |
|         break;
 | |
|       case 4:
 | |
|         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
 | |
|         break;
 | |
|       case 8:
 | |
|         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Data:
 | |
|     ++stats::EmittedDataFragments;
 | |
|     OS << cast<MCDataFragment>(F).getContents();
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_Relaxable:
 | |
|     ++stats::EmittedRelaxableFragments;
 | |
|     OS << cast<MCRelaxableFragment>(F).getContents();
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_CompactEncodedInst:
 | |
|     ++stats::EmittedCompactEncodedInstFragments;
 | |
|     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_Fill: {
 | |
|     ++stats::EmittedFillFragments;
 | |
|     const MCFillFragment &FF = cast<MCFillFragment>(F);
 | |
|     uint64_t V = FF.getValue();
 | |
|     unsigned VSize = FF.getValueSize();
 | |
|     const unsigned MaxChunkSize = 16;
 | |
|     char Data[MaxChunkSize];
 | |
|     // Duplicate V into Data as byte vector to reduce number of
 | |
|     // writes done. As such, do endian conversion here.
 | |
|     for (unsigned I = 0; I != VSize; ++I) {
 | |
|       unsigned index = Endian == support::little ? I : (VSize - I - 1);
 | |
|       Data[I] = uint8_t(V >> (index * 8));
 | |
|     }
 | |
|     for (unsigned I = VSize; I < MaxChunkSize; ++I)
 | |
|       Data[I] = Data[I - VSize];
 | |
| 
 | |
|     // Set to largest multiple of VSize in Data.
 | |
|     const unsigned NumPerChunk = MaxChunkSize / VSize;
 | |
|     // Set ChunkSize to largest multiple of VSize in Data
 | |
|     const unsigned ChunkSize = VSize * NumPerChunk;
 | |
| 
 | |
|     // Do copies by chunk.
 | |
|     StringRef Ref(Data, ChunkSize);
 | |
|     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
 | |
|       OS << Ref;
 | |
| 
 | |
|     // do remainder if needed.
 | |
|     unsigned TrailingCount = FragmentSize % ChunkSize;
 | |
|     if (TrailingCount)
 | |
|       OS.write(Data, TrailingCount);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_LEB: {
 | |
|     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
 | |
|     OS << LF.getContents();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Padding: {
 | |
|     if (!Asm.getBackend().writeNopData(OS, FragmentSize))
 | |
|       report_fatal_error("unable to write nop sequence of " +
 | |
|                          Twine(FragmentSize) + " bytes");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_SymbolId: {
 | |
|     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
 | |
|     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Org: {
 | |
|     ++stats::EmittedOrgFragments;
 | |
|     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | |
| 
 | |
|     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
 | |
|       OS << char(OF.getValue());
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Dwarf: {
 | |
|     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
 | |
|     OS << OF.getContents();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_DwarfFrame: {
 | |
|     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
 | |
|     OS << CF.getContents();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_CVInlineLines: {
 | |
|     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
 | |
|     OS << OF.getContents();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_CVDefRange: {
 | |
|     const auto &DRF = cast<MCCVDefRangeFragment>(F);
 | |
|     OS << DRF.getContents();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Dummy:
 | |
|     llvm_unreachable("Should not have been added");
 | |
|   }
 | |
| 
 | |
|   assert(OS.tell() - Start == FragmentSize &&
 | |
|          "The stream should advance by fragment size");
 | |
| }
 | |
| 
 | |
| void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
 | |
|                                    const MCAsmLayout &Layout) const {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
| 
 | |
|   // Ignore virtual sections.
 | |
|   if (Sec->isVirtualSection()) {
 | |
|     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
 | |
| 
 | |
|     // Check that contents are only things legal inside a virtual section.
 | |
|     for (const MCFragment &F : *Sec) {
 | |
|       switch (F.getKind()) {
 | |
|       default: llvm_unreachable("Invalid fragment in virtual section!");
 | |
|       case MCFragment::FT_Data: {
 | |
|         // Check that we aren't trying to write a non-zero contents (or fixups)
 | |
|         // into a virtual section. This is to support clients which use standard
 | |
|         // directives to fill the contents of virtual sections.
 | |
|         const MCDataFragment &DF = cast<MCDataFragment>(F);
 | |
|         if (DF.fixup_begin() != DF.fixup_end())
 | |
|           report_fatal_error("cannot have fixups in virtual section!");
 | |
|         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
 | |
|           if (DF.getContents()[i]) {
 | |
|             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
 | |
|               report_fatal_error("non-zero initializer found in section '" +
 | |
|                   ELFSec->getSectionName() + "'");
 | |
|             else
 | |
|               report_fatal_error("non-zero initializer found in virtual section");
 | |
|           }
 | |
|         break;
 | |
|       }
 | |
|       case MCFragment::FT_Align:
 | |
|         // Check that we aren't trying to write a non-zero value into a virtual
 | |
|         // section.
 | |
|         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
 | |
|                 cast<MCAlignFragment>(F).getValue() == 0) &&
 | |
|                "Invalid align in virtual section!");
 | |
|         break;
 | |
|       case MCFragment::FT_Fill:
 | |
|         assert((cast<MCFillFragment>(F).getValue() == 0) &&
 | |
|                "Invalid fill in virtual section!");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t Start = OS.tell();
 | |
|   (void)Start;
 | |
| 
 | |
|   for (const MCFragment &F : *Sec)
 | |
|     writeFragment(OS, *this, Layout, F);
 | |
| 
 | |
|   assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
 | |
| }
 | |
| 
 | |
| std::tuple<MCValue, uint64_t, bool>
 | |
| MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
 | |
|                          const MCFixup &Fixup) {
 | |
|   // Evaluate the fixup.
 | |
|   MCValue Target;
 | |
|   uint64_t FixedValue;
 | |
|   bool WasForced;
 | |
|   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
 | |
|                                   WasForced);
 | |
|   if (!IsResolved) {
 | |
|     // The fixup was unresolved, we need a relocation. Inform the object
 | |
|     // writer of the relocation, and give it an opportunity to adjust the
 | |
|     // fixup value if need be.
 | |
|     if (Target.getSymA() && Target.getSymB() &&
 | |
|         getBackend().requiresDiffExpressionRelocations()) {
 | |
|       // The fixup represents the difference between two symbols, which the
 | |
|       // backend has indicated must be resolved at link time. Split up the fixup
 | |
|       // into two relocations, one for the add, and one for the sub, and emit
 | |
|       // both of these. The constant will be associated with the add half of the
 | |
|       // expression.
 | |
|       MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
 | |
|       MCValue TargetAdd =
 | |
|           MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
 | |
|       getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
 | |
|                                    FixedValue);
 | |
|       MCFixup FixupSub = MCFixup::createSubFor(Fixup);
 | |
|       MCValue TargetSub = MCValue::get(Target.getSymB());
 | |
|       getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
 | |
|                                    FixedValue);
 | |
|     } else {
 | |
|       getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
 | |
|                                    FixedValue);
 | |
|     }
 | |
|   }
 | |
|   return std::make_tuple(Target, FixedValue, IsResolved);
 | |
| }
 | |
| 
 | |
| void MCAssembler::layout(MCAsmLayout &Layout) {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       errs() << "assembler backend - pre-layout\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Create dummy fragments and assign section ordinals.
 | |
|   unsigned SectionIndex = 0;
 | |
|   for (MCSection &Sec : *this) {
 | |
|     // Create dummy fragments to eliminate any empty sections, this simplifies
 | |
|     // layout.
 | |
|     if (Sec.getFragmentList().empty())
 | |
|       new MCDataFragment(&Sec);
 | |
| 
 | |
|     Sec.setOrdinal(SectionIndex++);
 | |
|   }
 | |
| 
 | |
|   // Assign layout order indices to sections and fragments.
 | |
|   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
 | |
|     MCSection *Sec = Layout.getSectionOrder()[i];
 | |
|     Sec->setLayoutOrder(i);
 | |
| 
 | |
|     unsigned FragmentIndex = 0;
 | |
|     for (MCFragment &Frag : *Sec)
 | |
|       Frag.setLayoutOrder(FragmentIndex++);
 | |
|   }
 | |
| 
 | |
|   // Layout until everything fits.
 | |
|   while (layoutOnce(Layout))
 | |
|     if (getContext().hadError())
 | |
|       return;
 | |
| 
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       errs() << "assembler backend - post-relaxation\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Finalize the layout, including fragment lowering.
 | |
|   finishLayout(Layout);
 | |
| 
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       errs() << "assembler backend - final-layout\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Allow the object writer a chance to perform post-layout binding (for
 | |
|   // example, to set the index fields in the symbol data).
 | |
|   getWriter().executePostLayoutBinding(*this, Layout);
 | |
| 
 | |
|   // Evaluate and apply the fixups, generating relocation entries as necessary.
 | |
|   for (MCSection &Sec : *this) {
 | |
|     for (MCFragment &Frag : Sec) {
 | |
|       // Data and relaxable fragments both have fixups.  So only process
 | |
|       // those here.
 | |
|       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
 | |
|       // being templated makes this tricky.
 | |
|       if (isa<MCEncodedFragment>(&Frag) &&
 | |
|           isa<MCCompactEncodedInstFragment>(&Frag))
 | |
|         continue;
 | |
|       if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag))
 | |
|         continue;
 | |
|       ArrayRef<MCFixup> Fixups;
 | |
|       MutableArrayRef<char> Contents;
 | |
|       const MCSubtargetInfo *STI = nullptr;
 | |
|       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
 | |
|         Fixups = FragWithFixups->getFixups();
 | |
|         Contents = FragWithFixups->getContents();
 | |
|         STI = FragWithFixups->getSubtargetInfo();
 | |
|         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
 | |
|       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
 | |
|         Fixups = FragWithFixups->getFixups();
 | |
|         Contents = FragWithFixups->getContents();
 | |
|         STI = FragWithFixups->getSubtargetInfo();
 | |
|         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
 | |
|       } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
 | |
|         Fixups = FragWithFixups->getFixups();
 | |
|         Contents = FragWithFixups->getContents();
 | |
|       } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
 | |
|         Fixups = FragWithFixups->getFixups();
 | |
|         Contents = FragWithFixups->getContents();
 | |
|       } else
 | |
|         llvm_unreachable("Unknown fragment with fixups!");
 | |
|       for (const MCFixup &Fixup : Fixups) {
 | |
|         uint64_t FixedValue;
 | |
|         bool IsResolved;
 | |
|         MCValue Target;
 | |
|         std::tie(Target, FixedValue, IsResolved) =
 | |
|             handleFixup(Layout, Frag, Fixup);
 | |
|         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
 | |
|                                 IsResolved, STI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MCAssembler::Finish() {
 | |
|   // Create the layout object.
 | |
|   MCAsmLayout Layout(*this);
 | |
|   layout(Layout);
 | |
| 
 | |
|   // Write the object file.
 | |
|   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
 | |
| }
 | |
| 
 | |
| bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
 | |
|                                        const MCRelaxableFragment *DF,
 | |
|                                        const MCAsmLayout &Layout) const {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   MCValue Target;
 | |
|   uint64_t Value;
 | |
|   bool WasForced;
 | |
|   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
 | |
|   if (Target.getSymA() &&
 | |
|       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
 | |
|       Fixup.getKind() == FK_Data_1)
 | |
|     return false;
 | |
|   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
 | |
|                                                    Layout, WasForced);
 | |
| }
 | |
| 
 | |
| bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
 | |
|                                           const MCAsmLayout &Layout) const {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
 | |
|   // are intentionally pushing out inst fragments, or because we relaxed a
 | |
|   // previous instruction to one that doesn't need relaxation.
 | |
|   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
 | |
|     return false;
 | |
| 
 | |
|   for (const MCFixup &Fixup : F->getFixups())
 | |
|     if (fixupNeedsRelaxation(Fixup, F, Layout))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
 | |
|                                    MCRelaxableFragment &F) {
 | |
|   assert(getEmitterPtr() &&
 | |
|          "Expected CodeEmitter defined for relaxInstruction");
 | |
|   if (!fragmentNeedsRelaxation(&F, Layout))
 | |
|     return false;
 | |
| 
 | |
|   ++stats::RelaxedInstructions;
 | |
| 
 | |
|   // FIXME-PERF: We could immediately lower out instructions if we can tell
 | |
|   // they are fully resolved, to avoid retesting on later passes.
 | |
| 
 | |
|   // Relax the fragment.
 | |
| 
 | |
|   MCInst Relaxed;
 | |
|   getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
 | |
| 
 | |
|   // Encode the new instruction.
 | |
|   //
 | |
|   // FIXME-PERF: If it matters, we could let the target do this. It can
 | |
|   // probably do so more efficiently in many cases.
 | |
|   SmallVector<MCFixup, 4> Fixups;
 | |
|   SmallString<256> Code;
 | |
|   raw_svector_ostream VecOS(Code);
 | |
|   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
 | |
| 
 | |
|   // Update the fragment.
 | |
|   F.setInst(Relaxed);
 | |
|   F.getContents() = Code;
 | |
|   F.getFixups() = Fixups;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
 | |
|                                        MCPaddingFragment &PF) {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   uint64_t OldSize = PF.getSize();
 | |
|   if (!getBackend().relaxFragment(&PF, Layout))
 | |
|     return false;
 | |
|   uint64_t NewSize = PF.getSize();
 | |
| 
 | |
|   ++stats::PaddingFragmentsRelaxations;
 | |
|   stats::PaddingFragmentsBytes += NewSize;
 | |
|   stats::PaddingFragmentsBytes -= OldSize;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
 | |
|   uint64_t OldSize = LF.getContents().size();
 | |
|   int64_t Value;
 | |
|   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
 | |
|   if (!Abs)
 | |
|     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
 | |
|   SmallString<8> &Data = LF.getContents();
 | |
|   Data.clear();
 | |
|   raw_svector_ostream OSE(Data);
 | |
|   // The compiler can generate EH table assembly that is impossible to assemble
 | |
|   // without either adding padding to an LEB fragment or adding extra padding
 | |
|   // to a later alignment fragment. To accommodate such tables, relaxation can
 | |
|   // only increase an LEB fragment size here, not decrease it. See PR35809.
 | |
|   if (LF.isSigned())
 | |
|     encodeSLEB128(Value, OSE, OldSize);
 | |
|   else
 | |
|     encodeULEB128(Value, OSE, OldSize);
 | |
|   return OldSize != LF.getContents().size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
 | |
|                                      MCDwarfLineAddrFragment &DF) {
 | |
|   MCContext &Context = Layout.getAssembler().getContext();
 | |
|   uint64_t OldSize = DF.getContents().size();
 | |
|   int64_t AddrDelta;
 | |
|   bool Abs;
 | |
|   if (getBackend().requiresDiffExpressionRelocations())
 | |
|     Abs = DF.getAddrDelta().evaluateAsAbsolute(AddrDelta, Layout);
 | |
|   else {
 | |
|     Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
 | |
|     assert(Abs && "We created a line delta with an invalid expression");
 | |
|   }
 | |
|   int64_t LineDelta;
 | |
|   LineDelta = DF.getLineDelta();
 | |
|   SmallVectorImpl<char> &Data = DF.getContents();
 | |
|   Data.clear();
 | |
|   raw_svector_ostream OSE(Data);
 | |
|   DF.getFixups().clear();
 | |
| 
 | |
|   if (Abs) {
 | |
|     MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
 | |
|                             AddrDelta, OSE);
 | |
|   } else {
 | |
|     uint32_t Offset;
 | |
|     uint32_t Size;
 | |
|     bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
 | |
|                                                  getDWARFLinetableParams(),
 | |
|                                                  LineDelta, AddrDelta,
 | |
|                                                  OSE, &Offset, &Size);
 | |
|     // Add Fixups for address delta or new address.
 | |
|     const MCExpr *FixupExpr;
 | |
|     if (SetDelta) {
 | |
|       FixupExpr = &DF.getAddrDelta();
 | |
|     } else {
 | |
|       const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
 | |
|       FixupExpr = ABE->getLHS();
 | |
|     }
 | |
|     DF.getFixups().push_back(
 | |
|         MCFixup::create(Offset, FixupExpr,
 | |
|                         MCFixup::getKindForSize(Size, false /*isPCRel*/)));
 | |
|   }
 | |
| 
 | |
|   return OldSize != Data.size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
 | |
|                                               MCDwarfCallFrameFragment &DF) {
 | |
|   MCContext &Context = Layout.getAssembler().getContext();
 | |
|   uint64_t OldSize = DF.getContents().size();
 | |
|   int64_t AddrDelta;
 | |
|   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
 | |
|   assert(Abs && "We created call frame with an invalid expression");
 | |
|   (void) Abs;
 | |
|   SmallString<8> &Data = DF.getContents();
 | |
|   Data.clear();
 | |
|   raw_svector_ostream OSE(Data);
 | |
|   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
 | |
|   return OldSize != Data.size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
 | |
|                                          MCCVInlineLineTableFragment &F) {
 | |
|   unsigned OldSize = F.getContents().size();
 | |
|   getContext().getCVContext().encodeInlineLineTable(Layout, F);
 | |
|   return OldSize != F.getContents().size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
 | |
|                                   MCCVDefRangeFragment &F) {
 | |
|   unsigned OldSize = F.getContents().size();
 | |
|   getContext().getCVContext().encodeDefRange(Layout, F);
 | |
|   return OldSize != F.getContents().size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
 | |
|   // Holds the first fragment which needed relaxing during this layout. It will
 | |
|   // remain NULL if none were relaxed.
 | |
|   // When a fragment is relaxed, all the fragments following it should get
 | |
|   // invalidated because their offset is going to change.
 | |
|   MCFragment *FirstRelaxedFragment = nullptr;
 | |
| 
 | |
|   // Attempt to relax all the fragments in the section.
 | |
|   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
 | |
|     // Check if this is a fragment that needs relaxation.
 | |
|     bool RelaxedFrag = false;
 | |
|     switch(I->getKind()) {
 | |
|     default:
 | |
|       break;
 | |
|     case MCFragment::FT_Relaxable:
 | |
|       assert(!getRelaxAll() &&
 | |
|              "Did not expect a MCRelaxableFragment in RelaxAll mode");
 | |
|       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_Dwarf:
 | |
|       RelaxedFrag = relaxDwarfLineAddr(Layout,
 | |
|                                        *cast<MCDwarfLineAddrFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_DwarfFrame:
 | |
|       RelaxedFrag =
 | |
|         relaxDwarfCallFrameFragment(Layout,
 | |
|                                     *cast<MCDwarfCallFrameFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_LEB:
 | |
|       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_Padding:
 | |
|       RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_CVInlineLines:
 | |
|       RelaxedFrag =
 | |
|           relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_CVDefRange:
 | |
|       RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
 | |
|       break;
 | |
|     }
 | |
|     if (RelaxedFrag && !FirstRelaxedFragment)
 | |
|       FirstRelaxedFragment = &*I;
 | |
|   }
 | |
|   if (FirstRelaxedFragment) {
 | |
|     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
 | |
|   ++stats::RelaxationSteps;
 | |
| 
 | |
|   bool WasRelaxed = false;
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     MCSection &Sec = *it;
 | |
|     while (layoutSectionOnce(Layout, Sec))
 | |
|       WasRelaxed = true;
 | |
|   }
 | |
| 
 | |
|   return WasRelaxed;
 | |
| }
 | |
| 
 | |
| void MCAssembler::finishLayout(MCAsmLayout &Layout) {
 | |
|   assert(getBackendPtr() && "Expected assembler backend");
 | |
|   // The layout is done. Mark every fragment as valid.
 | |
|   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
 | |
|     MCSection &Section = *Layout.getSectionOrder()[i];
 | |
|     Layout.getFragmentOffset(&*Section.rbegin());
 | |
|     computeFragmentSize(Layout, *Section.rbegin());
 | |
|   }
 | |
|   getBackend().finishLayout(*this, Layout);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void MCAssembler::dump() const{
 | |
|   raw_ostream &OS = errs();
 | |
| 
 | |
|   OS << "<MCAssembler\n";
 | |
|   OS << "  Sections:[\n    ";
 | |
|   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     if (it != begin()) OS << ",\n    ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "],\n";
 | |
|   OS << "  Symbols:[";
 | |
| 
 | |
|   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
 | |
|     if (it != symbol_begin()) OS << ",\n           ";
 | |
|     OS << "(";
 | |
|     it->dump();
 | |
|     OS << ", Index:" << it->getIndex() << ", ";
 | |
|     OS << ")";
 | |
|   }
 | |
|   OS << "]>\n";
 | |
| }
 | |
| #endif
 |