782 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			782 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains support for clang's and llvm's instrumentation based
 | 
						|
// code coverage.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
 | 
						|
#include "llvm/ProfileData/InstrProfReader.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Errc.h"
 | 
						|
#include "llvm/Support/Error.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MemoryBuffer.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <map>
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <system_error>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace coverage;
 | 
						|
 | 
						|
#define DEBUG_TYPE "coverage-mapping"
 | 
						|
 | 
						|
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
 | 
						|
  auto It = ExpressionIndices.find(E);
 | 
						|
  if (It != ExpressionIndices.end())
 | 
						|
    return Counter::getExpression(It->second);
 | 
						|
  unsigned I = Expressions.size();
 | 
						|
  Expressions.push_back(E);
 | 
						|
  ExpressionIndices[E] = I;
 | 
						|
  return Counter::getExpression(I);
 | 
						|
}
 | 
						|
 | 
						|
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
 | 
						|
                                            SmallVectorImpl<Term> &Terms) {
 | 
						|
  switch (C.getKind()) {
 | 
						|
  case Counter::Zero:
 | 
						|
    break;
 | 
						|
  case Counter::CounterValueReference:
 | 
						|
    Terms.emplace_back(C.getCounterID(), Factor);
 | 
						|
    break;
 | 
						|
  case Counter::Expression:
 | 
						|
    const auto &E = Expressions[C.getExpressionID()];
 | 
						|
    extractTerms(E.LHS, Factor, Terms);
 | 
						|
    extractTerms(
 | 
						|
        E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
 | 
						|
  // Gather constant terms.
 | 
						|
  SmallVector<Term, 32> Terms;
 | 
						|
  extractTerms(ExpressionTree, +1, Terms);
 | 
						|
 | 
						|
  // If there are no terms, this is just a zero. The algorithm below assumes at
 | 
						|
  // least one term.
 | 
						|
  if (Terms.size() == 0)
 | 
						|
    return Counter::getZero();
 | 
						|
 | 
						|
  // Group the terms by counter ID.
 | 
						|
  llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
 | 
						|
    return LHS.CounterID < RHS.CounterID;
 | 
						|
  });
 | 
						|
 | 
						|
  // Combine terms by counter ID to eliminate counters that sum to zero.
 | 
						|
  auto Prev = Terms.begin();
 | 
						|
  for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
 | 
						|
    if (I->CounterID == Prev->CounterID) {
 | 
						|
      Prev->Factor += I->Factor;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    ++Prev;
 | 
						|
    *Prev = *I;
 | 
						|
  }
 | 
						|
  Terms.erase(++Prev, Terms.end());
 | 
						|
 | 
						|
  Counter C;
 | 
						|
  // Create additions. We do this before subtractions to avoid constructs like
 | 
						|
  // ((0 - X) + Y), as opposed to (Y - X).
 | 
						|
  for (auto T : Terms) {
 | 
						|
    if (T.Factor <= 0)
 | 
						|
      continue;
 | 
						|
    for (int I = 0; I < T.Factor; ++I)
 | 
						|
      if (C.isZero())
 | 
						|
        C = Counter::getCounter(T.CounterID);
 | 
						|
      else
 | 
						|
        C = get(CounterExpression(CounterExpression::Add, C,
 | 
						|
                                  Counter::getCounter(T.CounterID)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create subtractions.
 | 
						|
  for (auto T : Terms) {
 | 
						|
    if (T.Factor >= 0)
 | 
						|
      continue;
 | 
						|
    for (int I = 0; I < -T.Factor; ++I)
 | 
						|
      C = get(CounterExpression(CounterExpression::Subtract, C,
 | 
						|
                                Counter::getCounter(T.CounterID)));
 | 
						|
  }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
 | 
						|
  return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
 | 
						|
}
 | 
						|
 | 
						|
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
 | 
						|
  return simplify(
 | 
						|
      get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
 | 
						|
}
 | 
						|
 | 
						|
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
 | 
						|
  switch (C.getKind()) {
 | 
						|
  case Counter::Zero:
 | 
						|
    OS << '0';
 | 
						|
    return;
 | 
						|
  case Counter::CounterValueReference:
 | 
						|
    OS << '#' << C.getCounterID();
 | 
						|
    break;
 | 
						|
  case Counter::Expression: {
 | 
						|
    if (C.getExpressionID() >= Expressions.size())
 | 
						|
      return;
 | 
						|
    const auto &E = Expressions[C.getExpressionID()];
 | 
						|
    OS << '(';
 | 
						|
    dump(E.LHS, OS);
 | 
						|
    OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
 | 
						|
    dump(E.RHS, OS);
 | 
						|
    OS << ')';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  if (CounterValues.empty())
 | 
						|
    return;
 | 
						|
  Expected<int64_t> Value = evaluate(C);
 | 
						|
  if (auto E = Value.takeError()) {
 | 
						|
    consumeError(std::move(E));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  OS << '[' << *Value << ']';
 | 
						|
}
 | 
						|
 | 
						|
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
 | 
						|
  switch (C.getKind()) {
 | 
						|
  case Counter::Zero:
 | 
						|
    return 0;
 | 
						|
  case Counter::CounterValueReference:
 | 
						|
    if (C.getCounterID() >= CounterValues.size())
 | 
						|
      return errorCodeToError(errc::argument_out_of_domain);
 | 
						|
    return CounterValues[C.getCounterID()];
 | 
						|
  case Counter::Expression: {
 | 
						|
    if (C.getExpressionID() >= Expressions.size())
 | 
						|
      return errorCodeToError(errc::argument_out_of_domain);
 | 
						|
    const auto &E = Expressions[C.getExpressionID()];
 | 
						|
    Expected<int64_t> LHS = evaluate(E.LHS);
 | 
						|
    if (!LHS)
 | 
						|
      return LHS;
 | 
						|
    Expected<int64_t> RHS = evaluate(E.RHS);
 | 
						|
    if (!RHS)
 | 
						|
      return RHS;
 | 
						|
    return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled CounterKind");
 | 
						|
}
 | 
						|
 | 
						|
void FunctionRecordIterator::skipOtherFiles() {
 | 
						|
  while (Current != Records.end() && !Filename.empty() &&
 | 
						|
         Filename != Current->Filenames[0])
 | 
						|
    ++Current;
 | 
						|
  if (Current == Records.end())
 | 
						|
    *this = FunctionRecordIterator();
 | 
						|
}
 | 
						|
 | 
						|
Error CoverageMapping::loadFunctionRecord(
 | 
						|
    const CoverageMappingRecord &Record,
 | 
						|
    IndexedInstrProfReader &ProfileReader) {
 | 
						|
  StringRef OrigFuncName = Record.FunctionName;
 | 
						|
  if (OrigFuncName.empty())
 | 
						|
    return make_error<CoverageMapError>(coveragemap_error::malformed);
 | 
						|
 | 
						|
  if (Record.Filenames.empty())
 | 
						|
    OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
 | 
						|
  else
 | 
						|
    OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
 | 
						|
 | 
						|
  CounterMappingContext Ctx(Record.Expressions);
 | 
						|
 | 
						|
  std::vector<uint64_t> Counts;
 | 
						|
  if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
 | 
						|
                                                Record.FunctionHash, Counts)) {
 | 
						|
    instrprof_error IPE = InstrProfError::take(std::move(E));
 | 
						|
    if (IPE == instrprof_error::hash_mismatch) {
 | 
						|
      FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
 | 
						|
      return Error::success();
 | 
						|
    } else if (IPE != instrprof_error::unknown_function)
 | 
						|
      return make_error<InstrProfError>(IPE);
 | 
						|
    Counts.assign(Record.MappingRegions.size(), 0);
 | 
						|
  }
 | 
						|
  Ctx.setCounts(Counts);
 | 
						|
 | 
						|
  assert(!Record.MappingRegions.empty() && "Function has no regions");
 | 
						|
 | 
						|
  // This coverage record is a zero region for a function that's unused in
 | 
						|
  // some TU, but used in a different TU. Ignore it. The coverage maps from the
 | 
						|
  // the other TU will either be loaded (providing full region counts) or they
 | 
						|
  // won't (in which case we don't unintuitively report functions as uncovered
 | 
						|
  // when they have non-zero counts in the profile).
 | 
						|
  if (Record.MappingRegions.size() == 1 &&
 | 
						|
      Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
 | 
						|
    return Error::success();
 | 
						|
 | 
						|
  FunctionRecord Function(OrigFuncName, Record.Filenames);
 | 
						|
  for (const auto &Region : Record.MappingRegions) {
 | 
						|
    Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
 | 
						|
    if (auto E = ExecutionCount.takeError()) {
 | 
						|
      consumeError(std::move(E));
 | 
						|
      return Error::success();
 | 
						|
    }
 | 
						|
    Function.pushRegion(Region, *ExecutionCount);
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't create records for (filenames, function) pairs we've already seen.
 | 
						|
  auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
 | 
						|
                                          Record.Filenames.end());
 | 
						|
  if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
 | 
						|
    return Error::success();
 | 
						|
 | 
						|
  Functions.push_back(std::move(Function));
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
 | 
						|
    ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
 | 
						|
    IndexedInstrProfReader &ProfileReader) {
 | 
						|
  auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
 | 
						|
 | 
						|
  for (const auto &CoverageReader : CoverageReaders) {
 | 
						|
    for (auto RecordOrErr : *CoverageReader) {
 | 
						|
      if (Error E = RecordOrErr.takeError())
 | 
						|
        return std::move(E);
 | 
						|
      const auto &Record = *RecordOrErr;
 | 
						|
      if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
 | 
						|
        return std::move(E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return std::move(Coverage);
 | 
						|
}
 | 
						|
 | 
						|
Expected<std::unique_ptr<CoverageMapping>>
 | 
						|
CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
 | 
						|
                      StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
 | 
						|
  auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
 | 
						|
  if (Error E = ProfileReaderOrErr.takeError())
 | 
						|
    return std::move(E);
 | 
						|
  auto ProfileReader = std::move(ProfileReaderOrErr.get());
 | 
						|
 | 
						|
  SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
 | 
						|
  SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
 | 
						|
  for (const auto &File : llvm::enumerate(ObjectFilenames)) {
 | 
						|
    auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
 | 
						|
    if (std::error_code EC = CovMappingBufOrErr.getError())
 | 
						|
      return errorCodeToError(EC);
 | 
						|
    StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
 | 
						|
    auto CoverageReaderOrErr =
 | 
						|
        BinaryCoverageReader::create(CovMappingBufOrErr.get(), Arch);
 | 
						|
    if (Error E = CoverageReaderOrErr.takeError())
 | 
						|
      return std::move(E);
 | 
						|
    Readers.push_back(std::move(CoverageReaderOrErr.get()));
 | 
						|
    Buffers.push_back(std::move(CovMappingBufOrErr.get()));
 | 
						|
  }
 | 
						|
  return load(Readers, *ProfileReader);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Distributes functions into instantiation sets.
 | 
						|
///
 | 
						|
/// An instantiation set is a collection of functions that have the same source
 | 
						|
/// code, ie, template functions specializations.
 | 
						|
class FunctionInstantiationSetCollector {
 | 
						|
  using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
 | 
						|
  MapT InstantiatedFunctions;
 | 
						|
 | 
						|
public:
 | 
						|
  void insert(const FunctionRecord &Function, unsigned FileID) {
 | 
						|
    auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
 | 
						|
    while (I != E && I->FileID != FileID)
 | 
						|
      ++I;
 | 
						|
    assert(I != E && "function does not cover the given file");
 | 
						|
    auto &Functions = InstantiatedFunctions[I->startLoc()];
 | 
						|
    Functions.push_back(&Function);
 | 
						|
  }
 | 
						|
 | 
						|
  MapT::iterator begin() { return InstantiatedFunctions.begin(); }
 | 
						|
  MapT::iterator end() { return InstantiatedFunctions.end(); }
 | 
						|
};
 | 
						|
 | 
						|
class SegmentBuilder {
 | 
						|
  std::vector<CoverageSegment> &Segments;
 | 
						|
  SmallVector<const CountedRegion *, 8> ActiveRegions;
 | 
						|
 | 
						|
  SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
 | 
						|
 | 
						|
  /// Emit a segment with the count from \p Region starting at \p StartLoc.
 | 
						|
  //
 | 
						|
  /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
 | 
						|
  /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
 | 
						|
  void startSegment(const CountedRegion &Region, LineColPair StartLoc,
 | 
						|
                    bool IsRegionEntry, bool EmitSkippedRegion = false) {
 | 
						|
    bool HasCount = !EmitSkippedRegion &&
 | 
						|
                    (Region.Kind != CounterMappingRegion::SkippedRegion);
 | 
						|
 | 
						|
    // If the new segment wouldn't affect coverage rendering, skip it.
 | 
						|
    if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
 | 
						|
      const auto &Last = Segments.back();
 | 
						|
      if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
 | 
						|
          !Last.IsRegionEntry)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasCount)
 | 
						|
      Segments.emplace_back(StartLoc.first, StartLoc.second,
 | 
						|
                            Region.ExecutionCount, IsRegionEntry,
 | 
						|
                            Region.Kind == CounterMappingRegion::GapRegion);
 | 
						|
    else
 | 
						|
      Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      const auto &Last = Segments.back();
 | 
						|
      dbgs() << "Segment at " << Last.Line << ":" << Last.Col
 | 
						|
             << " (count = " << Last.Count << ")"
 | 
						|
             << (Last.IsRegionEntry ? ", RegionEntry" : "")
 | 
						|
             << (!Last.HasCount ? ", Skipped" : "")
 | 
						|
             << (Last.IsGapRegion ? ", Gap" : "") << "\n";
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  /// Emit segments for active regions which end before \p Loc.
 | 
						|
  ///
 | 
						|
  /// \p Loc: The start location of the next region. If None, all active
 | 
						|
  /// regions are completed.
 | 
						|
  /// \p FirstCompletedRegion: Index of the first completed region.
 | 
						|
  void completeRegionsUntil(Optional<LineColPair> Loc,
 | 
						|
                            unsigned FirstCompletedRegion) {
 | 
						|
    // Sort the completed regions by end location. This makes it simple to
 | 
						|
    // emit closing segments in sorted order.
 | 
						|
    auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
 | 
						|
    std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
 | 
						|
                      [](const CountedRegion *L, const CountedRegion *R) {
 | 
						|
                        return L->endLoc() < R->endLoc();
 | 
						|
                      });
 | 
						|
 | 
						|
    // Emit segments for all completed regions.
 | 
						|
    for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
 | 
						|
         ++I) {
 | 
						|
      const auto *CompletedRegion = ActiveRegions[I];
 | 
						|
      assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
 | 
						|
             "Completed region ends after start of new region");
 | 
						|
 | 
						|
      const auto *PrevCompletedRegion = ActiveRegions[I - 1];
 | 
						|
      auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
 | 
						|
 | 
						|
      // Don't emit any more segments if they start where the new region begins.
 | 
						|
      if (Loc && CompletedSegmentLoc == *Loc)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Don't emit a segment if the next completed region ends at the same
 | 
						|
      // location as this one.
 | 
						|
      if (CompletedSegmentLoc == CompletedRegion->endLoc())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Use the count from the last completed region which ends at this loc.
 | 
						|
      for (unsigned J = I + 1; J < E; ++J)
 | 
						|
        if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
 | 
						|
          CompletedRegion = ActiveRegions[J];
 | 
						|
 | 
						|
      startSegment(*CompletedRegion, CompletedSegmentLoc, false);
 | 
						|
    }
 | 
						|
 | 
						|
    auto Last = ActiveRegions.back();
 | 
						|
    if (FirstCompletedRegion && Last->endLoc() != *Loc) {
 | 
						|
      // If there's a gap after the end of the last completed region and the
 | 
						|
      // start of the new region, use the last active region to fill the gap.
 | 
						|
      startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
 | 
						|
                   false);
 | 
						|
    } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
 | 
						|
      // Emit a skipped segment if there are no more active regions. This
 | 
						|
      // ensures that gaps between functions are marked correctly.
 | 
						|
      startSegment(*Last, Last->endLoc(), false, true);
 | 
						|
    }
 | 
						|
 | 
						|
    // Pop the completed regions.
 | 
						|
    ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
 | 
						|
  }
 | 
						|
 | 
						|
  void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
 | 
						|
    for (const auto &CR : enumerate(Regions)) {
 | 
						|
      auto CurStartLoc = CR.value().startLoc();
 | 
						|
 | 
						|
      // Active regions which end before the current region need to be popped.
 | 
						|
      auto CompletedRegions =
 | 
						|
          std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
 | 
						|
                                [&](const CountedRegion *Region) {
 | 
						|
                                  return !(Region->endLoc() <= CurStartLoc);
 | 
						|
                                });
 | 
						|
      if (CompletedRegions != ActiveRegions.end()) {
 | 
						|
        unsigned FirstCompletedRegion =
 | 
						|
            std::distance(ActiveRegions.begin(), CompletedRegions);
 | 
						|
        completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
 | 
						|
      }
 | 
						|
 | 
						|
      bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
 | 
						|
 | 
						|
      // Try to emit a segment for the current region.
 | 
						|
      if (CurStartLoc == CR.value().endLoc()) {
 | 
						|
        // Avoid making zero-length regions active. If it's the last region,
 | 
						|
        // emit a skipped segment. Otherwise use its predecessor's count.
 | 
						|
        const bool Skipped = (CR.index() + 1) == Regions.size();
 | 
						|
        startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
 | 
						|
                     CurStartLoc, !GapRegion, Skipped);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (CR.index() + 1 == Regions.size() ||
 | 
						|
          CurStartLoc != Regions[CR.index() + 1].startLoc()) {
 | 
						|
        // Emit a segment if the next region doesn't start at the same location
 | 
						|
        // as this one.
 | 
						|
        startSegment(CR.value(), CurStartLoc, !GapRegion);
 | 
						|
      }
 | 
						|
 | 
						|
      // This region is active (i.e not completed).
 | 
						|
      ActiveRegions.push_back(&CR.value());
 | 
						|
    }
 | 
						|
 | 
						|
    // Complete any remaining active regions.
 | 
						|
    if (!ActiveRegions.empty())
 | 
						|
      completeRegionsUntil(None, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Sort a nested sequence of regions from a single file.
 | 
						|
  static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
 | 
						|
    llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
 | 
						|
      if (LHS.startLoc() != RHS.startLoc())
 | 
						|
        return LHS.startLoc() < RHS.startLoc();
 | 
						|
      if (LHS.endLoc() != RHS.endLoc())
 | 
						|
        // When LHS completely contains RHS, we sort LHS first.
 | 
						|
        return RHS.endLoc() < LHS.endLoc();
 | 
						|
      // If LHS and RHS cover the same area, we need to sort them according
 | 
						|
      // to their kinds so that the most suitable region will become "active"
 | 
						|
      // in combineRegions(). Because we accumulate counter values only from
 | 
						|
      // regions of the same kind as the first region of the area, prefer
 | 
						|
      // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
 | 
						|
      static_assert(CounterMappingRegion::CodeRegion <
 | 
						|
                            CounterMappingRegion::ExpansionRegion &&
 | 
						|
                        CounterMappingRegion::ExpansionRegion <
 | 
						|
                            CounterMappingRegion::SkippedRegion,
 | 
						|
                    "Unexpected order of region kind values");
 | 
						|
      return LHS.Kind < RHS.Kind;
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  /// Combine counts of regions which cover the same area.
 | 
						|
  static ArrayRef<CountedRegion>
 | 
						|
  combineRegions(MutableArrayRef<CountedRegion> Regions) {
 | 
						|
    if (Regions.empty())
 | 
						|
      return Regions;
 | 
						|
    auto Active = Regions.begin();
 | 
						|
    auto End = Regions.end();
 | 
						|
    for (auto I = Regions.begin() + 1; I != End; ++I) {
 | 
						|
      if (Active->startLoc() != I->startLoc() ||
 | 
						|
          Active->endLoc() != I->endLoc()) {
 | 
						|
        // Shift to the next region.
 | 
						|
        ++Active;
 | 
						|
        if (Active != I)
 | 
						|
          *Active = *I;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Merge duplicate region.
 | 
						|
      // If CodeRegions and ExpansionRegions cover the same area, it's probably
 | 
						|
      // a macro which is fully expanded to another macro. In that case, we need
 | 
						|
      // to accumulate counts only from CodeRegions, or else the area will be
 | 
						|
      // counted twice.
 | 
						|
      // On the other hand, a macro may have a nested macro in its body. If the
 | 
						|
      // outer macro is used several times, the ExpansionRegion for the nested
 | 
						|
      // macro will also be added several times. These ExpansionRegions cover
 | 
						|
      // the same source locations and have to be combined to reach the correct
 | 
						|
      // value for that area.
 | 
						|
      // We add counts of the regions of the same kind as the active region
 | 
						|
      // to handle the both situations.
 | 
						|
      if (I->Kind == Active->Kind)
 | 
						|
        Active->ExecutionCount += I->ExecutionCount;
 | 
						|
    }
 | 
						|
    return Regions.drop_back(std::distance(++Active, End));
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// Build a sorted list of CoverageSegments from a list of Regions.
 | 
						|
  static std::vector<CoverageSegment>
 | 
						|
  buildSegments(MutableArrayRef<CountedRegion> Regions) {
 | 
						|
    std::vector<CoverageSegment> Segments;
 | 
						|
    SegmentBuilder Builder(Segments);
 | 
						|
 | 
						|
    sortNestedRegions(Regions);
 | 
						|
    ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "Combined regions:\n";
 | 
						|
      for (const auto &CR : CombinedRegions)
 | 
						|
        dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
 | 
						|
               << CR.LineEnd << ":" << CR.ColumnEnd
 | 
						|
               << " (count=" << CR.ExecutionCount << ")\n";
 | 
						|
    });
 | 
						|
 | 
						|
    Builder.buildSegmentsImpl(CombinedRegions);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
 | 
						|
      const auto &L = Segments[I - 1];
 | 
						|
      const auto &R = Segments[I];
 | 
						|
      if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
 | 
						|
        LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
 | 
						|
                          << " followed by " << R.Line << ":" << R.Col << "\n");
 | 
						|
        assert(false && "Coverage segments not unique or sorted");
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return Segments;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
 | 
						|
  std::vector<StringRef> Filenames;
 | 
						|
  for (const auto &Function : getCoveredFunctions())
 | 
						|
    Filenames.insert(Filenames.end(), Function.Filenames.begin(),
 | 
						|
                     Function.Filenames.end());
 | 
						|
  llvm::sort(Filenames);
 | 
						|
  auto Last = std::unique(Filenames.begin(), Filenames.end());
 | 
						|
  Filenames.erase(Last, Filenames.end());
 | 
						|
  return Filenames;
 | 
						|
}
 | 
						|
 | 
						|
static SmallBitVector gatherFileIDs(StringRef SourceFile,
 | 
						|
                                    const FunctionRecord &Function) {
 | 
						|
  SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
 | 
						|
  for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
 | 
						|
    if (SourceFile == Function.Filenames[I])
 | 
						|
      FilenameEquivalence[I] = true;
 | 
						|
  return FilenameEquivalence;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the ID of the file where the definition of the function is located.
 | 
						|
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
 | 
						|
  SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
 | 
						|
  for (const auto &CR : Function.CountedRegions)
 | 
						|
    if (CR.Kind == CounterMappingRegion::ExpansionRegion)
 | 
						|
      IsNotExpandedFile[CR.ExpandedFileID] = false;
 | 
						|
  int I = IsNotExpandedFile.find_first();
 | 
						|
  if (I == -1)
 | 
						|
    return None;
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if SourceFile is the file that contains the definition of
 | 
						|
/// the Function. Return the ID of the file in that case or None otherwise.
 | 
						|
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
 | 
						|
                                             const FunctionRecord &Function) {
 | 
						|
  Optional<unsigned> I = findMainViewFileID(Function);
 | 
						|
  if (I && SourceFile == Function.Filenames[*I])
 | 
						|
    return I;
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
 | 
						|
  return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
 | 
						|
}
 | 
						|
 | 
						|
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
 | 
						|
  CoverageData FileCoverage(Filename);
 | 
						|
  std::vector<CountedRegion> Regions;
 | 
						|
 | 
						|
  for (const auto &Function : Functions) {
 | 
						|
    auto MainFileID = findMainViewFileID(Filename, Function);
 | 
						|
    auto FileIDs = gatherFileIDs(Filename, Function);
 | 
						|
    for (const auto &CR : Function.CountedRegions)
 | 
						|
      if (FileIDs.test(CR.FileID)) {
 | 
						|
        Regions.push_back(CR);
 | 
						|
        if (MainFileID && isExpansion(CR, *MainFileID))
 | 
						|
          FileCoverage.Expansions.emplace_back(CR, Function);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
 | 
						|
  FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
 | 
						|
 | 
						|
  return FileCoverage;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<InstantiationGroup>
 | 
						|
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
 | 
						|
  FunctionInstantiationSetCollector InstantiationSetCollector;
 | 
						|
  for (const auto &Function : Functions) {
 | 
						|
    auto MainFileID = findMainViewFileID(Filename, Function);
 | 
						|
    if (!MainFileID)
 | 
						|
      continue;
 | 
						|
    InstantiationSetCollector.insert(Function, *MainFileID);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<InstantiationGroup> Result;
 | 
						|
  for (auto &InstantiationSet : InstantiationSetCollector) {
 | 
						|
    InstantiationGroup IG{InstantiationSet.first.first,
 | 
						|
                          InstantiationSet.first.second,
 | 
						|
                          std::move(InstantiationSet.second)};
 | 
						|
    Result.emplace_back(std::move(IG));
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
CoverageData
 | 
						|
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
 | 
						|
  auto MainFileID = findMainViewFileID(Function);
 | 
						|
  if (!MainFileID)
 | 
						|
    return CoverageData();
 | 
						|
 | 
						|
  CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
 | 
						|
  std::vector<CountedRegion> Regions;
 | 
						|
  for (const auto &CR : Function.CountedRegions)
 | 
						|
    if (CR.FileID == *MainFileID) {
 | 
						|
      Regions.push_back(CR);
 | 
						|
      if (isExpansion(CR, *MainFileID))
 | 
						|
        FunctionCoverage.Expansions.emplace_back(CR, Function);
 | 
						|
    }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
 | 
						|
                    << "\n");
 | 
						|
  FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
 | 
						|
 | 
						|
  return FunctionCoverage;
 | 
						|
}
 | 
						|
 | 
						|
CoverageData CoverageMapping::getCoverageForExpansion(
 | 
						|
    const ExpansionRecord &Expansion) const {
 | 
						|
  CoverageData ExpansionCoverage(
 | 
						|
      Expansion.Function.Filenames[Expansion.FileID]);
 | 
						|
  std::vector<CountedRegion> Regions;
 | 
						|
  for (const auto &CR : Expansion.Function.CountedRegions)
 | 
						|
    if (CR.FileID == Expansion.FileID) {
 | 
						|
      Regions.push_back(CR);
 | 
						|
      if (isExpansion(CR, Expansion.FileID))
 | 
						|
        ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
 | 
						|
    }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
 | 
						|
                    << Expansion.FileID << "\n");
 | 
						|
  ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
 | 
						|
 | 
						|
  return ExpansionCoverage;
 | 
						|
}
 | 
						|
 | 
						|
LineCoverageStats::LineCoverageStats(
 | 
						|
    ArrayRef<const CoverageSegment *> LineSegments,
 | 
						|
    const CoverageSegment *WrappedSegment, unsigned Line)
 | 
						|
    : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
 | 
						|
      LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
 | 
						|
  // Find the minimum number of regions which start in this line.
 | 
						|
  unsigned MinRegionCount = 0;
 | 
						|
  auto isStartOfRegion = [](const CoverageSegment *S) {
 | 
						|
    return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
 | 
						|
  };
 | 
						|
  for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
 | 
						|
    if (isStartOfRegion(LineSegments[I]))
 | 
						|
      ++MinRegionCount;
 | 
						|
 | 
						|
  bool StartOfSkippedRegion = !LineSegments.empty() &&
 | 
						|
                              !LineSegments.front()->HasCount &&
 | 
						|
                              LineSegments.front()->IsRegionEntry;
 | 
						|
 | 
						|
  HasMultipleRegions = MinRegionCount > 1;
 | 
						|
  Mapped =
 | 
						|
      !StartOfSkippedRegion &&
 | 
						|
      ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
 | 
						|
 | 
						|
  if (!Mapped)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Pick the max count from the non-gap, region entry segments and the
 | 
						|
  // wrapped count.
 | 
						|
  if (WrappedSegment)
 | 
						|
    ExecutionCount = WrappedSegment->Count;
 | 
						|
  if (!MinRegionCount)
 | 
						|
    return;
 | 
						|
  for (const auto *LS : LineSegments)
 | 
						|
    if (isStartOfRegion(LS))
 | 
						|
      ExecutionCount = std::max(ExecutionCount, LS->Count);
 | 
						|
}
 | 
						|
 | 
						|
LineCoverageIterator &LineCoverageIterator::operator++() {
 | 
						|
  if (Next == CD.end()) {
 | 
						|
    Stats = LineCoverageStats();
 | 
						|
    Ended = true;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  if (Segments.size())
 | 
						|
    WrappedSegment = Segments.back();
 | 
						|
  Segments.clear();
 | 
						|
  while (Next != CD.end() && Next->Line == Line)
 | 
						|
    Segments.push_back(&*Next++);
 | 
						|
  Stats = LineCoverageStats(Segments, WrappedSegment, Line);
 | 
						|
  ++Line;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
static std::string getCoverageMapErrString(coveragemap_error Err) {
 | 
						|
  switch (Err) {
 | 
						|
  case coveragemap_error::success:
 | 
						|
    return "Success";
 | 
						|
  case coveragemap_error::eof:
 | 
						|
    return "End of File";
 | 
						|
  case coveragemap_error::no_data_found:
 | 
						|
    return "No coverage data found";
 | 
						|
  case coveragemap_error::unsupported_version:
 | 
						|
    return "Unsupported coverage format version";
 | 
						|
  case coveragemap_error::truncated:
 | 
						|
    return "Truncated coverage data";
 | 
						|
  case coveragemap_error::malformed:
 | 
						|
    return "Malformed coverage data";
 | 
						|
  }
 | 
						|
  llvm_unreachable("A value of coveragemap_error has no message.");
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// FIXME: This class is only here to support the transition to llvm::Error. It
 | 
						|
// will be removed once this transition is complete. Clients should prefer to
 | 
						|
// deal with the Error value directly, rather than converting to error_code.
 | 
						|
class CoverageMappingErrorCategoryType : public std::error_category {
 | 
						|
  const char *name() const noexcept override { return "llvm.coveragemap"; }
 | 
						|
  std::string message(int IE) const override {
 | 
						|
    return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
std::string CoverageMapError::message() const {
 | 
						|
  return getCoverageMapErrString(Err);
 | 
						|
}
 | 
						|
 | 
						|
static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
 | 
						|
 | 
						|
const std::error_category &llvm::coverage::coveragemap_category() {
 | 
						|
  return *ErrorCategory;
 | 
						|
}
 | 
						|
 | 
						|
char CoverageMapError::ID = 0;
 |