15127 lines
		
	
	
		
			582 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			15127 lines
		
	
	
		
			582 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that ARM uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMISelLowering.h"
 | |
| #include "ARMBaseInstrInfo.h"
 | |
| #include "ARMBaseRegisterInfo.h"
 | |
| #include "ARMCallingConv.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "ARMPerfectShuffle.h"
 | |
| #include "ARMRegisterInfo.h"
 | |
| #include "ARMSelectionDAGInfo.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "MCTargetDesc/ARMBaseInfo.h"
 | |
| #include "Utils/ARMBaseInfo.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/MC/MCSchedule.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "arm-isel"
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
 | |
| STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
 | |
| STATISTIC(NumConstpoolPromoted,
 | |
|   "Number of constants with their storage promoted into constant pools");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ARMInterworking("arm-interworking", cl::Hidden,
 | |
|   cl::desc("Enable / disable ARM interworking (for debugging only)"),
 | |
|   cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> EnableConstpoolPromotion(
 | |
|     "arm-promote-constant", cl::Hidden,
 | |
|     cl::desc("Enable / disable promotion of unnamed_addr constants into "
 | |
|              "constant pools"),
 | |
|     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
 | |
| static cl::opt<unsigned> ConstpoolPromotionMaxSize(
 | |
|     "arm-promote-constant-max-size", cl::Hidden,
 | |
|     cl::desc("Maximum size of constant to promote into a constant pool"),
 | |
|     cl::init(64));
 | |
| static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
 | |
|     "arm-promote-constant-max-total", cl::Hidden,
 | |
|     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
 | |
|     cl::init(128));
 | |
| 
 | |
| // The APCS parameter registers.
 | |
| static const MCPhysReg GPRArgRegs[] = {
 | |
|   ARM::R0, ARM::R1, ARM::R2, ARM::R3
 | |
| };
 | |
| 
 | |
| void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
 | |
|                                        MVT PromotedBitwiseVT) {
 | |
|   if (VT != PromotedLdStVT) {
 | |
|     setOperationAction(ISD::LOAD, VT, Promote);
 | |
|     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
 | |
| 
 | |
|     setOperationAction(ISD::STORE, VT, Promote);
 | |
|     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
 | |
|   }
 | |
| 
 | |
|   MVT ElemTy = VT.getVectorElementType();
 | |
|   if (ElemTy != MVT::f64)
 | |
|     setOperationAction(ISD::SETCC, VT, Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | |
|   if (ElemTy == MVT::i32) {
 | |
|     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
 | |
|   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
 | |
|   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
 | |
|   setOperationAction(ISD::SELECT,            VT, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC,         VT, Expand);
 | |
|   setOperationAction(ISD::VSELECT,           VT, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | |
|   if (VT.isInteger()) {
 | |
|     setOperationAction(ISD::SHL, VT, Custom);
 | |
|     setOperationAction(ISD::SRA, VT, Custom);
 | |
|     setOperationAction(ISD::SRL, VT, Custom);
 | |
|   }
 | |
| 
 | |
|   // Promote all bit-wise operations.
 | |
|   if (VT.isInteger() && VT != PromotedBitwiseVT) {
 | |
|     setOperationAction(ISD::AND, VT, Promote);
 | |
|     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
 | |
|     setOperationAction(ISD::OR,  VT, Promote);
 | |
|     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
 | |
|     setOperationAction(ISD::XOR, VT, Promote);
 | |
|     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
 | |
|   }
 | |
| 
 | |
|   // Neon does not support vector divide/remainder operations.
 | |
|   setOperationAction(ISD::SDIV, VT, Expand);
 | |
|   setOperationAction(ISD::UDIV, VT, Expand);
 | |
|   setOperationAction(ISD::FDIV, VT, Expand);
 | |
|   setOperationAction(ISD::SREM, VT, Expand);
 | |
|   setOperationAction(ISD::UREM, VT, Expand);
 | |
|   setOperationAction(ISD::FREM, VT, Expand);
 | |
| 
 | |
|   if (!VT.isFloatingPoint() &&
 | |
|       VT != MVT::v2i64 && VT != MVT::v1i64)
 | |
|     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
 | |
|       setOperationAction(Opcode, VT, Legal);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
 | |
|   addRegisterClass(VT, &ARM::DPRRegClass);
 | |
|   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
 | |
|   addRegisterClass(VT, &ARM::DPairRegClass);
 | |
|   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
 | |
| }
 | |
| 
 | |
| ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
 | |
|                                      const ARMSubtarget &STI)
 | |
|     : TargetLowering(TM), Subtarget(&STI) {
 | |
|   RegInfo = Subtarget->getRegisterInfo();
 | |
|   Itins = Subtarget->getInstrItineraryData();
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
| 
 | |
|   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
 | |
|       !Subtarget->isTargetWatchOS()) {
 | |
|     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
 | |
|     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
 | |
|       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
 | |
|                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
 | |
|                                        : CallingConv::ARM_AAPCS);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isTargetMachO()) {
 | |
|     // Uses VFP for Thumb libfuncs if available.
 | |
|     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
 | |
|         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
 | |
|       static const struct {
 | |
|         const RTLIB::Libcall Op;
 | |
|         const char * const Name;
 | |
|         const ISD::CondCode Cond;
 | |
|       } LibraryCalls[] = {
 | |
|         // Single-precision floating-point arithmetic.
 | |
|         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
 | |
| 
 | |
|         // Double-precision floating-point arithmetic.
 | |
|         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
 | |
| 
 | |
|         // Single-precision comparisons.
 | |
|         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
 | |
|         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
 | |
| 
 | |
|         // Double-precision comparisons.
 | |
|         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
 | |
|         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
 | |
|         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
 | |
| 
 | |
|         // Floating-point to integer conversions.
 | |
|         // i64 conversions are done via library routines even when generating VFP
 | |
|         // instructions, so use the same ones.
 | |
|         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
 | |
|         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
 | |
|         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
 | |
| 
 | |
|         // Conversions between floating types.
 | |
|         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
 | |
|         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
 | |
| 
 | |
|         // Integer to floating-point conversions.
 | |
|         // i64 conversions are done via library routines even when generating VFP
 | |
|         // instructions, so use the same ones.
 | |
|         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
 | |
|         // e.g., __floatunsidf vs. __floatunssidfvfp.
 | |
|         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
 | |
|         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
 | |
|         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
 | |
|         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
 | |
|       };
 | |
| 
 | |
|       for (const auto &LC : LibraryCalls) {
 | |
|         setLibcallName(LC.Op, LC.Name);
 | |
|         if (LC.Cond != ISD::SETCC_INVALID)
 | |
|           setCmpLibcallCC(LC.Op, LC.Cond);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // These libcalls are not available in 32-bit.
 | |
|   setLibcallName(RTLIB::SHL_I128, nullptr);
 | |
|   setLibcallName(RTLIB::SRL_I128, nullptr);
 | |
|   setLibcallName(RTLIB::SRA_I128, nullptr);
 | |
| 
 | |
|   // RTLIB
 | |
|   if (Subtarget->isAAPCS_ABI() &&
 | |
|       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
 | |
|        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
 | |
|     static const struct {
 | |
|       const RTLIB::Libcall Op;
 | |
|       const char * const Name;
 | |
|       const CallingConv::ID CC;
 | |
|       const ISD::CondCode Cond;
 | |
|     } LibraryCalls[] = {
 | |
|       // Double-precision floating-point arithmetic helper functions
 | |
|       // RTABI chapter 4.1.2, Table 2
 | |
|       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
| 
 | |
|       // Double-precision floating-point comparison helper functions
 | |
|       // RTABI chapter 4.1.2, Table 3
 | |
|       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
 | |
|       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
 | |
| 
 | |
|       // Single-precision floating-point arithmetic helper functions
 | |
|       // RTABI chapter 4.1.2, Table 4
 | |
|       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
| 
 | |
|       // Single-precision floating-point comparison helper functions
 | |
|       // RTABI chapter 4.1.2, Table 5
 | |
|       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
 | |
|       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
 | |
|       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
 | |
| 
 | |
|       // Floating-point to integer conversions.
 | |
|       // RTABI chapter 4.1.2, Table 6
 | |
|       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
| 
 | |
|       // Conversions between floating types.
 | |
|       // RTABI chapter 4.1.2, Table 7
 | |
|       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
| 
 | |
|       // Integer to floating-point conversions.
 | |
|       // RTABI chapter 4.1.2, Table 8
 | |
|       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
| 
 | |
|       // Long long helper functions
 | |
|       // RTABI chapter 4.2, Table 9
 | |
|       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
| 
 | |
|       // Integer division functions
 | |
|       // RTABI chapter 4.3.1
 | |
|       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|     };
 | |
| 
 | |
|     for (const auto &LC : LibraryCalls) {
 | |
|       setLibcallName(LC.Op, LC.Name);
 | |
|       setLibcallCallingConv(LC.Op, LC.CC);
 | |
|       if (LC.Cond != ISD::SETCC_INVALID)
 | |
|         setCmpLibcallCC(LC.Op, LC.Cond);
 | |
|     }
 | |
| 
 | |
|     // EABI dependent RTLIB
 | |
|     if (TM.Options.EABIVersion == EABI::EABI4 ||
 | |
|         TM.Options.EABIVersion == EABI::EABI5) {
 | |
|       static const struct {
 | |
|         const RTLIB::Libcall Op;
 | |
|         const char *const Name;
 | |
|         const CallingConv::ID CC;
 | |
|         const ISD::CondCode Cond;
 | |
|       } MemOpsLibraryCalls[] = {
 | |
|         // Memory operations
 | |
|         // RTABI chapter 4.3.4
 | |
|         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
 | |
|       };
 | |
| 
 | |
|       for (const auto &LC : MemOpsLibraryCalls) {
 | |
|         setLibcallName(LC.Op, LC.Name);
 | |
|         setLibcallCallingConv(LC.Op, LC.CC);
 | |
|         if (LC.Cond != ISD::SETCC_INVALID)
 | |
|           setCmpLibcallCC(LC.Op, LC.Cond);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isTargetWindows()) {
 | |
|     static const struct {
 | |
|       const RTLIB::Libcall Op;
 | |
|       const char * const Name;
 | |
|       const CallingConv::ID CC;
 | |
|     } LibraryCalls[] = {
 | |
|       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
 | |
|       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
 | |
|     };
 | |
| 
 | |
|     for (const auto &LC : LibraryCalls) {
 | |
|       setLibcallName(LC.Op, LC.Name);
 | |
|       setLibcallCallingConv(LC.Op, LC.CC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use divmod compiler-rt calls for iOS 5.0 and later.
 | |
|   if (Subtarget->isTargetMachO() &&
 | |
|       !(Subtarget->isTargetIOS() &&
 | |
|         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
 | |
|     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
 | |
|     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
 | |
|   }
 | |
| 
 | |
|   // The half <-> float conversion functions are always soft-float on
 | |
|   // non-watchos platforms, but are needed for some targets which use a
 | |
|   // hard-float calling convention by default.
 | |
|   if (!Subtarget->isTargetWatchABI()) {
 | |
|     if (Subtarget->isAAPCS_ABI()) {
 | |
|       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
 | |
|       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
 | |
|       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
 | |
|     } else {
 | |
|       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
 | |
|       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
 | |
|       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
 | |
|   // a __gnu_ prefix (which is the default).
 | |
|   if (Subtarget->isTargetAEABI()) {
 | |
|     static const struct {
 | |
|       const RTLIB::Libcall Op;
 | |
|       const char * const Name;
 | |
|       const CallingConv::ID CC;
 | |
|     } LibraryCalls[] = {
 | |
|       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
 | |
|       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
 | |
|       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
 | |
|     };
 | |
| 
 | |
|     for (const auto &LC : LibraryCalls) {
 | |
|       setLibcallName(LC.Op, LC.Name);
 | |
|       setLibcallCallingConv(LC.Op, LC.CC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
 | |
|   else
 | |
|     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
 | |
| 
 | |
|   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
 | |
|       !Subtarget->isThumb1Only()) {
 | |
|     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
 | |
|     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasFullFP16()) {
 | |
|     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
 | |
|     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
 | |
|     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
 | |
|   }
 | |
| 
 | |
|   for (MVT VT : MVT::vector_valuetypes()) {
 | |
|     for (MVT InnerVT : MVT::vector_valuetypes()) {
 | |
|       setTruncStoreAction(VT, InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::MULHS, VT, Expand);
 | |
|     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | |
|     setOperationAction(ISD::MULHU, VT, Expand);
 | |
|     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::BSWAP, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
 | |
| 
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     addDRTypeForNEON(MVT::v2f32);
 | |
|     addDRTypeForNEON(MVT::v8i8);
 | |
|     addDRTypeForNEON(MVT::v4i16);
 | |
|     addDRTypeForNEON(MVT::v2i32);
 | |
|     addDRTypeForNEON(MVT::v1i64);
 | |
| 
 | |
|     addQRTypeForNEON(MVT::v4f32);
 | |
|     addQRTypeForNEON(MVT::v2f64);
 | |
|     addQRTypeForNEON(MVT::v16i8);
 | |
|     addQRTypeForNEON(MVT::v8i16);
 | |
|     addQRTypeForNEON(MVT::v4i32);
 | |
|     addQRTypeForNEON(MVT::v2i64);
 | |
| 
 | |
|     if (Subtarget->hasFullFP16()) {
 | |
|       addQRTypeForNEON(MVT::v8f16);
 | |
|       addDRTypeForNEON(MVT::v4f16);
 | |
|     }
 | |
| 
 | |
|     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
 | |
|     // neither Neon nor VFP support any arithmetic operations on it.
 | |
|     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
 | |
|     // supported for v4f32.
 | |
|     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
 | |
|     // FIXME: Code duplication: FDIV and FREM are expanded always, see
 | |
|     // ARMTargetLowering::addTypeForNEON method for details.
 | |
|     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
 | |
|     // FIXME: Create unittest.
 | |
|     // In another words, find a way when "copysign" appears in DAG with vector
 | |
|     // operands.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
 | |
|     // FIXME: Code duplication: SETCC has custom operation action, see
 | |
|     // ARMTargetLowering::addTypeForNEON method for details.
 | |
|     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
 | |
|     // FIXME: Create unittest for FNEG and for FABS.
 | |
|     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
 | |
|     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
 | |
|     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
 | |
| 
 | |
|     // Mark v2f32 intrinsics.
 | |
|     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
 | |
| 
 | |
|     // Neon does not support some operations on v1i64 and v2i64 types.
 | |
|     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
 | |
|     // Custom handling for some quad-vector types to detect VMULL.
 | |
|     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
 | |
|     // Custom handling for some vector types to avoid expensive expansions
 | |
|     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
 | |
|     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
 | |
|     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
 | |
|     // a destination type that is wider than the source, and nor does
 | |
|     // it have a FP_TO_[SU]INT instruction with a narrower destination than
 | |
|     // source.
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
 | |
|     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
 | |
| 
 | |
|     // NEON does not have single instruction CTPOP for vectors with element
 | |
|     // types wider than 8-bits.  However, custom lowering can leverage the
 | |
|     // v8i8/v16i8 vcnt instruction.
 | |
|     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
 | |
| 
 | |
|     // NEON does not have single instruction CTTZ for vectors.
 | |
|     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
 | |
|     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
 | |
| 
 | |
|     // NEON only has FMA instructions as of VFP4.
 | |
|     if (!Subtarget->hasVFP4()) {
 | |
|       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
 | |
|       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
 | |
|     }
 | |
| 
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | |
|     setTargetDAGCombine(ISD::SHL);
 | |
|     setTargetDAGCombine(ISD::SRL);
 | |
|     setTargetDAGCombine(ISD::SRA);
 | |
|     setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|     setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|     setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
|     setTargetDAGCombine(ISD::BUILD_VECTOR);
 | |
|     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | |
|     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
 | |
|     setTargetDAGCombine(ISD::STORE);
 | |
|     setTargetDAGCombine(ISD::FP_TO_SINT);
 | |
|     setTargetDAGCombine(ISD::FP_TO_UINT);
 | |
|     setTargetDAGCombine(ISD::FDIV);
 | |
|     setTargetDAGCombine(ISD::LOAD);
 | |
| 
 | |
|     // It is legal to extload from v4i8 to v4i16 or v4i32.
 | |
|     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
 | |
|                    MVT::v2i32}) {
 | |
|       for (MVT VT : MVT::integer_vector_valuetypes()) {
 | |
|         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
 | |
|         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
 | |
|         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isFPOnlySP()) {
 | |
|     // When targeting a floating-point unit with only single-precision
 | |
|     // operations, f64 is legal for the few double-precision instructions which
 | |
|     // are present However, no double-precision operations other than moves,
 | |
|     // loads and stores are provided by the hardware.
 | |
|     setOperationAction(ISD::FADD,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMA,        MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FREM,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FABS,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
 | |
|     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
 | |
|   }
 | |
| 
 | |
|   computeRegisterProperties(Subtarget->getRegisterInfo());
 | |
| 
 | |
|   // ARM does not have floating-point extending loads.
 | |
|   for (MVT VT : MVT::fp_valuetypes()) {
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
 | |
|   }
 | |
| 
 | |
|   // ... or truncating stores
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
 | |
|   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
 | |
| 
 | |
|   // ARM does not have i1 sign extending load.
 | |
|   for (MVT VT : MVT::integer_valuetypes())
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | |
| 
 | |
|   // ARM supports all 4 flavors of integer indexed load / store.
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     for (unsigned im = (unsigned)ISD::PRE_INC;
 | |
|          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | |
|       setIndexedLoadAction(im,  MVT::i1,  Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i8,  Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i16, Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i32, Legal);
 | |
|       setIndexedStoreAction(im, MVT::i1,  Legal);
 | |
|       setIndexedStoreAction(im, MVT::i8,  Legal);
 | |
|       setIndexedStoreAction(im, MVT::i16, Legal);
 | |
|       setIndexedStoreAction(im, MVT::i32, Legal);
 | |
|     }
 | |
|   } else {
 | |
|     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
 | |
|     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
 | |
|     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::USUBO, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
 | |
| 
 | |
|   // i64 operation support.
 | |
|   setOperationAction(ISD::MUL,     MVT::i64, Expand);
 | |
|   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   }
 | |
|   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
 | |
|       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
 | |
|     setOperationAction(ISD::MULHS, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL,       MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SRA,       MVT::i64, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
 | |
| 
 | |
|   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
 | |
|     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
 | |
| 
 | |
|   // ARM does not have ROTL.
 | |
|   setOperationAction(ISD::ROTL, MVT::i32, Expand);
 | |
|   for (MVT VT : MVT::vector_valuetypes()) {
 | |
|     setOperationAction(ISD::ROTL, VT, Expand);
 | |
|     setOperationAction(ISD::ROTR, VT, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
|   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
 | |
|   }
 | |
| 
 | |
|   // @llvm.readcyclecounter requires the Performance Monitors extension.
 | |
|   // Default to the 0 expansion on unsupported platforms.
 | |
|   // FIXME: Technically there are older ARM CPUs that have
 | |
|   // implementation-specific ways of obtaining this information.
 | |
|   if (Subtarget->hasPerfMon())
 | |
|     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
 | |
| 
 | |
|   // Only ARMv6 has BSWAP.
 | |
|   if (!Subtarget->hasV6Ops())
 | |
|     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
 | |
| 
 | |
|   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
 | |
|                                         : Subtarget->hasDivideInARMMode();
 | |
|   if (!hasDivide) {
 | |
|     // These are expanded into libcalls if the cpu doesn't have HW divider.
 | |
|     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
 | |
|     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
 | |
|     setOperationAction(ISD::SDIV, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::UDIV, MVT::i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SDIV, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UDIV, MVT::i64, Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SREM,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM,  MVT::i32, Expand);
 | |
| 
 | |
|   // Register based DivRem for AEABI (RTABI 4.2)
 | |
|   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
 | |
|       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
 | |
|       Subtarget->isTargetWindows()) {
 | |
|     setOperationAction(ISD::SREM, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UREM, MVT::i64, Custom);
 | |
|     HasStandaloneRem = false;
 | |
| 
 | |
|     if (Subtarget->isTargetWindows()) {
 | |
|       const struct {
 | |
|         const RTLIB::Libcall Op;
 | |
|         const char * const Name;
 | |
|         const CallingConv::ID CC;
 | |
|       } LibraryCalls[] = {
 | |
|         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
 | |
| 
 | |
|         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
 | |
|       };
 | |
| 
 | |
|       for (const auto &LC : LibraryCalls) {
 | |
|         setLibcallName(LC.Op, LC.Name);
 | |
|         setLibcallCallingConv(LC.Op, LC.CC);
 | |
|       }
 | |
|     } else {
 | |
|       const struct {
 | |
|         const RTLIB::Libcall Op;
 | |
|         const char * const Name;
 | |
|         const CallingConv::ID CC;
 | |
|       } LibraryCalls[] = {
 | |
|         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
 | |
| 
 | |
|         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
 | |
|         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
 | |
|       };
 | |
| 
 | |
|       for (const auto &LC : LibraryCalls) {
 | |
|         setLibcallName(LC.Op, LC.Name);
 | |
|         setLibcallCallingConv(LC.Op, LC.CC);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
 | |
|     for (auto &VT : {MVT::f32, MVT::f64})
 | |
|       setOperationAction(ISD::FPOWI, VT, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | |
| 
 | |
|   if (Subtarget->isTargetWindows())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | |
| 
 | |
|   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
 | |
|   // the default expansion.
 | |
|   InsertFencesForAtomic = false;
 | |
|   if (Subtarget->hasAnyDataBarrier() &&
 | |
|       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
 | |
|     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
 | |
|     // to ldrex/strex loops already.
 | |
|     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
 | |
|     if (!Subtarget->isThumb() || !Subtarget->isMClass())
 | |
|       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
 | |
| 
 | |
|     // On v8, we have particularly efficient implementations of atomic fences
 | |
|     // if they can be combined with nearby atomic loads and stores.
 | |
|     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
 | |
|       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
 | |
|       InsertFencesForAtomic = true;
 | |
|     }
 | |
|   } else {
 | |
|     // If there's anything we can use as a barrier, go through custom lowering
 | |
|     // for ATOMIC_FENCE.
 | |
|     // If target has DMB in thumb, Fences can be inserted.
 | |
|     if (Subtarget->hasDataBarrier())
 | |
|       InsertFencesForAtomic = true;
 | |
| 
 | |
|     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
 | |
|                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
 | |
| 
 | |
|     // Set them all for expansion, which will force libcalls.
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
 | |
|     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
 | |
|     // Unordered/Monotonic case.
 | |
|     if (!InsertFencesForAtomic) {
 | |
|       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
 | |
| 
 | |
|   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
 | |
|   if (!Subtarget->hasV6Ops()) {
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
 | |
|       !Subtarget->isThumb1Only()) {
 | |
|     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
 | |
|     // iff target supports vfp2.
 | |
|     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
 | |
|   if (Subtarget->useSjLjEH())
 | |
|     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
 | |
| 
 | |
|   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
 | |
|   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
|   if (Subtarget->hasFullFP16()) {
 | |
|     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
 | |
|     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
 | |
|   if (Subtarget->hasFullFP16())
 | |
|       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
 | |
|   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
 | |
| 
 | |
|   // We don't support sin/cos/fmod/copysign/pow
 | |
|   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM,      MVT::f32, Expand);
 | |
|   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
 | |
|       !Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
|   }
 | |
|   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
 | |
| 
 | |
|   if (!Subtarget->hasVFP4()) {
 | |
|     setOperationAction(ISD::FMA, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMA, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   // Various VFP goodness
 | |
|   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
 | |
|     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
 | |
|     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
 | |
|       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
 | |
|       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
 | |
|     }
 | |
| 
 | |
|     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
 | |
|     if (!Subtarget->hasFP16()) {
 | |
|       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use __sincos_stret if available.
 | |
|   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
 | |
|       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
 | |
|   }
 | |
| 
 | |
|   // FP-ARMv8 implements a lot of rounding-like FP operations.
 | |
|   if (Subtarget->hasFPARMv8()) {
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FRINT, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
 | |
|     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
 | |
| 
 | |
|     if (!Subtarget->isFPOnlySP()) {
 | |
|       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FROUND, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FRINT, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
 | |
|       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     // vmin and vmax aren't available in a scalar form, so we use
 | |
|     // a NEON instruction with an undef lane instead.
 | |
|     setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
 | |
|     setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
 | |
|     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
 | |
|     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
 | |
| 
 | |
|     if (Subtarget->hasFullFP16()) {
 | |
|       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
 | |
|       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
 | |
|       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
 | |
|       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FMINNAN, MVT::v4f16, Legal);
 | |
|       setOperationAction(ISD::FMAXNAN, MVT::v4f16, Legal);
 | |
|       setOperationAction(ISD::FMINNAN, MVT::v8f16, Legal);
 | |
|       setOperationAction(ISD::FMAXNAN, MVT::v8f16, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
 | |
|   setTargetDAGCombine(ISD::ADD);
 | |
|   setTargetDAGCombine(ISD::SUB);
 | |
|   setTargetDAGCombine(ISD::MUL);
 | |
|   setTargetDAGCombine(ISD::AND);
 | |
|   setTargetDAGCombine(ISD::OR);
 | |
|   setTargetDAGCombine(ISD::XOR);
 | |
| 
 | |
|   if (Subtarget->hasV6Ops())
 | |
|     setTargetDAGCombine(ISD::SRL);
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(ARM::SP);
 | |
| 
 | |
|   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
 | |
|       !Subtarget->hasVFP2())
 | |
|     setSchedulingPreference(Sched::RegPressure);
 | |
|   else
 | |
|     setSchedulingPreference(Sched::Hybrid);
 | |
| 
 | |
|   //// temporary - rewrite interface to use type
 | |
|   MaxStoresPerMemset = 8;
 | |
|   MaxStoresPerMemsetOptSize = 4;
 | |
|   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
 | |
|   MaxStoresPerMemcpyOptSize = 2;
 | |
|   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
 | |
|   MaxStoresPerMemmoveOptSize = 2;
 | |
| 
 | |
|   // On ARM arguments smaller than 4 bytes are extended, so all arguments
 | |
|   // are at least 4 bytes aligned.
 | |
|   setMinStackArgumentAlignment(4);
 | |
| 
 | |
|   // Prefer likely predicted branches to selects on out-of-order cores.
 | |
|   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
 | |
| 
 | |
|   setPrefLoopAlignment(Subtarget->getPrefLoopAlignment());
 | |
| 
 | |
|   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::useSoftFloat() const {
 | |
|   return Subtarget->useSoftFloat();
 | |
| }
 | |
| 
 | |
| // FIXME: It might make sense to define the representative register class as the
 | |
| // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
 | |
| // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
 | |
| // SPR's representative would be DPR_VFP2. This should work well if register
 | |
| // pressure tracking were modified such that a register use would increment the
 | |
| // pressure of the register class's representative and all of it's super
 | |
| // classes' representatives transitively. We have not implemented this because
 | |
| // of the difficulty prior to coalescing of modeling operand register classes
 | |
| // due to the common occurrence of cross class copies and subregister insertions
 | |
| // and extractions.
 | |
| std::pair<const TargetRegisterClass *, uint8_t>
 | |
| ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
 | |
|                                            MVT VT) const {
 | |
|   const TargetRegisterClass *RRC = nullptr;
 | |
|   uint8_t Cost = 1;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default:
 | |
|     return TargetLowering::findRepresentativeClass(TRI, VT);
 | |
|   // Use DPR as representative register class for all floating point
 | |
|   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
 | |
|   // the cost is 1 for both f32 and f64.
 | |
|   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
 | |
|   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     // When NEON is used for SP, only half of the register file is available
 | |
|     // because operations that define both SP and DP results will be constrained
 | |
|     // to the VFP2 class (D0-D15). We currently model this constraint prior to
 | |
|     // coalescing by double-counting the SP regs. See the FIXME above.
 | |
|     if (Subtarget->useNEONForSinglePrecisionFP())
 | |
|       Cost = 2;
 | |
|     break;
 | |
|   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
 | |
|   case MVT::v4f32: case MVT::v2f64:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     Cost = 2;
 | |
|     break;
 | |
|   case MVT::v4i64:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     Cost = 4;
 | |
|     break;
 | |
|   case MVT::v8i64:
 | |
|     RRC = &ARM::DPRRegClass;
 | |
|     Cost = 8;
 | |
|     break;
 | |
|   }
 | |
|   return std::make_pair(RRC, Cost);
 | |
| }
 | |
| 
 | |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch ((ARMISD::NodeType)Opcode) {
 | |
|   case ARMISD::FIRST_NUMBER:  break;
 | |
|   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
 | |
|   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
 | |
|   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
 | |
|   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
 | |
|   case ARMISD::CALL:          return "ARMISD::CALL";
 | |
|   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
 | |
|   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
 | |
|   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
 | |
|   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
 | |
|   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
 | |
|   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
 | |
|   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
 | |
|   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
 | |
|   case ARMISD::CMP:           return "ARMISD::CMP";
 | |
|   case ARMISD::CMN:           return "ARMISD::CMN";
 | |
|   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
 | |
|   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
 | |
|   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
 | |
|   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
 | |
|   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
 | |
| 
 | |
|   case ARMISD::CMOV:          return "ARMISD::CMOV";
 | |
| 
 | |
|   case ARMISD::SSAT:          return "ARMISD::SSAT";
 | |
|   case ARMISD::USAT:          return "ARMISD::USAT";
 | |
| 
 | |
|   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
 | |
|   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
 | |
|   case ARMISD::RRX:           return "ARMISD::RRX";
 | |
| 
 | |
|   case ARMISD::ADDC:          return "ARMISD::ADDC";
 | |
|   case ARMISD::ADDE:          return "ARMISD::ADDE";
 | |
|   case ARMISD::SUBC:          return "ARMISD::SUBC";
 | |
|   case ARMISD::SUBE:          return "ARMISD::SUBE";
 | |
| 
 | |
|   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
 | |
|   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
 | |
|   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
 | |
|   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
 | |
|   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
 | |
| 
 | |
|   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
 | |
|   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
 | |
|   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
 | |
| 
 | |
|   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
 | |
| 
 | |
|   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
 | |
| 
 | |
|   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
 | |
| 
 | |
|   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
 | |
| 
 | |
|   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
 | |
| 
 | |
|   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
 | |
|   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
 | |
| 
 | |
|   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
 | |
|   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
 | |
|   case ARMISD::VCGE:          return "ARMISD::VCGE";
 | |
|   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
 | |
|   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
 | |
|   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
 | |
|   case ARMISD::VCGT:          return "ARMISD::VCGT";
 | |
|   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
 | |
|   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
 | |
|   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
 | |
|   case ARMISD::VTST:          return "ARMISD::VTST";
 | |
| 
 | |
|   case ARMISD::VSHL:          return "ARMISD::VSHL";
 | |
|   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
 | |
|   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
 | |
|   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
 | |
|   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
 | |
|   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
 | |
|   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
 | |
|   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
 | |
|   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
 | |
|   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
 | |
|   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
 | |
|   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
 | |
|   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
 | |
|   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
 | |
|   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
 | |
|   case ARMISD::VSLI:          return "ARMISD::VSLI";
 | |
|   case ARMISD::VSRI:          return "ARMISD::VSRI";
 | |
|   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
 | |
|   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
 | |
|   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
 | |
|   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
 | |
|   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
 | |
|   case ARMISD::VDUP:          return "ARMISD::VDUP";
 | |
|   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
 | |
|   case ARMISD::VEXT:          return "ARMISD::VEXT";
 | |
|   case ARMISD::VREV64:        return "ARMISD::VREV64";
 | |
|   case ARMISD::VREV32:        return "ARMISD::VREV32";
 | |
|   case ARMISD::VREV16:        return "ARMISD::VREV16";
 | |
|   case ARMISD::VZIP:          return "ARMISD::VZIP";
 | |
|   case ARMISD::VUZP:          return "ARMISD::VUZP";
 | |
|   case ARMISD::VTRN:          return "ARMISD::VTRN";
 | |
|   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
 | |
|   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
 | |
|   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
 | |
|   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
 | |
|   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
 | |
|   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
 | |
|   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
 | |
|   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
 | |
|   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
 | |
|   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
 | |
|   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
 | |
|   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
 | |
|   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
 | |
|   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
 | |
|   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
 | |
|   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
 | |
|   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
 | |
|   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
 | |
|   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
 | |
|   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
 | |
|   case ARMISD::BFI:           return "ARMISD::BFI";
 | |
|   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
 | |
|   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
 | |
|   case ARMISD::VBSL:          return "ARMISD::VBSL";
 | |
|   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
 | |
|   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
 | |
|   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
 | |
|   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
 | |
|   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
 | |
|   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
 | |
|   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
 | |
|   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
 | |
|   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
 | |
|   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
 | |
|   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
 | |
|   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
 | |
|   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
 | |
|   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
 | |
|   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
 | |
|   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
 | |
|   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
 | |
|   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
 | |
|   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
 | |
|   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
 | |
|   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
 | |
|   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
 | |
|   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
 | |
|                                           EVT VT) const {
 | |
|   if (!VT.isVector())
 | |
|     return getPointerTy(DL);
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| /// getRegClassFor - Return the register class that should be used for the
 | |
| /// specified value type.
 | |
| const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
 | |
|   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
 | |
|   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
 | |
|   // load / store 4 to 8 consecutive D registers.
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     if (VT == MVT::v4i64)
 | |
|       return &ARM::QQPRRegClass;
 | |
|     if (VT == MVT::v8i64)
 | |
|       return &ARM::QQQQPRRegClass;
 | |
|   }
 | |
|   return TargetLowering::getRegClassFor(VT);
 | |
| }
 | |
| 
 | |
| // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
 | |
| // source/dest is aligned and the copy size is large enough. We therefore want
 | |
| // to align such objects passed to memory intrinsics.
 | |
| bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
 | |
|                                                unsigned &PrefAlign) const {
 | |
|   if (!isa<MemIntrinsic>(CI))
 | |
|     return false;
 | |
|   MinSize = 8;
 | |
|   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
 | |
|   // cycle faster than 4-byte aligned LDM.
 | |
|   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Create a fast isel object.
 | |
| FastISel *
 | |
| ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                                   const TargetLibraryInfo *libInfo) const {
 | |
|   return ARM::createFastISel(funcInfo, libInfo);
 | |
| }
 | |
| 
 | |
| Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
 | |
|   unsigned NumVals = N->getNumValues();
 | |
|   if (!NumVals)
 | |
|     return Sched::RegPressure;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumVals; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT == MVT::Glue || VT == MVT::Other)
 | |
|       continue;
 | |
|     if (VT.isFloatingPoint() || VT.isVector())
 | |
|       return Sched::ILP;
 | |
|   }
 | |
| 
 | |
|   if (!N->isMachineOpcode())
 | |
|     return Sched::RegPressure;
 | |
| 
 | |
|   // Load are scheduled for latency even if there instruction itinerary
 | |
|   // is not available.
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
| 
 | |
|   if (MCID.getNumDefs() == 0)
 | |
|     return Sched::RegPressure;
 | |
|   if (!Itins->isEmpty() &&
 | |
|       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
 | |
|     return Sched::ILP;
 | |
| 
 | |
|   return Sched::RegPressure;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool isSRL16(const SDValue &Op) {
 | |
|   if (Op.getOpcode() != ISD::SRL)
 | |
|     return false;
 | |
|   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return Const->getZExtValue() == 16;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isSRA16(const SDValue &Op) {
 | |
|   if (Op.getOpcode() != ISD::SRA)
 | |
|     return false;
 | |
|   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return Const->getZExtValue() == 16;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isSHL16(const SDValue &Op) {
 | |
|   if (Op.getOpcode() != ISD::SHL)
 | |
|     return false;
 | |
|   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return Const->getZExtValue() == 16;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check for a signed 16-bit value. We special case SRA because it makes it
 | |
| // more simple when also looking for SRAs that aren't sign extending a
 | |
| // smaller value. Without the check, we'd need to take extra care with
 | |
| // checking order for some operations.
 | |
| static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
 | |
|   if (isSRA16(Op))
 | |
|     return isSHL16(Op.getOperand(0));
 | |
|   return DAG.ComputeNumSignBits(Op) == 17;
 | |
| }
 | |
| 
 | |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
 | |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown condition code!");
 | |
|   case ISD::SETNE:  return ARMCC::NE;
 | |
|   case ISD::SETEQ:  return ARMCC::EQ;
 | |
|   case ISD::SETGT:  return ARMCC::GT;
 | |
|   case ISD::SETGE:  return ARMCC::GE;
 | |
|   case ISD::SETLT:  return ARMCC::LT;
 | |
|   case ISD::SETLE:  return ARMCC::LE;
 | |
|   case ISD::SETUGT: return ARMCC::HI;
 | |
|   case ISD::SETUGE: return ARMCC::HS;
 | |
|   case ISD::SETULT: return ARMCC::LO;
 | |
|   case ISD::SETULE: return ARMCC::LS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
 | |
| static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
 | |
|                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
 | |
|   CondCode2 = ARMCC::AL;
 | |
|   InvalidOnQNaN = true;
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown FP condition!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETOEQ:
 | |
|     CondCode = ARMCC::EQ;
 | |
|     InvalidOnQNaN = false;
 | |
|     break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETOGT: CondCode = ARMCC::GT; break;
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETOGE: CondCode = ARMCC::GE; break;
 | |
|   case ISD::SETOLT: CondCode = ARMCC::MI; break;
 | |
|   case ISD::SETOLE: CondCode = ARMCC::LS; break;
 | |
|   case ISD::SETONE:
 | |
|     CondCode = ARMCC::MI;
 | |
|     CondCode2 = ARMCC::GT;
 | |
|     InvalidOnQNaN = false;
 | |
|     break;
 | |
|   case ISD::SETO:   CondCode = ARMCC::VC; break;
 | |
|   case ISD::SETUO:  CondCode = ARMCC::VS; break;
 | |
|   case ISD::SETUEQ:
 | |
|     CondCode = ARMCC::EQ;
 | |
|     CondCode2 = ARMCC::VS;
 | |
|     InvalidOnQNaN = false;
 | |
|     break;
 | |
|   case ISD::SETUGT: CondCode = ARMCC::HI; break;
 | |
|   case ISD::SETUGE: CondCode = ARMCC::PL; break;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETULT: CondCode = ARMCC::LT; break;
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETULE: CondCode = ARMCC::LE; break;
 | |
|   case ISD::SETNE:
 | |
|   case ISD::SETUNE:
 | |
|     CondCode = ARMCC::NE;
 | |
|     InvalidOnQNaN = false;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMGenCallingConv.inc"
 | |
| 
 | |
| /// getEffectiveCallingConv - Get the effective calling convention, taking into
 | |
| /// account presence of floating point hardware and calling convention
 | |
| /// limitations, such as support for variadic functions.
 | |
| CallingConv::ID
 | |
| ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
 | |
|                                            bool isVarArg) const {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     report_fatal_error("Unsupported calling convention");
 | |
|   case CallingConv::ARM_AAPCS:
 | |
|   case CallingConv::ARM_APCS:
 | |
|   case CallingConv::GHC:
 | |
|     return CC;
 | |
|   case CallingConv::PreserveMost:
 | |
|     return CallingConv::PreserveMost;
 | |
|   case CallingConv::ARM_AAPCS_VFP:
 | |
|   case CallingConv::Swift:
 | |
|     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
 | |
|   case CallingConv::C:
 | |
|     if (!Subtarget->isAAPCS_ABI())
 | |
|       return CallingConv::ARM_APCS;
 | |
|     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
 | |
|              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
 | |
|              !isVarArg)
 | |
|       return CallingConv::ARM_AAPCS_VFP;
 | |
|     else
 | |
|       return CallingConv::ARM_AAPCS;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::CXX_FAST_TLS:
 | |
|     if (!Subtarget->isAAPCS_ABI()) {
 | |
|       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
 | |
|         return CallingConv::Fast;
 | |
|       return CallingConv::ARM_APCS;
 | |
|     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
 | |
|       return CallingConv::ARM_AAPCS_VFP;
 | |
|     else
 | |
|       return CallingConv::ARM_AAPCS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
 | |
|                                                  bool isVarArg) const {
 | |
|   return CCAssignFnForNode(CC, false, isVarArg);
 | |
| }
 | |
| 
 | |
| CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
 | |
|                                                    bool isVarArg) const {
 | |
|   return CCAssignFnForNode(CC, true, isVarArg);
 | |
| }
 | |
| 
 | |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
 | |
| /// CallingConvention.
 | |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
 | |
|                                                  bool Return,
 | |
|                                                  bool isVarArg) const {
 | |
|   switch (getEffectiveCallingConv(CC, isVarArg)) {
 | |
|   default:
 | |
|     report_fatal_error("Unsupported calling convention");
 | |
|   case CallingConv::ARM_APCS:
 | |
|     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
 | |
|   case CallingConv::ARM_AAPCS:
 | |
|     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
 | |
|   case CallingConv::ARM_AAPCS_VFP:
 | |
|     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | |
|   case CallingConv::Fast:
 | |
|     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
 | |
|   case CallingConv::GHC:
 | |
|     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
 | |
|   case CallingConv::PreserveMost:
 | |
|     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| SDValue ARMTargetLowering::LowerCallResult(
 | |
|     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
 | |
|     SDValue ThisVal) const {
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign VA = RVLocs[i];
 | |
| 
 | |
|     // Pass 'this' value directly from the argument to return value, to avoid
 | |
|     // reg unit interference
 | |
|     if (i == 0 && isThisReturn) {
 | |
|       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
 | |
|              "unexpected return calling convention register assignment");
 | |
|       InVals.push_back(ThisVal);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SDValue Val;
 | |
|     if (VA.needsCustom()) {
 | |
|       // Handle f64 or half of a v2f64.
 | |
|       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | |
|                                       InFlag);
 | |
|       Chain = Lo.getValue(1);
 | |
|       InFlag = Lo.getValue(2);
 | |
|       VA = RVLocs[++i]; // skip ahead to next loc
 | |
|       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | |
|                                       InFlag);
 | |
|       Chain = Hi.getValue(1);
 | |
|       InFlag = Hi.getValue(2);
 | |
|       if (!Subtarget->isLittle())
 | |
|         std::swap (Lo, Hi);
 | |
|       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
| 
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | |
|         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | |
|                           DAG.getConstant(0, dl, MVT::i32));
 | |
| 
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | |
|         Chain = Lo.getValue(1);
 | |
|         InFlag = Lo.getValue(2);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | |
|         Chain = Hi.getValue(1);
 | |
|         InFlag = Hi.getValue(2);
 | |
|         if (!Subtarget->isLittle())
 | |
|           std::swap (Lo, Hi);
 | |
|         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
|         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | |
|                           DAG.getConstant(1, dl, MVT::i32));
 | |
|       }
 | |
|     } else {
 | |
|       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
 | |
|                                InFlag);
 | |
|       Chain = Val.getValue(1);
 | |
|       InFlag = Val.getValue(2);
 | |
|     }
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// LowerMemOpCallTo - Store the argument to the stack.
 | |
| SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
 | |
|                                             SDValue Arg, const SDLoc &dl,
 | |
|                                             SelectionDAG &DAG,
 | |
|                                             const CCValAssign &VA,
 | |
|                                             ISD::ArgFlagsTy Flags) const {
 | |
|   unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | |
|   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
 | |
|                        StackPtr, PtrOff);
 | |
|   return DAG.getStore(
 | |
|       Chain, dl, Arg, PtrOff,
 | |
|       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
 | |
|                                          SDValue Chain, SDValue &Arg,
 | |
|                                          RegsToPassVector &RegsToPass,
 | |
|                                          CCValAssign &VA, CCValAssign &NextVA,
 | |
|                                          SDValue &StackPtr,
 | |
|                                          SmallVectorImpl<SDValue> &MemOpChains,
 | |
|                                          ISD::ArgFlagsTy Flags) const {
 | |
|   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
 | |
|   unsigned id = Subtarget->isLittle() ? 0 : 1;
 | |
|   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
 | |
| 
 | |
|   if (NextVA.isRegLoc())
 | |
|     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
 | |
|   else {
 | |
|     assert(NextVA.isMemLoc());
 | |
|     if (!StackPtr.getNode())
 | |
|       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
 | |
|                                     getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
 | |
|                                            dl, DAG, NextVA,
 | |
|                                            Flags));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCall - Lowering a call into a callseq_start <-
 | |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
 | |
| /// nodes.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                              SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG                     = CLI.DAG;
 | |
|   SDLoc &dl                             = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | |
|   SDValue Chain                         = CLI.Chain;
 | |
|   SDValue Callee                        = CLI.Callee;
 | |
|   bool &isTailCall                      = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv              = CLI.CallConv;
 | |
|   bool doesNotRet                       = CLI.DoesNotReturn;
 | |
|   bool isVarArg                         = CLI.IsVarArg;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | |
|   bool isThisReturn   = false;
 | |
|   bool isSibCall      = false;
 | |
|   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
 | |
| 
 | |
|   // Disable tail calls if they're not supported.
 | |
|   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
 | |
|     isTailCall = false;
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     // Check if it's really possible to do a tail call.
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | |
|                     isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
 | |
|                                                    Outs, OutVals, Ins, DAG);
 | |
|     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
 | |
|       report_fatal_error("failed to perform tail call elimination on a call "
 | |
|                          "site marked musttail");
 | |
|     // We don't support GuaranteedTailCallOpt for ARM, only automatically
 | |
|     // detected sibcalls.
 | |
|     if (isTailCall) {
 | |
|       ++NumTailCalls;
 | |
|       isSibCall = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // For tail calls, memory operands are available in our caller's stack.
 | |
|   if (isSibCall)
 | |
|     NumBytes = 0;
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   if (!isSibCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | |
| 
 | |
|   SDValue StackPtr =
 | |
|       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   RegsToPassVector RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | |
|   // of tail call optimization, arguments are handled later.
 | |
|   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | |
|        i != e;
 | |
|        ++i, ++realArgIdx) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[realArgIdx];
 | |
|     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
|     bool isByVal = Flags.isByVal();
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
 | |
|     if (VA.needsCustom()) {
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                   DAG.getConstant(0, dl, MVT::i32));
 | |
|         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                   DAG.getConstant(1, dl, MVT::i32));
 | |
| 
 | |
|         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
 | |
|                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | |
| 
 | |
|         VA = ArgLocs[++i]; // skip ahead to next loc
 | |
|         if (VA.isRegLoc()) {
 | |
|           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
 | |
|                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | |
|         } else {
 | |
|           assert(VA.isMemLoc());
 | |
| 
 | |
|           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
 | |
|                                                  dl, DAG, VA, Flags));
 | |
|         }
 | |
|       } else {
 | |
|         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
 | |
|                          StackPtr, MemOpChains, Flags);
 | |
|       }
 | |
|     } else if (VA.isRegLoc()) {
 | |
|       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
 | |
|           Outs[0].VT == MVT::i32) {
 | |
|         assert(VA.getLocVT() == MVT::i32 &&
 | |
|                "unexpected calling convention register assignment");
 | |
|         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
 | |
|                "unexpected use of 'returned'");
 | |
|         isThisReturn = true;
 | |
|       }
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else if (isByVal) {
 | |
|       assert(VA.isMemLoc());
 | |
|       unsigned offset = 0;
 | |
| 
 | |
|       // True if this byval aggregate will be split between registers
 | |
|       // and memory.
 | |
|       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
 | |
|       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
 | |
| 
 | |
|       if (CurByValIdx < ByValArgsCount) {
 | |
| 
 | |
|         unsigned RegBegin, RegEnd;
 | |
|         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
 | |
| 
 | |
|         EVT PtrVT =
 | |
|             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | |
|         unsigned int i, j;
 | |
|         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
 | |
|           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
 | |
|           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
 | |
|                                      MachinePointerInfo(),
 | |
|                                      DAG.InferPtrAlignment(AddArg));
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(j, Load));
 | |
|         }
 | |
| 
 | |
|         // If parameter size outsides register area, "offset" value
 | |
|         // helps us to calculate stack slot for remained part properly.
 | |
|         offset = RegEnd - RegBegin;
 | |
| 
 | |
|         CCInfo.nextInRegsParam();
 | |
|       }
 | |
| 
 | |
|       if (Flags.getByValSize() > 4*offset) {
 | |
|         auto PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|         unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | |
|         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
 | |
|         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
 | |
|         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
 | |
|         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
 | |
|                                            MVT::i32);
 | |
|         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
 | |
|                                             MVT::i32);
 | |
| 
 | |
|         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
 | |
|         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
 | |
|                                           Ops));
 | |
|       }
 | |
|     } else if (!isSibCall) {
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | |
|                                              dl, DAG, VA, Flags));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   // Tail call byval lowering might overwrite argument registers so in case of
 | |
|   // tail call optimization the copies to registers are lowered later.
 | |
|   if (!isTailCall)
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
| 
 | |
|   // For tail calls lower the arguments to the 'real' stack slot.
 | |
|   if (isTailCall) {
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
| 
 | |
|     // Do not flag preceding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag = SDValue();
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   bool isDirect = false;
 | |
| 
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   const Module *Mod = MF.getFunction().getParent();
 | |
|   const GlobalValue *GV = nullptr;
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     GV = G->getGlobal();
 | |
|   bool isStub =
 | |
|       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
 | |
| 
 | |
|   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
 | |
|   bool isLocalARMFunc = false;
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   auto PtrVt = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   if (Subtarget->genLongCalls()) {
 | |
|     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
 | |
|            "long-calls codegen is not position independent!");
 | |
|     // Handle a global address or an external symbol. If it's not one of
 | |
|     // those, the target's already in a register, so we don't need to do
 | |
|     // anything extra.
 | |
|     if (isa<GlobalAddressSDNode>(Callee)) {
 | |
|       // Create a constant pool entry for the callee address
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
 | |
| 
 | |
|       // Get the address of the callee into a register
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(
 | |
|           PtrVt, dl, DAG.getEntryNode(), CPAddr,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|       const char *Sym = S->getSymbol();
 | |
| 
 | |
|       // Create a constant pool entry for the callee address
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
 | |
|                                       ARMPCLabelIndex, 0);
 | |
|       // Get the address of the callee into a register
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(
 | |
|           PtrVt, dl, DAG.getEntryNode(), CPAddr,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|     }
 | |
|   } else if (isa<GlobalAddressSDNode>(Callee)) {
 | |
|     // If we're optimizing for minimum size and the function is called three or
 | |
|     // more times in this block, we can improve codesize by calling indirectly
 | |
|     // as BLXr has a 16-bit encoding.
 | |
|     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
 | |
|     auto *BB = CLI.CS.getParent();
 | |
|     bool PreferIndirect =
 | |
|         Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
 | |
|         count_if(GV->users(), [&BB](const User *U) {
 | |
|           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
 | |
|         }) > 2;
 | |
| 
 | |
|     if (!PreferIndirect) {
 | |
|       isDirect = true;
 | |
|       bool isDef = GV->isStrongDefinitionForLinker();
 | |
| 
 | |
|       // ARM call to a local ARM function is predicable.
 | |
|       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
 | |
|       // tBX takes a register source operand.
 | |
|       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | |
|         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
 | |
|         Callee = DAG.getNode(
 | |
|             ARMISD::WrapperPIC, dl, PtrVt,
 | |
|             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
 | |
|         Callee = DAG.getLoad(
 | |
|             PtrVt, dl, DAG.getEntryNode(), Callee,
 | |
|             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
 | |
|             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
 | |
|                                      MachineMemOperand::MOInvariant);
 | |
|       } else if (Subtarget->isTargetCOFF()) {
 | |
|         assert(Subtarget->isTargetWindows() &&
 | |
|                "Windows is the only supported COFF target");
 | |
|         unsigned TargetFlags = GV->hasDLLImportStorageClass()
 | |
|                                    ? ARMII::MO_DLLIMPORT
 | |
|                                    : ARMII::MO_NO_FLAG;
 | |
|         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
 | |
|                                             TargetFlags);
 | |
|         if (GV->hasDLLImportStorageClass())
 | |
|           Callee =
 | |
|               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
 | |
|                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
 | |
|                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | |
|       } else {
 | |
|         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
 | |
|       }
 | |
|     }
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     isDirect = true;
 | |
|     // tBX takes a register source operand.
 | |
|     const char *Sym = S->getSymbol();
 | |
|     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | |
|       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
 | |
|                                       ARMPCLabelIndex, 4);
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(
 | |
|           PtrVt, dl, DAG.getEntryNode(), CPAddr,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
 | |
|       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
 | |
|     } else {
 | |
|       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: handle tail calls differently.
 | |
|   unsigned CallOpc;
 | |
|   if (Subtarget->isThumb()) {
 | |
|     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else
 | |
|       CallOpc = ARMISD::CALL;
 | |
|   } else {
 | |
|     if (!isDirect && !Subtarget->hasV5TOps())
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
 | |
|              // Emit regular call when code size is the priority
 | |
|              !MF.getFunction().optForMinSize())
 | |
|       // "mov lr, pc; b _foo" to avoid confusing the RSP
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else
 | |
|       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
 | |
|   }
 | |
| 
 | |
|   std::vector<SDValue> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   if (!isTailCall) {
 | |
|     const uint32_t *Mask;
 | |
|     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
 | |
|     if (isThisReturn) {
 | |
|       // For 'this' returns, use the R0-preserving mask if applicable
 | |
|       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
 | |
|       if (!Mask) {
 | |
|         // Set isThisReturn to false if the calling convention is not one that
 | |
|         // allows 'returned' to be modeled in this way, so LowerCallResult does
 | |
|         // not try to pass 'this' straight through
 | |
|         isThisReturn = false;
 | |
|         Mask = ARI->getCallPreservedMask(MF, CallConv);
 | |
|       }
 | |
|     } else
 | |
|       Mask = ARI->getCallPreservedMask(MF, CallConv);
 | |
| 
 | |
|     assert(Mask && "Missing call preserved mask for calling convention");
 | |
|     Ops.push_back(DAG.getRegisterMask(Mask));
 | |
|   }
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   if (isTailCall) {
 | |
|     MF.getFrameInfo().setHasTailCall();
 | |
|     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
 | |
|   }
 | |
| 
 | |
|   // Returns a chain and a flag for retval copy to use.
 | |
|   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | |
|                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
 | |
|                          InVals, isThisReturn,
 | |
|                          isThisReturn ? OutVals[0] : SDValue());
 | |
| }
 | |
| 
 | |
| /// HandleByVal - Every parameter *after* a byval parameter is passed
 | |
| /// on the stack.  Remember the next parameter register to allocate,
 | |
| /// and then confiscate the rest of the parameter registers to insure
 | |
| /// this.
 | |
| void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
 | |
|                                     unsigned Align) const {
 | |
|   // Byval (as with any stack) slots are always at least 4 byte aligned.
 | |
|   Align = std::max(Align, 4U);
 | |
| 
 | |
|   unsigned Reg = State->AllocateReg(GPRArgRegs);
 | |
|   if (!Reg)
 | |
|     return;
 | |
| 
 | |
|   unsigned AlignInRegs = Align / 4;
 | |
|   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
 | |
|   for (unsigned i = 0; i < Waste; ++i)
 | |
|     Reg = State->AllocateReg(GPRArgRegs);
 | |
| 
 | |
|   if (!Reg)
 | |
|     return;
 | |
| 
 | |
|   unsigned Excess = 4 * (ARM::R4 - Reg);
 | |
| 
 | |
|   // Special case when NSAA != SP and parameter size greater than size of
 | |
|   // all remained GPR regs. In that case we can't split parameter, we must
 | |
|   // send it to stack. We also must set NCRN to R4, so waste all
 | |
|   // remained registers.
 | |
|   const unsigned NSAAOffset = State->getNextStackOffset();
 | |
|   if (NSAAOffset != 0 && Size > Excess) {
 | |
|     while (State->AllocateReg(GPRArgRegs))
 | |
|       ;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // First register for byval parameter is the first register that wasn't
 | |
|   // allocated before this method call, so it would be "reg".
 | |
|   // If parameter is small enough to be saved in range [reg, r4), then
 | |
|   // the end (first after last) register would be reg + param-size-in-regs,
 | |
|   // else parameter would be splitted between registers and stack,
 | |
|   // end register would be r4 in this case.
 | |
|   unsigned ByValRegBegin = Reg;
 | |
|   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
 | |
|   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
 | |
|   // Note, first register is allocated in the beginning of function already,
 | |
|   // allocate remained amount of registers we need.
 | |
|   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
 | |
|     State->AllocateReg(GPRArgRegs);
 | |
|   // A byval parameter that is split between registers and memory needs its
 | |
|   // size truncated here.
 | |
|   // In the case where the entire structure fits in registers, we set the
 | |
|   // size in memory to zero.
 | |
|   Size = std::max<int>(Size - Excess, 0);
 | |
| }
 | |
| 
 | |
| /// MatchingStackOffset - Return true if the given stack call argument is
 | |
| /// already available in the same position (relatively) of the caller's
 | |
| /// incoming argument stack.
 | |
| static
 | |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
 | |
|                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
 | |
|                          const TargetInstrInfo *TII) {
 | |
|   unsigned Bytes = Arg.getValueSizeInBits() / 8;
 | |
|   int FI = std::numeric_limits<int>::max();
 | |
|   if (Arg.getOpcode() == ISD::CopyFromReg) {
 | |
|     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(VR))
 | |
|       return false;
 | |
|     MachineInstr *Def = MRI->getVRegDef(VR);
 | |
|     if (!Def)
 | |
|       return false;
 | |
|     if (!Flags.isByVal()) {
 | |
|       if (!TII->isLoadFromStackSlot(*Def, FI))
 | |
|         return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
 | |
|     if (Flags.isByVal())
 | |
|       // ByVal argument is passed in as a pointer but it's now being
 | |
|       // dereferenced. e.g.
 | |
|       // define @foo(%struct.X* %A) {
 | |
|       //   tail call @bar(%struct.X* byval %A)
 | |
|       // }
 | |
|       return false;
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
 | |
|     if (!FINode)
 | |
|       return false;
 | |
|     FI = FINode->getIndex();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   assert(FI != std::numeric_limits<int>::max());
 | |
|   if (!MFI.isFixedObjectIndex(FI))
 | |
|     return false;
 | |
|   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                                      bool isCalleeStructRet,
 | |
|                                                      bool isCallerStructRet,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const Function &CallerF = MF.getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF.getCallingConv();
 | |
| 
 | |
|   assert(Subtarget->supportsTailCall());
 | |
| 
 | |
|   // Tail calls to function pointers cannot be optimized for Thumb1 if the args
 | |
|   // to the call take up r0-r3. The reason is that there are no legal registers
 | |
|   // left to hold the pointer to the function to be called.
 | |
|   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
 | |
|       !isa<GlobalAddressSDNode>(Callee.getNode()))
 | |
|       return false;
 | |
| 
 | |
|   // Look for obvious safe cases to perform tail call optimization that do not
 | |
|   // require ABI changes. This is what gcc calls sibcall.
 | |
| 
 | |
|   // Exception-handling functions need a special set of instructions to indicate
 | |
|   // a return to the hardware. Tail-calling another function would probably
 | |
|   // break this.
 | |
|   if (CallerF.hasFnAttribute("interrupt"))
 | |
|     return false;
 | |
| 
 | |
|   // Also avoid sibcall optimization if either caller or callee uses struct
 | |
|   // return semantics.
 | |
|   if (isCalleeStructRet || isCallerStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // Externally-defined functions with weak linkage should not be
 | |
|   // tail-called on ARM when the OS does not support dynamic
 | |
|   // pre-emption of symbols, as the AAELF spec requires normal calls
 | |
|   // to undefined weak functions to be replaced with a NOP or jump to the
 | |
|   // next instruction. The behaviour of branch instructions in this
 | |
|   // situation (as used for tail calls) is implementation-defined, so we
 | |
|   // cannot rely on the linker replacing the tail call with a return.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     const Triple &TT = getTargetMachine().getTargetTriple();
 | |
|     if (GV->hasExternalWeakLinkage() &&
 | |
|         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check that the call results are passed in the same way.
 | |
|   LLVMContext &C = *DAG.getContext();
 | |
|   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
 | |
|                                   CCAssignFnForReturn(CalleeCC, isVarArg),
 | |
|                                   CCAssignFnForReturn(CallerCC, isVarArg)))
 | |
|     return false;
 | |
|   // The callee has to preserve all registers the caller needs to preserve.
 | |
|   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
 | |
|   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
 | |
|   if (CalleeCC != CallerCC) {
 | |
|     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
 | |
|     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If Caller's vararg or byval argument has been split between registers and
 | |
|   // stack, do not perform tail call, since part of the argument is in caller's
 | |
|   // local frame.
 | |
|   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
 | |
|   if (AFI_Caller->getArgRegsSaveSize())
 | |
|     return false;
 | |
| 
 | |
|   // If the callee takes no arguments then go on to check the results of the
 | |
|   // call.
 | |
|   if (!Outs.empty()) {
 | |
|     // Check if stack adjustment is needed. For now, do not do this if any
 | |
|     // argument is passed on the stack.
 | |
|     SmallVector<CCValAssign, 16> ArgLocs;
 | |
|     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
 | |
|     if (CCInfo.getNextStackOffset()) {
 | |
|       // Check if the arguments are already laid out in the right way as
 | |
|       // the caller's fixed stack objects.
 | |
|       MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|       const MachineRegisterInfo *MRI = &MF.getRegInfo();
 | |
|       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | |
|            i != e;
 | |
|            ++i, ++realArgIdx) {
 | |
|         CCValAssign &VA = ArgLocs[i];
 | |
|         EVT RegVT = VA.getLocVT();
 | |
|         SDValue Arg = OutVals[realArgIdx];
 | |
|         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
|         if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|           return false;
 | |
|         if (VA.needsCustom()) {
 | |
|           // f64 and vector types are split into multiple registers or
 | |
|           // register/stack-slot combinations.  The types will not match
 | |
|           // the registers; give up on memory f64 refs until we figure
 | |
|           // out what to do about this.
 | |
|           if (!VA.isRegLoc())
 | |
|             return false;
 | |
|           if (!ArgLocs[++i].isRegLoc())
 | |
|             return false;
 | |
|           if (RegVT == MVT::v2f64) {
 | |
|             if (!ArgLocs[++i].isRegLoc())
 | |
|               return false;
 | |
|             if (!ArgLocs[++i].isRegLoc())
 | |
|               return false;
 | |
|           }
 | |
|         } else if (!VA.isRegLoc()) {
 | |
|           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
 | |
|                                    MFI, MRI, TII))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
 | |
|                                   MachineFunction &MF, bool isVarArg,
 | |
|                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                   LLVMContext &Context) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | |
|   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
 | |
| }
 | |
| 
 | |
| static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
 | |
|                                     const SDLoc &DL, SelectionDAG &DAG) {
 | |
|   const MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const Function &F = MF.getFunction();
 | |
| 
 | |
|   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
 | |
| 
 | |
|   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
 | |
|   // version of the "preferred return address". These offsets affect the return
 | |
|   // instruction if this is a return from PL1 without hypervisor extensions.
 | |
|   //    IRQ/FIQ: +4     "subs pc, lr, #4"
 | |
|   //    SWI:     0      "subs pc, lr, #0"
 | |
|   //    ABORT:   +4     "subs pc, lr, #4"
 | |
|   //    UNDEF:   +4/+2  "subs pc, lr, #0"
 | |
|   // UNDEF varies depending on where the exception came from ARM or Thumb
 | |
|   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
 | |
| 
 | |
|   int64_t LROffset;
 | |
|   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
 | |
|       IntKind == "ABORT")
 | |
|     LROffset = 4;
 | |
|   else if (IntKind == "SWI" || IntKind == "UNDEF")
 | |
|     LROffset = 0;
 | |
|   else
 | |
|     report_fatal_error("Unsupported interrupt attribute. If present, value "
 | |
|                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
 | |
| 
 | |
|   RetOps.insert(RetOps.begin() + 1,
 | |
|                 DAG.getConstant(LROffset, DL, MVT::i32, false));
 | |
| 
 | |
|   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | |
|                                bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                const SDLoc &dl, SelectionDAG &DAG) const {
 | |
|   // CCValAssign - represent the assignment of the return value to a location.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // CCState - Info about the registers and stack slots.
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Analyze outgoing return values.
 | |
|   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
 | |
| 
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps;
 | |
|   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
 | |
|   bool isLittleEndian = Subtarget->isLittle();
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   AFI->setReturnRegsCount(RVLocs.size());
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0, realRVLocIdx = 0;
 | |
|        i != RVLocs.size();
 | |
|        ++i, ++realRVLocIdx) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Arg = OutVals[realRVLocIdx];
 | |
|     bool ReturnF16 = false;
 | |
| 
 | |
|     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
 | |
|       // Half-precision return values can be returned like this:
 | |
|       //
 | |
|       // t11 f16 = fadd ...
 | |
|       // t12: i16 = bitcast t11
 | |
|       //   t13: i32 = zero_extend t12
 | |
|       // t14: f32 = bitcast t13  <~~~~~~~ Arg
 | |
|       //
 | |
|       // to avoid code generation for bitcasts, we simply set Arg to the node
 | |
|       // that produces the f16 value, t11 in this case.
 | |
|       //
 | |
|       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
 | |
|         SDValue ZE = Arg.getOperand(0);
 | |
|         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
 | |
|           SDValue BC = ZE.getOperand(0);
 | |
|           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
 | |
|             Arg = BC.getOperand(0);
 | |
|             ReturnF16 = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::BCvt:
 | |
|       if (!ReturnF16)
 | |
|         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (VA.needsCustom()) {
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         // Extract the first half and return it in two registers.
 | |
|         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                    DAG.getConstant(0, dl, MVT::i32));
 | |
|         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
 | |
| 
 | |
|         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
 | |
|                                  Flag);
 | |
|         Flag = Chain.getValue(1);
 | |
|         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
 | |
|                                  Flag);
 | |
|         Flag = Chain.getValue(1);
 | |
|         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
| 
 | |
|         // Extract the 2nd half and fall through to handle it as an f64 value.
 | |
|         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                           DAG.getConstant(1, dl, MVT::i32));
 | |
|       }
 | |
|       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
 | |
|       // available.
 | |
|       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                                fmrrd.getValue(isLittleEndian ? 0 : 1),
 | |
|                                Flag);
 | |
|       Flag = Chain.getValue(1);
 | |
|       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|       VA = RVLocs[++i]; // skip ahead to next loc
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                                fmrrd.getValue(isLittleEndian ? 1 : 0),
 | |
|                                Flag);
 | |
|     } else
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | |
| 
 | |
|     // Guarantee that all emitted copies are
 | |
|     // stuck together, avoiding something bad.
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
 | |
|                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
 | |
|   }
 | |
|   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
 | |
|   const MCPhysReg *I =
 | |
|       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
 | |
|   if (I) {
 | |
|     for (; *I; ++I) {
 | |
|       if (ARM::GPRRegClass.contains(*I))
 | |
|         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
 | |
|       else if (ARM::DPRRegClass.contains(*I))
 | |
|         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
 | |
|       else
 | |
|         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update chain and glue.
 | |
|   RetOps[0] = Chain;
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   // CPUs which aren't M-class use a special sequence to return from
 | |
|   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
 | |
|   // though we use "subs pc, lr, #N").
 | |
|   //
 | |
|   // M-class CPUs actually use a normal return sequence with a special
 | |
|   // (hardware-provided) value in LR, so the normal code path works.
 | |
|   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
 | |
|       !Subtarget->isMClass()) {
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       report_fatal_error("interrupt attribute is not supported in Thumb1");
 | |
|     return LowerInterruptReturn(RetOps, dl, DAG);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
 | |
|   if (N->getNumValues() != 1)
 | |
|     return false;
 | |
|   if (!N->hasNUsesOfValue(1, 0))
 | |
|     return false;
 | |
| 
 | |
|   SDValue TCChain = Chain;
 | |
|   SDNode *Copy = *N->use_begin();
 | |
|   if (Copy->getOpcode() == ISD::CopyToReg) {
 | |
|     // If the copy has a glue operand, we conservatively assume it isn't safe to
 | |
|     // perform a tail call.
 | |
|     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
 | |
|       return false;
 | |
|     TCChain = Copy->getOperand(0);
 | |
|   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
 | |
|     SDNode *VMov = Copy;
 | |
|     // f64 returned in a pair of GPRs.
 | |
|     SmallPtrSet<SDNode*, 2> Copies;
 | |
|     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       if (UI->getOpcode() != ISD::CopyToReg)
 | |
|         return false;
 | |
|       Copies.insert(*UI);
 | |
|     }
 | |
|     if (Copies.size() > 2)
 | |
|       return false;
 | |
| 
 | |
|     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDValue UseChain = UI->getOperand(0);
 | |
|       if (Copies.count(UseChain.getNode()))
 | |
|         // Second CopyToReg
 | |
|         Copy = *UI;
 | |
|       else {
 | |
|         // We are at the top of this chain.
 | |
|         // If the copy has a glue operand, we conservatively assume it
 | |
|         // isn't safe to perform a tail call.
 | |
|         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
 | |
|           return false;
 | |
|         // First CopyToReg
 | |
|         TCChain = UseChain;
 | |
|       }
 | |
|     }
 | |
|   } else if (Copy->getOpcode() == ISD::BITCAST) {
 | |
|     // f32 returned in a single GPR.
 | |
|     if (!Copy->hasOneUse())
 | |
|       return false;
 | |
|     Copy = *Copy->use_begin();
 | |
|     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
 | |
|       return false;
 | |
|     // If the copy has a glue operand, we conservatively assume it isn't safe to
 | |
|     // perform a tail call.
 | |
|     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
 | |
|       return false;
 | |
|     TCChain = Copy->getOperand(0);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool HasRet = false;
 | |
|   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     if (UI->getOpcode() != ARMISD::RET_FLAG &&
 | |
|         UI->getOpcode() != ARMISD::INTRET_FLAG)
 | |
|       return false;
 | |
|     HasRet = true;
 | |
|   }
 | |
| 
 | |
|   if (!HasRet)
 | |
|     return false;
 | |
| 
 | |
|   Chain = TCChain;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
 | |
|   if (!Subtarget->supportsTailCall())
 | |
|     return false;
 | |
| 
 | |
|   auto Attr =
 | |
|       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
 | |
|   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Trying to write a 64 bit value so need to split into two 32 bit values first,
 | |
| // and pass the lower and high parts through.
 | |
| static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue WriteValue = Op->getOperand(2);
 | |
| 
 | |
|   // This function is only supposed to be called for i64 type argument.
 | |
|   assert(WriteValue.getValueType() == MVT::i64
 | |
|           && "LowerWRITE_REGISTER called for non-i64 type argument.");
 | |
| 
 | |
|   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
 | |
|                            DAG.getConstant(0, DL, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
 | |
|                            DAG.getConstant(1, DL, MVT::i32));
 | |
|   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
 | |
|   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
 | |
| }
 | |
| 
 | |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | |
| // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
 | |
| // one of the above mentioned nodes. It has to be wrapped because otherwise
 | |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | |
| // be used to form addressing mode. These wrapped nodes will be selected
 | |
| // into MOVi.
 | |
| SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   // FIXME there is no actual debug info here
 | |
|   SDLoc dl(Op);
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   SDValue Res;
 | |
| 
 | |
|   // When generating execute-only code Constant Pools must be promoted to the
 | |
|   // global data section. It's a bit ugly that we can't share them across basic
 | |
|   // blocks, but this way we guarantee that execute-only behaves correct with
 | |
|   // position-independent addressing modes.
 | |
|   if (Subtarget->genExecuteOnly()) {
 | |
|     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
 | |
|     auto T = const_cast<Type*>(CP->getType());
 | |
|     auto C = const_cast<Constant*>(CP->getConstVal());
 | |
|     auto M = const_cast<Module*>(DAG.getMachineFunction().
 | |
|                                  getFunction().getParent());
 | |
|     auto GV = new GlobalVariable(
 | |
|                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
 | |
|                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
 | |
|                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
 | |
|                     Twine(AFI->createPICLabelUId())
 | |
|                   );
 | |
|     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
 | |
|                                             dl, PtrVT);
 | |
|     return LowerGlobalAddress(GA, DAG);
 | |
|   }
 | |
| 
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
 | |
|                                     CP->getAlignment());
 | |
|   else
 | |
|     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
 | |
|                                     CP->getAlignment());
 | |
|   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
 | |
| }
 | |
| 
 | |
| unsigned ARMTargetLowering::getJumpTableEncoding() const {
 | |
|   return MachineJumpTableInfo::EK_Inline;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = 0;
 | |
|   SDLoc DL(Op);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   SDValue CPAddr;
 | |
|   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
 | |
|   if (!IsPositionIndependent) {
 | |
|     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
 | |
|   } else {
 | |
|     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|     ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
 | |
|                                       ARMCP::CPBlockAddress, PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   }
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
 | |
|   SDValue Result = DAG.getLoad(
 | |
|       PtrVT, DL, DAG.getEntryNode(), CPAddr,
 | |
|       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|   if (!IsPositionIndependent)
 | |
|     return Result;
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
 | |
| }
 | |
| 
 | |
| /// Convert a TLS address reference into the correct sequence of loads
 | |
| /// and calls to compute the variable's address for Darwin, and return an
 | |
| /// SDValue containing the final node.
 | |
| 
 | |
| /// Darwin only has one TLS scheme which must be capable of dealing with the
 | |
| /// fully general situation, in the worst case. This means:
 | |
| ///     + "extern __thread" declaration.
 | |
| ///     + Defined in a possibly unknown dynamic library.
 | |
| ///
 | |
| /// The general system is that each __thread variable has a [3 x i32] descriptor
 | |
| /// which contains information used by the runtime to calculate the address. The
 | |
| /// only part of this the compiler needs to know about is the first word, which
 | |
| /// contains a function pointer that must be called with the address of the
 | |
| /// entire descriptor in "r0".
 | |
| ///
 | |
| /// Since this descriptor may be in a different unit, in general access must
 | |
| /// proceed along the usual ARM rules. A common sequence to produce is:
 | |
| ///
 | |
| ///     movw rT1, :lower16:_var$non_lazy_ptr
 | |
| ///     movt rT1, :upper16:_var$non_lazy_ptr
 | |
| ///     ldr r0, [rT1]
 | |
| ///     ldr rT2, [r0]
 | |
| ///     blx rT2
 | |
| ///     [...address now in r0...]
 | |
| SDValue
 | |
| ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetDarwin() &&
 | |
|          "This function expects a Darwin target");
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // First step is to get the address of the actua global symbol. This is where
 | |
|   // the TLS descriptor lives.
 | |
|   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
 | |
| 
 | |
|   // The first entry in the descriptor is a function pointer that we must call
 | |
|   // to obtain the address of the variable.
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   SDValue FuncTLVGet = DAG.getLoad(
 | |
|       MVT::i32, DL, Chain, DescAddr,
 | |
|       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
 | |
|       /* Alignment = */ 4,
 | |
|       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
 | |
|           MachineMemOperand::MOInvariant);
 | |
|   Chain = FuncTLVGet.getValue(1);
 | |
| 
 | |
|   MachineFunction &F = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = F.getFrameInfo();
 | |
|   MFI.setAdjustsStack(true);
 | |
| 
 | |
|   // TLS calls preserve all registers except those that absolutely must be
 | |
|   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
 | |
|   // silly).
 | |
|   auto TRI =
 | |
|       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
 | |
|   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
 | |
|   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
 | |
| 
 | |
|   // Finally, we can make the call. This is just a degenerate version of a
 | |
|   // normal AArch64 call node: r0 takes the address of the descriptor, and
 | |
|   // returns the address of the variable in this thread.
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
 | |
|   Chain =
 | |
|       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
 | |
|                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
 | |
|                   DAG.getRegisterMask(Mask), Chain.getValue(1));
 | |
|   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
 | |
| 
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // Load the current TEB (thread environment block)
 | |
|   SDValue Ops[] = {Chain,
 | |
|                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
 | |
|                    DAG.getConstant(15, DL, MVT::i32),
 | |
|                    DAG.getConstant(0, DL, MVT::i32),
 | |
|                    DAG.getConstant(13, DL, MVT::i32),
 | |
|                    DAG.getConstant(0, DL, MVT::i32),
 | |
|                    DAG.getConstant(2, DL, MVT::i32)};
 | |
|   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
 | |
|                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
 | |
| 
 | |
|   SDValue TEB = CurrentTEB.getValue(0);
 | |
|   Chain = CurrentTEB.getValue(1);
 | |
| 
 | |
|   // Load the ThreadLocalStoragePointer from the TEB
 | |
|   // A pointer to the TLS array is located at offset 0x2c from the TEB.
 | |
|   SDValue TLSArray =
 | |
|       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
 | |
|   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
 | |
| 
 | |
|   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
 | |
|   // offset into the TLSArray.
 | |
| 
 | |
|   // Load the TLS index from the C runtime
 | |
|   SDValue TLSIndex =
 | |
|       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
 | |
|   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
 | |
|   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
 | |
| 
 | |
|   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
 | |
|                               DAG.getConstant(2, DL, MVT::i32));
 | |
|   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
 | |
|                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
 | |
|                             MachinePointerInfo());
 | |
| 
 | |
|   // Get the offset of the start of the .tls section (section base)
 | |
|   const auto *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
 | |
|   SDValue Offset = DAG.getLoad(
 | |
|       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
 | |
|                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
 | |
|       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
| 
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model
 | |
| SDValue
 | |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc dl(GA);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|   ARMConstantPoolValue *CPV =
 | |
|     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
 | |
|                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
 | |
|   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
 | |
|   Argument = DAG.getLoad(
 | |
|       PtrVT, dl, DAG.getEntryNode(), Argument,
 | |
|       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|   SDValue Chain = Argument.getValue(1);
 | |
| 
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
 | |
|   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
 | |
| 
 | |
|   // call __tls_get_addr.
 | |
|   ArgListTy Args;
 | |
|   ArgListEntry Entry;
 | |
|   Entry.Node = Argument;
 | |
|   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   // FIXME: is there useful debug info available here?
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
 | |
|       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
 | |
|       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
 | |
| 
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
|   return CallResult.first;
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or
 | |
| // "local exec" model.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         TLSModel::Model model) const {
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
|   SDLoc dl(GA);
 | |
|   SDValue Offset;
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   // Get the Thread Pointer
 | |
|   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | |
| 
 | |
|   if (model == TLSModel::InitialExec) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     // Initial exec model.
 | |
|     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
 | |
|                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
 | |
|                                       true);
 | |
|     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | |
|     Offset = DAG.getLoad(
 | |
|         PtrVT, dl, Chain, Offset,
 | |
|         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|     Chain = Offset.getValue(1);
 | |
| 
 | |
|     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
 | |
|     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
 | |
| 
 | |
|     Offset = DAG.getLoad(
 | |
|         PtrVT, dl, Chain, Offset,
 | |
|         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|   } else {
 | |
|     // local exec model
 | |
|     assert(model == TLSModel::LocalExec);
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
 | |
|     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | |
|     Offset = DAG.getLoad(
 | |
|         PtrVT, dl, Chain, Offset,
 | |
|         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|   }
 | |
| 
 | |
|   // The address of the thread local variable is the add of the thread
 | |
|   // pointer with the offset of the variable.
 | |
|   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   if (DAG.getTarget().useEmulatedTLS())
 | |
|     return LowerToTLSEmulatedModel(GA, DAG);
 | |
| 
 | |
|   if (Subtarget->isTargetDarwin())
 | |
|     return LowerGlobalTLSAddressDarwin(Op, DAG);
 | |
| 
 | |
|   if (Subtarget->isTargetWindows())
 | |
|     return LowerGlobalTLSAddressWindows(Op, DAG);
 | |
| 
 | |
|   // TODO: implement the "local dynamic" model
 | |
|   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
 | |
|   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
 | |
| 
 | |
|   switch (model) {
 | |
|     case TLSModel::GeneralDynamic:
 | |
|     case TLSModel::LocalDynamic:
 | |
|       return LowerToTLSGeneralDynamicModel(GA, DAG);
 | |
|     case TLSModel::InitialExec:
 | |
|     case TLSModel::LocalExec:
 | |
|       return LowerToTLSExecModels(GA, DAG, model);
 | |
|   }
 | |
|   llvm_unreachable("bogus TLS model");
 | |
| }
 | |
| 
 | |
| /// Return true if all users of V are within function F, looking through
 | |
| /// ConstantExprs.
 | |
| static bool allUsersAreInFunction(const Value *V, const Function *F) {
 | |
|   SmallVector<const User*,4> Worklist;
 | |
|   for (auto *U : V->users())
 | |
|     Worklist.push_back(U);
 | |
|   while (!Worklist.empty()) {
 | |
|     auto *U = Worklist.pop_back_val();
 | |
|     if (isa<ConstantExpr>(U)) {
 | |
|       for (auto *UU : U->users())
 | |
|         Worklist.push_back(UU);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *I = dyn_cast<Instruction>(U);
 | |
|     if (!I || I->getParent()->getParent() != F)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
 | |
|                                      const GlobalValue *GV, SelectionDAG &DAG,
 | |
|                                      EVT PtrVT, const SDLoc &dl) {
 | |
|   // If we're creating a pool entry for a constant global with unnamed address,
 | |
|   // and the global is small enough, we can emit it inline into the constant pool
 | |
|   // to save ourselves an indirection.
 | |
|   //
 | |
|   // This is a win if the constant is only used in one function (so it doesn't
 | |
|   // need to be duplicated) or duplicating the constant wouldn't increase code
 | |
|   // size (implying the constant is no larger than 4 bytes).
 | |
|   const Function &F = DAG.getMachineFunction().getFunction();
 | |
| 
 | |
|   // We rely on this decision to inline being idemopotent and unrelated to the
 | |
|   // use-site. We know that if we inline a variable at one use site, we'll
 | |
|   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
 | |
|   // doesn't know about this optimization, so bail out if it's enabled else
 | |
|   // we could decide to inline here (and thus never emit the GV) but require
 | |
|   // the GV from fast-isel generated code.
 | |
|   if (!EnableConstpoolPromotion ||
 | |
|       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
 | |
|       return SDValue();
 | |
| 
 | |
|   auto *GVar = dyn_cast<GlobalVariable>(GV);
 | |
|   if (!GVar || !GVar->hasInitializer() ||
 | |
|       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
 | |
|       !GVar->hasLocalLinkage())
 | |
|     return SDValue();
 | |
| 
 | |
|   // If we inline a value that contains relocations, we move the relocations
 | |
|   // from .data to .text. This is not allowed in position-independent code.
 | |
|   auto *Init = GVar->getInitializer();
 | |
|   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
 | |
|       Init->needsRelocation())
 | |
|     return SDValue();
 | |
| 
 | |
|   // The constant islands pass can only really deal with alignment requests
 | |
|   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
 | |
|   // any type wanting greater alignment requirements than 4 bytes. We also
 | |
|   // can only promote constants that are multiples of 4 bytes in size or
 | |
|   // are paddable to a multiple of 4. Currently we only try and pad constants
 | |
|   // that are strings for simplicity.
 | |
|   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
 | |
|   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
 | |
|   unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
 | |
|   unsigned RequiredPadding = 4 - (Size % 4);
 | |
|   bool PaddingPossible =
 | |
|     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
 | |
|   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
 | |
|       Size == 0)
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // We can't bloat the constant pool too much, else the ConstantIslands pass
 | |
|   // may fail to converge. If we haven't promoted this global yet (it may have
 | |
|   // multiple uses), and promoting it would increase the constant pool size (Sz
 | |
|   // > 4), ensure we have space to do so up to MaxTotal.
 | |
|   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
 | |
|     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
 | |
|         ConstpoolPromotionMaxTotal)
 | |
|       return SDValue();
 | |
| 
 | |
|   // This is only valid if all users are in a single function; we can't clone
 | |
|   // the constant in general. The LLVM IR unnamed_addr allows merging
 | |
|   // constants, but not cloning them.
 | |
|   //
 | |
|   // We could potentially allow cloning if we could prove all uses of the
 | |
|   // constant in the current function don't care about the address, like
 | |
|   // printf format strings. But that isn't implemented for now.
 | |
|   if (!allUsersAreInFunction(GVar, &F))
 | |
|     return SDValue();
 | |
| 
 | |
|   // We're going to inline this global. Pad it out if needed.
 | |
|   if (RequiredPadding != 4) {
 | |
|     StringRef S = CDAInit->getAsString();
 | |
| 
 | |
|     SmallVector<uint8_t,16> V(S.size());
 | |
|     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
 | |
|     while (RequiredPadding--)
 | |
|       V.push_back(0);
 | |
|     Init = ConstantDataArray::get(*DAG.getContext(), V);
 | |
|   }
 | |
| 
 | |
|   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
 | |
|   SDValue CPAddr =
 | |
|     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
 | |
|   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
 | |
|     AFI->markGlobalAsPromotedToConstantPool(GVar);
 | |
|     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
 | |
|                                       PaddedSize - 4);
 | |
|   }
 | |
|   ++NumConstpoolPromoted;
 | |
|   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
 | |
|   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|     GV = GA->getBaseObject();
 | |
|   return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
 | |
|          isa<Function>(GV);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   switch (Subtarget->getTargetTriple().getObjectFormat()) {
 | |
|   default: llvm_unreachable("unknown object format");
 | |
|   case Triple::COFF:
 | |
|     return LowerGlobalAddressWindows(Op, DAG);
 | |
|   case Triple::ELF:
 | |
|     return LowerGlobalAddressELF(Op, DAG);
 | |
|   case Triple::MachO:
 | |
|     return LowerGlobalAddressDarwin(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDLoc dl(Op);
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   bool IsRO = isReadOnly(GV);
 | |
| 
 | |
|   // promoteToConstantPool only if not generating XO text section
 | |
|   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
 | |
|     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
 | |
|       return V;
 | |
| 
 | |
|   if (isPositionIndependent()) {
 | |
|     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
 | |
|     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
 | |
|     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
 | |
|     if (UseGOT_PREL)
 | |
|       Result =
 | |
|           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
 | |
|                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | |
|     return Result;
 | |
|   } else if (Subtarget->isROPI() && IsRO) {
 | |
|     // PC-relative.
 | |
|     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
 | |
|     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
 | |
|     return Result;
 | |
|   } else if (Subtarget->isRWPI() && !IsRO) {
 | |
|     // SB-relative.
 | |
|     SDValue RelAddr;
 | |
|     if (Subtarget->useMovt(DAG.getMachineFunction())) {
 | |
|       ++NumMovwMovt;
 | |
|       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
 | |
|       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
 | |
|     } else { // use literal pool for address constant
 | |
|       ARMConstantPoolValue *CPV =
 | |
|         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       RelAddr = DAG.getLoad(
 | |
|           PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|     }
 | |
|     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
 | |
|     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // If we have T2 ops, we can materialize the address directly via movt/movw
 | |
|   // pair. This is always cheaper.
 | |
|   if (Subtarget->useMovt(DAG.getMachineFunction())) {
 | |
|     ++NumMovwMovt;
 | |
|     // FIXME: Once remat is capable of dealing with instructions with register
 | |
|     // operands, expand this into two nodes.
 | |
|     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
 | |
|                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | |
|   } else {
 | |
|     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     return DAG.getLoad(
 | |
|         PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
 | |
|          "ROPI/RWPI not currently supported for Darwin");
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDLoc dl(Op);
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
| 
 | |
|   if (Subtarget->useMovt(DAG.getMachineFunction()))
 | |
|     ++NumMovwMovt;
 | |
| 
 | |
|   // FIXME: Once remat is capable of dealing with instructions with register
 | |
|   // operands, expand this into multiple nodes
 | |
|   unsigned Wrapper =
 | |
|       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
 | |
| 
 | |
|   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
 | |
|   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
 | |
| 
 | |
|   if (Subtarget->isGVIndirectSymbol(GV))
 | |
|     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
 | |
|                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
 | |
|   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
 | |
|          "Windows on ARM expects to use movw/movt");
 | |
|   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
 | |
|          "ROPI/RWPI not currently supported for Windows");
 | |
| 
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
 | |
|   if (GV->hasDLLImportStorageClass())
 | |
|     TargetFlags = ARMII::MO_DLLIMPORT;
 | |
|   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
 | |
|     TargetFlags = ARMII::MO_COFFSTUB;
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue Result;
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   ++NumMovwMovt;
 | |
| 
 | |
|   // FIXME: Once remat is capable of dealing with instructions with register
 | |
|   // operands, expand this into two nodes.
 | |
|   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
 | |
|                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
 | |
|                                                   TargetFlags));
 | |
|   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
 | |
|     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
 | |
|                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
 | |
|                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
 | |
|                      Op.getOperand(1), Val);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
 | |
|                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
 | |
|                      Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
 | |
|                                           const ARMSubtarget *Subtarget) const {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   SDLoc dl(Op);
 | |
|   switch (IntNo) {
 | |
|   default: return SDValue();    // Don't custom lower most intrinsics.
 | |
|   case Intrinsic::thread_pointer: {
 | |
|     EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_lsda: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|     EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|     SDValue CPAddr;
 | |
|     bool IsPositionIndependent = isPositionIndependent();
 | |
|     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
 | |
|                                       ARMCP::CPLSDA, PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     SDValue Result = DAG.getLoad(
 | |
|         PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
| 
 | |
|     if (IsPositionIndependent) {
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
 | |
|       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vabs:
 | |
|     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
 | |
|                         Op.getOperand(1));
 | |
|   case Intrinsic::arm_neon_vmulls:
 | |
|   case Intrinsic::arm_neon_vmullu: {
 | |
|     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
 | |
|       ? ARMISD::VMULLs : ARMISD::VMULLu;
 | |
|     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2));
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vminnm:
 | |
|   case Intrinsic::arm_neon_vmaxnm: {
 | |
|     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
 | |
|       ? ISD::FMINNUM : ISD::FMAXNUM;
 | |
|     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2));
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vminu:
 | |
|   case Intrinsic::arm_neon_vmaxu: {
 | |
|     if (Op.getValueType().isFloatingPoint())
 | |
|       return SDValue();
 | |
|     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
 | |
|       ? ISD::UMIN : ISD::UMAX;
 | |
|     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
 | |
|                          Op.getOperand(1), Op.getOperand(2));
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vmins:
 | |
|   case Intrinsic::arm_neon_vmaxs: {
 | |
|     // v{min,max}s is overloaded between signed integers and floats.
 | |
|     if (!Op.getValueType().isFloatingPoint()) {
 | |
|       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
 | |
|         ? ISD::SMIN : ISD::SMAX;
 | |
|       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
 | |
|                          Op.getOperand(1), Op.getOperand(2));
 | |
|     }
 | |
|     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
 | |
|       ? ISD::FMINNAN : ISD::FMAXNAN;
 | |
|     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2));
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vtbl1:
 | |
|     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2));
 | |
|   case Intrinsic::arm_neon_vtbl2:
 | |
|     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   SDLoc dl(Op);
 | |
|   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
 | |
|   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
 | |
|   if (SSID == SyncScope::SingleThread)
 | |
|     return Op;
 | |
| 
 | |
|   if (!Subtarget->hasDataBarrier()) {
 | |
|     // Some ARMv6 cpus can support data barriers with an mcr instruction.
 | |
|     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
 | |
|     // here.
 | |
|     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
 | |
|            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
 | |
|     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
 | |
|                        DAG.getConstant(0, dl, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
 | |
|   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
 | |
|   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
 | |
|   if (Subtarget->isMClass()) {
 | |
|     // Only a full system barrier exists in the M-class architectures.
 | |
|     Domain = ARM_MB::SY;
 | |
|   } else if (Subtarget->preferISHSTBarriers() &&
 | |
|              Ord == AtomicOrdering::Release) {
 | |
|     // Swift happens to implement ISHST barriers in a way that's compatible with
 | |
|     // Release semantics but weaker than ISH so we'd be fools not to use
 | |
|     // it. Beware: other processors probably don't!
 | |
|     Domain = ARM_MB::ISHST;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
 | |
|                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
 | |
|                      DAG.getConstant(Domain, dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
 | |
|                              const ARMSubtarget *Subtarget) {
 | |
|   // ARM pre v5TE and Thumb1 does not have preload instructions.
 | |
|   if (!(Subtarget->isThumb2() ||
 | |
|         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
 | |
|     // Just preserve the chain.
 | |
|     return Op.getOperand(0);
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
 | |
|   if (!isRead &&
 | |
|       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
 | |
|     // ARMv7 with MP extension has PLDW.
 | |
|     return Op.getOperand(0);
 | |
| 
 | |
|   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | |
|   if (Subtarget->isThumb()) {
 | |
|     // Invert the bits.
 | |
|     isRead = ~isRead & 1;
 | |
|     isData = ~isData & 1;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
 | |
|                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
 | |
|                      DAG.getConstant(isData, dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   SDLoc dl(Op);
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | |
|   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | |
|                       MachinePointerInfo(SV));
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
 | |
|                                                 CCValAssign &NextVA,
 | |
|                                                 SDValue &Root,
 | |
|                                                 SelectionDAG &DAG,
 | |
|                                                 const SDLoc &dl) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   const TargetRegisterClass *RC;
 | |
|   if (AFI->isThumb1OnlyFunction())
 | |
|     RC = &ARM::tGPRRegClass;
 | |
|   else
 | |
|     RC = &ARM::GPRRegClass;
 | |
| 
 | |
|   // Transform the arguments stored in physical registers into virtual ones.
 | |
|   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | |
| 
 | |
|   SDValue ArgValue2;
 | |
|   if (NextVA.isMemLoc()) {
 | |
|     MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
 | |
| 
 | |
|     // Create load node to retrieve arguments from the stack.
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | |
|     ArgValue2 = DAG.getLoad(
 | |
|         MVT::i32, dl, Root, FIN,
 | |
|         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
 | |
|   } else {
 | |
|     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
 | |
|     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | |
|   }
 | |
|   if (!Subtarget->isLittle())
 | |
|     std::swap (ArgValue, ArgValue2);
 | |
|   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
 | |
| }
 | |
| 
 | |
| // The remaining GPRs hold either the beginning of variable-argument
 | |
| // data, or the beginning of an aggregate passed by value (usually
 | |
| // byval).  Either way, we allocate stack slots adjacent to the data
 | |
| // provided by our caller, and store the unallocated registers there.
 | |
| // If this is a variadic function, the va_list pointer will begin with
 | |
| // these values; otherwise, this reassembles a (byval) structure that
 | |
| // was split between registers and memory.
 | |
| // Return: The frame index registers were stored into.
 | |
| int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
 | |
|                                       const SDLoc &dl, SDValue &Chain,
 | |
|                                       const Value *OrigArg,
 | |
|                                       unsigned InRegsParamRecordIdx,
 | |
|                                       int ArgOffset, unsigned ArgSize) const {
 | |
|   // Currently, two use-cases possible:
 | |
|   // Case #1. Non-var-args function, and we meet first byval parameter.
 | |
|   //          Setup first unallocated register as first byval register;
 | |
|   //          eat all remained registers
 | |
|   //          (these two actions are performed by HandleByVal method).
 | |
|   //          Then, here, we initialize stack frame with
 | |
|   //          "store-reg" instructions.
 | |
|   // Case #2. Var-args function, that doesn't contain byval parameters.
 | |
|   //          The same: eat all remained unallocated registers,
 | |
|   //          initialize stack frame.
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned RBegin, REnd;
 | |
|   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
 | |
|     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
 | |
|   } else {
 | |
|     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
 | |
|     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
 | |
|     REnd = ARM::R4;
 | |
|   }
 | |
| 
 | |
|   if (REnd != RBegin)
 | |
|     ArgOffset = -4 * (ARM::R4 - RBegin);
 | |
| 
 | |
|   auto PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
 | |
|   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
 | |
| 
 | |
|   SmallVector<SDValue, 4> MemOps;
 | |
|   const TargetRegisterClass *RC =
 | |
|       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
 | |
| 
 | |
|   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
 | |
|     unsigned VReg = MF.addLiveIn(Reg, RC);
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | |
|     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                  MachinePointerInfo(OrigArg, 4 * i));
 | |
|     MemOps.push_back(Store);
 | |
|     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | |
|   return FrameIndex;
 | |
| }
 | |
| 
 | |
| // Setup stack frame, the va_list pointer will start from.
 | |
| void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
 | |
|                                              const SDLoc &dl, SDValue &Chain,
 | |
|                                              unsigned ArgOffset,
 | |
|                                              unsigned TotalArgRegsSaveSize,
 | |
|                                              bool ForceMutable) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // Try to store any remaining integer argument regs
 | |
|   // to their spots on the stack so that they may be loaded by dereferencing
 | |
|   // the result of va_next.
 | |
|   // If there is no regs to be stored, just point address after last
 | |
|   // argument passed via stack.
 | |
|   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
 | |
|                                   CCInfo.getInRegsParamsCount(),
 | |
|                                   CCInfo.getNextStackOffset(), 4);
 | |
|   AFI->setVarArgsFrameIndex(FrameIndex);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
 | |
| 
 | |
|   SmallVector<SDValue, 16> ArgValues;
 | |
|   SDValue ArgValue;
 | |
|   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
| 
 | |
|   // Initially ArgRegsSaveSize is zero.
 | |
|   // Then we increase this value each time we meet byval parameter.
 | |
|   // We also increase this value in case of varargs function.
 | |
|   AFI->setArgRegsSaveSize(0);
 | |
| 
 | |
|   // Calculate the amount of stack space that we need to allocate to store
 | |
|   // byval and variadic arguments that are passed in registers.
 | |
|   // We need to know this before we allocate the first byval or variadic
 | |
|   // argument, as they will be allocated a stack slot below the CFA (Canonical
 | |
|   // Frame Address, the stack pointer at entry to the function).
 | |
|   unsigned ArgRegBegin = ARM::R4;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
 | |
|       break;
 | |
| 
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     unsigned Index = VA.getValNo();
 | |
|     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
 | |
|     if (!Flags.isByVal())
 | |
|       continue;
 | |
| 
 | |
|     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
 | |
|     unsigned RBegin, REnd;
 | |
|     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
 | |
|     ArgRegBegin = std::min(ArgRegBegin, RBegin);
 | |
| 
 | |
|     CCInfo.nextInRegsParam();
 | |
|   }
 | |
|   CCInfo.rewindByValRegsInfo();
 | |
| 
 | |
|   int lastInsIndex = -1;
 | |
|   if (isVarArg && MFI.hasVAStart()) {
 | |
|     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
 | |
|     if (RegIdx != array_lengthof(GPRArgRegs))
 | |
|       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
 | |
|   }
 | |
| 
 | |
|   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
 | |
|   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
 | |
|   auto PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     if (Ins[VA.getValNo()].isOrigArg()) {
 | |
|       std::advance(CurOrigArg,
 | |
|                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
 | |
|       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
 | |
|     }
 | |
|     // Arguments stored in registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       EVT RegVT = VA.getLocVT();
 | |
| 
 | |
|       if (VA.needsCustom()) {
 | |
|         // f64 and vector types are split up into multiple registers or
 | |
|         // combinations of registers and stack slots.
 | |
|         if (VA.getLocVT() == MVT::v2f64) {
 | |
|           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
 | |
|                                                    Chain, DAG, dl);
 | |
|           VA = ArgLocs[++i]; // skip ahead to next loc
 | |
|           SDValue ArgValue2;
 | |
|           if (VA.isMemLoc()) {
 | |
|             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
 | |
|             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
 | |
|                                     MachinePointerInfo::getFixedStack(
 | |
|                                         DAG.getMachineFunction(), FI));
 | |
|           } else {
 | |
|             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
 | |
|                                              Chain, DAG, dl);
 | |
|           }
 | |
|           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | |
|           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | |
|                                  ArgValue, ArgValue1,
 | |
|                                  DAG.getIntPtrConstant(0, dl));
 | |
|           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | |
|                                  ArgValue, ArgValue2,
 | |
|                                  DAG.getIntPtrConstant(1, dl));
 | |
|         } else
 | |
|           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
 | |
|       } else {
 | |
|         const TargetRegisterClass *RC;
 | |
| 
 | |
| 
 | |
|         if (RegVT == MVT::f16)
 | |
|           RC = &ARM::HPRRegClass;
 | |
|         else if (RegVT == MVT::f32)
 | |
|           RC = &ARM::SPRRegClass;
 | |
|         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
 | |
|           RC = &ARM::DPRRegClass;
 | |
|         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
 | |
|           RC = &ARM::QPRRegClass;
 | |
|         else if (RegVT == MVT::i32)
 | |
|           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
 | |
|                                            : &ARM::GPRRegClass;
 | |
|         else
 | |
|           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
 | |
| 
 | |
|         // Transform the arguments in physical registers into virtual ones.
 | |
|         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | |
|       }
 | |
| 
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted
 | |
|       // to 32 bits.  Insert an assert[sz]ext to capture this, then
 | |
|       // truncate to the right size.
 | |
|       switch (VA.getLocInfo()) {
 | |
|       default: llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full: break;
 | |
|       case CCValAssign::BCvt:
 | |
|         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
|     } else { // VA.isRegLoc()
 | |
|       // sanity check
 | |
|       assert(VA.isMemLoc());
 | |
|       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
 | |
| 
 | |
|       int index = VA.getValNo();
 | |
| 
 | |
|       // Some Ins[] entries become multiple ArgLoc[] entries.
 | |
|       // Process them only once.
 | |
|       if (index != lastInsIndex)
 | |
|         {
 | |
|           ISD::ArgFlagsTy Flags = Ins[index].Flags;
 | |
|           // FIXME: For now, all byval parameter objects are marked mutable.
 | |
|           // This can be changed with more analysis.
 | |
|           // In case of tail call optimization mark all arguments mutable.
 | |
|           // Since they could be overwritten by lowering of arguments in case of
 | |
|           // a tail call.
 | |
|           if (Flags.isByVal()) {
 | |
|             assert(Ins[index].isOrigArg() &&
 | |
|                    "Byval arguments cannot be implicit");
 | |
|             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
 | |
| 
 | |
|             int FrameIndex = StoreByValRegs(
 | |
|                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
 | |
|                 VA.getLocMemOffset(), Flags.getByValSize());
 | |
|             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
 | |
|             CCInfo.nextInRegsParam();
 | |
|           } else {
 | |
|             unsigned FIOffset = VA.getLocMemOffset();
 | |
|             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
 | |
|                                            FIOffset, true);
 | |
| 
 | |
|             // Create load nodes to retrieve arguments from the stack.
 | |
|             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | |
|                                          MachinePointerInfo::getFixedStack(
 | |
|                                              DAG.getMachineFunction(), FI)));
 | |
|           }
 | |
|           lastInsIndex = index;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // varargs
 | |
|   if (isVarArg && MFI.hasVAStart())
 | |
|     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
 | |
|                          CCInfo.getNextStackOffset(),
 | |
|                          TotalArgRegsSaveSize);
 | |
| 
 | |
|   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is +0.0.
 | |
| static bool isFloatingPointZero(SDValue Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->getValueAPF().isPosZero();
 | |
|   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
 | |
|       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
 | |
|       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
 | |
|         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | |
|           return CFP->getValueAPF().isPosZero();
 | |
|     }
 | |
|   } else if (Op->getOpcode() == ISD::BITCAST &&
 | |
|              Op->getValueType(0) == MVT::f64) {
 | |
|     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
 | |
|     // created by LowerConstantFP().
 | |
|     SDValue BitcastOp = Op->getOperand(0);
 | |
|     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
 | |
|         isNullConstant(BitcastOp->getOperand(0)))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
 | |
| /// the given operands.
 | |
| SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | |
|                                      SDValue &ARMcc, SelectionDAG &DAG,
 | |
|                                      const SDLoc &dl) const {
 | |
|   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
 | |
|     unsigned C = RHSC->getZExtValue();
 | |
|     if (!isLegalICmpImmediate((int32_t)C)) {
 | |
|       // Constant does not fit, try adjusting it by one.
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETGE:
 | |
|         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
 | |
|           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
 | |
|           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETUGE:
 | |
|         if (C != 0 && isLegalICmpImmediate(C-1)) {
 | |
|           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
 | |
|           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETLE:
 | |
|       case ISD::SETGT:
 | |
|         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
 | |
|           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
 | |
|           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETUGT:
 | |
|         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
 | |
|           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | |
|           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
 | |
|              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
 | |
|     // In ARM and Thumb-2, the compare instructions can shift their second
 | |
|     // operand.
 | |
|     CC = ISD::getSetCCSwappedOperands(CC);
 | |
|     std::swap(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|   ARMISD::NodeType CompareType;
 | |
|   switch (CondCode) {
 | |
|   default:
 | |
|     CompareType = ARMISD::CMP;
 | |
|     break;
 | |
|   case ARMCC::EQ:
 | |
|   case ARMCC::NE:
 | |
|     // Uses only Z Flag
 | |
|     CompareType = ARMISD::CMPZ;
 | |
|     break;
 | |
|   }
 | |
|   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
 | |
|   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
 | |
| SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
 | |
|                                      SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                      bool InvalidOnQNaN) const {
 | |
|   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
 | |
|   SDValue Cmp;
 | |
|   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
 | |
|   if (!isFloatingPointZero(RHS))
 | |
|     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
 | |
|   else
 | |
|     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
 | |
|   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
 | |
| }
 | |
| 
 | |
| /// duplicateCmp - Glue values can have only one use, so this function
 | |
| /// duplicates a comparison node.
 | |
| SDValue
 | |
| ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
 | |
|   unsigned Opc = Cmp.getOpcode();
 | |
|   SDLoc DL(Cmp);
 | |
|   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
 | |
|     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
 | |
| 
 | |
|   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
 | |
|   Cmp = Cmp.getOperand(0);
 | |
|   Opc = Cmp.getOpcode();
 | |
|   if (Opc == ARMISD::CMPFP)
 | |
|     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
 | |
|                       Cmp.getOperand(1), Cmp.getOperand(2));
 | |
|   else {
 | |
|     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
 | |
|     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
 | |
|                       Cmp.getOperand(1));
 | |
|   }
 | |
|   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
 | |
| }
 | |
| 
 | |
| // This function returns three things: the arithmetic computation itself
 | |
| // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
 | |
| // comparison and the condition code define the case in which the arithmetic
 | |
| // computation *does not* overflow.
 | |
| std::pair<SDValue, SDValue>
 | |
| ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
 | |
|                                  SDValue &ARMcc) const {
 | |
|   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
 | |
| 
 | |
|   SDValue Value, OverflowCmp;
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // FIXME: We are currently always generating CMPs because we don't support
 | |
|   // generating CMN through the backend. This is not as good as the natural
 | |
|   // CMP case because it causes a register dependency and cannot be folded
 | |
|   // later.
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown overflow instruction!");
 | |
|   case ISD::SADDO:
 | |
|     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
 | |
|     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
 | |
|     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
 | |
|     break;
 | |
|   case ISD::UADDO:
 | |
|     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
 | |
|     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
 | |
|     // We do not use it in the USUBO case as Value may not be used.
 | |
|     Value = DAG.getNode(ARMISD::ADDC, dl,
 | |
|                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
 | |
|                 .getValue(0);
 | |
|     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
 | |
|     break;
 | |
|   case ISD::SSUBO:
 | |
|     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
 | |
|     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
 | |
|     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
 | |
|     break;
 | |
|   case ISD::USUBO:
 | |
|     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
 | |
|     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
 | |
|     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
 | |
|     break;
 | |
|   case ISD::UMULO:
 | |
|     // We generate a UMUL_LOHI and then check if the high word is 0.
 | |
|     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
 | |
|     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
 | |
|                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
 | |
|                         LHS, RHS);
 | |
|     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
 | |
|                               DAG.getConstant(0, dl, MVT::i32));
 | |
|     Value = Value.getValue(0); // We only want the low 32 bits for the result.
 | |
|     break;
 | |
|   case ISD::SMULO:
 | |
|     // We generate a SMUL_LOHI and then check if all the bits of the high word
 | |
|     // are the same as the sign bit of the low word.
 | |
|     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
 | |
|     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
 | |
|                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
 | |
|                         LHS, RHS);
 | |
|     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
 | |
|                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
 | |
|                                           Value.getValue(0),
 | |
|                                           DAG.getConstant(31, dl, MVT::i32)));
 | |
|     Value = Value.getValue(0); // We only want the low 32 bits for the result.
 | |
|     break;
 | |
|   } // switch (...)
 | |
| 
 | |
|   return std::make_pair(Value, OverflowCmp);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Let legalize expand this if it isn't a legal type yet.
 | |
|   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Value, OverflowCmp;
 | |
|   SDValue ARMcc;
 | |
|   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDLoc dl(Op);
 | |
|   // We use 0 and 1 as false and true values.
 | |
|   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
 | |
|   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
 | |
|                                  ARMcc, CCR, OverflowCmp);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
 | |
| }
 | |
| 
 | |
| static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
 | |
|                                               SelectionDAG &DAG) {
 | |
|   SDLoc DL(BoolCarry);
 | |
|   EVT CarryVT = BoolCarry.getValueType();
 | |
| 
 | |
|   // This converts the boolean value carry into the carry flag by doing
 | |
|   // ARMISD::SUBC Carry, 1
 | |
|   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
 | |
|                               DAG.getVTList(CarryVT, MVT::i32),
 | |
|                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
 | |
|   return Carry.getValue(1);
 | |
| }
 | |
| 
 | |
| static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
 | |
|                                               SelectionDAG &DAG) {
 | |
|   SDLoc DL(Flags);
 | |
| 
 | |
|   // Now convert the carry flag into a boolean carry. We do this
 | |
|   // using ARMISD:ADDE 0, 0, Carry
 | |
|   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
 | |
|                      DAG.getConstant(0, DL, MVT::i32),
 | |
|                      DAG.getConstant(0, DL, MVT::i32), Flags);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   // Let legalize expand this if it isn't a legal type yet.
 | |
|   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | |
|   SDValue Value;
 | |
|   SDValue Overflow;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown overflow instruction!");
 | |
|   case ISD::UADDO:
 | |
|     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
 | |
|     // Convert the carry flag into a boolean value.
 | |
|     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
 | |
|     break;
 | |
|   case ISD::USUBO: {
 | |
|     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
 | |
|     // Convert the carry flag into a boolean value.
 | |
|     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
 | |
|     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
 | |
|     // value. So compute 1 - C.
 | |
|     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                            DAG.getConstant(1, dl, MVT::i32), Overflow);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Cond = Op.getOperand(0);
 | |
|   SDValue SelectTrue = Op.getOperand(1);
 | |
|   SDValue SelectFalse = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Opc = Cond.getOpcode();
 | |
| 
 | |
|   if (Cond.getResNo() == 1 &&
 | |
|       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
 | |
|        Opc == ISD::USUBO)) {
 | |
|     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
 | |
|       return SDValue();
 | |
| 
 | |
|     SDValue Value, OverflowCmp;
 | |
|     SDValue ARMcc;
 | |
|     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     EVT VT = Op.getValueType();
 | |
| 
 | |
|     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
 | |
|                    OverflowCmp, DAG);
 | |
|   }
 | |
| 
 | |
|   // Convert:
 | |
|   //
 | |
|   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
 | |
|   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
 | |
|   //
 | |
|   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
 | |
|     const ConstantSDNode *CMOVTrue =
 | |
|       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
 | |
|     const ConstantSDNode *CMOVFalse =
 | |
|       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
 | |
| 
 | |
|     if (CMOVTrue && CMOVFalse) {
 | |
|       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
 | |
|       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
 | |
| 
 | |
|       SDValue True;
 | |
|       SDValue False;
 | |
|       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
 | |
|         True = SelectTrue;
 | |
|         False = SelectFalse;
 | |
|       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
 | |
|         True = SelectFalse;
 | |
|         False = SelectTrue;
 | |
|       }
 | |
| 
 | |
|       if (True.getNode() && False.getNode()) {
 | |
|         EVT VT = Op.getValueType();
 | |
|         SDValue ARMcc = Cond.getOperand(2);
 | |
|         SDValue CCR = Cond.getOperand(3);
 | |
|         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
 | |
|         assert(True.getValueType() == VT);
 | |
|         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
 | |
|   // undefined bits before doing a full-word comparison with zero.
 | |
|   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
 | |
|                      DAG.getConstant(1, dl, Cond.getValueType()));
 | |
| 
 | |
|   return DAG.getSelectCC(dl, Cond,
 | |
|                          DAG.getConstant(0, dl, Cond.getValueType()),
 | |
|                          SelectTrue, SelectFalse, ISD::SETNE);
 | |
| }
 | |
| 
 | |
| static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
 | |
|                                  bool &swpCmpOps, bool &swpVselOps) {
 | |
|   // Start by selecting the GE condition code for opcodes that return true for
 | |
|   // 'equality'
 | |
|   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
 | |
|       CC == ISD::SETULE)
 | |
|     CondCode = ARMCC::GE;
 | |
| 
 | |
|   // and GT for opcodes that return false for 'equality'.
 | |
|   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
 | |
|            CC == ISD::SETULT)
 | |
|     CondCode = ARMCC::GT;
 | |
| 
 | |
|   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
 | |
|   // to swap the compare operands.
 | |
|   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
 | |
|       CC == ISD::SETULT)
 | |
|     swpCmpOps = true;
 | |
| 
 | |
|   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
 | |
|   // If we have an unordered opcode, we need to swap the operands to the VSEL
 | |
|   // instruction (effectively negating the condition).
 | |
|   //
 | |
|   // This also has the effect of swapping which one of 'less' or 'greater'
 | |
|   // returns true, so we also swap the compare operands. It also switches
 | |
|   // whether we return true for 'equality', so we compensate by picking the
 | |
|   // opposite condition code to our original choice.
 | |
|   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
 | |
|       CC == ISD::SETUGT) {
 | |
|     swpCmpOps = !swpCmpOps;
 | |
|     swpVselOps = !swpVselOps;
 | |
|     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
 | |
|   }
 | |
| 
 | |
|   // 'ordered' is 'anything but unordered', so use the VS condition code and
 | |
|   // swap the VSEL operands.
 | |
|   if (CC == ISD::SETO) {
 | |
|     CondCode = ARMCC::VS;
 | |
|     swpVselOps = true;
 | |
|   }
 | |
| 
 | |
|   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
 | |
|   // code and swap the VSEL operands.
 | |
|   if (CC == ISD::SETUNE) {
 | |
|     CondCode = ARMCC::EQ;
 | |
|     swpVselOps = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
 | |
|                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
 | |
|                                    SDValue Cmp, SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
 | |
|     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
 | |
|     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
 | |
| 
 | |
|     SDValue TrueLow = TrueVal.getValue(0);
 | |
|     SDValue TrueHigh = TrueVal.getValue(1);
 | |
|     SDValue FalseLow = FalseVal.getValue(0);
 | |
|     SDValue FalseHigh = FalseVal.getValue(1);
 | |
| 
 | |
|     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
 | |
|                               ARMcc, CCR, Cmp);
 | |
|     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
 | |
|                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
 | |
| 
 | |
|     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
 | |
|   } else {
 | |
|     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
 | |
|                        Cmp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isGTorGE(ISD::CondCode CC) {
 | |
|   return CC == ISD::SETGT || CC == ISD::SETGE;
 | |
| }
 | |
| 
 | |
| static bool isLTorLE(ISD::CondCode CC) {
 | |
|   return CC == ISD::SETLT || CC == ISD::SETLE;
 | |
| }
 | |
| 
 | |
| // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
 | |
| // All of these conditions (and their <= and >= counterparts) will do:
 | |
| //          x < k ? k : x
 | |
| //          x > k ? x : k
 | |
| //          k < x ? x : k
 | |
| //          k > x ? k : x
 | |
| static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
 | |
|                             const SDValue TrueVal, const SDValue FalseVal,
 | |
|                             const ISD::CondCode CC, const SDValue K) {
 | |
|   return (isGTorGE(CC) &&
 | |
|           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
 | |
|          (isLTorLE(CC) &&
 | |
|           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
 | |
| }
 | |
| 
 | |
| // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
 | |
| static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
 | |
|                             const SDValue TrueVal, const SDValue FalseVal,
 | |
|                             const ISD::CondCode CC, const SDValue K) {
 | |
|   return (isGTorGE(CC) &&
 | |
|           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
 | |
|          (isLTorLE(CC) &&
 | |
|           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
 | |
| }
 | |
| 
 | |
| // Check if two chained conditionals could be converted into SSAT or USAT.
 | |
| //
 | |
| // SSAT can replace a set of two conditional selectors that bound a number to an
 | |
| // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
 | |
| //
 | |
| //     x < -k ? -k : (x > k ? k : x)
 | |
| //     x < -k ? -k : (x < k ? x : k)
 | |
| //     x > -k ? (x > k ? k : x) : -k
 | |
| //     x < k ? (x < -k ? -k : x) : k
 | |
| //     etc.
 | |
| //
 | |
| // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
 | |
| // a power of 2.
 | |
| //
 | |
| // It returns true if the conversion can be done, false otherwise.
 | |
| // Additionally, the variable is returned in parameter V, the constant in K and
 | |
| // usat is set to true if the conditional represents an unsigned saturation
 | |
| static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
 | |
|                                     uint64_t &K, bool &usat) {
 | |
|   SDValue LHS1 = Op.getOperand(0);
 | |
|   SDValue RHS1 = Op.getOperand(1);
 | |
|   SDValue TrueVal1 = Op.getOperand(2);
 | |
|   SDValue FalseVal1 = Op.getOperand(3);
 | |
|   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
| 
 | |
|   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
 | |
|   if (Op2.getOpcode() != ISD::SELECT_CC)
 | |
|     return false;
 | |
| 
 | |
|   SDValue LHS2 = Op2.getOperand(0);
 | |
|   SDValue RHS2 = Op2.getOperand(1);
 | |
|   SDValue TrueVal2 = Op2.getOperand(2);
 | |
|   SDValue FalseVal2 = Op2.getOperand(3);
 | |
|   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
 | |
| 
 | |
|   // Find out which are the constants and which are the variables
 | |
|   // in each conditional
 | |
|   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
 | |
|                                                         ? &RHS1
 | |
|                                                         : nullptr;
 | |
|   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
 | |
|                                                         ? &RHS2
 | |
|                                                         : nullptr;
 | |
|   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
 | |
|   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
 | |
|   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
 | |
|   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
 | |
| 
 | |
|   // We must detect cases where the original operations worked with 16- or
 | |
|   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
 | |
|   // must work with sign-extended values but the select operations return
 | |
|   // the original non-extended value.
 | |
|   SDValue V2TmpReg = V2Tmp;
 | |
|   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
 | |
|     V2TmpReg = V2Tmp->getOperand(0);
 | |
| 
 | |
|   // Check that the registers and the constants have the correct values
 | |
|   // in both conditionals
 | |
|   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
 | |
|       V2TmpReg != V2)
 | |
|     return false;
 | |
| 
 | |
|   // Figure out which conditional is saturating the lower/upper bound.
 | |
|   const SDValue *LowerCheckOp =
 | |
|       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
 | |
|           ? &Op
 | |
|           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
 | |
|                 ? &Op2
 | |
|                 : nullptr;
 | |
|   const SDValue *UpperCheckOp =
 | |
|       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
 | |
|           ? &Op
 | |
|           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
 | |
|                 ? &Op2
 | |
|                 : nullptr;
 | |
| 
 | |
|   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the constant in the lower-bound check is
 | |
|   // the opposite of the constant in the upper-bound check
 | |
|   // in 1's complement.
 | |
|   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
 | |
|   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
 | |
|   int64_t PosVal = std::max(Val1, Val2);
 | |
|   int64_t NegVal = std::min(Val1, Val2);
 | |
| 
 | |
|   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
 | |
|        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
 | |
|       isPowerOf2_64(PosVal + 1)) {
 | |
| 
 | |
|     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
 | |
|     if (Val1 == ~Val2)
 | |
|       usat = false;
 | |
|     else if (NegVal == 0)
 | |
|       usat = true;
 | |
|     else
 | |
|       return false;
 | |
| 
 | |
|     V = V2;
 | |
|     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if a condition of the type x < k ? k : x can be converted into a
 | |
| // bit operation instead of conditional moves.
 | |
| // Currently this is allowed given:
 | |
| // - The conditions and values match up
 | |
| // - k is 0 or -1 (all ones)
 | |
| // This function will not check the last condition, thats up to the caller
 | |
| // It returns true if the transformation can be made, and in such case
 | |
| // returns x in V, and k in SatK.
 | |
| static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
 | |
|                                          SDValue &SatK)
 | |
| {
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDValue TrueVal = Op.getOperand(2);
 | |
|   SDValue FalseVal = Op.getOperand(3);
 | |
| 
 | |
|   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
 | |
|                                                ? &RHS
 | |
|                                                : nullptr;
 | |
| 
 | |
|   // No constant operation in comparison, early out
 | |
|   if (!K)
 | |
|     return false;
 | |
| 
 | |
|   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
 | |
|   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
 | |
|   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
 | |
| 
 | |
|   // If the constant on left and right side, or variable on left and right,
 | |
|   // does not match, early out
 | |
|   if (*K != KTmp || V != VTmp)
 | |
|     return false;
 | |
| 
 | |
|   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
 | |
|     SatK = *K;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Try to convert two saturating conditional selects into a single SSAT
 | |
|   SDValue SatValue;
 | |
|   uint64_t SatConstant;
 | |
|   bool SatUSat;
 | |
|   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
 | |
|       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
 | |
|     if (SatUSat)
 | |
|       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
 | |
|                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
 | |
|     else
 | |
|       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
 | |
|                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
 | |
|   }
 | |
| 
 | |
|   // Try to convert expressions of the form x < k ? k : x (and similar forms)
 | |
|   // into more efficient bit operations, which is possible when k is 0 or -1
 | |
|   // On ARM and Thumb-2 which have flexible operand 2 this will result in
 | |
|   // single instructions. On Thumb the shift and the bit operation will be two
 | |
|   // instructions.
 | |
|   // Only allow this transformation on full-width (32-bit) operations
 | |
|   SDValue LowerSatConstant;
 | |
|   if (VT == MVT::i32 &&
 | |
|       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
 | |
|     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
 | |
|                                  DAG.getConstant(31, dl, VT));
 | |
|     if (isNullConstant(LowerSatConstant)) {
 | |
|       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
 | |
|                                       DAG.getAllOnesConstant(dl, VT));
 | |
|       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
 | |
|     } else if (isAllOnesConstant(LowerSatConstant))
 | |
|       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
 | |
|   }
 | |
| 
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDValue TrueVal = Op.getOperand(2);
 | |
|   SDValue FalseVal = Op.getOperand(3);
 | |
| 
 | |
|   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
 | |
|     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
 | |
|                                                     dl);
 | |
| 
 | |
|     // If softenSetCCOperands only returned one value, we should compare it to
 | |
|     // zero.
 | |
|     if (!RHS.getNode()) {
 | |
|       RHS = DAG.getConstant(0, dl, LHS.getValueType());
 | |
|       CC = ISD::SETNE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     // Try to generate VSEL on ARMv8.
 | |
|     // The VSEL instruction can't use all the usual ARM condition
 | |
|     // codes: it only has two bits to select the condition code, so it's
 | |
|     // constrained to use only GE, GT, VS and EQ.
 | |
|     //
 | |
|     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
 | |
|     // swap the operands of the previous compare instruction (effectively
 | |
|     // inverting the compare condition, swapping 'less' and 'greater') and
 | |
|     // sometimes need to swap the operands to the VSEL (which inverts the
 | |
|     // condition in the sense of firing whenever the previous condition didn't)
 | |
|     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
 | |
|                                     TrueVal.getValueType() == MVT::f64)) {
 | |
|       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
 | |
|           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
 | |
|         CC = ISD::getSetCCInverse(CC, true);
 | |
|         std::swap(TrueVal, FalseVal);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue ARMcc;
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode, CondCode2;
 | |
|   bool InvalidOnQNaN;
 | |
|   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
 | |
| 
 | |
|   // Normalize the fp compare. If RHS is zero we keep it there so we match
 | |
|   // CMPFPw0 instead of CMPFP.
 | |
|   if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
 | |
|      (TrueVal.getValueType() == MVT::f16 ||
 | |
|       TrueVal.getValueType() == MVT::f32 ||
 | |
|       TrueVal.getValueType() == MVT::f64)) {
 | |
|     bool swpCmpOps = false;
 | |
|     bool swpVselOps = false;
 | |
|     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
 | |
| 
 | |
|     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
 | |
|         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
 | |
|       if (swpCmpOps)
 | |
|         std::swap(LHS, RHS);
 | |
|       if (swpVselOps)
 | |
|         std::swap(TrueVal, FalseVal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
 | |
|   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
 | |
|   if (CondCode2 != ARMCC::AL) {
 | |
|     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
 | |
|     // FIXME: Needs another CMP because flag can have but one use.
 | |
|     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
 | |
|     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// canChangeToInt - Given the fp compare operand, return true if it is suitable
 | |
| /// to morph to an integer compare sequence.
 | |
| static bool canChangeToInt(SDValue Op, bool &SeenZero,
 | |
|                            const ARMSubtarget *Subtarget) {
 | |
|   SDNode *N = Op.getNode();
 | |
|   if (!N->hasOneUse())
 | |
|     // Otherwise it requires moving the value from fp to integer registers.
 | |
|     return false;
 | |
|   if (!N->getNumValues())
 | |
|     return false;
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
 | |
|     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
 | |
|     // vmrs are very slow, e.g. cortex-a8.
 | |
|     return false;
 | |
| 
 | |
|   if (isFloatingPointZero(Op)) {
 | |
|     SeenZero = true;
 | |
|     return true;
 | |
|   }
 | |
|   return ISD::isNormalLoad(N);
 | |
| }
 | |
| 
 | |
| static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
 | |
|   if (isFloatingPointZero(Op))
 | |
|     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
 | |
| 
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
 | |
|     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
 | |
|                        Ld->getPointerInfo(), Ld->getAlignment(),
 | |
|                        Ld->getMemOperand()->getFlags());
 | |
| 
 | |
|   llvm_unreachable("Unknown VFP cmp argument!");
 | |
| }
 | |
| 
 | |
| static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
 | |
|                            SDValue &RetVal1, SDValue &RetVal2) {
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (isFloatingPointZero(Op)) {
 | |
|     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
 | |
|     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     RetVal1 =
 | |
|         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
 | |
|                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
 | |
| 
 | |
|     EVT PtrType = Ptr.getValueType();
 | |
|     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
 | |
|     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
 | |
|                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
 | |
|     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
 | |
|                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
 | |
|                           Ld->getMemOperand()->getFlags());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown VFP cmp argument!");
 | |
| }
 | |
| 
 | |
| /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
 | |
| /// f32 and even f64 comparisons to integer ones.
 | |
| SDValue
 | |
| ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   bool LHSSeenZero = false;
 | |
|   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
 | |
|   bool RHSSeenZero = false;
 | |
|   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
 | |
|   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
 | |
|     // If unsafe fp math optimization is enabled and there are no other uses of
 | |
|     // the CMP operands, and the condition code is EQ or NE, we can optimize it
 | |
|     // to an integer comparison.
 | |
|     if (CC == ISD::SETOEQ)
 | |
|       CC = ISD::SETEQ;
 | |
|     else if (CC == ISD::SETUNE)
 | |
|       CC = ISD::SETNE;
 | |
| 
 | |
|     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
 | |
|     SDValue ARMcc;
 | |
|     if (LHS.getValueType() == MVT::f32) {
 | |
|       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                         bitcastf32Toi32(LHS, DAG), Mask);
 | |
|       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                         bitcastf32Toi32(RHS, DAG), Mask);
 | |
|       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | |
|                          Chain, Dest, ARMcc, CCR, Cmp);
 | |
|     }
 | |
| 
 | |
|     SDValue LHS1, LHS2;
 | |
|     SDValue RHS1, RHS2;
 | |
|     expandf64Toi32(LHS, DAG, LHS1, LHS2);
 | |
|     expandf64Toi32(RHS, DAG, RHS1, RHS2);
 | |
|     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
 | |
|     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
 | |
|     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
 | |
|     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
 | |
|     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Cond = Op.getOperand(1);
 | |
|   SDValue Dest = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
 | |
|   // instruction.
 | |
|   unsigned Opc = Cond.getOpcode();
 | |
|   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
 | |
|                       !Subtarget->isThumb1Only();
 | |
|   if (Cond.getResNo() == 1 &&
 | |
|       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
 | |
|        Opc == ISD::USUBO || OptimizeMul)) {
 | |
|     // Only lower legal XALUO ops.
 | |
|     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
 | |
|       return SDValue();
 | |
| 
 | |
|     // The actual operation with overflow check.
 | |
|     SDValue Value, OverflowCmp;
 | |
|     SDValue ARMcc;
 | |
|     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
 | |
| 
 | |
|     // Reverse the condition code.
 | |
|     ARMCC::CondCodes CondCode =
 | |
|         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
 | |
|     CondCode = ARMCC::getOppositeCondition(CondCode);
 | |
|     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
| 
 | |
|     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
 | |
|                        OverflowCmp);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
 | |
|     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
 | |
|                                                     dl);
 | |
| 
 | |
|     // If softenSetCCOperands only returned one value, we should compare it to
 | |
|     // zero.
 | |
|     if (!RHS.getNode()) {
 | |
|       RHS = DAG.getConstant(0, dl, LHS.getValueType());
 | |
|       CC = ISD::SETNE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
 | |
|   // instruction.
 | |
|   unsigned Opc = LHS.getOpcode();
 | |
|   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
 | |
|                       !Subtarget->isThumb1Only();
 | |
|   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
 | |
|       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
 | |
|        Opc == ISD::USUBO || OptimizeMul) &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     // Only lower legal XALUO ops.
 | |
|     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
 | |
|       return SDValue();
 | |
| 
 | |
|     // The actual operation with overflow check.
 | |
|     SDValue Value, OverflowCmp;
 | |
|     SDValue ARMcc;
 | |
|     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
 | |
| 
 | |
|     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
 | |
|       // Reverse the condition code.
 | |
|       ARMCC::CondCodes CondCode =
 | |
|           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
 | |
|       CondCode = ARMCC::getOppositeCondition(CondCode);
 | |
|       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
 | |
|     }
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
| 
 | |
|     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
 | |
|                        OverflowCmp);
 | |
|   }
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | |
|                        Chain, Dest, ARMcc, CCR, Cmp);
 | |
|   }
 | |
| 
 | |
|   if (getTargetMachine().Options.UnsafeFPMath &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
 | |
|        CC == ISD::SETNE || CC == ISD::SETUNE)) {
 | |
|     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode, CondCode2;
 | |
|   bool InvalidOnQNaN;
 | |
|   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
 | |
| 
 | |
|   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
 | |
|   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
 | |
|   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
 | |
|   if (CondCode2 != ARMCC::AL) {
 | |
|     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
 | |
|     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
 | |
|     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Table = Op.getOperand(1);
 | |
|   SDValue Index = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   EVT PTy = getPointerTy(DAG.getDataLayout());
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | |
|   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
 | |
|   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
 | |
|   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
 | |
|   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
 | |
|   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
 | |
|     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
 | |
|     // which does another jump to the destination. This also makes it easier
 | |
|     // to translate it to TBB / TBH later (Thumb2 only).
 | |
|     // FIXME: This might not work if the function is extremely large.
 | |
|     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
 | |
|                        Addr, Op.getOperand(2), JTI);
 | |
|   }
 | |
|   if (isPositionIndependent() || Subtarget->isROPI()) {
 | |
|     Addr =
 | |
|         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
 | |
|                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
 | |
|     Chain = Addr.getValue(1);
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
 | |
|     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
 | |
|   } else {
 | |
|     Addr =
 | |
|         DAG.getLoad(PTy, dl, Chain, Addr,
 | |
|                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
 | |
|     Chain = Addr.getValue(1);
 | |
|     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Op.getValueType().getVectorElementType() == MVT::i32) {
 | |
|     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
 | |
|       return Op;
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
|   }
 | |
| 
 | |
|   const bool HasFullFP16 =
 | |
|     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
 | |
| 
 | |
|   EVT NewTy;
 | |
|   const EVT OpTy = Op.getOperand(0).getValueType();
 | |
|   if (OpTy == MVT::v4f32)
 | |
|     NewTy = MVT::v4i32;
 | |
|   else if (OpTy == MVT::v4f16 && HasFullFP16)
 | |
|     NewTy = MVT::v4i16;
 | |
|   else if (OpTy == MVT::v8f16 && HasFullFP16)
 | |
|     NewTy = MVT::v8i16;
 | |
|   else
 | |
|     llvm_unreachable("Invalid type for custom lowering!");
 | |
| 
 | |
|   if (VT != MVT::v4i16 && VT != MVT::v8i16)
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
| 
 | |
|   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
 | |
|   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT.isVector())
 | |
|     return LowerVectorFP_TO_INT(Op, DAG);
 | |
|   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
 | |
|     RTLIB::Libcall LC;
 | |
|     if (Op.getOpcode() == ISD::FP_TO_SINT)
 | |
|       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
 | |
|                               Op.getValueType());
 | |
|     else
 | |
|       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
 | |
|                               Op.getValueType());
 | |
|     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
 | |
|                        /*isSigned*/ false, SDLoc(Op)).first;
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
 | |
|     if (VT.getVectorElementType() == MVT::f32)
 | |
|       return Op;
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
|   }
 | |
| 
 | |
|   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
 | |
|           Op.getOperand(0).getValueType() == MVT::v8i16) &&
 | |
|          "Invalid type for custom lowering!");
 | |
| 
 | |
|   const bool HasFullFP16 =
 | |
|     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
 | |
| 
 | |
|   EVT DestVecType;
 | |
|   if (VT == MVT::v4f32)
 | |
|     DestVecType = MVT::v4i32;
 | |
|   else if (VT == MVT::v4f16 && HasFullFP16)
 | |
|     DestVecType = MVT::v4i16;
 | |
|   else if (VT == MVT::v8f16 && HasFullFP16)
 | |
|     DestVecType = MVT::v8i16;
 | |
|   else
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
| 
 | |
|   unsigned CastOpc;
 | |
|   unsigned Opc;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Invalid opcode!");
 | |
|   case ISD::SINT_TO_FP:
 | |
|     CastOpc = ISD::SIGN_EXTEND;
 | |
|     Opc = ISD::SINT_TO_FP;
 | |
|     break;
 | |
|   case ISD::UINT_TO_FP:
 | |
|     CastOpc = ISD::ZERO_EXTEND;
 | |
|     Opc = ISD::UINT_TO_FP;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
 | |
|   return DAG.getNode(Opc, dl, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT.isVector())
 | |
|     return LowerVectorINT_TO_FP(Op, DAG);
 | |
|   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
 | |
|     RTLIB::Libcall LC;
 | |
|     if (Op.getOpcode() == ISD::SINT_TO_FP)
 | |
|       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
 | |
|                               Op.getValueType());
 | |
|     else
 | |
|       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
 | |
|                               Op.getValueType());
 | |
|     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
 | |
|                        /*isSigned*/ false, SDLoc(Op)).first;
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Implement fcopysign with a fabs and a conditional fneg.
 | |
|   SDValue Tmp0 = Op.getOperand(0);
 | |
|   SDValue Tmp1 = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT SrcVT = Tmp1.getValueType();
 | |
|   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
 | |
|     Tmp0.getOpcode() == ARMISD::VMOVDRR;
 | |
|   bool UseNEON = !InGPR && Subtarget->hasNEON();
 | |
| 
 | |
|   if (UseNEON) {
 | |
|     // Use VBSL to copy the sign bit.
 | |
|     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
 | |
|     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
 | |
|                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
 | |
|     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
 | |
|     if (VT == MVT::f64)
 | |
|       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
 | |
|                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
 | |
|                          DAG.getConstant(32, dl, MVT::i32));
 | |
|     else /*if (VT == MVT::f32)*/
 | |
|       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
 | |
|     if (SrcVT == MVT::f32) {
 | |
|       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
 | |
|       if (VT == MVT::f64)
 | |
|         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
 | |
|                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
 | |
|                            DAG.getConstant(32, dl, MVT::i32));
 | |
|     } else if (VT == MVT::f32)
 | |
|       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
 | |
|                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
 | |
|                          DAG.getConstant(32, dl, MVT::i32));
 | |
|     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
 | |
|     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
 | |
| 
 | |
|     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
 | |
|                                             dl, MVT::i32);
 | |
|     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
 | |
|     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
 | |
|                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
 | |
| 
 | |
|     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
 | |
|                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
 | |
|                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
 | |
|     if (VT == MVT::f32) {
 | |
|       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
 | |
|       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
 | |
|                         DAG.getConstant(0, dl, MVT::i32));
 | |
|     } else {
 | |
|       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
 | |
|     }
 | |
| 
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Bitcast operand 1 to i32.
 | |
|   if (SrcVT == MVT::f64)
 | |
|     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                        Tmp1).getValue(1);
 | |
|   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
 | |
| 
 | |
|   // Or in the signbit with integer operations.
 | |
|   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
 | |
|   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
 | |
|   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
 | |
|   if (VT == MVT::f32) {
 | |
|     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
 | |
|                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
 | |
|   }
 | |
| 
 | |
|   // f64: Or the high part with signbit and then combine two parts.
 | |
|   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                      Tmp0);
 | |
|   SDValue Lo = Tmp0.getValue(0);
 | |
|   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
 | |
|   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
 | |
|   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setReturnAddressIsTaken(true);
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
 | |
|     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo());
 | |
|   }
 | |
| 
 | |
|   // Return LR, which contains the return address. Mark it an implicit live-in.
 | |
|   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const ARMBaseRegisterInfo &ARI =
 | |
|     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);  // FIXME probably not meaningful
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned FrameReg = ARI.getFrameRegister(MF);
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | |
|                             MachinePointerInfo());
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| // FIXME? Maybe this could be a TableGen attribute on some registers and
 | |
| // this table could be generated automatically from RegInfo.
 | |
| unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   unsigned Reg = StringSwitch<unsigned>(RegName)
 | |
|                        .Case("sp", ARM::SP)
 | |
|                        .Default(0);
 | |
|   if (Reg)
 | |
|     return Reg;
 | |
|   report_fatal_error(Twine("Invalid register name \""
 | |
|                               + StringRef(RegName)  + "\"."));
 | |
| }
 | |
| 
 | |
| // Result is 64 bit value so split into two 32 bit values and return as a
 | |
| // pair of values.
 | |
| static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
 | |
|                                 SelectionDAG &DAG) {
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   // This function is only supposed to be called for i64 type destination.
 | |
|   assert(N->getValueType(0) == MVT::i64
 | |
|           && "ExpandREAD_REGISTER called for non-i64 type result.");
 | |
| 
 | |
|   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
 | |
|                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
 | |
|                              N->getOperand(0),
 | |
|                              N->getOperand(1));
 | |
| 
 | |
|   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
 | |
|                     Read.getValue(1)));
 | |
|   Results.push_back(Read.getOperand(0));
 | |
| }
 | |
| 
 | |
| /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
 | |
| /// When \p DstVT, the destination type of \p BC, is on the vector
 | |
| /// register bank and the source of bitcast, \p Op, operates on the same bank,
 | |
| /// it might be possible to combine them, such that everything stays on the
 | |
| /// vector register bank.
 | |
| /// \p return The node that would replace \p BT, if the combine
 | |
| /// is possible.
 | |
| static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
 | |
|                                                 SelectionDAG &DAG) {
 | |
|   SDValue Op = BC->getOperand(0);
 | |
|   EVT DstVT = BC->getValueType(0);
 | |
| 
 | |
|   // The only vector instruction that can produce a scalar (remember,
 | |
|   // since the bitcast was about to be turned into VMOVDRR, the source
 | |
|   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
 | |
|   // Moreover, we can do this combine only if there is one use.
 | |
|   // Finally, if the destination type is not a vector, there is not
 | |
|   // much point on forcing everything on the vector bank.
 | |
|   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | |
|       !Op.hasOneUse())
 | |
|     return SDValue();
 | |
| 
 | |
|   // If the index is not constant, we will introduce an additional
 | |
|   // multiply that will stick.
 | |
|   // Give up in that case.
 | |
|   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|   if (!Index)
 | |
|     return SDValue();
 | |
|   unsigned DstNumElt = DstVT.getVectorNumElements();
 | |
| 
 | |
|   // Compute the new index.
 | |
|   const APInt &APIntIndex = Index->getAPIntValue();
 | |
|   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
 | |
|   NewIndex *= APIntIndex;
 | |
|   // Check if the new constant index fits into i32.
 | |
|   if (NewIndex.getBitWidth() > 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
 | |
|   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
 | |
|   SDLoc dl(Op);
 | |
|   SDValue ExtractSrc = Op.getOperand(0);
 | |
|   EVT VecVT = EVT::getVectorVT(
 | |
|       *DAG.getContext(), DstVT.getScalarType(),
 | |
|       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
 | |
|   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
 | |
|   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
 | |
|                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| /// ExpandBITCAST - If the target supports VFP, this function is called to
 | |
| /// expand a bit convert where either the source or destination type is i64 to
 | |
| /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
 | |
| /// operand type is illegal (e.g., v2f32 for a target that doesn't support
 | |
| /// vectors), since the legalizer won't know what to do with that.
 | |
| static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
 | |
|                              const ARMSubtarget *Subtarget) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDLoc dl(N);
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   // This function is only supposed to be called for i64 types, either as the
 | |
|   // source or destination of the bit convert.
 | |
|   EVT SrcVT = Op.getValueType();
 | |
|   EVT DstVT = N->getValueType(0);
 | |
|   const bool HasFullFP16 = Subtarget->hasFullFP16();
 | |
| 
 | |
|   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
 | |
|      // FullFP16: half values are passed in S-registers, and we don't
 | |
|      // need any of the bitcast and moves:
 | |
|      //
 | |
|      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
 | |
|      //   t5: i32 = bitcast t2
 | |
|      // t18: f16 = ARMISD::VMOVhr t5
 | |
|      if (Op.getOpcode() != ISD::CopyFromReg ||
 | |
|          Op.getValueType() != MVT::f32)
 | |
|        return SDValue();
 | |
| 
 | |
|      auto Move = N->use_begin();
 | |
|      if (Move->getOpcode() != ARMISD::VMOVhr)
 | |
|        return SDValue();
 | |
| 
 | |
|      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
 | |
|      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
 | |
|      DAG.ReplaceAllUsesWith(*Move, &Copy);
 | |
|      return Copy;
 | |
|   }
 | |
| 
 | |
|   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
 | |
|     if (!HasFullFP16)
 | |
|       return SDValue();
 | |
|     // SoftFP: read half-precision arguments:
 | |
|     //
 | |
|     // t2: i32,ch = ...
 | |
|     //        t7: i16 = truncate t2 <~~~~ Op
 | |
|     //      t8: f16 = bitcast t7    <~~~~ N
 | |
|     //
 | |
|     if (Op.getOperand(0).getValueType() == MVT::i32)
 | |
|       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
 | |
|                          MVT::f16, Op.getOperand(0));
 | |
| 
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Half-precision return values
 | |
|   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
 | |
|     if (!HasFullFP16)
 | |
|       return SDValue();
 | |
|     //
 | |
|     //          t11: f16 = fadd t8, t10
 | |
|     //        t12: i16 = bitcast t11       <~~~ SDNode N
 | |
|     //      t13: i32 = zero_extend t12
 | |
|     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
 | |
|     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
 | |
|     //
 | |
|     // transform this into:
 | |
|     //
 | |
|     //    t20: i32 = ARMISD::VMOVrh t11
 | |
|     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
 | |
|     //
 | |
|     auto ZeroExtend = N->use_begin();
 | |
|     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
 | |
|         ZeroExtend->getValueType(0) != MVT::i32)
 | |
|       return SDValue();
 | |
| 
 | |
|     auto Copy = ZeroExtend->use_begin();
 | |
|     if (Copy->getOpcode() == ISD::CopyToReg &&
 | |
|         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
 | |
|       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
 | |
|       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
 | |
|       return Cvt;
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Turn i64->f64 into VMOVDRR.
 | |
|   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
 | |
|     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
 | |
|     // if we can combine the bitcast with its source.
 | |
|     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
 | |
|       return Val;
 | |
| 
 | |
|     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | |
|                              DAG.getConstant(0, dl, MVT::i32));
 | |
|     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | |
|                              DAG.getConstant(1, dl, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, DstVT,
 | |
|                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
 | |
|   }
 | |
| 
 | |
|   // Turn f64->i64 into VMOVRRD.
 | |
|   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
 | |
|     SDValue Cvt;
 | |
|     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
 | |
|         SrcVT.getVectorNumElements() > 1)
 | |
|       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                         DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
 | |
|     else
 | |
|       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                         DAG.getVTList(MVT::i32, MVT::i32), Op);
 | |
|     // Merge the pieces into a single i64 value.
 | |
|     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// getZeroVector - Returns a vector of specified type with all zero elements.
 | |
| /// Zero vectors are used to represent vector negation and in those cases
 | |
| /// will be implemented with the NEON VNEG instruction.  However, VNEG does
 | |
| /// not support i64 elements, so sometimes the zero vectors will need to be
 | |
| /// explicitly constructed.  Regardless, use a canonical VMOV to create the
 | |
| /// zero vector.
 | |
| static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
|   // The canonical modified immediate encoding of a zero vector is....0!
 | |
|   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
 | |
|   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | |
|   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | |
| }
 | |
| 
 | |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
 | |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   SDLoc dl(Op);
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
 | |
| 
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, dl, MVT::i32));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
 | |
|   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
 | |
|   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
 | |
|                             ISD::SETGE, ARMcc, DAG, dl);
 | |
|   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
 | |
|                            ARMcc, CCR, CmpLo);
 | |
| 
 | |
|   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue HiBigShift = Opc == ISD::SRA
 | |
|                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
 | |
|                                          DAG.getConstant(VTBits - 1, dl, VT))
 | |
|                            : DAG.getConstant(0, dl, VT);
 | |
|   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
 | |
|                             ISD::SETGE, ARMcc, DAG, dl);
 | |
|   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
 | |
|                            ARMcc, CCR, CmpHi);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, dl);
 | |
| }
 | |
| 
 | |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
 | |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   SDLoc dl(Op);
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SHL_PARTS);
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
| 
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, dl, MVT::i32));
 | |
|   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
 | |
|   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
 | |
|                             ISD::SETGE, ARMcc, DAG, dl);
 | |
|   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
 | |
|                            ARMcc, CCR, CmpHi);
 | |
| 
 | |
|   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
 | |
|                           ISD::SETGE, ARMcc, DAG, dl);
 | |
|   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
 | |
|                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, dl);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   // The rounding mode is in bits 23:22 of the FPSCR.
 | |
|   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
 | |
|   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
 | |
|   // so that the shift + and get folded into a bitfield extract.
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Ops[] = { DAG.getEntryNode(),
 | |
|                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
 | |
| 
 | |
|   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
 | |
|   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
 | |
|                                   DAG.getConstant(1U << 22, dl, MVT::i32));
 | |
|   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
 | |
|                               DAG.getConstant(22, dl, MVT::i32));
 | |
|   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
 | |
|                      DAG.getConstant(3, dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
 | |
|                          const ARMSubtarget *ST) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT.isVector()) {
 | |
|     assert(ST->hasNEON());
 | |
| 
 | |
|     // Compute the least significant set bit: LSB = X & -X
 | |
|     SDValue X = N->getOperand(0);
 | |
|     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
 | |
|     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
 | |
| 
 | |
|     EVT ElemTy = VT.getVectorElementType();
 | |
| 
 | |
|     if (ElemTy == MVT::i8) {
 | |
|       // Compute with: cttz(x) = ctpop(lsb - 1)
 | |
|       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
 | |
|                                 DAG.getTargetConstant(1, dl, ElemTy));
 | |
|       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
 | |
|       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
 | |
|     }
 | |
| 
 | |
|     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
 | |
|         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
 | |
|       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
 | |
|       unsigned NumBits = ElemTy.getSizeInBits();
 | |
|       SDValue WidthMinus1 =
 | |
|           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
 | |
|                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
 | |
|       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
 | |
|       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
 | |
|     }
 | |
| 
 | |
|     // Compute with: cttz(x) = ctpop(lsb - 1)
 | |
| 
 | |
|     // Since we can only compute the number of bits in a byte with vcnt.8, we
 | |
|     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
 | |
|     // and i64.
 | |
| 
 | |
|     // Compute LSB - 1.
 | |
|     SDValue Bits;
 | |
|     if (ElemTy == MVT::i64) {
 | |
|       // Load constant 0xffff'ffff'ffff'ffff to register.
 | |
|       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
 | |
|                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
 | |
|       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
 | |
|     } else {
 | |
|       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
 | |
|                                 DAG.getTargetConstant(1, dl, ElemTy));
 | |
|       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
 | |
|     }
 | |
| 
 | |
|     // Count #bits with vcnt.8.
 | |
|     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
 | |
|     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
 | |
|     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
 | |
| 
 | |
|     // Gather the #bits with vpaddl (pairwise add.)
 | |
|     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
 | |
|     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
 | |
|         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
 | |
|         Cnt8);
 | |
|     if (ElemTy == MVT::i16)
 | |
|       return Cnt16;
 | |
| 
 | |
|     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
 | |
|     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
 | |
|         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
 | |
|         Cnt16);
 | |
|     if (ElemTy == MVT::i32)
 | |
|       return Cnt32;
 | |
| 
 | |
|     assert(ElemTy == MVT::i64);
 | |
|     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
 | |
|         Cnt32);
 | |
|     return Cnt64;
 | |
|   }
 | |
| 
 | |
|   if (!ST->hasV6T2Ops())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
 | |
|   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
 | |
| }
 | |
| 
 | |
| /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
 | |
| /// for each 16-bit element from operand, repeated.  The basic idea is to
 | |
| /// leverage vcnt to get the 8-bit counts, gather and add the results.
 | |
| ///
 | |
| /// Trace for v4i16:
 | |
| /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
 | |
| /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
 | |
| /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
 | |
| /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
 | |
| ///            [b0 b1 b2 b3 b4 b5 b6 b7]
 | |
| ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
 | |
| /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
 | |
| /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
 | |
| static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
 | |
|   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
 | |
|   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
 | |
|   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
 | |
|   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
 | |
|   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
 | |
| }
 | |
| 
 | |
| /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
 | |
| /// bit-count for each 16-bit element from the operand.  We need slightly
 | |
| /// different sequencing for v4i16 and v8i16 to stay within NEON's available
 | |
| /// 64/128-bit registers.
 | |
| ///
 | |
| /// Trace for v4i16:
 | |
| /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
 | |
| /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
 | |
| /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
 | |
| /// v4i16:Extracted = [k0    k1    k2    k3    ]
 | |
| static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
 | |
|   if (VT.is64BitVector()) {
 | |
|     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
 | |
|     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
 | |
|                        DAG.getIntPtrConstant(0, DL));
 | |
|   } else {
 | |
|     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
 | |
|                                     BitCounts, DAG.getIntPtrConstant(0, DL));
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
 | |
| /// bit-count for each 32-bit element from the operand.  The idea here is
 | |
| /// to split the vector into 16-bit elements, leverage the 16-bit count
 | |
| /// routine, and then combine the results.
 | |
| ///
 | |
| /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
 | |
| /// input    = [v0    v1    ] (vi: 32-bit elements)
 | |
| /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
 | |
| /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
 | |
| /// vrev: N0 = [k1 k0 k3 k2 ]
 | |
| ///            [k0 k1 k2 k3 ]
 | |
| ///       N1 =+[k1 k0 k3 k2 ]
 | |
| ///            [k0 k2 k1 k3 ]
 | |
| ///       N2 =+[k1 k3 k0 k2 ]
 | |
| ///            [k0    k2    k1    k3    ]
 | |
| /// Extended =+[k1    k3    k0    k2    ]
 | |
| ///            [k0    k2    ]
 | |
| /// Extracted=+[k1    k3    ]
 | |
| ///
 | |
| static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
 | |
| 
 | |
|   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
 | |
|   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
 | |
|   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
 | |
|   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
 | |
|   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
 | |
| 
 | |
|   if (VT.is64BitVector()) {
 | |
|     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
 | |
|     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
 | |
|                        DAG.getIntPtrConstant(0, DL));
 | |
|   } else {
 | |
|     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
 | |
|                                     DAG.getIntPtrConstant(0, DL));
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
 | |
|                           const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
 | |
|   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
 | |
|           VT == MVT::v4i16 || VT == MVT::v8i16) &&
 | |
|          "Unexpected type for custom ctpop lowering");
 | |
| 
 | |
|   if (VT.getVectorElementType() == MVT::i32)
 | |
|     return lowerCTPOP32BitElements(N, DAG);
 | |
|   else
 | |
|     return lowerCTPOP16BitElements(N, DAG);
 | |
| }
 | |
| 
 | |
| static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
 | |
|                           const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Lower vector shifts on NEON to use VSHL.
 | |
|   assert(ST->hasNEON() && "unexpected vector shift");
 | |
| 
 | |
|   // Left shifts translate directly to the vshiftu intrinsic.
 | |
|   if (N->getOpcode() == ISD::SHL)
 | |
|     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
 | |
|                                        MVT::i32),
 | |
|                        N->getOperand(0), N->getOperand(1));
 | |
| 
 | |
|   assert((N->getOpcode() == ISD::SRA ||
 | |
|           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
 | |
| 
 | |
|   // NEON uses the same intrinsics for both left and right shifts.  For
 | |
|   // right shifts, the shift amounts are negative, so negate the vector of
 | |
|   // shift amounts.
 | |
|   EVT ShiftVT = N->getOperand(1).getValueType();
 | |
|   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
 | |
|                                      getZeroVector(ShiftVT, DAG, dl),
 | |
|                                      N->getOperand(1));
 | |
|   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
 | |
|                              Intrinsic::arm_neon_vshifts :
 | |
|                              Intrinsic::arm_neon_vshiftu);
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                      DAG.getConstant(vshiftInt, dl, MVT::i32),
 | |
|                      N->getOperand(0), NegatedCount);
 | |
| }
 | |
| 
 | |
| static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
 | |
|                                 const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // We can get here for a node like i32 = ISD::SHL i32, i64
 | |
|   if (VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
 | |
|          "Unknown shift to lower!");
 | |
| 
 | |
|   // We only lower SRA, SRL of 1 here, all others use generic lowering.
 | |
|   if (!isOneConstant(N->getOperand(1)))
 | |
|     return SDValue();
 | |
| 
 | |
|   // If we are in thumb mode, we don't have RRX.
 | |
|   if (ST->isThumb1Only()) return SDValue();
 | |
| 
 | |
|   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
 | |
|   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | |
|                            DAG.getConstant(0, dl, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | |
|                            DAG.getConstant(1, dl, MVT::i32));
 | |
| 
 | |
|   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
 | |
|   // captures the result into a carry flag.
 | |
|   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
 | |
|   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
 | |
| 
 | |
|   // The low part is an ARMISD::RRX operand, which shifts the carry in.
 | |
|   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
 | |
| 
 | |
|   // Merge the pieces into a single i64 value.
 | |
|  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue TmpOp0, TmpOp1;
 | |
|   bool Invert = false;
 | |
|   bool Swap = false;
 | |
|   unsigned Opc = 0;
 | |
| 
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue CC = Op.getOperand(2);
 | |
|   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
 | |
|   EVT VT = Op.getValueType();
 | |
|   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
 | |
|       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
 | |
|     // Special-case integer 64-bit equality comparisons. They aren't legal,
 | |
|     // but they can be lowered with a few vector instructions.
 | |
|     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
 | |
|     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
 | |
|     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
 | |
|     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
 | |
|     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
 | |
|                               DAG.getCondCode(ISD::SETEQ));
 | |
|     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
 | |
|     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
 | |
|     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
 | |
|     if (SetCCOpcode == ISD::SETNE)
 | |
|       Merged = DAG.getNOT(dl, Merged, CmpVT);
 | |
|     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
 | |
|     return Merged;
 | |
|   }
 | |
| 
 | |
|   if (CmpVT.getVectorElementType() == MVT::i64)
 | |
|     // 64-bit comparisons are not legal in general.
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Op1.getValueType().isFloatingPoint()) {
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Illegal FP comparison");
 | |
|     case ISD::SETUNE:
 | |
|     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETOEQ:
 | |
|     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | |
|     case ISD::SETOLT:
 | |
|     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETOLE:
 | |
|     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE: Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETONE:
 | |
|       // Expand this to (OLT | OGT).
 | |
|       TmpOp0 = Op0;
 | |
|       TmpOp1 = Op1;
 | |
|       Opc = ISD::OR;
 | |
|       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
 | |
|       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
 | |
|       break;
 | |
|     case ISD::SETUO:
 | |
|       Invert = true;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case ISD::SETO:
 | |
|       // Expand this to (OLT | OGE).
 | |
|       TmpOp0 = Op0;
 | |
|       TmpOp1 = Op1;
 | |
|       Opc = ISD::OR;
 | |
|       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
 | |
|       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     // Integer comparisons.
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Illegal integer comparison");
 | |
|     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | |
|     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
 | |
|     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
 | |
|     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
 | |
|     }
 | |
| 
 | |
|     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
 | |
|     if (Opc == ARMISD::VCEQ) {
 | |
|       SDValue AndOp;
 | |
|       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | |
|         AndOp = Op0;
 | |
|       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
 | |
|         AndOp = Op1;
 | |
| 
 | |
|       // Ignore bitconvert.
 | |
|       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
 | |
|         AndOp = AndOp.getOperand(0);
 | |
| 
 | |
|       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
 | |
|         Opc = ARMISD::VTST;
 | |
|         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
 | |
|         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
 | |
|         Invert = !Invert;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Swap)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // If one of the operands is a constant vector zero, attempt to fold the
 | |
|   // comparison to a specialized compare-against-zero form.
 | |
|   SDValue SingleOp;
 | |
|   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | |
|     SingleOp = Op0;
 | |
|   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
 | |
|     if (Opc == ARMISD::VCGE)
 | |
|       Opc = ARMISD::VCLEZ;
 | |
|     else if (Opc == ARMISD::VCGT)
 | |
|       Opc = ARMISD::VCLTZ;
 | |
|     SingleOp = Op1;
 | |
|   }
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (SingleOp.getNode()) {
 | |
|     switch (Opc) {
 | |
|     case ARMISD::VCEQ:
 | |
|       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
 | |
|     case ARMISD::VCGE:
 | |
|       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
 | |
|     case ARMISD::VCLEZ:
 | |
|       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
 | |
|     case ARMISD::VCGT:
 | |
|       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
 | |
|     case ARMISD::VCLTZ:
 | |
|       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
 | |
|     default:
 | |
|       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
 | |
|     }
 | |
|   } else {
 | |
|      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   Result = DAG.getSExtOrTrunc(Result, dl, VT);
 | |
| 
 | |
|   if (Invert)
 | |
|     Result = DAG.getNOT(dl, Result, VT);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDValue Carry = Op.getOperand(2);
 | |
|   SDValue Cond = Op.getOperand(3);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
 | |
| 
 | |
|   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
 | |
|   // have to invert the carry first.
 | |
|   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
 | |
|                       DAG.getConstant(1, DL, MVT::i32), Carry);
 | |
|   // This converts the boolean value carry into the carry flag.
 | |
|   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
 | |
|   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
 | |
| 
 | |
|   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
 | |
|   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
 | |
|   SDValue ARMcc = DAG.getConstant(
 | |
|       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
 | |
|                                    Cmp.getValue(1), SDValue());
 | |
|   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
 | |
|                      CCR, Chain.getValue(1));
 | |
| }
 | |
| 
 | |
| /// isNEONModifiedImm - Check if the specified splat value corresponds to a
 | |
| /// valid vector constant for a NEON instruction with a "modified immediate"
 | |
| /// operand (e.g., VMOV).  If so, return the encoded value.
 | |
| static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
 | |
|                                  unsigned SplatBitSize, SelectionDAG &DAG,
 | |
|                                  const SDLoc &dl, EVT &VT, bool is128Bits,
 | |
|                                  NEONModImmType type) {
 | |
|   unsigned OpCmode, Imm;
 | |
| 
 | |
|   // SplatBitSize is set to the smallest size that splats the vector, so a
 | |
|   // zero vector will always have SplatBitSize == 8.  However, NEON modified
 | |
|   // immediate instructions others than VMOV do not support the 8-bit encoding
 | |
|   // of a zero vector, and the default encoding of zero is supposed to be the
 | |
|   // 32-bit version.
 | |
|   if (SplatBits == 0)
 | |
|     SplatBitSize = 32;
 | |
| 
 | |
|   switch (SplatBitSize) {
 | |
|   case 8:
 | |
|     if (type != VMOVModImm)
 | |
|       return SDValue();
 | |
|     // Any 1-byte value is OK.  Op=0, Cmode=1110.
 | |
|     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
 | |
|     OpCmode = 0xe;
 | |
|     Imm = SplatBits;
 | |
|     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
 | |
|     break;
 | |
| 
 | |
|   case 16:
 | |
|     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
 | |
|     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
 | |
|     if ((SplatBits & ~0xff) == 0) {
 | |
|       // Value = 0x00nn: Op=x, Cmode=100x.
 | |
|       OpCmode = 0x8;
 | |
|       Imm = SplatBits;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff00) == 0) {
 | |
|       // Value = 0xnn00: Op=x, Cmode=101x.
 | |
|       OpCmode = 0xa;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
|     return SDValue();
 | |
| 
 | |
|   case 32:
 | |
|     // NEON's 32-bit VMOV supports splat values where:
 | |
|     // * only one byte is nonzero, or
 | |
|     // * the least significant byte is 0xff and the second byte is nonzero, or
 | |
|     // * the least significant 2 bytes are 0xff and the third is nonzero.
 | |
|     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
 | |
|     if ((SplatBits & ~0xff) == 0) {
 | |
|       // Value = 0x000000nn: Op=x, Cmode=000x.
 | |
|       OpCmode = 0;
 | |
|       Imm = SplatBits;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff00) == 0) {
 | |
|       // Value = 0x0000nn00: Op=x, Cmode=001x.
 | |
|       OpCmode = 0x2;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff0000) == 0) {
 | |
|       // Value = 0x00nn0000: Op=x, Cmode=010x.
 | |
|       OpCmode = 0x4;
 | |
|       Imm = SplatBits >> 16;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff000000) == 0) {
 | |
|       // Value = 0xnn000000: Op=x, Cmode=011x.
 | |
|       OpCmode = 0x6;
 | |
|       Imm = SplatBits >> 24;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
 | |
|     if (type == OtherModImm) return SDValue();
 | |
| 
 | |
|     if ((SplatBits & ~0xffff) == 0 &&
 | |
|         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
 | |
|       // Value = 0x0000nnff: Op=x, Cmode=1100.
 | |
|       OpCmode = 0xc;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if ((SplatBits & ~0xffffff) == 0 &&
 | |
|         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
 | |
|       // Value = 0x00nnffff: Op=x, Cmode=1101.
 | |
|       OpCmode = 0xd;
 | |
|       Imm = SplatBits >> 16;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
 | |
|     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
 | |
|     // VMOV.I32.  A (very) minor optimization would be to replicate the value
 | |
|     // and fall through here to test for a valid 64-bit splat.  But, then the
 | |
|     // caller would also need to check and handle the change in size.
 | |
|     return SDValue();
 | |
| 
 | |
|   case 64: {
 | |
|     if (type != VMOVModImm)
 | |
|       return SDValue();
 | |
|     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
 | |
|     uint64_t BitMask = 0xff;
 | |
|     uint64_t Val = 0;
 | |
|     unsigned ImmMask = 1;
 | |
|     Imm = 0;
 | |
|     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
 | |
|       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
 | |
|         Val |= BitMask;
 | |
|         Imm |= ImmMask;
 | |
|       } else if ((SplatBits & BitMask) != 0) {
 | |
|         return SDValue();
 | |
|       }
 | |
|       BitMask <<= 8;
 | |
|       ImmMask <<= 1;
 | |
|     }
 | |
| 
 | |
|     if (DAG.getDataLayout().isBigEndian())
 | |
|       // swap higher and lower 32 bit word
 | |
|       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
 | |
| 
 | |
|     // Op=1, Cmode=1110.
 | |
|     OpCmode = 0x1e;
 | |
|     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("unexpected size for isNEONModifiedImm");
 | |
|   }
 | |
| 
 | |
|   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
 | |
|   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
 | |
|                                            const ARMSubtarget *ST) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   bool IsDouble = (VT == MVT::f64);
 | |
|   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
 | |
|   const APFloat &FPVal = CFP->getValueAPF();
 | |
| 
 | |
|   // Prevent floating-point constants from using literal loads
 | |
|   // when execute-only is enabled.
 | |
|   if (ST->genExecuteOnly()) {
 | |
|     // If we can represent the constant as an immediate, don't lower it
 | |
|     if (isFPImmLegal(FPVal, VT))
 | |
|       return Op;
 | |
|     // Otherwise, construct as integer, and move to float register
 | |
|     APInt INTVal = FPVal.bitcastToAPInt();
 | |
|     SDLoc DL(CFP);
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|       default:
 | |
|         llvm_unreachable("Unknown floating point type!");
 | |
|         break;
 | |
|       case MVT::f64: {
 | |
|         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
 | |
|         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
 | |
|         if (!ST->isLittle())
 | |
|           std::swap(Lo, Hi);
 | |
|         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
 | |
|       }
 | |
|       case MVT::f32:
 | |
|           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
 | |
|               DAG.getConstant(INTVal, DL, MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ST->hasVFP3())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Use the default (constant pool) lowering for double constants when we have
 | |
|   // an SP-only FPU
 | |
|   if (IsDouble && Subtarget->isFPOnlySP())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Try splatting with a VMOV.f32...
 | |
|   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
 | |
| 
 | |
|   if (ImmVal != -1) {
 | |
|     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
 | |
|       // We have code in place to select a valid ConstantFP already, no need to
 | |
|       // do any mangling.
 | |
|       return Op;
 | |
|     }
 | |
| 
 | |
|     // It's a float and we are trying to use NEON operations where
 | |
|     // possible. Lower it to a splat followed by an extract.
 | |
|     SDLoc DL(Op);
 | |
|     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
 | |
|     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
 | |
|                                       NewVal);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
 | |
|                        DAG.getConstant(0, DL, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // The rest of our options are NEON only, make sure that's allowed before
 | |
|   // proceeding..
 | |
|   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VMovVT;
 | |
|   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
 | |
| 
 | |
|   // It wouldn't really be worth bothering for doubles except for one very
 | |
|   // important value, which does happen to match: 0.0. So make sure we don't do
 | |
|   // anything stupid.
 | |
|   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
 | |
|   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
 | |
|                                      VMovVT, false, VMOVModImm);
 | |
|   if (NewVal != SDValue()) {
 | |
|     SDLoc DL(Op);
 | |
|     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
 | |
|                                       NewVal);
 | |
|     if (IsDouble)
 | |
|       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
 | |
| 
 | |
|     // It's a float: cast and extract a vector element.
 | |
|     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
 | |
|                                        VecConstant);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
 | |
|                        DAG.getConstant(0, DL, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // Finally, try a VMVN.i32
 | |
|   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
 | |
|                              false, VMVNModImm);
 | |
|   if (NewVal != SDValue()) {
 | |
|     SDLoc DL(Op);
 | |
|     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
 | |
| 
 | |
|     if (IsDouble)
 | |
|       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
 | |
| 
 | |
|     // It's a float: cast and extract a vector element.
 | |
|     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
 | |
|                                        VecConstant);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
 | |
|                        DAG.getConstant(0, DL, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // check if an VEXT instruction can handle the shuffle mask when the
 | |
| // vector sources of the shuffle are the same.
 | |
| static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | |
|   if (M[0] < 0)
 | |
|     return false;
 | |
| 
 | |
|   Imm = M[0];
 | |
| 
 | |
|   // If this is a VEXT shuffle, the immediate value is the index of the first
 | |
|   // element.  The other shuffle indices must be the successive elements after
 | |
|   // the first one.
 | |
|   unsigned ExpectedElt = Imm;
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     // Increment the expected index.  If it wraps around, just follow it
 | |
|     // back to index zero and keep going.
 | |
|     ++ExpectedElt;
 | |
|     if (ExpectedElt == NumElts)
 | |
|       ExpectedElt = 0;
 | |
| 
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if (ExpectedElt != static_cast<unsigned>(M[i]))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVEXTMask(ArrayRef<int> M, EVT VT,
 | |
|                        bool &ReverseVEXT, unsigned &Imm) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   ReverseVEXT = false;
 | |
| 
 | |
|   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | |
|   if (M[0] < 0)
 | |
|     return false;
 | |
| 
 | |
|   Imm = M[0];
 | |
| 
 | |
|   // If this is a VEXT shuffle, the immediate value is the index of the first
 | |
|   // element.  The other shuffle indices must be the successive elements after
 | |
|   // the first one.
 | |
|   unsigned ExpectedElt = Imm;
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     // Increment the expected index.  If it wraps around, it may still be
 | |
|     // a VEXT but the source vectors must be swapped.
 | |
|     ExpectedElt += 1;
 | |
|     if (ExpectedElt == NumElts * 2) {
 | |
|       ExpectedElt = 0;
 | |
|       ReverseVEXT = true;
 | |
|     }
 | |
| 
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if (ExpectedElt != static_cast<unsigned>(M[i]))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Adjust the index value if the source operands will be swapped.
 | |
|   if (ReverseVEXT)
 | |
|     Imm -= NumElts;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVREVMask - Check if a vector shuffle corresponds to a VREV
 | |
| /// instruction with the specified blocksize.  (The order of the elements
 | |
| /// within each block of the vector is reversed.)
 | |
| static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
 | |
|   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
 | |
|          "Only possible block sizes for VREV are: 16, 32, 64");
 | |
| 
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned BlockElts = M[0] + 1;
 | |
|   // If the first shuffle index is UNDEF, be optimistic.
 | |
|   if (M[0] < 0)
 | |
|     BlockElts = BlockSize / EltSz;
 | |
| 
 | |
|   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     if (M[i] < 0) continue; // ignore UNDEF indices
 | |
|     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
 | |
|   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
 | |
|   // range, then 0 is placed into the resulting vector. So pretty much any mask
 | |
|   // of 8 elements can work here.
 | |
|   return VT == MVT::v8i8 && M.size() == 8;
 | |
| }
 | |
| 
 | |
| static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
 | |
|                                unsigned Index) {
 | |
|   if (Mask.size() == Elements * 2)
 | |
|     return Index / Elements;
 | |
|   return Mask[Index] == 0 ? 0 : 1;
 | |
| }
 | |
| 
 | |
| // Checks whether the shuffle mask represents a vector transpose (VTRN) by
 | |
| // checking that pairs of elements in the shuffle mask represent the same index
 | |
| // in each vector, incrementing the expected index by 2 at each step.
 | |
| // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
 | |
| //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
 | |
| //  v2={e,f,g,h}
 | |
| // WhichResult gives the offset for each element in the mask based on which
 | |
| // of the two results it belongs to.
 | |
| //
 | |
| // The transpose can be represented either as:
 | |
| // result1 = shufflevector v1, v2, result1_shuffle_mask
 | |
| // result2 = shufflevector v1, v2, result2_shuffle_mask
 | |
| // where v1/v2 and the shuffle masks have the same number of elements
 | |
| // (here WhichResult (see below) indicates which result is being checked)
 | |
| //
 | |
| // or as:
 | |
| // results = shufflevector v1, v2, shuffle_mask
 | |
| // where both results are returned in one vector and the shuffle mask has twice
 | |
| // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
 | |
| // want to check the low half and high half of the shuffle mask as if it were
 | |
| // the other case
 | |
| static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (M.size() != NumElts && M.size() != NumElts*2)
 | |
|     return false;
 | |
| 
 | |
|   // If the mask is twice as long as the input vector then we need to check the
 | |
|   // upper and lower parts of the mask with a matching value for WhichResult
 | |
|   // FIXME: A mask with only even values will be rejected in case the first
 | |
|   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
 | |
|   // M[0] is used to determine WhichResult
 | |
|   for (unsigned i = 0; i < M.size(); i += NumElts) {
 | |
|     WhichResult = SelectPairHalf(NumElts, M, i);
 | |
|     for (unsigned j = 0; j < NumElts; j += 2) {
 | |
|       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
 | |
|           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M.size() == NumElts*2)
 | |
|     WhichResult = 0;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
 | |
| static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (M.size() != NumElts && M.size() != NumElts*2)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < M.size(); i += NumElts) {
 | |
|     WhichResult = SelectPairHalf(NumElts, M, i);
 | |
|     for (unsigned j = 0; j < NumElts; j += 2) {
 | |
|       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
 | |
|           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M.size() == NumElts*2)
 | |
|     WhichResult = 0;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
 | |
| // that the mask elements are either all even and in steps of size 2 or all odd
 | |
| // and in steps of size 2.
 | |
| // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
 | |
| //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
 | |
| //  v2={e,f,g,h}
 | |
| // Requires similar checks to that of isVTRNMask with
 | |
| // respect the how results are returned.
 | |
| static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (M.size() != NumElts && M.size() != NumElts*2)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < M.size(); i += NumElts) {
 | |
|     WhichResult = SelectPairHalf(NumElts, M, i);
 | |
|     for (unsigned j = 0; j < NumElts; ++j) {
 | |
|       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M.size() == NumElts*2)
 | |
|     WhichResult = 0;
 | |
| 
 | |
|   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
 | |
| static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (M.size() != NumElts && M.size() != NumElts*2)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Half = NumElts / 2;
 | |
|   for (unsigned i = 0; i < M.size(); i += NumElts) {
 | |
|     WhichResult = SelectPairHalf(NumElts, M, i);
 | |
|     for (unsigned j = 0; j < NumElts; j += Half) {
 | |
|       unsigned Idx = WhichResult;
 | |
|       for (unsigned k = 0; k < Half; ++k) {
 | |
|         int MIdx = M[i + j + k];
 | |
|         if (MIdx >= 0 && (unsigned) MIdx != Idx)
 | |
|           return false;
 | |
|         Idx += 2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M.size() == NumElts*2)
 | |
|     WhichResult = 0;
 | |
| 
 | |
|   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
 | |
| // that pairs of elements of the shufflemask represent the same index in each
 | |
| // vector incrementing sequentially through the vectors.
 | |
| // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
 | |
| //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
 | |
| //  v2={e,f,g,h}
 | |
| // Requires similar checks to that of isVTRNMask with respect the how results
 | |
| // are returned.
 | |
| static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (M.size() != NumElts && M.size() != NumElts*2)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < M.size(); i += NumElts) {
 | |
|     WhichResult = SelectPairHalf(NumElts, M, i);
 | |
|     unsigned Idx = WhichResult * NumElts / 2;
 | |
|     for (unsigned j = 0; j < NumElts; j += 2) {
 | |
|       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
 | |
|           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
 | |
|         return false;
 | |
|       Idx += 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M.size() == NumElts*2)
 | |
|     WhichResult = 0;
 | |
| 
 | |
|   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
 | |
| static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
 | |
|   unsigned EltSz = VT.getScalarSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (M.size() != NumElts && M.size() != NumElts*2)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < M.size(); i += NumElts) {
 | |
|     WhichResult = SelectPairHalf(NumElts, M, i);
 | |
|     unsigned Idx = WhichResult * NumElts / 2;
 | |
|     for (unsigned j = 0; j < NumElts; j += 2) {
 | |
|       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
 | |
|           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
 | |
|         return false;
 | |
|       Idx += 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M.size() == NumElts*2)
 | |
|     WhichResult = 0;
 | |
| 
 | |
|   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
 | |
| /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
 | |
| static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
 | |
|                                            unsigned &WhichResult,
 | |
|                                            bool &isV_UNDEF) {
 | |
|   isV_UNDEF = false;
 | |
|   if (isVTRNMask(ShuffleMask, VT, WhichResult))
 | |
|     return ARMISD::VTRN;
 | |
|   if (isVUZPMask(ShuffleMask, VT, WhichResult))
 | |
|     return ARMISD::VUZP;
 | |
|   if (isVZIPMask(ShuffleMask, VT, WhichResult))
 | |
|     return ARMISD::VZIP;
 | |
| 
 | |
|   isV_UNDEF = true;
 | |
|   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|     return ARMISD::VTRN;
 | |
|   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|     return ARMISD::VUZP;
 | |
|   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|     return ARMISD::VZIP;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \return true if this is a reverse operation on an vector.
 | |
| static bool isReverseMask(ArrayRef<int> M, EVT VT) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   // Make sure the mask has the right size.
 | |
|   if (NumElts != M.size())
 | |
|       return false;
 | |
| 
 | |
|   // Look for <15, ..., 3, -1, 1, 0>.
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If N is an integer constant that can be moved into a register in one
 | |
| // instruction, return an SDValue of such a constant (will become a MOV
 | |
| // instruction).  Otherwise return null.
 | |
| static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
 | |
|                                      const ARMSubtarget *ST, const SDLoc &dl) {
 | |
|   uint64_t Val;
 | |
|   if (!isa<ConstantSDNode>(N))
 | |
|     return SDValue();
 | |
|   Val = cast<ConstantSDNode>(N)->getZExtValue();
 | |
| 
 | |
|   if (ST->isThumb1Only()) {
 | |
|     if (Val <= 255 || ~Val <= 255)
 | |
|       return DAG.getConstant(Val, dl, MVT::i32);
 | |
|   } else {
 | |
|     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
 | |
|       return DAG.getConstant(Val, dl, MVT::i32);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.
 | |
| SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
 | |
|                                              const ARMSubtarget *ST) const {
 | |
|   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatUndef.isAllOnesValue())
 | |
|       return DAG.getUNDEF(VT);
 | |
| 
 | |
|     if (SplatBitSize <= 64) {
 | |
|       // Check if an immediate VMOV works.
 | |
|       EVT VmovVT;
 | |
|       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, dl, VmovVT, VT.is128BitVector(),
 | |
|                                       VMOVModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | |
|       }
 | |
| 
 | |
|       // Try an immediate VMVN.
 | |
|       uint64_t NegatedImm = (~SplatBits).getZExtValue();
 | |
|       Val = isNEONModifiedImm(NegatedImm,
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, dl, VmovVT, VT.is128BitVector(),
 | |
|                                       VMVNModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | |
|       }
 | |
| 
 | |
|       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
 | |
|       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
 | |
|         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
 | |
|         if (ImmVal != -1) {
 | |
|           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
 | |
|           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan through the operands to see if only one value is used.
 | |
|   //
 | |
|   // As an optimisation, even if more than one value is used it may be more
 | |
|   // profitable to splat with one value then change some lanes.
 | |
|   //
 | |
|   // Heuristically we decide to do this if the vector has a "dominant" value,
 | |
|   // defined as splatted to more than half of the lanes.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   bool isOnlyLowElement = true;
 | |
|   bool usesOnlyOneValue = true;
 | |
|   bool hasDominantValue = false;
 | |
|   bool isConstant = true;
 | |
| 
 | |
|   // Map of the number of times a particular SDValue appears in the
 | |
|   // element list.
 | |
|   DenseMap<SDValue, unsigned> ValueCounts;
 | |
|   SDValue Value;
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.isUndef())
 | |
|       continue;
 | |
|     if (i > 0)
 | |
|       isOnlyLowElement = false;
 | |
|     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | |
|       isConstant = false;
 | |
| 
 | |
|     ValueCounts.insert(std::make_pair(V, 0));
 | |
|     unsigned &Count = ValueCounts[V];
 | |
| 
 | |
|     // Is this value dominant? (takes up more than half of the lanes)
 | |
|     if (++Count > (NumElts / 2)) {
 | |
|       hasDominantValue = true;
 | |
|       Value = V;
 | |
|     }
 | |
|   }
 | |
|   if (ValueCounts.size() != 1)
 | |
|     usesOnlyOneValue = false;
 | |
|   if (!Value.getNode() && !ValueCounts.empty())
 | |
|     Value = ValueCounts.begin()->first;
 | |
| 
 | |
|   if (ValueCounts.empty())
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
 | |
|   // Keep going if we are hitting this case.
 | |
|   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
 | |
| 
 | |
|   unsigned EltSize = VT.getScalarSizeInBits();
 | |
| 
 | |
|   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
 | |
|   // i32 and try again.
 | |
|   if (hasDominantValue && EltSize <= 32) {
 | |
|     if (!isConstant) {
 | |
|       SDValue N;
 | |
| 
 | |
|       // If we are VDUPing a value that comes directly from a vector, that will
 | |
|       // cause an unnecessary move to and from a GPR, where instead we could
 | |
|       // just use VDUPLANE. We can only do this if the lane being extracted
 | |
|       // is at a constant index, as the VDUP from lane instructions only have
 | |
|       // constant-index forms.
 | |
|       ConstantSDNode *constIndex;
 | |
|       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | |
|           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
 | |
|         // We need to create a new undef vector to use for the VDUPLANE if the
 | |
|         // size of the vector from which we get the value is different than the
 | |
|         // size of the vector that we need to create. We will insert the element
 | |
|         // such that the register coalescer will remove unnecessary copies.
 | |
|         if (VT != Value->getOperand(0).getValueType()) {
 | |
|           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
 | |
|                              VT.getVectorNumElements();
 | |
|           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
 | |
|                         Value, DAG.getConstant(index, dl, MVT::i32)),
 | |
|                            DAG.getConstant(index, dl, MVT::i32));
 | |
|         } else
 | |
|           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                         Value->getOperand(0), Value->getOperand(1));
 | |
|       } else
 | |
|         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
 | |
| 
 | |
|       if (!usesOnlyOneValue) {
 | |
|         // The dominant value was splatted as 'N', but we now have to insert
 | |
|         // all differing elements.
 | |
|         for (unsigned I = 0; I < NumElts; ++I) {
 | |
|           if (Op.getOperand(I) == Value)
 | |
|             continue;
 | |
|           SmallVector<SDValue, 3> Ops;
 | |
|           Ops.push_back(N);
 | |
|           Ops.push_back(Op.getOperand(I));
 | |
|           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
 | |
|           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
 | |
|         }
 | |
|       }
 | |
|       return N;
 | |
|     }
 | |
|     if (VT.getVectorElementType().isFloatingPoint()) {
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       for (unsigned i = 0; i < NumElts; ++i)
 | |
|         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
 | |
|                                   Op.getOperand(i)));
 | |
|       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
 | |
|       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
 | |
|       Val = LowerBUILD_VECTOR(Val, DAG, ST);
 | |
|       if (Val.getNode())
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|     }
 | |
|     if (usesOnlyOneValue) {
 | |
|       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
 | |
|       if (isConstant && Val.getNode())
 | |
|         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all elements are constants and the case above didn't get hit, fall back
 | |
|   // to the default expansion, which will generate a load from the constant
 | |
|   // pool.
 | |
|   if (isConstant)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
 | |
|   if (NumElts >= 4) {
 | |
|     SDValue shuffle = ReconstructShuffle(Op, DAG);
 | |
|     if (shuffle != SDValue())
 | |
|       return shuffle;
 | |
|   }
 | |
| 
 | |
|   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
 | |
|     // If we haven't found an efficient lowering, try splitting a 128-bit vector
 | |
|     // into two 64-bit vectors; we might discover a better way to lower it.
 | |
|     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
 | |
|     EVT ExtVT = VT.getVectorElementType();
 | |
|     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
 | |
|     SDValue Lower =
 | |
|         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
 | |
|     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
 | |
|       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
 | |
|     SDValue Upper = DAG.getBuildVector(
 | |
|         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
 | |
|     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
 | |
|       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
 | |
|     if (Lower && Upper)
 | |
|       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
 | |
|   }
 | |
| 
 | |
|   // Vectors with 32- or 64-bit elements can be built by directly assigning
 | |
|   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
 | |
|   // will be legalized.
 | |
|   if (EltSize >= 32) {
 | |
|     // Do the expansion with floating-point types, since that is what the VFP
 | |
|     // registers are defined to use, and since i64 is not legal.
 | |
|     EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | |
|     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i < NumElts; ++i)
 | |
|       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
 | |
|     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|   }
 | |
| 
 | |
|   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
 | |
|   // know the default expansion would otherwise fall back on something even
 | |
|   // worse. For a vector with one or two non-undef values, that's
 | |
|   // scalar_to_vector for the elements followed by a shuffle (provided the
 | |
|   // shuffle is valid for the target) and materialization element by element
 | |
|   // on the stack followed by a load for everything else.
 | |
|   if (!isConstant && !usesOnlyOneValue) {
 | |
|     SDValue Vec = DAG.getUNDEF(VT);
 | |
|     for (unsigned i = 0 ; i < NumElts; ++i) {
 | |
|       SDValue V = Op.getOperand(i);
 | |
|       if (V.isUndef())
 | |
|         continue;
 | |
|       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
 | |
|       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
 | |
|     }
 | |
|     return Vec;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Gather data to see if the operation can be modelled as a
 | |
| // shuffle in combination with VEXTs.
 | |
| SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   struct ShuffleSourceInfo {
 | |
|     SDValue Vec;
 | |
|     unsigned MinElt = std::numeric_limits<unsigned>::max();
 | |
|     unsigned MaxElt = 0;
 | |
| 
 | |
|     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
 | |
|     // be compatible with the shuffle we intend to construct. As a result
 | |
|     // ShuffleVec will be some sliding window into the original Vec.
 | |
|     SDValue ShuffleVec;
 | |
| 
 | |
|     // Code should guarantee that element i in Vec starts at element "WindowBase
 | |
|     // + i * WindowScale in ShuffleVec".
 | |
|     int WindowBase = 0;
 | |
|     int WindowScale = 1;
 | |
| 
 | |
|     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
 | |
| 
 | |
|     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
 | |
|   };
 | |
| 
 | |
|   // First gather all vectors used as an immediate source for this BUILD_VECTOR
 | |
|   // node.
 | |
|   SmallVector<ShuffleSourceInfo, 2> Sources;
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.isUndef())
 | |
|       continue;
 | |
|     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
 | |
|       // A shuffle can only come from building a vector from various
 | |
|       // elements of other vectors.
 | |
|       return SDValue();
 | |
|     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
 | |
|       // Furthermore, shuffles require a constant mask, whereas extractelts
 | |
|       // accept variable indices.
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // Add this element source to the list if it's not already there.
 | |
|     SDValue SourceVec = V.getOperand(0);
 | |
|     auto Source = llvm::find(Sources, SourceVec);
 | |
|     if (Source == Sources.end())
 | |
|       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
 | |
| 
 | |
|     // Update the minimum and maximum lane number seen.
 | |
|     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
 | |
|     Source->MinElt = std::min(Source->MinElt, EltNo);
 | |
|     Source->MaxElt = std::max(Source->MaxElt, EltNo);
 | |
|   }
 | |
| 
 | |
|   // Currently only do something sane when at most two source vectors
 | |
|   // are involved.
 | |
|   if (Sources.size() > 2)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Find out the smallest element size among result and two sources, and use
 | |
|   // it as element size to build the shuffle_vector.
 | |
|   EVT SmallestEltTy = VT.getVectorElementType();
 | |
|   for (auto &Source : Sources) {
 | |
|     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
 | |
|     if (SrcEltTy.bitsLT(SmallestEltTy))
 | |
|       SmallestEltTy = SrcEltTy;
 | |
|   }
 | |
|   unsigned ResMultiplier =
 | |
|       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
 | |
|   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
 | |
|   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
 | |
| 
 | |
|   // If the source vector is too wide or too narrow, we may nevertheless be able
 | |
|   // to construct a compatible shuffle either by concatenating it with UNDEF or
 | |
|   // extracting a suitable range of elements.
 | |
|   for (auto &Src : Sources) {
 | |
|     EVT SrcVT = Src.ShuffleVec.getValueType();
 | |
| 
 | |
|     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
 | |
|       continue;
 | |
| 
 | |
|     // This stage of the search produces a source with the same element type as
 | |
|     // the original, but with a total width matching the BUILD_VECTOR output.
 | |
|     EVT EltVT = SrcVT.getVectorElementType();
 | |
|     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
 | |
|     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
 | |
| 
 | |
|     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
 | |
|       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
 | |
|         return SDValue();
 | |
|       // We can pad out the smaller vector for free, so if it's part of a
 | |
|       // shuffle...
 | |
|       Src.ShuffleVec =
 | |
|           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
 | |
|                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
 | |
|       return SDValue();
 | |
| 
 | |
|     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
 | |
|       // Span too large for a VEXT to cope
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     if (Src.MinElt >= NumSrcElts) {
 | |
|       // The extraction can just take the second half
 | |
|       Src.ShuffleVec =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | |
|                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
 | |
|       Src.WindowBase = -NumSrcElts;
 | |
|     } else if (Src.MaxElt < NumSrcElts) {
 | |
|       // The extraction can just take the first half
 | |
|       Src.ShuffleVec =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | |
|                       DAG.getConstant(0, dl, MVT::i32));
 | |
|     } else {
 | |
|       // An actual VEXT is needed
 | |
|       SDValue VEXTSrc1 =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | |
|                       DAG.getConstant(0, dl, MVT::i32));
 | |
|       SDValue VEXTSrc2 =
 | |
|           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
 | |
|                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
 | |
| 
 | |
|       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
 | |
|                                    VEXTSrc2,
 | |
|                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
 | |
|       Src.WindowBase = -Src.MinElt;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Another possible incompatibility occurs from the vector element types. We
 | |
|   // can fix this by bitcasting the source vectors to the same type we intend
 | |
|   // for the shuffle.
 | |
|   for (auto &Src : Sources) {
 | |
|     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
 | |
|     if (SrcEltTy == SmallestEltTy)
 | |
|       continue;
 | |
|     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
 | |
|     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
 | |
|     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
 | |
|     Src.WindowBase *= Src.WindowScale;
 | |
|   }
 | |
| 
 | |
|   // Final sanity check before we try to actually produce a shuffle.
 | |
|   LLVM_DEBUG(for (auto Src
 | |
|                   : Sources)
 | |
|                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
 | |
| 
 | |
|   // The stars all align, our next step is to produce the mask for the shuffle.
 | |
|   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
 | |
|   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
 | |
|   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
 | |
|     SDValue Entry = Op.getOperand(i);
 | |
|     if (Entry.isUndef())
 | |
|       continue;
 | |
| 
 | |
|     auto Src = llvm::find(Sources, Entry.getOperand(0));
 | |
|     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
 | |
|     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
 | |
|     // segment.
 | |
|     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
 | |
|     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
 | |
|                                VT.getScalarSizeInBits());
 | |
|     int LanesDefined = BitsDefined / BitsPerShuffleLane;
 | |
| 
 | |
|     // This source is expected to fill ResMultiplier lanes of the final shuffle,
 | |
|     // starting at the appropriate offset.
 | |
|     int *LaneMask = &Mask[i * ResMultiplier];
 | |
| 
 | |
|     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
 | |
|     ExtractBase += NumElts * (Src - Sources.begin());
 | |
|     for (int j = 0; j < LanesDefined; ++j)
 | |
|       LaneMask[j] = ExtractBase + j;
 | |
|   }
 | |
| 
 | |
|   // Final check before we try to produce nonsense...
 | |
|   if (!isShuffleMaskLegal(Mask, ShuffleVT))
 | |
|     return SDValue();
 | |
| 
 | |
|   // We can't handle more than two sources. This should have already
 | |
|   // been checked before this point.
 | |
|   assert(Sources.size() <= 2 && "Too many sources!");
 | |
| 
 | |
|   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
 | |
|   for (unsigned i = 0; i < Sources.size(); ++i)
 | |
|     ShuffleOps[i] = Sources[i].ShuffleVec;
 | |
| 
 | |
|   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
 | |
|                                          ShuffleOps[1], Mask);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
 | |
| }
 | |
| 
 | |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
| /// are assumed to be legal.
 | |
| bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
 | |
|   if (VT.getVectorNumElements() == 4 &&
 | |
|       (VT.is128BitVector() || VT.is64BitVector())) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (M[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = M[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   bool ReverseVEXT, isV_UNDEF;
 | |
|   unsigned Imm, WhichResult;
 | |
| 
 | |
|   unsigned EltSize = VT.getScalarSizeInBits();
 | |
|   return (EltSize >= 32 ||
 | |
|           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
 | |
|           isVREVMask(M, VT, 64) ||
 | |
|           isVREVMask(M, VT, 32) ||
 | |
|           isVREVMask(M, VT, 16) ||
 | |
|           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
 | |
|           isVTBLMask(M, VT) ||
 | |
|           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
 | |
|           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       const SDLoc &dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VREV,
 | |
|     OP_VDUP0,
 | |
|     OP_VDUP1,
 | |
|     OP_VDUP2,
 | |
|     OP_VDUP3,
 | |
|     OP_VEXT1,
 | |
|     OP_VEXT2,
 | |
|     OP_VEXT3,
 | |
|     OP_VUZPL, // VUZP, left result
 | |
|     OP_VUZPR, // VUZP, right result
 | |
|     OP_VZIPL, // VZIP, left result
 | |
|     OP_VZIPR, // VZIP, right result
 | |
|     OP_VTRNL, // VTRN, left result
 | |
|     OP_VTRNR  // VTRN, right result
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
|   EVT VT = OpLHS.getValueType();
 | |
| 
 | |
|   switch (OpNum) {
 | |
|   default: llvm_unreachable("Unknown shuffle opcode!");
 | |
|   case OP_VREV:
 | |
|     // VREV divides the vector in half and swaps within the half.
 | |
|     if (VT.getVectorElementType() == MVT::i32 ||
 | |
|         VT.getVectorElementType() == MVT::f32)
 | |
|       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
 | |
|     // vrev <4 x i16> -> VREV32
 | |
|     if (VT.getVectorElementType() == MVT::i16)
 | |
|       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
 | |
|     // vrev <4 x i8> -> VREV16
 | |
|     assert(VT.getVectorElementType() == MVT::i8);
 | |
|     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
 | |
|   case OP_VDUP0:
 | |
|   case OP_VDUP1:
 | |
|   case OP_VDUP2:
 | |
|   case OP_VDUP3:
 | |
|     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
 | |
|   case OP_VEXT1:
 | |
|   case OP_VEXT2:
 | |
|   case OP_VEXT3:
 | |
|     return DAG.getNode(ARMISD::VEXT, dl, VT,
 | |
|                        OpLHS, OpRHS,
 | |
|                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
 | |
|   case OP_VUZPL:
 | |
|   case OP_VUZPR:
 | |
|     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
 | |
|   case OP_VZIPL:
 | |
|   case OP_VZIPR:
 | |
|     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
 | |
|   case OP_VTRNL:
 | |
|   case OP_VTRNR:
 | |
|     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
 | |
|                                        ArrayRef<int> ShuffleMask,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   // Check to see if we can use the VTBL instruction.
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   SmallVector<SDValue, 8> VTBLMask;
 | |
|   for (ArrayRef<int>::iterator
 | |
|          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
 | |
|     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
 | |
| 
 | |
|   if (V2.getNode()->isUndef())
 | |
|     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
 | |
|                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
 | |
| 
 | |
|   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
 | |
|                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
 | |
| }
 | |
| 
 | |
| static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue OpLHS = Op.getOperand(0);
 | |
|   EVT VT = OpLHS.getValueType();
 | |
| 
 | |
|   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
 | |
|          "Expect an v8i16/v16i8 type");
 | |
|   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
 | |
|   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
 | |
|   // extract the first 8 bytes into the top double word and the last 8 bytes
 | |
|   // into the bottom double word. The v8i16 case is similar.
 | |
|   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
 | |
|   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
 | |
|                      DAG.getConstant(ExtractNum, DL, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
 | |
| 
 | |
|   // Convert shuffles that are directly supported on NEON to target-specific
 | |
|   // DAG nodes, instead of keeping them as shuffles and matching them again
 | |
|   // during code selection.  This is more efficient and avoids the possibility
 | |
|   // of inconsistencies between legalization and selection.
 | |
|   // FIXME: floating-point vectors should be canonicalized to integer vectors
 | |
|   // of the same time so that they get CSEd properly.
 | |
|   ArrayRef<int> ShuffleMask = SVN->getMask();
 | |
| 
 | |
|   unsigned EltSize = VT.getScalarSizeInBits();
 | |
|   if (EltSize <= 32) {
 | |
|     if (SVN->isSplat()) {
 | |
|       int Lane = SVN->getSplatIndex();
 | |
|       // If this is undef splat, generate it via "just" vdup, if possible.
 | |
|       if (Lane == -1) Lane = 0;
 | |
| 
 | |
|       // Test if V1 is a SCALAR_TO_VECTOR.
 | |
|       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
 | |
|       }
 | |
|       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
 | |
|       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
 | |
|       // reaches it).
 | |
|       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|           !isa<ConstantSDNode>(V1.getOperand(0))) {
 | |
|         bool IsScalarToVector = true;
 | |
|         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
 | |
|           if (!V1.getOperand(i).isUndef()) {
 | |
|             IsScalarToVector = false;
 | |
|             break;
 | |
|           }
 | |
|         if (IsScalarToVector)
 | |
|           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
 | |
|       }
 | |
|       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
 | |
|                          DAG.getConstant(Lane, dl, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     bool ReverseVEXT;
 | |
|     unsigned Imm;
 | |
|     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
 | |
|       if (ReverseVEXT)
 | |
|         std::swap(V1, V2);
 | |
|       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
 | |
|                          DAG.getConstant(Imm, dl, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     if (isVREVMask(ShuffleMask, VT, 64))
 | |
|       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
 | |
|     if (isVREVMask(ShuffleMask, VT, 32))
 | |
|       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
 | |
|     if (isVREVMask(ShuffleMask, VT, 16))
 | |
|       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
 | |
| 
 | |
|     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
 | |
|       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
 | |
|                          DAG.getConstant(Imm, dl, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     // Check for Neon shuffles that modify both input vectors in place.
 | |
|     // If both results are used, i.e., if there are two shuffles with the same
 | |
|     // source operands and with masks corresponding to both results of one of
 | |
|     // these operations, DAG memoization will ensure that a single node is
 | |
|     // used for both shuffles.
 | |
|     unsigned WhichResult;
 | |
|     bool isV_UNDEF;
 | |
|     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
 | |
|             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
 | |
|       if (isV_UNDEF)
 | |
|         V2 = V1;
 | |
|       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
 | |
|           .getValue(WhichResult);
 | |
|     }
 | |
| 
 | |
|     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
 | |
|     // shuffles that produce a result larger than their operands with:
 | |
|     //   shuffle(concat(v1, undef), concat(v2, undef))
 | |
|     // ->
 | |
|     //   shuffle(concat(v1, v2), undef)
 | |
|     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
 | |
|     //
 | |
|     // This is useful in the general case, but there are special cases where
 | |
|     // native shuffles produce larger results: the two-result ops.
 | |
|     //
 | |
|     // Look through the concat when lowering them:
 | |
|     //   shuffle(concat(v1, v2), undef)
 | |
|     // ->
 | |
|     //   concat(VZIP(v1, v2):0, :1)
 | |
|     //
 | |
|     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
 | |
|       SDValue SubV1 = V1->getOperand(0);
 | |
|       SDValue SubV2 = V1->getOperand(1);
 | |
|       EVT SubVT = SubV1.getValueType();
 | |
| 
 | |
|       // We expect these to have been canonicalized to -1.
 | |
|       assert(llvm::all_of(ShuffleMask, [&](int i) {
 | |
|         return i < (int)VT.getVectorNumElements();
 | |
|       }) && "Unexpected shuffle index into UNDEF operand!");
 | |
| 
 | |
|       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
 | |
|               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
 | |
|         if (isV_UNDEF)
 | |
|           SubV2 = SubV1;
 | |
|         assert((WhichResult == 0) &&
 | |
|                "In-place shuffle of concat can only have one result!");
 | |
|         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
 | |
|                                   SubV1, SubV2);
 | |
|         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
 | |
|                            Res.getValue(1));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the shuffle is not directly supported and it has 4 elements, use
 | |
|   // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts == 4) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = ShuffleMask[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
 | |
|   if (EltSize >= 32) {
 | |
|     // Do the expansion with floating-point types, since that is what the VFP
 | |
|     // registers are defined to use, and since i64 is not legal.
 | |
|     EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | |
|     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | |
|     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
 | |
|     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i < NumElts; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         Ops.push_back(DAG.getUNDEF(EltVT));
 | |
|       else
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
 | |
|                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
 | |
|                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
 | |
|                                                   dl, MVT::i32)));
 | |
|     }
 | |
|     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | |
|   }
 | |
| 
 | |
|   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
 | |
|     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
 | |
| 
 | |
|   if (VT == MVT::v8i8)
 | |
|     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
 | |
|       return NewOp;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   // INSERT_VECTOR_ELT is legal only for immediate indexes.
 | |
|   SDValue Lane = Op.getOperand(2);
 | |
|   if (!isa<ConstantSDNode>(Lane))
 | |
|     return SDValue();
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
 | |
|   SDValue Lane = Op.getOperand(1);
 | |
|   if (!isa<ConstantSDNode>(Lane))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
 | |
|     SDLoc dl(Op);
 | |
|     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
 | |
|   // The only time a CONCAT_VECTORS operation can have legal types is when
 | |
|   // two 64-bit vectors are concatenated to a 128-bit vector.
 | |
|   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
 | |
|          "unexpected CONCAT_VECTORS");
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Val = DAG.getUNDEF(MVT::v2f64);
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   if (!Op0.isUndef())
 | |
|     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | |
|                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
 | |
|                       DAG.getIntPtrConstant(0, dl));
 | |
|   if (!Op1.isUndef())
 | |
|     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | |
|                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
 | |
|                       DAG.getIntPtrConstant(1, dl));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
 | |
| }
 | |
| 
 | |
| /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
 | |
| /// element has been zero/sign-extended, depending on the isSigned parameter,
 | |
| /// from an integer type half its size.
 | |
| static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
 | |
|                                    bool isSigned) {
 | |
|   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
 | |
|     SDNode *BVN = N->getOperand(0).getNode();
 | |
|     if (BVN->getValueType(0) != MVT::v4i32 ||
 | |
|         BVN->getOpcode() != ISD::BUILD_VECTOR)
 | |
|       return false;
 | |
|     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
 | |
|     unsigned HiElt = 1 - LoElt;
 | |
|     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
 | |
|     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
 | |
|     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
 | |
|     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
 | |
|     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
 | |
|       return false;
 | |
|     if (isSigned) {
 | |
|       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
 | |
|           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
 | |
|         return true;
 | |
|     } else {
 | |
|       if (Hi0->isNullValue() && Hi1->isNullValue())
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     SDNode *Elt = N->getOperand(i).getNode();
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
 | |
|       unsigned EltSize = VT.getScalarSizeInBits();
 | |
|       unsigned HalfSize = EltSize / 2;
 | |
|       if (isSigned) {
 | |
|         if (!isIntN(HalfSize, C->getSExtValue()))
 | |
|           return false;
 | |
|       } else {
 | |
|         if (!isUIntN(HalfSize, C->getZExtValue()))
 | |
|           return false;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSignExtended - Check if a node is a vector value that is sign-extended
 | |
| /// or a constant BUILD_VECTOR with sign-extended elements.
 | |
| static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
 | |
|     return true;
 | |
|   if (isExtendedBUILD_VECTOR(N, DAG, true))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isZeroExtended - Check if a node is a vector value that is zero-extended
 | |
| /// or a constant BUILD_VECTOR with zero-extended elements.
 | |
| static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
 | |
|     return true;
 | |
|   if (isExtendedBUILD_VECTOR(N, DAG, false))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static EVT getExtensionTo64Bits(const EVT &OrigVT) {
 | |
|   if (OrigVT.getSizeInBits() >= 64)
 | |
|     return OrigVT;
 | |
| 
 | |
|   assert(OrigVT.isSimple() && "Expecting a simple value type");
 | |
| 
 | |
|   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
 | |
|   switch (OrigSimpleTy) {
 | |
|   default: llvm_unreachable("Unexpected Vector Type");
 | |
|   case MVT::v2i8:
 | |
|   case MVT::v2i16:
 | |
|      return MVT::v2i32;
 | |
|   case MVT::v4i8:
 | |
|     return  MVT::v4i16;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
 | |
| /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
 | |
| /// We insert the required extension here to get the vector to fill a D register.
 | |
| static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
 | |
|                                             const EVT &OrigTy,
 | |
|                                             const EVT &ExtTy,
 | |
|                                             unsigned ExtOpcode) {
 | |
|   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
 | |
|   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
 | |
|   // 64-bits we need to insert a new extension so that it will be 64-bits.
 | |
|   assert(ExtTy.is128BitVector() && "Unexpected extension size");
 | |
|   if (OrigTy.getSizeInBits() >= 64)
 | |
|     return N;
 | |
| 
 | |
|   // Must extend size to at least 64 bits to be used as an operand for VMULL.
 | |
|   EVT NewVT = getExtensionTo64Bits(OrigTy);
 | |
| 
 | |
|   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
 | |
| }
 | |
| 
 | |
| /// SkipLoadExtensionForVMULL - return a load of the original vector size that
 | |
| /// does not do any sign/zero extension. If the original vector is less
 | |
| /// than 64 bits, an appropriate extension will be added after the load to
 | |
| /// reach a total size of 64 bits. We have to add the extension separately
 | |
| /// because ARM does not have a sign/zero extending load for vectors.
 | |
| static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
 | |
|   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
 | |
| 
 | |
|   // The load already has the right type.
 | |
|   if (ExtendedTy == LD->getMemoryVT())
 | |
|     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
 | |
|                        LD->getBasePtr(), LD->getPointerInfo(),
 | |
|                        LD->getAlignment(), LD->getMemOperand()->getFlags());
 | |
| 
 | |
|   // We need to create a zextload/sextload. We cannot just create a load
 | |
|   // followed by a zext/zext node because LowerMUL is also run during normal
 | |
|   // operation legalization where we can't create illegal types.
 | |
|   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
 | |
|                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
 | |
|                         LD->getMemoryVT(), LD->getAlignment(),
 | |
|                         LD->getMemOperand()->getFlags());
 | |
| }
 | |
| 
 | |
| /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
 | |
| /// extending load, or BUILD_VECTOR with extended elements, return the
 | |
| /// unextended value. The unextended vector should be 64 bits so that it can
 | |
| /// be used as an operand to a VMULL instruction. If the original vector size
 | |
| /// before extension is less than 64 bits we add a an extension to resize
 | |
| /// the vector to 64 bits.
 | |
| static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
 | |
|   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
 | |
|                                         N->getOperand(0)->getValueType(0),
 | |
|                                         N->getValueType(0),
 | |
|                                         N->getOpcode());
 | |
| 
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
 | |
|            "Expected extending load");
 | |
| 
 | |
|     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
 | |
|     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|     SDValue extLoad =
 | |
|         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
 | |
| 
 | |
|     return newLoad;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
 | |
|   // have been legalized as a BITCAST from v4i32.
 | |
|   if (N->getOpcode() == ISD::BITCAST) {
 | |
|     SDNode *BVN = N->getOperand(0).getNode();
 | |
|     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
 | |
|     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
 | |
|     return DAG.getBuildVector(
 | |
|         MVT::v2i32, SDLoc(N),
 | |
|         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
 | |
|   }
 | |
|   // Construct a new BUILD_VECTOR with elements truncated to half the size.
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned EltSize = VT.getScalarSizeInBits() / 2;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   MVT TruncVT = MVT::getIntegerVT(EltSize);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   SDLoc dl(N);
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
 | |
|     const APInt &CInt = C->getAPIntValue();
 | |
|     // Element types smaller than 32 bits are not legal, so use i32 elements.
 | |
|     // The values are implicitly truncated so sext vs. zext doesn't matter.
 | |
|     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
 | |
|   }
 | |
|   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
 | |
| }
 | |
| 
 | |
| static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | |
|     SDNode *N0 = N->getOperand(0).getNode();
 | |
|     SDNode *N1 = N->getOperand(1).getNode();
 | |
|     return N0->hasOneUse() && N1->hasOneUse() &&
 | |
|       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | |
|     SDNode *N0 = N->getOperand(0).getNode();
 | |
|     SDNode *N1 = N->getOperand(1).getNode();
 | |
|     return N0->hasOneUse() && N1->hasOneUse() &&
 | |
|       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Multiplications are only custom-lowered for 128-bit vectors so that
 | |
|   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(VT.is128BitVector() && VT.isInteger() &&
 | |
|          "unexpected type for custom-lowering ISD::MUL");
 | |
|   SDNode *N0 = Op.getOperand(0).getNode();
 | |
|   SDNode *N1 = Op.getOperand(1).getNode();
 | |
|   unsigned NewOpc = 0;
 | |
|   bool isMLA = false;
 | |
|   bool isN0SExt = isSignExtended(N0, DAG);
 | |
|   bool isN1SExt = isSignExtended(N1, DAG);
 | |
|   if (isN0SExt && isN1SExt)
 | |
|     NewOpc = ARMISD::VMULLs;
 | |
|   else {
 | |
|     bool isN0ZExt = isZeroExtended(N0, DAG);
 | |
|     bool isN1ZExt = isZeroExtended(N1, DAG);
 | |
|     if (isN0ZExt && isN1ZExt)
 | |
|       NewOpc = ARMISD::VMULLu;
 | |
|     else if (isN1SExt || isN1ZExt) {
 | |
|       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
 | |
|       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
 | |
|       if (isN1SExt && isAddSubSExt(N0, DAG)) {
 | |
|         NewOpc = ARMISD::VMULLs;
 | |
|         isMLA = true;
 | |
|       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
 | |
|         NewOpc = ARMISD::VMULLu;
 | |
|         isMLA = true;
 | |
|       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
 | |
|         std::swap(N0, N1);
 | |
|         NewOpc = ARMISD::VMULLu;
 | |
|         isMLA = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!NewOpc) {
 | |
|       if (VT == MVT::v2i64)
 | |
|         // Fall through to expand this.  It is not legal.
 | |
|         return SDValue();
 | |
|       else
 | |
|         // Other vector multiplications are legal.
 | |
|         return Op;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Legalize to a VMULL instruction.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Op0;
 | |
|   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
 | |
|   if (!isMLA) {
 | |
|     Op0 = SkipExtensionForVMULL(N0, DAG);
 | |
|     assert(Op0.getValueType().is64BitVector() &&
 | |
|            Op1.getValueType().is64BitVector() &&
 | |
|            "unexpected types for extended operands to VMULL");
 | |
|     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
 | |
|   // isel lowering to take advantage of no-stall back to back vmul + vmla.
 | |
|   //   vmull q0, d4, d6
 | |
|   //   vmlal q0, d5, d6
 | |
|   // is faster than
 | |
|   //   vaddl q0, d4, d5
 | |
|   //   vmovl q1, d6
 | |
|   //   vmul  q0, q0, q1
 | |
|   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
 | |
|   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
 | |
|   EVT Op1VT = Op1.getValueType();
 | |
|   return DAG.getNode(N0->getOpcode(), DL, VT,
 | |
|                      DAG.getNode(NewOpc, DL, VT,
 | |
|                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
 | |
|                      DAG.getNode(NewOpc, DL, VT,
 | |
|                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
 | |
| }
 | |
| 
 | |
| static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
 | |
|                               SelectionDAG &DAG) {
 | |
|   // TODO: Should this propagate fast-math-flags?
 | |
| 
 | |
|   // Convert to float
 | |
|   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
 | |
|   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
 | |
|   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
 | |
|   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
 | |
|   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
 | |
|   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
 | |
|   // Get reciprocal estimate.
 | |
|   // float4 recip = vrecpeq_f32(yf);
 | |
|   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
 | |
|                    Y);
 | |
|   // Because char has a smaller range than uchar, we can actually get away
 | |
|   // without any newton steps.  This requires that we use a weird bias
 | |
|   // of 0xb000, however (again, this has been exhaustively tested).
 | |
|   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
 | |
|   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
 | |
|   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
 | |
|   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
 | |
|   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
 | |
|   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
 | |
|   // Convert back to short.
 | |
|   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
 | |
|   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
 | |
|   return X;
 | |
| }
 | |
| 
 | |
| static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
 | |
|                                SelectionDAG &DAG) {
 | |
|   // TODO: Should this propagate fast-math-flags?
 | |
| 
 | |
|   SDValue N2;
 | |
|   // Convert to float.
 | |
|   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
 | |
|   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
 | |
|   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
 | |
|   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
 | |
|   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
 | |
| 
 | |
|   // Use reciprocal estimate and one refinement step.
 | |
|   // float4 recip = vrecpeq_f32(yf);
 | |
|   // recip *= vrecpsq_f32(yf, recip);
 | |
|   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
 | |
|                    N1);
 | |
|   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
 | |
|                    N1, N2);
 | |
|   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | |
|   // Because short has a smaller range than ushort, we can actually get away
 | |
|   // with only a single newton step.  This requires that we use a weird bias
 | |
|   // of 89, however (again, this has been exhaustively tested).
 | |
|   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
 | |
|   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
 | |
|   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
 | |
|   // Convert back to integer and return.
 | |
|   // return vmovn_s32(vcvt_s32_f32(result));
 | |
|   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
 | |
|   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
 | |
|   return N0;
 | |
| }
 | |
| 
 | |
| static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
 | |
|          "unexpected type for custom-lowering ISD::SDIV");
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2, N3;
 | |
| 
 | |
|   if (VT == MVT::v8i8) {
 | |
|     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
 | |
|     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
 | |
| 
 | |
|     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(4, dl));
 | |
|     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(4, dl));
 | |
|     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(0, dl));
 | |
|     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(0, dl));
 | |
| 
 | |
|     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
 | |
|     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
 | |
|     N0 = LowerCONCAT_VECTORS(N0, DAG);
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
 | |
|     return N0;
 | |
|   }
 | |
|   return LowerSDIV_v4i16(N0, N1, dl, DAG);
 | |
| }
 | |
| 
 | |
| static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
 | |
|   // TODO: Should this propagate fast-math-flags?
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
 | |
|          "unexpected type for custom-lowering ISD::UDIV");
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2, N3;
 | |
| 
 | |
|   if (VT == MVT::v8i8) {
 | |
|     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
 | |
|     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
 | |
| 
 | |
|     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(4, dl));
 | |
|     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(4, dl));
 | |
|     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | |
|                      DAG.getIntPtrConstant(0, dl));
 | |
|     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | |
|                      DAG.getIntPtrConstant(0, dl));
 | |
| 
 | |
|     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
 | |
|     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
 | |
|     N0 = LowerCONCAT_VECTORS(N0, DAG);
 | |
| 
 | |
|     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
 | |
|                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
 | |
|                                      MVT::i32),
 | |
|                      N0);
 | |
|     return N0;
 | |
|   }
 | |
| 
 | |
|   // v4i16 sdiv ... Convert to float.
 | |
|   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
 | |
|   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
 | |
|   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
 | |
|   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
 | |
|   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
 | |
| 
 | |
|   // Use reciprocal estimate and two refinement steps.
 | |
|   // float4 recip = vrecpeq_f32(yf);
 | |
|   // recip *= vrecpsq_f32(yf, recip);
 | |
|   // recip *= vrecpsq_f32(yf, recip);
 | |
|   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
 | |
|                    BN1);
 | |
|   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
 | |
|                    BN1, N2);
 | |
|   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | |
|   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | |
|                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
 | |
|                    BN1, N2);
 | |
|   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | |
|   // Simply multiplying by the reciprocal estimate can leave us a few ulps
 | |
|   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
 | |
|   // and that it will never cause us to return an answer too large).
 | |
|   // float4 result = as_float4(as_int4(xf*recip) + 2);
 | |
|   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
 | |
|   N1 = DAG.getConstant(2, dl, MVT::v4i32);
 | |
|   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
 | |
|   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
 | |
|   // Convert back to integer and return.
 | |
|   // return vmovn_u32(vcvt_s32_f32(result));
 | |
|   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
 | |
|   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
 | |
|   return N0;
 | |
| }
 | |
| 
 | |
| static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDNode *N = Op.getNode();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | |
| 
 | |
|   SDValue Carry = Op.getOperand(2);
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (Op.getOpcode() == ISD::ADDCARRY) {
 | |
|     // This converts the boolean value carry into the carry flag.
 | |
|     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
 | |
| 
 | |
|     // Do the addition proper using the carry flag we wanted.
 | |
|     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
 | |
|                          Op.getOperand(1), Carry);
 | |
| 
 | |
|     // Now convert the carry flag into a boolean value.
 | |
|     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
 | |
|   } else {
 | |
|     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
 | |
|     // have to invert the carry first.
 | |
|     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
 | |
|                         DAG.getConstant(1, DL, MVT::i32), Carry);
 | |
|     // This converts the boolean value carry into the carry flag.
 | |
|     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
 | |
| 
 | |
|     // Do the subtraction proper using the carry flag we wanted.
 | |
|     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
 | |
|                          Op.getOperand(1), Carry);
 | |
| 
 | |
|     // Now convert the carry flag into a boolean value.
 | |
|     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
 | |
|     // But the carry returned by ARMISD::SUBE is not a borrow as expected
 | |
|     // by ISD::SUBCARRY, so compute 1 - C.
 | |
|     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
 | |
|                         DAG.getConstant(1, DL, MVT::i32), Carry);
 | |
|   }
 | |
| 
 | |
|   // Return both values.
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetDarwin());
 | |
| 
 | |
|   // For iOS, we want to call an alternative entry point: __sincos_stret,
 | |
|   // return values are passed via sret.
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Arg = Op.getOperand(0);
 | |
|   EVT ArgVT = Arg.getValueType();
 | |
|   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | |
|   auto PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Pair of floats / doubles used to pass the result.
 | |
|   Type *RetTy = StructType::get(ArgTy, ArgTy);
 | |
|   auto &DL = DAG.getDataLayout();
 | |
| 
 | |
|   ArgListTy Args;
 | |
|   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
 | |
|   SDValue SRet;
 | |
|   if (ShouldUseSRet) {
 | |
|     // Create stack object for sret.
 | |
|     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
 | |
|     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
 | |
|     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
 | |
|     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
 | |
| 
 | |
|     ArgListEntry Entry;
 | |
|     Entry.Node = SRet;
 | |
|     Entry.Ty = RetTy->getPointerTo();
 | |
|     Entry.IsSExt = false;
 | |
|     Entry.IsZExt = false;
 | |
|     Entry.IsSRet = true;
 | |
|     Args.push_back(Entry);
 | |
|     RetTy = Type::getVoidTy(*DAG.getContext());
 | |
|   }
 | |
| 
 | |
|   ArgListEntry Entry;
 | |
|   Entry.Node = Arg;
 | |
|   Entry.Ty = ArgTy;
 | |
|   Entry.IsSExt = false;
 | |
|   Entry.IsZExt = false;
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   RTLIB::Libcall LC =
 | |
|       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
 | |
|   const char *LibcallName = getLibcallName(LC);
 | |
|   CallingConv::ID CC = getLibcallCallingConv(LC);
 | |
|   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(DAG.getEntryNode())
 | |
|       .setCallee(CC, RetTy, Callee, std::move(Args))
 | |
|       .setDiscardResult(ShouldUseSRet);
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
| 
 | |
|   if (!ShouldUseSRet)
 | |
|     return CallResult.first;
 | |
| 
 | |
|   SDValue LoadSin =
 | |
|       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
 | |
| 
 | |
|   // Address of cos field.
 | |
|   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
 | |
|                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
 | |
|   SDValue LoadCos =
 | |
|       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
 | |
| 
 | |
|   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
 | |
|                      LoadSin.getValue(0), LoadCos.getValue(0));
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
 | |
|                                                   bool Signed,
 | |
|                                                   SDValue &Chain) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "unexpected type for custom lowering DIV");
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   const auto &DL = DAG.getDataLayout();
 | |
|   const auto &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   const char *Name = nullptr;
 | |
|   if (Signed)
 | |
|     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
 | |
|   else
 | |
|     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
 | |
| 
 | |
|   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
 | |
| 
 | |
|   ARMTargetLowering::ArgListTy Args;
 | |
| 
 | |
|   for (auto AI : {1, 0}) {
 | |
|     ArgListEntry Arg;
 | |
|     Arg.Node = Op.getOperand(AI);
 | |
|     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
 | |
|     Args.push_back(Arg);
 | |
|   }
 | |
| 
 | |
|   CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl)
 | |
|     .setChain(Chain)
 | |
|     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
 | |
|                ES, std::move(Args));
 | |
| 
 | |
|   return LowerCallTo(CLI).first;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
 | |
|                                             bool Signed) const {
 | |
|   assert(Op.getValueType() == MVT::i32 &&
 | |
|          "unexpected type for custom lowering DIV");
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
 | |
|                                DAG.getEntryNode(), Op.getOperand(1));
 | |
| 
 | |
|   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
 | |
| }
 | |
| 
 | |
| static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
 | |
|   SDLoc DL(N);
 | |
|   SDValue Op = N->getOperand(1);
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
 | |
|   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
 | |
|                            DAG.getConstant(0, DL, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
 | |
|                            DAG.getConstant(1, DL, MVT::i32));
 | |
|   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
 | |
|                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::ExpandDIV_Windows(
 | |
|     SDValue Op, SelectionDAG &DAG, bool Signed,
 | |
|     SmallVectorImpl<SDValue> &Results) const {
 | |
|   const auto &DL = DAG.getDataLayout();
 | |
|   const auto &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   assert(Op.getValueType() == MVT::i64 &&
 | |
|          "unexpected type for custom lowering DIV");
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
 | |
| 
 | |
|   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
 | |
| 
 | |
|   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
 | |
|   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
 | |
|                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
 | |
|   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
 | |
| 
 | |
|   Results.push_back(Lower);
 | |
|   Results.push_back(Upper);
 | |
| }
 | |
| 
 | |
| static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
 | |
|   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
 | |
|     // Acquire/Release load/store is not legal for targets without a dmb or
 | |
|     // equivalent available.
 | |
|     return SDValue();
 | |
| 
 | |
|   // Monotonic load/store is legal for all targets.
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static void ReplaceREADCYCLECOUNTER(SDNode *N,
 | |
|                                     SmallVectorImpl<SDValue> &Results,
 | |
|                                     SelectionDAG &DAG,
 | |
|                                     const ARMSubtarget *Subtarget) {
 | |
|   SDLoc DL(N);
 | |
|   // Under Power Management extensions, the cycle-count is:
 | |
|   //    mrc p15, #0, <Rt>, c9, c13, #0
 | |
|   SDValue Ops[] = { N->getOperand(0), // Chain
 | |
|                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
 | |
|                     DAG.getConstant(15, DL, MVT::i32),
 | |
|                     DAG.getConstant(0, DL, MVT::i32),
 | |
|                     DAG.getConstant(9, DL, MVT::i32),
 | |
|                     DAG.getConstant(13, DL, MVT::i32),
 | |
|                     DAG.getConstant(0, DL, MVT::i32)
 | |
|   };
 | |
| 
 | |
|   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
 | |
|                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
 | |
|   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
 | |
|                                 DAG.getConstant(0, DL, MVT::i32)));
 | |
|   Results.push_back(Cycles32.getValue(1));
 | |
| }
 | |
| 
 | |
| static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
 | |
|   SDLoc dl(V.getNode());
 | |
|   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
 | |
|   SDValue VHi = DAG.getAnyExtOrTrunc(
 | |
|       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
 | |
|       dl, MVT::i32);
 | |
|   bool isBigEndian = DAG.getDataLayout().isBigEndian();
 | |
|   if (isBigEndian)
 | |
|     std::swap (VLo, VHi);
 | |
|   SDValue RegClass =
 | |
|       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
 | |
|   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
 | |
|   return SDValue(
 | |
|       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
 | |
| }
 | |
| 
 | |
| static void ReplaceCMP_SWAP_64Results(SDNode *N,
 | |
|                                        SmallVectorImpl<SDValue> & Results,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   assert(N->getValueType(0) == MVT::i64 &&
 | |
|          "AtomicCmpSwap on types less than 64 should be legal");
 | |
|   SDValue Ops[] = {N->getOperand(1),
 | |
|                    createGPRPairNode(DAG, N->getOperand(2)),
 | |
|                    createGPRPairNode(DAG, N->getOperand(3)),
 | |
|                    N->getOperand(0)};
 | |
|   SDNode *CmpSwap = DAG.getMachineNode(
 | |
|       ARM::CMP_SWAP_64, SDLoc(N),
 | |
|       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
 | |
| 
 | |
|   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
 | |
|   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
 | |
| 
 | |
|   bool isBigEndian = DAG.getDataLayout().isBigEndian();
 | |
| 
 | |
|   Results.push_back(
 | |
|       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
 | |
|                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
 | |
|   Results.push_back(
 | |
|       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
 | |
|                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
 | |
|   Results.push_back(SDValue(CmpSwap, 2));
 | |
| }
 | |
| 
 | |
| static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
 | |
|                           SelectionDAG &DAG) {
 | |
|   const auto &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
 | |
|          "Custom lowering is MSVCRT specific!");
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Val = Op.getOperand(0);
 | |
|   MVT Ty = Val->getSimpleValueType(0);
 | |
|   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
 | |
|   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
 | |
|                                          TLI.getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
| 
 | |
|   Entry.Node = Val;
 | |
|   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
 | |
|   Entry.IsZExt = true;
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   Entry.Node = Exponent;
 | |
|   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
 | |
|   Entry.IsZExt = true;
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
 | |
| 
 | |
|   // In the in-chain to the call is the entry node  If we are emitting a
 | |
|   // tailcall, the chain will be mutated if the node has a non-entry input
 | |
|   // chain.
 | |
|   SDValue InChain = DAG.getEntryNode();
 | |
|   SDValue TCChain = InChain;
 | |
| 
 | |
|   const Function &F = DAG.getMachineFunction().getFunction();
 | |
|   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
 | |
|               F.getReturnType() == LCRTy;
 | |
|   if (IsTC)
 | |
|     InChain = TCChain;
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(InChain)
 | |
|       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
 | |
|       .setTailCall(IsTC);
 | |
|   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
 | |
| 
 | |
|   // Return the chain (the DAG root) if it is a tail call
 | |
|   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Don't know how to custom lower this!");
 | |
|   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
 | |
|   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::SELECT:        return LowerSELECT(Op, DAG);
 | |
|   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
 | |
|   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
 | |
|   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
 | |
|   case ISD::VASTART:       return LowerVASTART(Op, DAG);
 | |
|   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
 | |
|   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
 | |
|   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
 | |
|   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
 | |
|                                                                Subtarget);
 | |
|   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
 | |
|   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
 | |
|   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
 | |
|   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
 | |
|   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
 | |
|   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
 | |
|   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
 | |
|   case ISD::MUL:           return LowerMUL(Op, DAG);
 | |
|   case ISD::SDIV:
 | |
|     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
 | |
|       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
 | |
|     return LowerSDIV(Op, DAG);
 | |
|   case ISD::UDIV:
 | |
|     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
 | |
|       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
 | |
|     return LowerUDIV(Op, DAG);
 | |
|   case ISD::ADDCARRY:
 | |
|   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
 | |
|   case ISD::SADDO:
 | |
|   case ISD::SSUBO:
 | |
|     return LowerSignedALUO(Op, DAG);
 | |
|   case ISD::UADDO:
 | |
|   case ISD::USUBO:
 | |
|     return LowerUnsignedALUO(Op, DAG);
 | |
|   case ISD::ATOMIC_LOAD:
 | |
|   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
 | |
|   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
 | |
|   case ISD::SDIVREM:
 | |
|   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     if (Subtarget->isTargetWindows())
 | |
|       return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|     llvm_unreachable("Don't know how to custom lower this!");
 | |
|   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
 | |
|   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
 | |
|   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
 | |
|   case ARMISD::WIN__DBZCHK: return SDValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
 | |
|                                  SelectionDAG &DAG) {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|   unsigned Opc = 0;
 | |
|   if (IntNo == Intrinsic::arm_smlald)
 | |
|     Opc = ARMISD::SMLALD;
 | |
|   else if (IntNo == Intrinsic::arm_smlaldx)
 | |
|     Opc = ARMISD::SMLALDX;
 | |
|   else if (IntNo == Intrinsic::arm_smlsld)
 | |
|     Opc = ARMISD::SMLSLD;
 | |
|   else if (IntNo == Intrinsic::arm_smlsldx)
 | |
|     Opc = ARMISD::SMLSLDX;
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                            N->getOperand(3),
 | |
|                            DAG.getConstant(0, dl, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                            N->getOperand(3),
 | |
|                            DAG.getConstant(1, dl, MVT::i32));
 | |
| 
 | |
|   SDValue LongMul = DAG.getNode(Opc, dl,
 | |
|                                 DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                                 N->getOperand(1), N->getOperand(2),
 | |
|                                 Lo, Hi);
 | |
|   Results.push_back(LongMul.getValue(0));
 | |
|   Results.push_back(LongMul.getValue(1));
 | |
| }
 | |
| 
 | |
| /// ReplaceNodeResults - Replace the results of node with an illegal result
 | |
| /// type with new values built out of custom code.
 | |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue> &Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Res;
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Don't know how to custom expand this!");
 | |
|   case ISD::READ_REGISTER:
 | |
|     ExpandREAD_REGISTER(N, Results, DAG);
 | |
|     break;
 | |
|   case ISD::BITCAST:
 | |
|     Res = ExpandBITCAST(N, DAG, Subtarget);
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:
 | |
|     Res = Expand64BitShift(N, DAG, Subtarget);
 | |
|     break;
 | |
|   case ISD::SREM:
 | |
|   case ISD::UREM:
 | |
|     Res = LowerREM(N, DAG);
 | |
|     break;
 | |
|   case ISD::SDIVREM:
 | |
|   case ISD::UDIVREM:
 | |
|     Res = LowerDivRem(SDValue(N, 0), DAG);
 | |
|     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
 | |
|     Results.push_back(Res.getValue(0));
 | |
|     Results.push_back(Res.getValue(1));
 | |
|     return;
 | |
|   case ISD::READCYCLECOUNTER:
 | |
|     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
 | |
|     return;
 | |
|   case ISD::UDIV:
 | |
|   case ISD::SDIV:
 | |
|     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
 | |
|     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
 | |
|                              Results);
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|     ReplaceCMP_SWAP_64Results(N, Results, DAG);
 | |
|     return;
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|     return ReplaceLongIntrinsic(N, Results, DAG);
 | |
|   }
 | |
|   if (Res.getNode())
 | |
|     Results.push_back(Res);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
 | |
| /// registers the function context.
 | |
| void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
 | |
|                                                MachineBasicBlock *MBB,
 | |
|                                                MachineBasicBlock *DispatchBB,
 | |
|                                                int FI) const {
 | |
|   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
 | |
|          "ROPI/RWPI not currently supported with SjLj");
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
|   MachineConstantPool *MCP = MF->getConstantPool();
 | |
|   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
 | |
|   const Function &F = MF->getFunction();
 | |
| 
 | |
|   bool isThumb = Subtarget->isThumb();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   unsigned PCLabelId = AFI->createPICLabelUId();
 | |
|   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
 | |
|   ARMConstantPoolValue *CPV =
 | |
|     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
 | |
|   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
 | |
| 
 | |
|   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
 | |
|                                            : &ARM::GPRRegClass;
 | |
| 
 | |
|   // Grab constant pool and fixed stack memory operands.
 | |
|   MachineMemOperand *CPMMO =
 | |
|       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
 | |
|                                MachineMemOperand::MOLoad, 4, 4);
 | |
| 
 | |
|   MachineMemOperand *FIMMOSt =
 | |
|       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
 | |
|                                MachineMemOperand::MOStore, 4, 4);
 | |
| 
 | |
|   // Load the address of the dispatch MBB into the jump buffer.
 | |
|   if (isThumb2) {
 | |
|     // Incoming value: jbuf
 | |
|     //   ldr.n  r5, LCPI1_1
 | |
|     //   orr    r5, r5, #1
 | |
|     //   add    r5, pc
 | |
|     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
 | |
|         .addConstantPoolIndex(CPI)
 | |
|         .addMemOperand(CPMMO)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     // Set the low bit because of thumb mode.
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
 | |
|         .addReg(NewVReg1, RegState::Kill)
 | |
|         .addImm(0x01)
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .add(condCodeOp());
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
 | |
|       .addReg(NewVReg2, RegState::Kill)
 | |
|       .addImm(PCLabelId);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
 | |
|         .addReg(NewVReg3, RegState::Kill)
 | |
|         .addFrameIndex(FI)
 | |
|         .addImm(36) // &jbuf[1] :: pc
 | |
|         .addMemOperand(FIMMOSt)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else if (isThumb) {
 | |
|     // Incoming value: jbuf
 | |
|     //   ldr.n  r1, LCPI1_4
 | |
|     //   add    r1, pc
 | |
|     //   mov    r2, #1
 | |
|     //   orrs   r1, r2
 | |
|     //   add    r2, $jbuf, #+4 ; &jbuf[1]
 | |
|     //   str    r1, [r2]
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
 | |
|         .addConstantPoolIndex(CPI)
 | |
|         .addMemOperand(CPMMO)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
 | |
|       .addReg(NewVReg1, RegState::Kill)
 | |
|       .addImm(PCLabelId);
 | |
|     // Set the low bit because of thumb mode.
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
 | |
|         .addReg(ARM::CPSR, RegState::Define)
 | |
|         .addImm(1)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
 | |
|         .addReg(ARM::CPSR, RegState::Define)
 | |
|         .addReg(NewVReg2, RegState::Kill)
 | |
|         .addReg(NewVReg3, RegState::Kill)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
 | |
|             .addFrameIndex(FI)
 | |
|             .addImm(36); // &jbuf[1] :: pc
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
 | |
|         .addReg(NewVReg4, RegState::Kill)
 | |
|         .addReg(NewVReg5, RegState::Kill)
 | |
|         .addImm(0)
 | |
|         .addMemOperand(FIMMOSt)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else {
 | |
|     // Incoming value: jbuf
 | |
|     //   ldr  r1, LCPI1_1
 | |
|     //   add  r1, pc, r1
 | |
|     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
 | |
|         .addConstantPoolIndex(CPI)
 | |
|         .addImm(0)
 | |
|         .addMemOperand(CPMMO)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
 | |
|         .addReg(NewVReg1, RegState::Kill)
 | |
|         .addImm(PCLabelId)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
 | |
|         .addReg(NewVReg2, RegState::Kill)
 | |
|         .addFrameIndex(FI)
 | |
|         .addImm(36) // &jbuf[1] :: pc
 | |
|         .addMemOperand(FIMMOSt)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
 | |
|                                               MachineBasicBlock *MBB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF->getRegInfo();
 | |
|   MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|   int FI = MFI.getFunctionContextIndex();
 | |
| 
 | |
|   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
 | |
|                                                         : &ARM::GPRnopcRegClass;
 | |
| 
 | |
|   // Get a mapping of the call site numbers to all of the landing pads they're
 | |
|   // associated with.
 | |
|   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
 | |
|   unsigned MaxCSNum = 0;
 | |
|   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
 | |
|        ++BB) {
 | |
|     if (!BB->isEHPad()) continue;
 | |
| 
 | |
|     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
 | |
|     // pad.
 | |
|     for (MachineBasicBlock::iterator
 | |
|            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
 | |
|       if (!II->isEHLabel()) continue;
 | |
| 
 | |
|       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
 | |
|       if (!MF->hasCallSiteLandingPad(Sym)) continue;
 | |
| 
 | |
|       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
 | |
|       for (SmallVectorImpl<unsigned>::iterator
 | |
|              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
 | |
|            CSI != CSE; ++CSI) {
 | |
|         CallSiteNumToLPad[*CSI].push_back(&*BB);
 | |
|         MaxCSNum = std::max(MaxCSNum, *CSI);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get an ordered list of the machine basic blocks for the jump table.
 | |
|   std::vector<MachineBasicBlock*> LPadList;
 | |
|   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
 | |
|   LPadList.reserve(CallSiteNumToLPad.size());
 | |
|   for (unsigned I = 1; I <= MaxCSNum; ++I) {
 | |
|     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
 | |
|     for (SmallVectorImpl<MachineBasicBlock*>::iterator
 | |
|            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
 | |
|       LPadList.push_back(*II);
 | |
|       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!LPadList.empty() &&
 | |
|          "No landing pad destinations for the dispatch jump table!");
 | |
| 
 | |
|   // Create the jump table and associated information.
 | |
|   MachineJumpTableInfo *JTI =
 | |
|     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
 | |
|   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
 | |
| 
 | |
|   // Create the MBBs for the dispatch code.
 | |
| 
 | |
|   // Shove the dispatch's address into the return slot in the function context.
 | |
|   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
 | |
|   DispatchBB->setIsEHPad();
 | |
| 
 | |
|   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
 | |
|   unsigned trap_opcode;
 | |
|   if (Subtarget->isThumb())
 | |
|     trap_opcode = ARM::tTRAP;
 | |
|   else
 | |
|     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
 | |
| 
 | |
|   BuildMI(TrapBB, dl, TII->get(trap_opcode));
 | |
|   DispatchBB->addSuccessor(TrapBB);
 | |
| 
 | |
|   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
 | |
|   DispatchBB->addSuccessor(DispContBB);
 | |
| 
 | |
|   // Insert and MBBs.
 | |
|   MF->insert(MF->end(), DispatchBB);
 | |
|   MF->insert(MF->end(), DispContBB);
 | |
|   MF->insert(MF->end(), TrapBB);
 | |
| 
 | |
|   // Insert code into the entry block that creates and registers the function
 | |
|   // context.
 | |
|   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
 | |
| 
 | |
|   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
 | |
|       MachinePointerInfo::getFixedStack(*MF, FI),
 | |
|       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
|   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
 | |
| 
 | |
|   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
 | |
|   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
 | |
| 
 | |
|   // Add a register mask with no preserved registers.  This results in all
 | |
|   // registers being marked as clobbered. This can't work if the dispatch block
 | |
|   // is in a Thumb1 function and is linked with ARM code which uses the FP
 | |
|   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
 | |
|   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
 | |
| 
 | |
|   bool IsPositionIndependent = isPositionIndependent();
 | |
|   unsigned NumLPads = LPadList.size();
 | |
|   if (Subtarget->isThumb2()) {
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
 | |
|         .addFrameIndex(FI)
 | |
|         .addImm(4)
 | |
|         .addMemOperand(FIMMOLd)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     if (NumLPads < 256) {
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
 | |
|           .addReg(NewVReg1)
 | |
|           .addImm(LPadList.size())
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     } else {
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
 | |
|           .addImm(NumLPads & 0xFFFF)
 | |
|           .add(predOps(ARMCC::AL));
 | |
| 
 | |
|       unsigned VReg2 = VReg1;
 | |
|       if ((NumLPads & 0xFFFF0000) != 0) {
 | |
|         VReg2 = MRI->createVirtualRegister(TRC);
 | |
|         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
 | |
|             .addReg(VReg1)
 | |
|             .addImm(NumLPads >> 16)
 | |
|             .add(predOps(ARMCC::AL));
 | |
|       }
 | |
| 
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
 | |
|           .addReg(NewVReg1)
 | |
|           .addReg(VReg2)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::HI)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
 | |
|         .addJumpTableIndex(MJTI)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
 | |
|         .addReg(NewVReg3, RegState::Kill)
 | |
|         .addReg(NewVReg1)
 | |
|         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .add(condCodeOp());
 | |
| 
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
 | |
|       .addReg(NewVReg4, RegState::Kill)
 | |
|       .addReg(NewVReg1)
 | |
|       .addJumpTableIndex(MJTI);
 | |
|   } else if (Subtarget->isThumb()) {
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
 | |
|         .addFrameIndex(FI)
 | |
|         .addImm(1)
 | |
|         .addMemOperand(FIMMOLd)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     if (NumLPads < 256) {
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
 | |
|           .addReg(NewVReg1)
 | |
|           .addImm(NumLPads)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     } else {
 | |
|       MachineConstantPool *ConstantPool = MF->getConstantPool();
 | |
|       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
 | |
|       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
 | |
| 
 | |
|       // MachineConstantPool wants an explicit alignment.
 | |
|       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
 | |
|       if (Align == 0)
 | |
|         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
 | |
|       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
 | |
| 
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
 | |
|           .addReg(VReg1, RegState::Define)
 | |
|           .addConstantPoolIndex(Idx)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
 | |
|           .addReg(NewVReg1)
 | |
|           .addReg(VReg1)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::HI)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
 | |
|         .addReg(ARM::CPSR, RegState::Define)
 | |
|         .addReg(NewVReg1)
 | |
|         .addImm(2)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
 | |
|         .addJumpTableIndex(MJTI)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
 | |
|         .addReg(ARM::CPSR, RegState::Define)
 | |
|         .addReg(NewVReg2, RegState::Kill)
 | |
|         .addReg(NewVReg3)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
 | |
|         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
 | |
| 
 | |
|     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
 | |
|         .addReg(NewVReg4, RegState::Kill)
 | |
|         .addImm(0)
 | |
|         .addMemOperand(JTMMOLd)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     unsigned NewVReg6 = NewVReg5;
 | |
|     if (IsPositionIndependent) {
 | |
|       NewVReg6 = MRI->createVirtualRegister(TRC);
 | |
|       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
 | |
|           .addReg(ARM::CPSR, RegState::Define)
 | |
|           .addReg(NewVReg5, RegState::Kill)
 | |
|           .addReg(NewVReg3)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
 | |
|       .addReg(NewVReg6, RegState::Kill)
 | |
|       .addJumpTableIndex(MJTI);
 | |
|   } else {
 | |
|     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
 | |
|         .addFrameIndex(FI)
 | |
|         .addImm(4)
 | |
|         .addMemOperand(FIMMOLd)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     if (NumLPads < 256) {
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
 | |
|           .addReg(NewVReg1)
 | |
|           .addImm(NumLPads)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
 | |
|           .addImm(NumLPads & 0xFFFF)
 | |
|           .add(predOps(ARMCC::AL));
 | |
| 
 | |
|       unsigned VReg2 = VReg1;
 | |
|       if ((NumLPads & 0xFFFF0000) != 0) {
 | |
|         VReg2 = MRI->createVirtualRegister(TRC);
 | |
|         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
 | |
|             .addReg(VReg1)
 | |
|             .addImm(NumLPads >> 16)
 | |
|             .add(predOps(ARMCC::AL));
 | |
|       }
 | |
| 
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
 | |
|           .addReg(NewVReg1)
 | |
|           .addReg(VReg2)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     } else {
 | |
|       MachineConstantPool *ConstantPool = MF->getConstantPool();
 | |
|       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
 | |
|       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
 | |
| 
 | |
|       // MachineConstantPool wants an explicit alignment.
 | |
|       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
 | |
|       if (Align == 0)
 | |
|         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
 | |
|       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
 | |
| 
 | |
|       unsigned VReg1 = MRI->createVirtualRegister(TRC);
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
 | |
|           .addReg(VReg1, RegState::Define)
 | |
|           .addConstantPoolIndex(Idx)
 | |
|           .addImm(0)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
 | |
|           .addReg(NewVReg1)
 | |
|           .addReg(VReg1, RegState::Kill)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     }
 | |
| 
 | |
|     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::HI)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
 | |
|         .addReg(NewVReg1)
 | |
|         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .add(condCodeOp());
 | |
|     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
 | |
|         .addJumpTableIndex(MJTI)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
 | |
|         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
 | |
|     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
 | |
|     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
 | |
|         .addReg(NewVReg3, RegState::Kill)
 | |
|         .addReg(NewVReg4)
 | |
|         .addImm(0)
 | |
|         .addMemOperand(JTMMOLd)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     if (IsPositionIndependent) {
 | |
|       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
 | |
|         .addReg(NewVReg5, RegState::Kill)
 | |
|         .addReg(NewVReg4)
 | |
|         .addJumpTableIndex(MJTI);
 | |
|     } else {
 | |
|       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
 | |
|         .addReg(NewVReg5, RegState::Kill)
 | |
|         .addJumpTableIndex(MJTI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the jump table entries as successors to the MBB.
 | |
|   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
 | |
|   for (std::vector<MachineBasicBlock*>::iterator
 | |
|          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *CurMBB = *I;
 | |
|     if (SeenMBBs.insert(CurMBB).second)
 | |
|       DispContBB->addSuccessor(CurMBB);
 | |
|   }
 | |
| 
 | |
|   // N.B. the order the invoke BBs are processed in doesn't matter here.
 | |
|   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
 | |
|   SmallVector<MachineBasicBlock*, 64> MBBLPads;
 | |
|   for (MachineBasicBlock *BB : InvokeBBs) {
 | |
| 
 | |
|     // Remove the landing pad successor from the invoke block and replace it
 | |
|     // with the new dispatch block.
 | |
|     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
 | |
|                                                   BB->succ_end());
 | |
|     while (!Successors.empty()) {
 | |
|       MachineBasicBlock *SMBB = Successors.pop_back_val();
 | |
|       if (SMBB->isEHPad()) {
 | |
|         BB->removeSuccessor(SMBB);
 | |
|         MBBLPads.push_back(SMBB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
 | |
|     BB->normalizeSuccProbs();
 | |
| 
 | |
|     // Find the invoke call and mark all of the callee-saved registers as
 | |
|     // 'implicit defined' so that they're spilled. This prevents code from
 | |
|     // moving instructions to before the EH block, where they will never be
 | |
|     // executed.
 | |
|     for (MachineBasicBlock::reverse_iterator
 | |
|            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
 | |
|       if (!II->isCall()) continue;
 | |
| 
 | |
|       DenseMap<unsigned, bool> DefRegs;
 | |
|       for (MachineInstr::mop_iterator
 | |
|              OI = II->operands_begin(), OE = II->operands_end();
 | |
|            OI != OE; ++OI) {
 | |
|         if (!OI->isReg()) continue;
 | |
|         DefRegs[OI->getReg()] = true;
 | |
|       }
 | |
| 
 | |
|       MachineInstrBuilder MIB(*MF, &*II);
 | |
| 
 | |
|       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
 | |
|         unsigned Reg = SavedRegs[i];
 | |
|         if (Subtarget->isThumb2() &&
 | |
|             !ARM::tGPRRegClass.contains(Reg) &&
 | |
|             !ARM::hGPRRegClass.contains(Reg))
 | |
|           continue;
 | |
|         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
 | |
|           continue;
 | |
|         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
 | |
|           continue;
 | |
|         if (!DefRegs[Reg])
 | |
|           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Mark all former landing pads as non-landing pads. The dispatch is the only
 | |
|   // landing pad now.
 | |
|   for (SmallVectorImpl<MachineBasicBlock*>::iterator
 | |
|          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
 | |
|     (*I)->setIsEHPad(false);
 | |
| 
 | |
|   // The instruction is gone now.
 | |
|   MI.eraseFromParent();
 | |
| }
 | |
| 
 | |
| static
 | |
| MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
 | |
|   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
 | |
|        E = MBB->succ_end(); I != E; ++I)
 | |
|     if (*I != Succ)
 | |
|       return *I;
 | |
|   llvm_unreachable("Expecting a BB with two successors!");
 | |
| }
 | |
| 
 | |
| /// Return the load opcode for a given load size. If load size >= 8,
 | |
| /// neon opcode will be returned.
 | |
| static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
 | |
|   if (LdSize >= 8)
 | |
|     return LdSize == 16 ? ARM::VLD1q32wb_fixed
 | |
|                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
 | |
|   if (IsThumb1)
 | |
|     return LdSize == 4 ? ARM::tLDRi
 | |
|                        : LdSize == 2 ? ARM::tLDRHi
 | |
|                                      : LdSize == 1 ? ARM::tLDRBi : 0;
 | |
|   if (IsThumb2)
 | |
|     return LdSize == 4 ? ARM::t2LDR_POST
 | |
|                        : LdSize == 2 ? ARM::t2LDRH_POST
 | |
|                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
 | |
|   return LdSize == 4 ? ARM::LDR_POST_IMM
 | |
|                      : LdSize == 2 ? ARM::LDRH_POST
 | |
|                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
 | |
| }
 | |
| 
 | |
| /// Return the store opcode for a given store size. If store size >= 8,
 | |
| /// neon opcode will be returned.
 | |
| static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
 | |
|   if (StSize >= 8)
 | |
|     return StSize == 16 ? ARM::VST1q32wb_fixed
 | |
|                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
 | |
|   if (IsThumb1)
 | |
|     return StSize == 4 ? ARM::tSTRi
 | |
|                        : StSize == 2 ? ARM::tSTRHi
 | |
|                                      : StSize == 1 ? ARM::tSTRBi : 0;
 | |
|   if (IsThumb2)
 | |
|     return StSize == 4 ? ARM::t2STR_POST
 | |
|                        : StSize == 2 ? ARM::t2STRH_POST
 | |
|                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
 | |
|   return StSize == 4 ? ARM::STR_POST_IMM
 | |
|                      : StSize == 2 ? ARM::STRH_POST
 | |
|                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
 | |
| }
 | |
| 
 | |
| /// Emit a post-increment load operation with given size. The instructions
 | |
| /// will be added to BB at Pos.
 | |
| static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
 | |
|                        const TargetInstrInfo *TII, const DebugLoc &dl,
 | |
|                        unsigned LdSize, unsigned Data, unsigned AddrIn,
 | |
|                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
 | |
|   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
 | |
|   assert(LdOpc != 0 && "Should have a load opcode");
 | |
|   if (LdSize >= 8) {
 | |
|     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
 | |
|         .addReg(AddrOut, RegState::Define)
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(0)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else if (IsThumb1) {
 | |
|     // load + update AddrIn
 | |
|     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(0)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
 | |
|         .add(t1CondCodeOp())
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(LdSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else if (IsThumb2) {
 | |
|     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
 | |
|         .addReg(AddrOut, RegState::Define)
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(LdSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else { // arm
 | |
|     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
 | |
|         .addReg(AddrOut, RegState::Define)
 | |
|         .addReg(AddrIn)
 | |
|         .addReg(0)
 | |
|         .addImm(LdSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Emit a post-increment store operation with given size. The instructions
 | |
| /// will be added to BB at Pos.
 | |
| static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
 | |
|                        const TargetInstrInfo *TII, const DebugLoc &dl,
 | |
|                        unsigned StSize, unsigned Data, unsigned AddrIn,
 | |
|                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
 | |
|   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
 | |
|   assert(StOpc != 0 && "Should have a store opcode");
 | |
|   if (StSize >= 8) {
 | |
|     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(0)
 | |
|         .addReg(Data)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else if (IsThumb1) {
 | |
|     // store + update AddrIn
 | |
|     BuildMI(*BB, Pos, dl, TII->get(StOpc))
 | |
|         .addReg(Data)
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(0)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
 | |
|         .add(t1CondCodeOp())
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(StSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else if (IsThumb2) {
 | |
|     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
 | |
|         .addReg(Data)
 | |
|         .addReg(AddrIn)
 | |
|         .addImm(StSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else { // arm
 | |
|     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
 | |
|         .addReg(Data)
 | |
|         .addReg(AddrIn)
 | |
|         .addReg(0)
 | |
|         .addImm(StSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitStructByval(MachineInstr &MI,
 | |
|                                    MachineBasicBlock *BB) const {
 | |
|   // This pseudo instruction has 3 operands: dst, src, size
 | |
|   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
 | |
|   // Otherwise, we will generate unrolled scalar copies.
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = ++BB->getIterator();
 | |
| 
 | |
|   unsigned dest = MI.getOperand(0).getReg();
 | |
|   unsigned src = MI.getOperand(1).getReg();
 | |
|   unsigned SizeVal = MI.getOperand(2).getImm();
 | |
|   unsigned Align = MI.getOperand(3).getImm();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   unsigned UnitSize = 0;
 | |
|   const TargetRegisterClass *TRC = nullptr;
 | |
|   const TargetRegisterClass *VecTRC = nullptr;
 | |
| 
 | |
|   bool IsThumb1 = Subtarget->isThumb1Only();
 | |
|   bool IsThumb2 = Subtarget->isThumb2();
 | |
|   bool IsThumb = Subtarget->isThumb();
 | |
| 
 | |
|   if (Align & 1) {
 | |
|     UnitSize = 1;
 | |
|   } else if (Align & 2) {
 | |
|     UnitSize = 2;
 | |
|   } else {
 | |
|     // Check whether we can use NEON instructions.
 | |
|     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
 | |
|         Subtarget->hasNEON()) {
 | |
|       if ((Align % 16 == 0) && SizeVal >= 16)
 | |
|         UnitSize = 16;
 | |
|       else if ((Align % 8 == 0) && SizeVal >= 8)
 | |
|         UnitSize = 8;
 | |
|     }
 | |
|     // Can't use NEON instructions.
 | |
|     if (UnitSize == 0)
 | |
|       UnitSize = 4;
 | |
|   }
 | |
| 
 | |
|   // Select the correct opcode and register class for unit size load/store
 | |
|   bool IsNeon = UnitSize >= 8;
 | |
|   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
 | |
|   if (IsNeon)
 | |
|     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
 | |
|                             : UnitSize == 8 ? &ARM::DPRRegClass
 | |
|                                             : nullptr;
 | |
| 
 | |
|   unsigned BytesLeft = SizeVal % UnitSize;
 | |
|   unsigned LoopSize = SizeVal - BytesLeft;
 | |
| 
 | |
|   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
 | |
|     // Use LDR and STR to copy.
 | |
|     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
 | |
|     // [destOut] = STR_POST(scratch, destIn, UnitSize)
 | |
|     unsigned srcIn = src;
 | |
|     unsigned destIn = dest;
 | |
|     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
 | |
|       unsigned srcOut = MRI.createVirtualRegister(TRC);
 | |
|       unsigned destOut = MRI.createVirtualRegister(TRC);
 | |
|       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
 | |
|       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
 | |
|                  IsThumb1, IsThumb2);
 | |
|       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
 | |
|                  IsThumb1, IsThumb2);
 | |
|       srcIn = srcOut;
 | |
|       destIn = destOut;
 | |
|     }
 | |
| 
 | |
|     // Handle the leftover bytes with LDRB and STRB.
 | |
|     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
 | |
|     // [destOut] = STRB_POST(scratch, destIn, 1)
 | |
|     for (unsigned i = 0; i < BytesLeft; i++) {
 | |
|       unsigned srcOut = MRI.createVirtualRegister(TRC);
 | |
|       unsigned destOut = MRI.createVirtualRegister(TRC);
 | |
|       unsigned scratch = MRI.createVirtualRegister(TRC);
 | |
|       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
 | |
|                  IsThumb1, IsThumb2);
 | |
|       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
 | |
|                  IsThumb1, IsThumb2);
 | |
|       srcIn = srcOut;
 | |
|       destIn = destOut;
 | |
|     }
 | |
|     MI.eraseFromParent(); // The instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   // Expand the pseudo op to a loop.
 | |
|   // thisMBB:
 | |
|   //   ...
 | |
|   //   movw varEnd, # --> with thumb2
 | |
|   //   movt varEnd, #
 | |
|   //   ldrcp varEnd, idx --> without thumb2
 | |
|   //   fallthrough --> loopMBB
 | |
|   // loopMBB:
 | |
|   //   PHI varPhi, varEnd, varLoop
 | |
|   //   PHI srcPhi, src, srcLoop
 | |
|   //   PHI destPhi, dst, destLoop
 | |
|   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
 | |
|   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
 | |
|   //   subs varLoop, varPhi, #UnitSize
 | |
|   //   bne loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   // exitMBB:
 | |
|   //   epilogue to handle left-over bytes
 | |
|   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
 | |
|   //   [destOut] = STRB_POST(scratch, destLoop, 1)
 | |
|   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loopMBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   // Load an immediate to varEnd.
 | |
|   unsigned varEnd = MRI.createVirtualRegister(TRC);
 | |
|   if (Subtarget->useMovt(*MF)) {
 | |
|     unsigned Vtmp = varEnd;
 | |
|     if ((LoopSize & 0xFFFF0000) != 0)
 | |
|       Vtmp = MRI.createVirtualRegister(TRC);
 | |
|     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
 | |
|         .addImm(LoopSize & 0xFFFF)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     if ((LoopSize & 0xFFFF0000) != 0)
 | |
|       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
 | |
|           .addReg(Vtmp)
 | |
|           .addImm(LoopSize >> 16)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|   } else {
 | |
|     MachineConstantPool *ConstantPool = MF->getConstantPool();
 | |
|     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
 | |
|     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
 | |
| 
 | |
|     // MachineConstantPool wants an explicit alignment.
 | |
|     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
 | |
|     if (Align == 0)
 | |
|       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
 | |
|     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
 | |
| 
 | |
|     if (IsThumb)
 | |
|       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
 | |
|           .addReg(varEnd, RegState::Define)
 | |
|           .addConstantPoolIndex(Idx)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     else
 | |
|       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
 | |
|           .addReg(varEnd, RegState::Define)
 | |
|           .addConstantPoolIndex(Idx)
 | |
|           .addImm(0)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|   }
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   // Generate the loop body:
 | |
|   //   varPhi = PHI(varLoop, varEnd)
 | |
|   //   srcPhi = PHI(srcLoop, src)
 | |
|   //   destPhi = PHI(destLoop, dst)
 | |
|   MachineBasicBlock *entryBB = BB;
 | |
|   BB = loopMBB;
 | |
|   unsigned varLoop = MRI.createVirtualRegister(TRC);
 | |
|   unsigned varPhi = MRI.createVirtualRegister(TRC);
 | |
|   unsigned srcLoop = MRI.createVirtualRegister(TRC);
 | |
|   unsigned srcPhi = MRI.createVirtualRegister(TRC);
 | |
|   unsigned destLoop = MRI.createVirtualRegister(TRC);
 | |
|   unsigned destPhi = MRI.createVirtualRegister(TRC);
 | |
| 
 | |
|   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
 | |
|     .addReg(varLoop).addMBB(loopMBB)
 | |
|     .addReg(varEnd).addMBB(entryBB);
 | |
|   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
 | |
|     .addReg(srcLoop).addMBB(loopMBB)
 | |
|     .addReg(src).addMBB(entryBB);
 | |
|   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
 | |
|     .addReg(destLoop).addMBB(loopMBB)
 | |
|     .addReg(dest).addMBB(entryBB);
 | |
| 
 | |
|   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
 | |
|   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
 | |
|   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
 | |
|   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
 | |
|              IsThumb1, IsThumb2);
 | |
|   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
 | |
|              IsThumb1, IsThumb2);
 | |
| 
 | |
|   // Decrement loop variable by UnitSize.
 | |
|   if (IsThumb1) {
 | |
|     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
 | |
|         .add(t1CondCodeOp())
 | |
|         .addReg(varPhi)
 | |
|         .addImm(UnitSize)
 | |
|         .add(predOps(ARMCC::AL));
 | |
|   } else {
 | |
|     MachineInstrBuilder MIB =
 | |
|         BuildMI(*BB, BB->end(), dl,
 | |
|                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
 | |
|     MIB.addReg(varPhi)
 | |
|         .addImm(UnitSize)
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .add(condCodeOp());
 | |
|     MIB->getOperand(5).setReg(ARM::CPSR);
 | |
|     MIB->getOperand(5).setIsDef(true);
 | |
|   }
 | |
|   BuildMI(*BB, BB->end(), dl,
 | |
|           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
| 
 | |
|   // loopMBB can loop back to loopMBB or fall through to exitMBB.
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   // Add epilogue to handle BytesLeft.
 | |
|   BB = exitMBB;
 | |
|   auto StartOfExit = exitMBB->begin();
 | |
| 
 | |
|   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
 | |
|   //   [destOut] = STRB_POST(scratch, destLoop, 1)
 | |
|   unsigned srcIn = srcLoop;
 | |
|   unsigned destIn = destLoop;
 | |
|   for (unsigned i = 0; i < BytesLeft; i++) {
 | |
|     unsigned srcOut = MRI.createVirtualRegister(TRC);
 | |
|     unsigned destOut = MRI.createVirtualRegister(TRC);
 | |
|     unsigned scratch = MRI.createVirtualRegister(TRC);
 | |
|     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
 | |
|                IsThumb1, IsThumb2);
 | |
|     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
 | |
|                IsThumb1, IsThumb2);
 | |
|     srcIn = srcOut;
 | |
|     destIn = destOut;
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent(); // The instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
 | |
|                                        MachineBasicBlock *MBB) const {
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   assert(Subtarget->isTargetWindows() &&
 | |
|          "__chkstk is only supported on Windows");
 | |
|   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
 | |
| 
 | |
|   // __chkstk takes the number of words to allocate on the stack in R4, and
 | |
|   // returns the stack adjustment in number of bytes in R4.  This will not
 | |
|   // clober any other registers (other than the obvious lr).
 | |
|   //
 | |
|   // Although, technically, IP should be considered a register which may be
 | |
|   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
 | |
|   // thumb-2 environment, so there is no interworking required.  As a result, we
 | |
|   // do not expect a veneer to be emitted by the linker, clobbering IP.
 | |
|   //
 | |
|   // Each module receives its own copy of __chkstk, so no import thunk is
 | |
|   // required, again, ensuring that IP is not clobbered.
 | |
|   //
 | |
|   // Finally, although some linkers may theoretically provide a trampoline for
 | |
|   // out of range calls (which is quite common due to a 32M range limitation of
 | |
|   // branches for Thumb), we can generate the long-call version via
 | |
|   // -mcmodel=large, alleviating the need for the trampoline which may clobber
 | |
|   // IP.
 | |
| 
 | |
|   switch (TM.getCodeModel()) {
 | |
|   case CodeModel::Tiny:
 | |
|     llvm_unreachable("Tiny code model not available on ARM.");
 | |
|   case CodeModel::Small:
 | |
|   case CodeModel::Medium:
 | |
|   case CodeModel::Kernel:
 | |
|     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .addExternalSymbol("__chkstk")
 | |
|         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
 | |
|         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
 | |
|         .addReg(ARM::R12,
 | |
|                 RegState::Implicit | RegState::Define | RegState::Dead)
 | |
|         .addReg(ARM::CPSR,
 | |
|                 RegState::Implicit | RegState::Define | RegState::Dead);
 | |
|     break;
 | |
|   case CodeModel::Large: {
 | |
|     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | |
|     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
 | |
| 
 | |
|     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
 | |
|       .addExternalSymbol("__chkstk");
 | |
|     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .addReg(Reg, RegState::Kill)
 | |
|         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
 | |
|         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
 | |
|         .addReg(ARM::R12,
 | |
|                 RegState::Implicit | RegState::Define | RegState::Dead)
 | |
|         .addReg(ARM::CPSR,
 | |
|                 RegState::Implicit | RegState::Define | RegState::Dead);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
 | |
|       .addReg(ARM::SP, RegState::Kill)
 | |
|       .addReg(ARM::R4, RegState::Kill)
 | |
|       .setMIFlags(MachineInstr::FrameSetup)
 | |
|       .add(predOps(ARMCC::AL))
 | |
|       .add(condCodeOp());
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
 | |
|                                        MachineBasicBlock *MBB) const {
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
| 
 | |
|   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
 | |
|   MF->insert(++MBB->getIterator(), ContBB);
 | |
|   ContBB->splice(ContBB->begin(), MBB,
 | |
|                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | |
|   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
|   MBB->addSuccessor(ContBB);
 | |
| 
 | |
|   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
 | |
|   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
 | |
|   MF->push_back(TrapBB);
 | |
|   MBB->addSuccessor(TrapBB);
 | |
| 
 | |
|   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
 | |
|       .addReg(MI.getOperand(0).getReg())
 | |
|       .addImm(0)
 | |
|       .add(predOps(ARMCC::AL));
 | |
|   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
 | |
|       .addMBB(TrapBB)
 | |
|       .addImm(ARMCC::EQ)
 | |
|       .addReg(ARM::CPSR);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return ContBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: {
 | |
|     MI.print(errs());
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
| 
 | |
|   // Thumb1 post-indexed loads are really just single-register LDMs.
 | |
|   case ARM::tLDR_postidx: {
 | |
|     MachineOperand Def(MI.getOperand(1));
 | |
|     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
 | |
|         .add(Def)  // Rn_wb
 | |
|         .add(MI.getOperand(2))  // Rn
 | |
|         .add(MI.getOperand(3))  // PredImm
 | |
|         .add(MI.getOperand(4))  // PredReg
 | |
|         .add(MI.getOperand(0)); // Rt
 | |
|     MI.eraseFromParent();
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   // The Thumb2 pre-indexed stores have the same MI operands, they just
 | |
|   // define them differently in the .td files from the isel patterns, so
 | |
|   // they need pseudos.
 | |
|   case ARM::t2STR_preidx:
 | |
|     MI.setDesc(TII->get(ARM::t2STR_PRE));
 | |
|     return BB;
 | |
|   case ARM::t2STRB_preidx:
 | |
|     MI.setDesc(TII->get(ARM::t2STRB_PRE));
 | |
|     return BB;
 | |
|   case ARM::t2STRH_preidx:
 | |
|     MI.setDesc(TII->get(ARM::t2STRH_PRE));
 | |
|     return BB;
 | |
| 
 | |
|   case ARM::STRi_preidx:
 | |
|   case ARM::STRBi_preidx: {
 | |
|     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
 | |
|                                                          : ARM::STRB_PRE_IMM;
 | |
|     // Decode the offset.
 | |
|     unsigned Offset = MI.getOperand(4).getImm();
 | |
|     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
 | |
|     Offset = ARM_AM::getAM2Offset(Offset);
 | |
|     if (isSub)
 | |
|       Offset = -Offset;
 | |
| 
 | |
|     MachineMemOperand *MMO = *MI.memoperands_begin();
 | |
|     BuildMI(*BB, MI, dl, TII->get(NewOpc))
 | |
|         .add(MI.getOperand(0)) // Rn_wb
 | |
|         .add(MI.getOperand(1)) // Rt
 | |
|         .add(MI.getOperand(2)) // Rn
 | |
|         .addImm(Offset)        // offset (skip GPR==zero_reg)
 | |
|         .add(MI.getOperand(5)) // pred
 | |
|         .add(MI.getOperand(6))
 | |
|         .addMemOperand(MMO);
 | |
|     MI.eraseFromParent();
 | |
|     return BB;
 | |
|   }
 | |
|   case ARM::STRr_preidx:
 | |
|   case ARM::STRBr_preidx:
 | |
|   case ARM::STRH_preidx: {
 | |
|     unsigned NewOpc;
 | |
|     switch (MI.getOpcode()) {
 | |
|     default: llvm_unreachable("unexpected opcode!");
 | |
|     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
 | |
|     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
 | |
|     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
 | |
|     }
 | |
|     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
 | |
|     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
 | |
|       MIB.add(MI.getOperand(i));
 | |
|     MI.eraseFromParent();
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::tMOVCCr_pseudo: {
 | |
|     // To "insert" a SELECT_CC instruction, we actually have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // destination vreg to set, the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     MachineFunction::iterator It = ++BB->getIterator();
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB  = BB;
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(ARM::tBcc))
 | |
|         .addMBB(sinkMBB)
 | |
|         .addImm(MI.getOperand(3).getImm())
 | |
|         .addReg(MI.getOperand(4).getReg());
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
 | |
|         .addReg(MI.getOperand(1).getReg())
 | |
|         .addMBB(copy0MBB)
 | |
|         .addReg(MI.getOperand(2).getReg())
 | |
|         .addMBB(thisMBB);
 | |
| 
 | |
|     MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::BCCi64:
 | |
|   case ARM::BCCZi64: {
 | |
|     // If there is an unconditional branch to the other successor, remove it.
 | |
|     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
| 
 | |
|     // Compare both parts that make up the double comparison separately for
 | |
|     // equality.
 | |
|     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
 | |
| 
 | |
|     unsigned LHS1 = MI.getOperand(1).getReg();
 | |
|     unsigned LHS2 = MI.getOperand(2).getReg();
 | |
|     if (RHSisZero) {
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|           .addReg(LHS1)
 | |
|           .addImm(0)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|         .addReg(LHS2).addImm(0)
 | |
|         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     } else {
 | |
|       unsigned RHS1 = MI.getOperand(3).getReg();
 | |
|       unsigned RHS2 = MI.getOperand(4).getReg();
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|           .addReg(LHS1)
 | |
|           .addReg(RHS1)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|         .addReg(LHS2).addReg(RHS2)
 | |
|         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     }
 | |
| 
 | |
|     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
 | |
|     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
 | |
|     if (MI.getOperand(0).getImm() == ARMCC::NE)
 | |
|       std::swap(destMBB, exitMBB);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     if (isThumb2)
 | |
|       BuildMI(BB, dl, TII->get(ARM::t2B))
 | |
|           .addMBB(exitMBB)
 | |
|           .add(predOps(ARMCC::AL));
 | |
|     else
 | |
|       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
 | |
| 
 | |
|     MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::Int_eh_sjlj_setjmp:
 | |
|   case ARM::Int_eh_sjlj_setjmp_nofp:
 | |
|   case ARM::tInt_eh_sjlj_setjmp:
 | |
|   case ARM::t2Int_eh_sjlj_setjmp:
 | |
|   case ARM::t2Int_eh_sjlj_setjmp_nofp:
 | |
|     return BB;
 | |
| 
 | |
|   case ARM::Int_eh_sjlj_setup_dispatch:
 | |
|     EmitSjLjDispatchBlock(MI, BB);
 | |
|     return BB;
 | |
| 
 | |
|   case ARM::ABS:
 | |
|   case ARM::t2ABS: {
 | |
|     // To insert an ABS instruction, we have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // source vreg to test against 0, the destination vreg to set,
 | |
|     // the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     // It transforms
 | |
|     //     V1 = ABS V0
 | |
|     // into
 | |
|     //     V2 = MOVS V0
 | |
|     //     BCC                      (branch to SinkBB if V0 >= 0)
 | |
|     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
 | |
|     //     SinkBB: V1 = PHI(V2, V3)
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     MachineFunction::iterator BBI = ++BB->getIterator();
 | |
|     MachineFunction *Fn = BB->getParent();
 | |
|     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
 | |
|     Fn->insert(BBI, RSBBB);
 | |
|     Fn->insert(BBI, SinkBB);
 | |
| 
 | |
|     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
 | |
|     unsigned int ABSDstReg = MI.getOperand(0).getReg();
 | |
|     bool ABSSrcKIll = MI.getOperand(1).isKill();
 | |
|     bool isThumb2 = Subtarget->isThumb2();
 | |
|     MachineRegisterInfo &MRI = Fn->getRegInfo();
 | |
|     // In Thumb mode S must not be specified if source register is the SP or
 | |
|     // PC and if destination register is the SP, so restrict register class
 | |
|     unsigned NewRsbDstReg =
 | |
|       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     SinkBB->splice(SinkBB->begin(), BB,
 | |
|                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     BB->addSuccessor(RSBBB);
 | |
|     BB->addSuccessor(SinkBB);
 | |
| 
 | |
|     // fall through to SinkMBB
 | |
|     RSBBB->addSuccessor(SinkBB);
 | |
| 
 | |
|     // insert a cmp at the end of BB
 | |
|     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|         .addReg(ABSSrcReg)
 | |
|         .addImm(0)
 | |
|         .add(predOps(ARMCC::AL));
 | |
| 
 | |
|     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
 | |
|     BuildMI(BB, dl,
 | |
|       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
 | |
|       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
 | |
| 
 | |
|     // insert rsbri in RSBBB
 | |
|     // Note: BCC and rsbri will be converted into predicated rsbmi
 | |
|     // by if-conversion pass
 | |
|     BuildMI(*RSBBB, RSBBB->begin(), dl,
 | |
|             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
 | |
|         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
 | |
|         .addImm(0)
 | |
|         .add(predOps(ARMCC::AL))
 | |
|         .add(condCodeOp());
 | |
| 
 | |
|     // insert PHI in SinkBB,
 | |
|     // reuse ABSDstReg to not change uses of ABS instruction
 | |
|     BuildMI(*SinkBB, SinkBB->begin(), dl,
 | |
|       TII->get(ARM::PHI), ABSDstReg)
 | |
|       .addReg(NewRsbDstReg).addMBB(RSBBB)
 | |
|       .addReg(ABSSrcReg).addMBB(BB);
 | |
| 
 | |
|     // remove ABS instruction
 | |
|     MI.eraseFromParent();
 | |
| 
 | |
|     // return last added BB
 | |
|     return SinkBB;
 | |
|   }
 | |
|   case ARM::COPY_STRUCT_BYVAL_I32:
 | |
|     ++NumLoopByVals;
 | |
|     return EmitStructByval(MI, BB);
 | |
|   case ARM::WIN__CHKSTK:
 | |
|     return EmitLowered__chkstk(MI, BB);
 | |
|   case ARM::WIN__DBZCHK:
 | |
|     return EmitLowered__dbzchk(MI, BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Attaches vregs to MEMCPY that it will use as scratch registers
 | |
| /// when it is expanded into LDM/STM. This is done as a post-isel lowering
 | |
| /// instead of as a custom inserter because we need the use list from the SDNode.
 | |
| static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
 | |
|                                     MachineInstr &MI, const SDNode *Node) {
 | |
|   bool isThumb1 = Subtarget->isThumb1Only();
 | |
| 
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   MachineFunction *MF = MI.getParent()->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   MachineInstrBuilder MIB(*MF, MI);
 | |
| 
 | |
|   // If the new dst/src is unused mark it as dead.
 | |
|   if (!Node->hasAnyUseOfValue(0)) {
 | |
|     MI.getOperand(0).setIsDead(true);
 | |
|   }
 | |
|   if (!Node->hasAnyUseOfValue(1)) {
 | |
|     MI.getOperand(1).setIsDead(true);
 | |
|   }
 | |
| 
 | |
|   // The MEMCPY both defines and kills the scratch registers.
 | |
|   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
 | |
|     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
 | |
|                                                          : &ARM::GPRRegClass);
 | |
|     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
 | |
|                                                       SDNode *Node) const {
 | |
|   if (MI.getOpcode() == ARM::MEMCPY) {
 | |
|     attachMEMCPYScratchRegs(Subtarget, MI, Node);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc *MCID = &MI.getDesc();
 | |
|   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
 | |
|   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
 | |
|   // operand is still set to noreg. If needed, set the optional operand's
 | |
|   // register to CPSR, and remove the redundant implicit def.
 | |
|   //
 | |
|   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
 | |
| 
 | |
|   // Rename pseudo opcodes.
 | |
|   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
 | |
|   unsigned ccOutIdx;
 | |
|   if (NewOpc) {
 | |
|     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|     MCID = &TII->get(NewOpc);
 | |
| 
 | |
|     assert(MCID->getNumOperands() ==
 | |
|            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
 | |
|         && "converted opcode should be the same except for cc_out"
 | |
|            " (and, on Thumb1, pred)");
 | |
| 
 | |
|     MI.setDesc(*MCID);
 | |
| 
 | |
|     // Add the optional cc_out operand
 | |
|     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
 | |
| 
 | |
|     // On Thumb1, move all input operands to the end, then add the predicate
 | |
|     if (Subtarget->isThumb1Only()) {
 | |
|       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
 | |
|         MI.addOperand(MI.getOperand(1));
 | |
|         MI.RemoveOperand(1);
 | |
|       }
 | |
| 
 | |
|       // Restore the ties
 | |
|       for (unsigned i = MI.getNumOperands(); i--;) {
 | |
|         const MachineOperand& op = MI.getOperand(i);
 | |
|         if (op.isReg() && op.isUse()) {
 | |
|           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
 | |
|           if (DefIdx != -1)
 | |
|             MI.tieOperands(DefIdx, i);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
 | |
|       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
 | |
|       ccOutIdx = 1;
 | |
|     } else
 | |
|       ccOutIdx = MCID->getNumOperands() - 1;
 | |
|   } else
 | |
|     ccOutIdx = MCID->getNumOperands() - 1;
 | |
| 
 | |
|   // Any ARM instruction that sets the 's' bit should specify an optional
 | |
|   // "cc_out" operand in the last operand position.
 | |
|   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
 | |
|     assert(!NewOpc && "Optional cc_out operand required");
 | |
|     return;
 | |
|   }
 | |
|   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
 | |
|   // since we already have an optional CPSR def.
 | |
|   bool definesCPSR = false;
 | |
|   bool deadCPSR = false;
 | |
|   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
 | |
|        ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
 | |
|       definesCPSR = true;
 | |
|       if (MO.isDead())
 | |
|         deadCPSR = true;
 | |
|       MI.RemoveOperand(i);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!definesCPSR) {
 | |
|     assert(!NewOpc && "Optional cc_out operand required");
 | |
|     return;
 | |
|   }
 | |
|   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
 | |
|   if (deadCPSR) {
 | |
|     assert(!MI.getOperand(ccOutIdx).getReg() &&
 | |
|            "expect uninitialized optional cc_out operand");
 | |
|     // Thumb1 instructions must have the S bit even if the CPSR is dead.
 | |
|     if (!Subtarget->isThumb1Only())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If this instruction was defined with an optional CPSR def and its dag node
 | |
|   // had a live implicit CPSR def, then activate the optional CPSR def.
 | |
|   MachineOperand &MO = MI.getOperand(ccOutIdx);
 | |
|   MO.setReg(ARM::CPSR);
 | |
|   MO.setIsDef(true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Helper function that checks if N is a null or all ones constant.
 | |
| static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
 | |
|   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
 | |
| }
 | |
| 
 | |
| // Return true if N is conditionally 0 or all ones.
 | |
| // Detects these expressions where cc is an i1 value:
 | |
| //
 | |
| //   (select cc 0, y)   [AllOnes=0]
 | |
| //   (select cc y, 0)   [AllOnes=0]
 | |
| //   (zext cc)          [AllOnes=0]
 | |
| //   (sext cc)          [AllOnes=0/1]
 | |
| //   (select cc -1, y)  [AllOnes=1]
 | |
| //   (select cc y, -1)  [AllOnes=1]
 | |
| //
 | |
| // Invert is set when N is the null/all ones constant when CC is false.
 | |
| // OtherOp is set to the alternative value of N.
 | |
| static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
 | |
|                                        SDValue &CC, bool &Invert,
 | |
|                                        SDValue &OtherOp,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   switch (N->getOpcode()) {
 | |
|   default: return false;
 | |
|   case ISD::SELECT: {
 | |
|     CC = N->getOperand(0);
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     SDValue N2 = N->getOperand(2);
 | |
|     if (isZeroOrAllOnes(N1, AllOnes)) {
 | |
|       Invert = false;
 | |
|       OtherOp = N2;
 | |
|       return true;
 | |
|     }
 | |
|     if (isZeroOrAllOnes(N2, AllOnes)) {
 | |
|       Invert = true;
 | |
|       OtherOp = N1;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     // (zext cc) can never be the all ones value.
 | |
|     if (AllOnes)
 | |
|       return false;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     SDLoc dl(N);
 | |
|     EVT VT = N->getValueType(0);
 | |
|     CC = N->getOperand(0);
 | |
|     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
 | |
|       return false;
 | |
|     Invert = !AllOnes;
 | |
|     if (AllOnes)
 | |
|       // When looking for an AllOnes constant, N is an sext, and the 'other'
 | |
|       // value is 0.
 | |
|       OtherOp = DAG.getConstant(0, dl, VT);
 | |
|     else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|       // When looking for a 0 constant, N can be zext or sext.
 | |
|       OtherOp = DAG.getConstant(1, dl, VT);
 | |
|     else
 | |
|       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
 | |
|                                 VT);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Combine a constant select operand into its use:
 | |
| //
 | |
| //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
 | |
| //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
 | |
| //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
 | |
| //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
 | |
| //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
 | |
| //
 | |
| // The transform is rejected if the select doesn't have a constant operand that
 | |
| // is null, or all ones when AllOnes is set.
 | |
| //
 | |
| // Also recognize sext/zext from i1:
 | |
| //
 | |
| //   (add (zext cc), x) -> (select cc (add x, 1), x)
 | |
| //   (add (sext cc), x) -> (select cc (add x, -1), x)
 | |
| //
 | |
| // These transformations eventually create predicated instructions.
 | |
| //
 | |
| // @param N       The node to transform.
 | |
| // @param Slct    The N operand that is a select.
 | |
| // @param OtherOp The other N operand (x above).
 | |
| // @param DCI     Context.
 | |
| // @param AllOnes Require the select constant to be all ones instead of null.
 | |
| // @returns The new node, or SDValue() on failure.
 | |
| static
 | |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
 | |
|                             TargetLowering::DAGCombinerInfo &DCI,
 | |
|                             bool AllOnes = false) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue NonConstantVal;
 | |
|   SDValue CCOp;
 | |
|   bool SwapSelectOps;
 | |
|   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
 | |
|                                   NonConstantVal, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Slct is now know to be the desired identity constant when CC is true.
 | |
|   SDValue TrueVal = OtherOp;
 | |
|   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
 | |
|                                  OtherOp, NonConstantVal);
 | |
|   // Unless SwapSelectOps says CC should be false.
 | |
|   if (SwapSelectOps)
 | |
|     std::swap(TrueVal, FalseVal);
 | |
| 
 | |
|   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
 | |
|                      CCOp, TrueVal, FalseVal);
 | |
| }
 | |
| 
 | |
| // Attempt combineSelectAndUse on each operand of a commutative operator N.
 | |
| static
 | |
| SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
 | |
|                                        TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N0.getNode()->hasOneUse())
 | |
|     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
 | |
|       return Result;
 | |
|   if (N1.getNode()->hasOneUse())
 | |
|     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
 | |
|       return Result;
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static bool IsVUZPShuffleNode(SDNode *N) {
 | |
|   // VUZP shuffle node.
 | |
|   if (N->getOpcode() == ARMISD::VUZP)
 | |
|     return true;
 | |
| 
 | |
|   // "VUZP" on i32 is an alias for VTRN.
 | |
|   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   // Look for ADD(VUZP.0, VUZP.1).
 | |
|   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
 | |
|       N0 == N1)
 | |
|    return SDValue();
 | |
| 
 | |
|   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
 | |
|   if (!N->getValueType(0).is64BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Generate vpadd.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDLoc dl(N);
 | |
|   SDNode *Unzip = N0.getNode();
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
 | |
|                                 TLI.getPointerTy(DAG.getDataLayout())));
 | |
|   Ops.push_back(Unzip->getOperand(0));
 | |
|   Ops.push_back(Unzip->getOperand(1));
 | |
| 
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   // Check for two extended operands.
 | |
|   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
 | |
|         N1.getOpcode() == ISD::SIGN_EXTEND) &&
 | |
|       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
 | |
|         N1.getOpcode() == ISD::ZERO_EXTEND))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue N00 = N0.getOperand(0);
 | |
|   SDValue N10 = N1.getOperand(0);
 | |
| 
 | |
|   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
 | |
|   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
 | |
|       N00 == N10)
 | |
|     return SDValue();
 | |
| 
 | |
|   // We only recognize Q register paddl here; this can't be reached until
 | |
|   // after type legalization.
 | |
|   if (!N00.getValueType().is64BitVector() ||
 | |
|       !N0.getValueType().is128BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Generate vpaddl.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
 | |
|   unsigned Opcode;
 | |
|   if (N0.getOpcode() == ISD::SIGN_EXTEND)
 | |
|     Opcode = Intrinsic::arm_neon_vpaddls;
 | |
|   else
 | |
|     Opcode = Intrinsic::arm_neon_vpaddlu;
 | |
|   Ops.push_back(DAG.getConstant(Opcode, dl,
 | |
|                                 TLI.getPointerTy(DAG.getDataLayout())));
 | |
|   EVT ElemTy = N00.getValueType().getVectorElementType();
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
 | |
|   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
 | |
|                                N00.getOperand(0), N00.getOperand(1));
 | |
|   Ops.push_back(Concat);
 | |
| 
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
 | |
| // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
 | |
| // much easier to match.
 | |
| static SDValue
 | |
| AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
 | |
|                                TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                const ARMSubtarget *Subtarget) {
 | |
|   // Only perform optimization if after legalize, and if NEON is available. We
 | |
|   // also expected both operands to be BUILD_VECTORs.
 | |
|   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
 | |
|       || N0.getOpcode() != ISD::BUILD_VECTOR
 | |
|       || N1.getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check that the vector operands are of the right form.
 | |
|   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
 | |
|   // operands, where N is the size of the formed vector.
 | |
|   // Each EXTRACT_VECTOR should have the same input vector and odd or even
 | |
|   // index such that we have a pair wise add pattern.
 | |
| 
 | |
|   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
 | |
|   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|     return SDValue();
 | |
|   SDValue Vec = N0->getOperand(0)->getOperand(0);
 | |
|   SDNode *V = Vec.getNode();
 | |
|   unsigned nextIndex = 0;
 | |
| 
 | |
|   // For each operands to the ADD which are BUILD_VECTORs,
 | |
|   // check to see if each of their operands are an EXTRACT_VECTOR with
 | |
|   // the same vector and appropriate index.
 | |
|   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
 | |
|     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
 | |
|         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
| 
 | |
|       SDValue ExtVec0 = N0->getOperand(i);
 | |
|       SDValue ExtVec1 = N1->getOperand(i);
 | |
| 
 | |
|       // First operand is the vector, verify its the same.
 | |
|       if (V != ExtVec0->getOperand(0).getNode() ||
 | |
|           V != ExtVec1->getOperand(0).getNode())
 | |
|         return SDValue();
 | |
| 
 | |
|       // Second is the constant, verify its correct.
 | |
|       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
 | |
|       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
 | |
| 
 | |
|       // For the constant, we want to see all the even or all the odd.
 | |
|       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
 | |
|           || C1->getZExtValue() != nextIndex+1)
 | |
|         return SDValue();
 | |
| 
 | |
|       // Increment index.
 | |
|       nextIndex+=2;
 | |
|     } else
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
 | |
|   // we're using the entire input vector, otherwise there's a size/legality
 | |
|   // mismatch somewhere.
 | |
|   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
 | |
|       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Create VPADDL node.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Build operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
 | |
|                                 TLI.getPointerTy(DAG.getDataLayout())));
 | |
| 
 | |
|   // Input is the vector.
 | |
|   Ops.push_back(Vec);
 | |
| 
 | |
|   // Get widened type and narrowed type.
 | |
|   MVT widenType;
 | |
|   unsigned numElem = VT.getVectorNumElements();
 | |
| 
 | |
|   EVT inputLaneType = Vec.getValueType().getVectorElementType();
 | |
|   switch (inputLaneType.getSimpleVT().SimpleTy) {
 | |
|     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
 | |
|     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
 | |
|     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
 | |
|     default:
 | |
|       llvm_unreachable("Invalid vector element type for padd optimization.");
 | |
|   }
 | |
| 
 | |
|   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
 | |
|   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
 | |
|   return DAG.getNode(ExtOp, dl, VT, tmp);
 | |
| }
 | |
| 
 | |
| static SDValue findMUL_LOHI(SDValue V) {
 | |
|   if (V->getOpcode() == ISD::UMUL_LOHI ||
 | |
|       V->getOpcode() == ISD::SMUL_LOHI)
 | |
|     return V;
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
 | |
|                                         TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                         const ARMSubtarget *Subtarget) {
 | |
|   if (Subtarget->isThumb()) {
 | |
|     if (!Subtarget->hasDSP())
 | |
|       return SDValue();
 | |
|   } else if (!Subtarget->hasV5TEOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
 | |
|   // accumulates the product into a 64-bit value. The 16-bit values will
 | |
|   // be sign extended somehow or SRA'd into 32-bit values
 | |
|   // (addc (adde (mul 16bit, 16bit), lo), hi)
 | |
|   SDValue Mul = AddcNode->getOperand(0);
 | |
|   SDValue Lo = AddcNode->getOperand(1);
 | |
|   if (Mul.getOpcode() != ISD::MUL) {
 | |
|     Lo = AddcNode->getOperand(0);
 | |
|     Mul = AddcNode->getOperand(1);
 | |
|     if (Mul.getOpcode() != ISD::MUL)
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   SDValue SRA = AddeNode->getOperand(0);
 | |
|   SDValue Hi = AddeNode->getOperand(1);
 | |
|   if (SRA.getOpcode() != ISD::SRA) {
 | |
|     SRA = AddeNode->getOperand(1);
 | |
|     Hi = AddeNode->getOperand(0);
 | |
|     if (SRA.getOpcode() != ISD::SRA)
 | |
|       return SDValue();
 | |
|   }
 | |
|   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
 | |
|     if (Const->getZExtValue() != 31)
 | |
|       return SDValue();
 | |
|   } else
 | |
|     return SDValue();
 | |
| 
 | |
|   if (SRA.getOperand(0) != Mul)
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(AddcNode);
 | |
|   unsigned Opcode = 0;
 | |
|   SDValue Op0;
 | |
|   SDValue Op1;
 | |
| 
 | |
|   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
 | |
|     Opcode = ARMISD::SMLALBB;
 | |
|     Op0 = Mul.getOperand(0);
 | |
|     Op1 = Mul.getOperand(1);
 | |
|   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
 | |
|     Opcode = ARMISD::SMLALBT;
 | |
|     Op0 = Mul.getOperand(0);
 | |
|     Op1 = Mul.getOperand(1).getOperand(0);
 | |
|   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
 | |
|     Opcode = ARMISD::SMLALTB;
 | |
|     Op0 = Mul.getOperand(0).getOperand(0);
 | |
|     Op1 = Mul.getOperand(1);
 | |
|   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
 | |
|     Opcode = ARMISD::SMLALTT;
 | |
|     Op0 = Mul->getOperand(0).getOperand(0);
 | |
|     Op1 = Mul->getOperand(1).getOperand(0);
 | |
|   }
 | |
| 
 | |
|   if (!Op0 || !Op1)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                               Op0, Op1, Lo, Hi);
 | |
|   // Replace the ADDs' nodes uses by the MLA node's values.
 | |
|   SDValue HiMLALResult(SMLAL.getNode(), 1);
 | |
|   SDValue LoMLALResult(SMLAL.getNode(), 0);
 | |
| 
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
 | |
| 
 | |
|   // Return original node to notify the driver to stop replacing.
 | |
|   SDValue resNode(AddcNode, 0);
 | |
|   return resNode;
 | |
| }
 | |
| 
 | |
| static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                      const ARMSubtarget *Subtarget) {
 | |
|   // Look for multiply add opportunities.
 | |
|   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
 | |
|   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
 | |
|   // a glue link from the first add to the second add.
 | |
|   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
 | |
|   // a S/UMLAL instruction.
 | |
|   //                  UMUL_LOHI
 | |
|   //                 / :lo    \ :hi
 | |
|   //                V          \          [no multiline comment]
 | |
|   //    loAdd ->  ADDC         |
 | |
|   //                 \ :carry /
 | |
|   //                  V      V
 | |
|   //                    ADDE   <- hiAdd
 | |
|   //
 | |
|   // In the special case where only the higher part of a signed result is used
 | |
|   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
 | |
|   // a constant with the exact value of 0x80000000, we recognize we are dealing
 | |
|   // with a "rounded multiply and add" (or subtract) and transform it into
 | |
|   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
 | |
| 
 | |
|   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
 | |
|           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
 | |
|          "Expect an ADDE or SUBE");
 | |
| 
 | |
|   assert(AddeSubeNode->getNumOperands() == 3 &&
 | |
|          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
 | |
|          "ADDE node has the wrong inputs");
 | |
| 
 | |
|   // Check that we are chained to the right ADDC or SUBC node.
 | |
|   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
 | |
|   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
 | |
|        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
 | |
|       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
 | |
|        AddcSubcNode->getOpcode() != ARMISD::SUBC))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
 | |
|   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
 | |
| 
 | |
|   // Check if the two operands are from the same mul_lohi node.
 | |
|   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(AddcSubcNode->getNumValues() == 2 &&
 | |
|          AddcSubcNode->getValueType(0) == MVT::i32 &&
 | |
|          "Expect ADDC with two result values. First: i32");
 | |
| 
 | |
|   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
 | |
|   // maybe a SMLAL which multiplies two 16-bit values.
 | |
|   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
 | |
|       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
 | |
|       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
 | |
|       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
 | |
|       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
 | |
|     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
 | |
| 
 | |
|   // Check for the triangle shape.
 | |
|   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
 | |
|   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
 | |
| 
 | |
|   // Make sure that the ADDE/SUBE operands are not coming from the same node.
 | |
|   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
 | |
|   bool IsLeftOperandMUL = false;
 | |
|   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
 | |
|   if (MULOp == SDValue())
 | |
|     MULOp = findMUL_LOHI(AddeSubeOp1);
 | |
|   else
 | |
|     IsLeftOperandMUL = true;
 | |
|   if (MULOp == SDValue())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Figure out the right opcode.
 | |
|   unsigned Opc = MULOp->getOpcode();
 | |
|   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
 | |
| 
 | |
|   // Figure out the high and low input values to the MLAL node.
 | |
|   SDValue *HiAddSub = nullptr;
 | |
|   SDValue *LoMul = nullptr;
 | |
|   SDValue *LowAddSub = nullptr;
 | |
| 
 | |
|   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
 | |
|   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (IsLeftOperandMUL)
 | |
|     HiAddSub = &AddeSubeOp1;
 | |
|   else
 | |
|     HiAddSub = &AddeSubeOp0;
 | |
| 
 | |
|   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
 | |
|   // whose low result is fed to the ADDC/SUBC we are checking.
 | |
| 
 | |
|   if (AddcSubcOp0 == MULOp.getValue(0)) {
 | |
|     LoMul = &AddcSubcOp0;
 | |
|     LowAddSub = &AddcSubcOp1;
 | |
|   }
 | |
|   if (AddcSubcOp1 == MULOp.getValue(0)) {
 | |
|     LoMul = &AddcSubcOp1;
 | |
|     LowAddSub = &AddcSubcOp0;
 | |
|   }
 | |
| 
 | |
|   if (!LoMul)
 | |
|     return SDValue();
 | |
| 
 | |
|   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
 | |
|   // the replacement below will create a cycle.
 | |
|   if (AddcSubcNode == HiAddSub->getNode() ||
 | |
|       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Create the merged node.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // Start building operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(LoMul->getOperand(0));
 | |
|   Ops.push_back(LoMul->getOperand(1));
 | |
| 
 | |
|   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
 | |
|   // the case, we must be doing signed multiplication and only use the higher
 | |
|   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
 | |
|   // addition or subtraction with the value of 0x800000.
 | |
|   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
 | |
|       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
 | |
|       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
 | |
|       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
 | |
|           0x80000000) {
 | |
|     Ops.push_back(*HiAddSub);
 | |
|     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
 | |
|       FinalOpc = ARMISD::SMMLSR;
 | |
|     } else {
 | |
|       FinalOpc = ARMISD::SMMLAR;
 | |
|     }
 | |
|     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
 | |
| 
 | |
|     return SDValue(AddeSubeNode, 0);
 | |
|   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
 | |
|     // SMMLS is generated during instruction selection and the rest of this
 | |
|     // function can not handle the case where AddcSubcNode is a SUBC.
 | |
|     return SDValue();
 | |
| 
 | |
|   // Finish building the operand list for {U/S}MLAL
 | |
|   Ops.push_back(*LowAddSub);
 | |
|   Ops.push_back(*HiAddSub);
 | |
| 
 | |
|   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
 | |
|                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
 | |
| 
 | |
|   // Replace the ADDs' nodes uses by the MLA node's values.
 | |
|   SDValue HiMLALResult(MLALNode.getNode(), 1);
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
 | |
| 
 | |
|   SDValue LoMLALResult(MLALNode.getNode(), 0);
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
 | |
| 
 | |
|   // Return original node to notify the driver to stop replacing.
 | |
|   return SDValue(AddeSubeNode, 0);
 | |
| }
 | |
| 
 | |
| static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   // UMAAL is similar to UMLAL except that it adds two unsigned values.
 | |
|   // While trying to combine for the other MLAL nodes, first search for the
 | |
|   // chance to use UMAAL. Check if Addc uses a node which has already
 | |
|   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
 | |
|   // as the addend, and it's handled in PerformUMLALCombine.
 | |
| 
 | |
|   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
 | |
|     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
 | |
| 
 | |
|   // Check that we have a glued ADDC node.
 | |
|   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
 | |
|   if (AddcNode->getOpcode() != ARMISD::ADDC)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Find the converted UMAAL or quit if it doesn't exist.
 | |
|   SDNode *UmlalNode = nullptr;
 | |
|   SDValue AddHi;
 | |
|   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
 | |
|     UmlalNode = AddcNode->getOperand(0).getNode();
 | |
|     AddHi = AddcNode->getOperand(1);
 | |
|   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
 | |
|     UmlalNode = AddcNode->getOperand(1).getNode();
 | |
|     AddHi = AddcNode->getOperand(0);
 | |
|   } else {
 | |
|     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
 | |
|   }
 | |
| 
 | |
|   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
 | |
|   // the ADDC as well as Zero.
 | |
|   if (!isNullConstant(UmlalNode->getOperand(3)))
 | |
|     return SDValue();
 | |
| 
 | |
|   if ((isNullConstant(AddeNode->getOperand(0)) &&
 | |
|        AddeNode->getOperand(1).getNode() == UmlalNode) ||
 | |
|       (AddeNode->getOperand(0).getNode() == UmlalNode &&
 | |
|        isNullConstant(AddeNode->getOperand(1)))) {
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
 | |
|                       UmlalNode->getOperand(2), AddHi };
 | |
|     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
 | |
|                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
 | |
| 
 | |
|     // Replace the ADDs' nodes uses by the UMAAL node's values.
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
 | |
| 
 | |
|     // Return original node to notify the driver to stop replacing.
 | |
|     return SDValue(AddeNode, 0);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                    const ARMSubtarget *Subtarget) {
 | |
|   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check that we have a pair of ADDC and ADDE as operands.
 | |
|   // Both addends of the ADDE must be zero.
 | |
|   SDNode* AddcNode = N->getOperand(2).getNode();
 | |
|   SDNode* AddeNode = N->getOperand(3).getNode();
 | |
|   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
 | |
|       (AddeNode->getOpcode() == ARMISD::ADDE) &&
 | |
|       isNullConstant(AddeNode->getOperand(0)) &&
 | |
|       isNullConstant(AddeNode->getOperand(1)) &&
 | |
|       (AddeNode->getOperand(2).getNode() == AddcNode))
 | |
|     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
 | |
|                        DAG.getVTList(MVT::i32, MVT::i32),
 | |
|                        {N->getOperand(0), N->getOperand(1),
 | |
|                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
 | |
|   else
 | |
|     return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformAddcSubcCombine(SDNode *N,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   SelectionDAG &DAG(DCI.DAG);
 | |
| 
 | |
|   if (N->getOpcode() == ARMISD::SUBC) {
 | |
|     // (SUBC (ADDE 0, 0, C), 1) -> C
 | |
|     SDValue LHS = N->getOperand(0);
 | |
|     SDValue RHS = N->getOperand(1);
 | |
|     if (LHS->getOpcode() == ARMISD::ADDE &&
 | |
|         isNullConstant(LHS->getOperand(0)) &&
 | |
|         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
 | |
|       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     SDValue RHS = N->getOperand(1);
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       int32_t imm = C->getSExtValue();
 | |
|       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
 | |
|         SDLoc DL(N);
 | |
|         RHS = DAG.getConstant(-imm, DL, MVT::i32);
 | |
|         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
 | |
|                                                            : ARMISD::ADDC;
 | |
|         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformAddeSubeCombine(SDNode *N,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     SDValue RHS = N->getOperand(1);
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       int64_t imm = C->getSExtValue();
 | |
|       if (imm < 0) {
 | |
|         SDLoc DL(N);
 | |
| 
 | |
|         // The with-carry-in form matches bitwise not instead of the negation.
 | |
|         // Effectively, the inverse interpretation of the carry flag already
 | |
|         // accounts for part of the negation.
 | |
|         RHS = DAG.getConstant(~imm, DL, MVT::i32);
 | |
| 
 | |
|         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
 | |
|                                                            : ARMISD::ADDE;
 | |
|         return DAG.getNode(Opcode, DL, N->getVTList(),
 | |
|                            N->getOperand(0), RHS, N->getOperand(2));
 | |
|       }
 | |
|     }
 | |
|   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
 | |
|     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformADDECombine - Target-specific dag combine transform from
 | |
| /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
 | |
| /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
 | |
| static SDValue PerformADDECombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   // Only ARM and Thumb2 support UMLAL/SMLAL.
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return PerformAddeSubeCombine(N, DCI, Subtarget);
 | |
| 
 | |
|   // Only perform the checks after legalize when the pattern is available.
 | |
|   if (DCI.isBeforeLegalize()) return SDValue();
 | |
| 
 | |
|   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
 | |
| }
 | |
| 
 | |
| /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
 | |
| /// operands N0 and N1.  This is a helper for PerformADDCombine that is
 | |
| /// called with the default operands, and if that fails, with commuted
 | |
| /// operands.
 | |
| static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
 | |
|                                           TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                           const ARMSubtarget *Subtarget){
 | |
|   // Attempt to create vpadd for this add.
 | |
|   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
 | |
|     return Result;
 | |
| 
 | |
|   // Attempt to create vpaddl for this add.
 | |
|   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
 | |
|     return Result;
 | |
|   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
 | |
|                                                       Subtarget))
 | |
|     return Result;
 | |
| 
 | |
|   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
 | |
|   if (N0.getNode()->hasOneUse())
 | |
|     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
 | |
|       return Result;
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
 | |
|                                                  CombineLevel Level) const {
 | |
|   if (Level == BeforeLegalizeTypes)
 | |
|     return true;
 | |
| 
 | |
|   if (Subtarget->isThumb() && Subtarget->isThumb1Only())
 | |
|     return true;
 | |
| 
 | |
|   if (N->getOpcode() != ISD::SHL)
 | |
|     return true;
 | |
| 
 | |
|   // Turn off commute-with-shift transform after legalization, so it doesn't
 | |
|   // conflict with PerformSHLSimplify.  (We could try to detect when
 | |
|   // PerformSHLSimplify would trigger more precisely, but it isn't
 | |
|   // really necessary.)
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue PerformSHLSimplify(SDNode *N,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                 const ARMSubtarget *ST) {
 | |
|   // Allow the generic combiner to identify potential bswaps.
 | |
|   if (DCI.isBeforeLegalize())
 | |
|     return SDValue();
 | |
| 
 | |
|   // DAG combiner will fold:
 | |
|   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
 | |
|   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
 | |
|   // Other code patterns that can be also be modified have the following form:
 | |
|   // b + ((a << 1) | 510)
 | |
|   // b + ((a << 1) & 510)
 | |
|   // b + ((a << 1) ^ 510)
 | |
|   // b + ((a << 1) + 510)
 | |
| 
 | |
|   // Many instructions can  perform the shift for free, but it requires both
 | |
|   // the operands to be registers. If c1 << c2 is too large, a mov immediate
 | |
|   // instruction will needed. So, unfold back to the original pattern if:
 | |
|   // - if c1 and c2 are small enough that they don't require mov imms.
 | |
|   // - the user(s) of the node can perform an shl
 | |
| 
 | |
|   // No shifted operands for 16-bit instructions.
 | |
|   if (ST->isThumb() && ST->isThumb1Only())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check that all the users could perform the shl themselves.
 | |
|   for (auto U : N->uses()) {
 | |
|     switch(U->getOpcode()) {
 | |
|     default:
 | |
|       return SDValue();
 | |
|     case ISD::SUB:
 | |
|     case ISD::ADD:
 | |
|     case ISD::AND:
 | |
|     case ISD::OR:
 | |
|     case ISD::XOR:
 | |
|     case ISD::SETCC:
 | |
|     case ARMISD::CMP:
 | |
|       // Check that the user isn't already using a constant because there
 | |
|       // aren't any instructions that support an immediate operand and a
 | |
|       // shifted operand.
 | |
|       if (isa<ConstantSDNode>(U->getOperand(0)) ||
 | |
|           isa<ConstantSDNode>(U->getOperand(1)))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Check that it's not already using a shift.
 | |
|       if (U->getOperand(0).getOpcode() == ISD::SHL ||
 | |
|           U->getOperand(1).getOpcode() == ISD::SHL)
 | |
|         return SDValue();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
 | |
|       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOperand(0).getOpcode() != ISD::SHL)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue SHL = N->getOperand(0);
 | |
| 
 | |
|   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
 | |
|   if (!C1ShlC2 || !C2)
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt C2Int = C2->getAPIntValue();
 | |
|   APInt C1Int = C1ShlC2->getAPIntValue();
 | |
| 
 | |
|   // Check that performing a lshr will not lose any information.
 | |
|   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
 | |
|                                      C2Int.getBitWidth() - C2->getZExtValue());
 | |
|   if ((C1Int & Mask) != C1Int)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Shift the first constant.
 | |
|   C1Int.lshrInPlace(C2Int);
 | |
| 
 | |
|   // The immediates are encoded as an 8-bit value that can be rotated.
 | |
|   auto LargeImm = [](const APInt &Imm) {
 | |
|     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
 | |
|     return Imm.getBitWidth() - Zeros > 8;
 | |
|   };
 | |
| 
 | |
|   if (LargeImm(C1Int) || LargeImm(C2Int))
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   SDValue X = SHL.getOperand(0);
 | |
|   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
 | |
|                               DAG.getConstant(C1Int, dl, MVT::i32));
 | |
|   // Shift left to compensate for the lshr of C1Int.
 | |
|   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
 | |
|              SHL.dump(); N->dump());
 | |
|   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
 | |
| ///
 | |
| static SDValue PerformADDCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   // Only works one way, because it needs an immediate operand.
 | |
|   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
 | |
|     return Result;
 | |
| 
 | |
|   // First try with the default operand order.
 | |
|   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
 | |
|     return Result;
 | |
| 
 | |
|   // If that didn't work, try again with the operands commuted.
 | |
|   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
 | |
| }
 | |
| 
 | |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
 | |
| ///
 | |
| static SDValue PerformSUBCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
 | |
|   if (N1.getNode()->hasOneUse())
 | |
|     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
 | |
|       return Result;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMULCombine
 | |
| /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
 | |
| /// special multiplier accumulator forwarding.
 | |
| ///   vmul d3, d0, d2
 | |
| ///   vmla d3, d1, d2
 | |
| /// is faster than
 | |
| ///   vadd d3, d0, d1
 | |
| ///   vmul d3, d3, d2
 | |
| //  However, for (A + B) * (A + B),
 | |
| //    vadd d2, d0, d1
 | |
| //    vmul d3, d0, d2
 | |
| //    vmla d3, d1, d2
 | |
| //  is slower than
 | |
| //    vadd d2, d0, d1
 | |
| //    vmul d3, d2, d2
 | |
| static SDValue PerformVMULCombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   if (!Subtarget->hasVMLxForwarding())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   unsigned Opcode = N0.getOpcode();
 | |
|   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
 | |
|       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
 | |
|     Opcode = N1.getOpcode();
 | |
|     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
 | |
|         Opcode != ISD::FADD && Opcode != ISD::FSUB)
 | |
|       return SDValue();
 | |
|     std::swap(N0, N1);
 | |
|   }
 | |
| 
 | |
|   if (N0 == N1)
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc DL(N);
 | |
|   SDValue N00 = N0->getOperand(0);
 | |
|   SDValue N01 = N0->getOperand(1);
 | |
|   return DAG.getNode(Opcode, DL, VT,
 | |
|                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
 | |
|                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
 | |
| }
 | |
| 
 | |
| static SDValue PerformMULCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT.is64BitVector() || VT.is128BitVector())
 | |
|     return PerformVMULCombine(N, DCI, Subtarget);
 | |
|   if (VT != MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!C)
 | |
|     return SDValue();
 | |
| 
 | |
|   int64_t MulAmt = C->getSExtValue();
 | |
|   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
 | |
| 
 | |
|   ShiftAmt = ShiftAmt & (32 - 1);
 | |
|   SDValue V = N->getOperand(0);
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   SDValue Res;
 | |
|   MulAmt >>= ShiftAmt;
 | |
| 
 | |
|   if (MulAmt >= 0) {
 | |
|     if (isPowerOf2_32(MulAmt - 1)) {
 | |
|       // (mul x, 2^N + 1) => (add (shl x, N), x)
 | |
|       Res = DAG.getNode(ISD::ADD, DL, VT,
 | |
|                         V,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
 | |
|                                                     MVT::i32)));
 | |
|     } else if (isPowerOf2_32(MulAmt + 1)) {
 | |
|       // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | |
|       Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
 | |
|                                                     MVT::i32)),
 | |
|                         V);
 | |
|     } else
 | |
|       return SDValue();
 | |
|   } else {
 | |
|     uint64_t MulAmtAbs = -MulAmt;
 | |
|     if (isPowerOf2_32(MulAmtAbs + 1)) {
 | |
|       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
 | |
|       Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                         V,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
 | |
|                                                     MVT::i32)));
 | |
|     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
 | |
|       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
 | |
|       Res = DAG.getNode(ISD::ADD, DL, VT,
 | |
|                         V,
 | |
|                         DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                     V,
 | |
|                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
 | |
|                                                     MVT::i32)));
 | |
|       Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                         DAG.getConstant(0, DL, MVT::i32), Res);
 | |
|     } else
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (ShiftAmt != 0)
 | |
|     Res = DAG.getNode(ISD::SHL, DL, VT,
 | |
|                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
 | |
| 
 | |
|   // Do not add new nodes to DAG combiner worklist.
 | |
|   DCI.CombineTo(N, Res, false);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue CombineANDShift(SDNode *N,
 | |
|                                TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                const ARMSubtarget *Subtarget) {
 | |
|   // Allow DAGCombine to pattern-match before we touch the canonical form.
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getValueType(0) != MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!N1C)
 | |
|     return SDValue();
 | |
| 
 | |
|   uint32_t C1 = (uint32_t)N1C->getZExtValue();
 | |
|   // Don't transform uxtb/uxth.
 | |
|   if (C1 == 255 || C1 == 65535)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDNode *N0 = N->getOperand(0).getNode();
 | |
|   if (!N0->hasOneUse())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
 | |
|     return SDValue();
 | |
| 
 | |
|   bool LeftShift = N0->getOpcode() == ISD::SHL;
 | |
| 
 | |
|   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
 | |
|   if (!N01C)
 | |
|     return SDValue();
 | |
| 
 | |
|   uint32_t C2 = (uint32_t)N01C->getZExtValue();
 | |
|   if (!C2 || C2 >= 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   // We have a pattern of the form "(and (shl x, c2) c1)" or
 | |
|   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
 | |
|   // transform to a pair of shifts, to save materializing c1.
 | |
| 
 | |
|   // First pattern: right shift, and c1+1 is a power of two.
 | |
|   // FIXME: Also check reversed pattern (left shift, and ~c1+1 is a power
 | |
|   // of two).
 | |
|   // FIXME: Use demanded bits?
 | |
|   if (!LeftShift && isMask_32(C1)) {
 | |
|     uint32_t C3 = countLeadingZeros(C1);
 | |
|     if (C2 < C3) {
 | |
|       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
 | |
|                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
 | |
|       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
 | |
|                          DAG.getConstant(C3, DL, MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Second pattern: left shift, and (c1>>c2)+1 is a power of two.
 | |
|   // FIXME: Also check reversed pattern (right shift, and ~(c1<<c2)+1
 | |
|   // is a power of two).
 | |
|   // FIXME: Use demanded bits?
 | |
|   if (LeftShift && isShiftedMask_32(C1)) {
 | |
|     uint32_t C3 = countLeadingZeros(C1);
 | |
|     if (C2 + C3 < 32 && C1 == ((-1U << (C2 + C3)) >> C3)) {
 | |
|       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
 | |
|                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
 | |
|       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
 | |
|                         DAG.getConstant(C3, DL, MVT::i32));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Transform "(and (shl x, c2) c1)" ->
 | |
|   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
 | |
|   // c1.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformANDCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   // Attempt to use immediate-form VBIC
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN &&
 | |
|       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatBitSize <= 64) {
 | |
|       EVT VbicVT;
 | |
|       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, dl, VbicVT, VT.is128BitVector(),
 | |
|                                       OtherModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Input =
 | |
|           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
 | |
|         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
 | |
|     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
 | |
|       return Result;
 | |
| 
 | |
|     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
 | |
|       return Result;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Try combining OR nodes to SMULWB, SMULWT.
 | |
| static SDValue PerformORCombineToSMULWBT(SDNode *OR,
 | |
|                                          TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                          const ARMSubtarget *Subtarget) {
 | |
|   if (!Subtarget->hasV6Ops() ||
 | |
|       (Subtarget->isThumb() &&
 | |
|        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue SRL = OR->getOperand(0);
 | |
|   SDValue SHL = OR->getOperand(1);
 | |
| 
 | |
|   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
 | |
|     SRL = OR->getOperand(1);
 | |
|     SHL = OR->getOperand(0);
 | |
|   }
 | |
|   if (!isSRL16(SRL) || !isSHL16(SHL))
 | |
|     return SDValue();
 | |
| 
 | |
|   // The first operands to the shifts need to be the two results from the
 | |
|   // same smul_lohi node.
 | |
|   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
 | |
|        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
 | |
|   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
 | |
|       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Now we have:
 | |
|   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
 | |
|   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
 | |
|   // For SMUWB the 16-bit value will signed extended somehow.
 | |
|   // For SMULWT only the SRA is required.
 | |
|   // Check both sides of SMUL_LOHI
 | |
|   SDValue OpS16 = SMULLOHI->getOperand(0);
 | |
|   SDValue OpS32 = SMULLOHI->getOperand(1);
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
 | |
|     OpS16 = OpS32;
 | |
|     OpS32 = SMULLOHI->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   SDLoc dl(OR);
 | |
|   unsigned Opcode = 0;
 | |
|   if (isS16(OpS16, DAG))
 | |
|     Opcode = ARMISD::SMULWB;
 | |
|   else if (isSRA16(OpS16)) {
 | |
|     Opcode = ARMISD::SMULWT;
 | |
|     OpS16 = OpS16->getOperand(0);
 | |
|   }
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
 | |
|   return SDValue(OR, 0);
 | |
| }
 | |
| 
 | |
| static SDValue PerformORCombineToBFI(SDNode *N,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                      const ARMSubtarget *Subtarget) {
 | |
|   // BFI is only available on V6T2+
 | |
|   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
|   // 1) or (and A, mask), val => ARMbfi A, val, mask
 | |
|   //      iff (val & mask) == val
 | |
|   //
 | |
|   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
 | |
|   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
 | |
|   //          && mask == ~mask2
 | |
|   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
 | |
|   //          && ~mask == mask2
 | |
|   //  (i.e., copy a bitfield value into another bitfield of the same width)
 | |
| 
 | |
|   if (VT != MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue N00 = N0.getOperand(0);
 | |
| 
 | |
|   // The value and the mask need to be constants so we can verify this is
 | |
|   // actually a bitfield set. If the mask is 0xffff, we can do better
 | |
|   // via a movt instruction, so don't use BFI in that case.
 | |
|   SDValue MaskOp = N0.getOperand(1);
 | |
|   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
 | |
|   if (!MaskC)
 | |
|     return SDValue();
 | |
|   unsigned Mask = MaskC->getZExtValue();
 | |
|   if (Mask == 0xffff)
 | |
|     return SDValue();
 | |
|   SDValue Res;
 | |
|   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   if (N1C) {
 | |
|     unsigned Val = N1C->getZExtValue();
 | |
|     if ((Val & ~Mask) != Val)
 | |
|       return SDValue();
 | |
| 
 | |
|     if (ARM::isBitFieldInvertedMask(Mask)) {
 | |
|       Val >>= countTrailingZeros(~Mask);
 | |
| 
 | |
|       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
 | |
|                         DAG.getConstant(Val, DL, MVT::i32),
 | |
|                         DAG.getConstant(Mask, DL, MVT::i32));
 | |
| 
 | |
|       DCI.CombineTo(N, Res, false);
 | |
|       // Return value from the original node to inform the combiner than N is
 | |
|       // now dead.
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
|   } else if (N1.getOpcode() == ISD::AND) {
 | |
|     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
 | |
|     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | |
|     if (!N11C)
 | |
|       return SDValue();
 | |
|     unsigned Mask2 = N11C->getZExtValue();
 | |
| 
 | |
|     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
 | |
|     // as is to match.
 | |
|     if (ARM::isBitFieldInvertedMask(Mask) &&
 | |
|         (Mask == ~Mask2)) {
 | |
|       // The pack halfword instruction works better for masks that fit it,
 | |
|       // so use that when it's available.
 | |
|       if (Subtarget->hasDSP() &&
 | |
|           (Mask == 0xffff || Mask == 0xffff0000))
 | |
|         return SDValue();
 | |
|       // 2a
 | |
|       unsigned amt = countTrailingZeros(Mask2);
 | |
|       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
 | |
|                         DAG.getConstant(amt, DL, MVT::i32));
 | |
|       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
 | |
|                         DAG.getConstant(Mask, DL, MVT::i32));
 | |
|       DCI.CombineTo(N, Res, false);
 | |
|       // Return value from the original node to inform the combiner than N is
 | |
|       // now dead.
 | |
|       return SDValue(N, 0);
 | |
|     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
 | |
|                (~Mask == Mask2)) {
 | |
|       // The pack halfword instruction works better for masks that fit it,
 | |
|       // so use that when it's available.
 | |
|       if (Subtarget->hasDSP() &&
 | |
|           (Mask2 == 0xffff || Mask2 == 0xffff0000))
 | |
|         return SDValue();
 | |
|       // 2b
 | |
|       unsigned lsb = countTrailingZeros(Mask);
 | |
|       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
 | |
|                         DAG.getConstant(lsb, DL, MVT::i32));
 | |
|       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
 | |
|                         DAG.getConstant(Mask2, DL, MVT::i32));
 | |
|       DCI.CombineTo(N, Res, false);
 | |
|       // Return value from the original node to inform the combiner than N is
 | |
|       // now dead.
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
 | |
|       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
 | |
|       ARM::isBitFieldInvertedMask(~Mask)) {
 | |
|     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
 | |
|     // where lsb(mask) == #shamt and masked bits of B are known zero.
 | |
|     SDValue ShAmt = N00.getOperand(1);
 | |
|     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
 | |
|     unsigned LSB = countTrailingZeros(Mask);
 | |
|     if (ShAmtC != LSB)
 | |
|       return SDValue();
 | |
| 
 | |
|     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
 | |
|                       DAG.getConstant(~Mask, DL, MVT::i32));
 | |
| 
 | |
|     DCI.CombineTo(N, Res, false);
 | |
|     // Return value from the original node to inform the combiner than N is
 | |
|     // now dead.
 | |
|     return SDValue(N, 0);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
 | |
| static SDValue PerformORCombine(SDNode *N,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                 const ARMSubtarget *Subtarget) {
 | |
|   // Attempt to use immediate-form VORR
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN && Subtarget->hasNEON() &&
 | |
|       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatBitSize <= 64) {
 | |
|       EVT VorrVT;
 | |
|       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, dl, VorrVT, VT.is128BitVector(),
 | |
|                                       OtherModImm);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Input =
 | |
|           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
 | |
|         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
 | |
|         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
 | |
|     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
 | |
|       return Result;
 | |
|     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
| 
 | |
|   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
 | |
|   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
 | |
|       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
 | |
| 
 | |
|     // The code below optimizes (or (and X, Y), Z).
 | |
|     // The AND operand needs to have a single user to make these optimizations
 | |
|     // profitable.
 | |
|     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
 | |
|       return SDValue();
 | |
| 
 | |
|     APInt SplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
| 
 | |
|     APInt SplatBits0, SplatBits1;
 | |
|     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
 | |
|     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
 | |
|     // Ensure that the second operand of both ands are constants
 | |
|     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
 | |
|                                       HasAnyUndefs) && !HasAnyUndefs) {
 | |
|         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
 | |
|                                           HasAnyUndefs) && !HasAnyUndefs) {
 | |
|             // Ensure that the bit width of the constants are the same and that
 | |
|             // the splat arguments are logical inverses as per the pattern we
 | |
|             // are trying to simplify.
 | |
|             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
 | |
|                 SplatBits0 == ~SplatBits1) {
 | |
|                 // Canonicalize the vector type to make instruction selection
 | |
|                 // simpler.
 | |
|                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | |
|                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
 | |
|                                              N0->getOperand(1),
 | |
|                                              N0->getOperand(0),
 | |
|                                              N1->getOperand(0));
 | |
|                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
 | |
|   // reasonable.
 | |
|   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
 | |
|     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
 | |
|     return Result;
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformXORCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
 | |
|     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
 | |
|       return Result;
 | |
| 
 | |
|     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
 | |
| // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
 | |
| // their position in "to" (Rd).
 | |
| static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
 | |
|   assert(N->getOpcode() == ARMISD::BFI);
 | |
| 
 | |
|   SDValue From = N->getOperand(1);
 | |
|   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
 | |
|   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
 | |
| 
 | |
|   // If the Base came from a SHR #C, we can deduce that it is really testing bit
 | |
|   // #C in the base of the SHR.
 | |
|   if (From->getOpcode() == ISD::SRL &&
 | |
|       isa<ConstantSDNode>(From->getOperand(1))) {
 | |
|     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
 | |
|     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
 | |
|     FromMask <<= Shift.getLimitedValue(31);
 | |
|     From = From->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   return From;
 | |
| }
 | |
| 
 | |
| // If A and B contain one contiguous set of bits, does A | B == A . B?
 | |
| //
 | |
| // Neither A nor B must be zero.
 | |
| static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
 | |
|   unsigned LastActiveBitInA =  A.countTrailingZeros();
 | |
|   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
 | |
|   return LastActiveBitInA - 1 == FirstActiveBitInB;
 | |
| }
 | |
| 
 | |
| static SDValue FindBFIToCombineWith(SDNode *N) {
 | |
|   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
 | |
|   // if one exists.
 | |
|   APInt ToMask, FromMask;
 | |
|   SDValue From = ParseBFI(N, ToMask, FromMask);
 | |
|   SDValue To = N->getOperand(0);
 | |
| 
 | |
|   // Now check for a compatible BFI to merge with. We can pass through BFIs that
 | |
|   // aren't compatible, but not if they set the same bit in their destination as
 | |
|   // we do (or that of any BFI we're going to combine with).
 | |
|   SDValue V = To;
 | |
|   APInt CombinedToMask = ToMask;
 | |
|   while (V.getOpcode() == ARMISD::BFI) {
 | |
|     APInt NewToMask, NewFromMask;
 | |
|     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
 | |
|     if (NewFrom != From) {
 | |
|       // This BFI has a different base. Keep going.
 | |
|       CombinedToMask |= NewToMask;
 | |
|       V = V.getOperand(0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Do the written bits conflict with any we've seen so far?
 | |
|     if ((NewToMask & CombinedToMask).getBoolValue())
 | |
|       // Conflicting bits - bail out because going further is unsafe.
 | |
|       return SDValue();
 | |
| 
 | |
|     // Are the new bits contiguous when combined with the old bits?
 | |
|     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
 | |
|         BitsProperlyConcatenate(FromMask, NewFromMask))
 | |
|       return V;
 | |
|     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
 | |
|         BitsProperlyConcatenate(NewFromMask, FromMask))
 | |
|       return V;
 | |
| 
 | |
|     // We've seen a write to some bits, so track it.
 | |
|     CombinedToMask |= NewToMask;
 | |
|     // Keep going...
 | |
|     V = V.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformBFICombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N1.getOpcode() == ISD::AND) {
 | |
|     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
 | |
|     // the bits being cleared by the AND are not demanded by the BFI.
 | |
|     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | |
|     if (!N11C)
 | |
|       return SDValue();
 | |
|     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
 | |
|     unsigned LSB = countTrailingZeros(~InvMask);
 | |
|     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
 | |
|     assert(Width <
 | |
|                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
 | |
|            "undefined behavior");
 | |
|     unsigned Mask = (1u << Width) - 1;
 | |
|     unsigned Mask2 = N11C->getZExtValue();
 | |
|     if ((Mask & (~Mask2)) == 0)
 | |
|       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
 | |
|                              N->getOperand(0), N1.getOperand(0),
 | |
|                              N->getOperand(2));
 | |
|   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
 | |
|     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
 | |
|     // Keep track of any consecutive bits set that all come from the same base
 | |
|     // value. We can combine these together into a single BFI.
 | |
|     SDValue CombineBFI = FindBFIToCombineWith(N);
 | |
|     if (CombineBFI == SDValue())
 | |
|       return SDValue();
 | |
| 
 | |
|     // We've found a BFI.
 | |
|     APInt ToMask1, FromMask1;
 | |
|     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
 | |
| 
 | |
|     APInt ToMask2, FromMask2;
 | |
|     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
 | |
|     assert(From1 == From2);
 | |
|     (void)From2;
 | |
| 
 | |
|     // First, unlink CombineBFI.
 | |
|     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
 | |
|     // Then create a new BFI, combining the two together.
 | |
|     APInt NewFromMask = FromMask1 | FromMask2;
 | |
|     APInt NewToMask = ToMask1 | ToMask2;
 | |
| 
 | |
|     EVT VT = N->getValueType(0);
 | |
|     SDLoc dl(N);
 | |
| 
 | |
|     if (NewFromMask[0] == 0)
 | |
|       From1 = DCI.DAG.getNode(
 | |
|         ISD::SRL, dl, VT, From1,
 | |
|         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
 | |
|     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
 | |
|                            DCI.DAG.getConstant(~NewToMask, dl, VT));
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VMOVRRD.
 | |
| static SDValue PerformVMOVRRDCombine(SDNode *N,
 | |
|                                      TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                      const ARMSubtarget *Subtarget) {
 | |
|   // vmovrrd(vmovdrr x, y) -> x,y
 | |
|   SDValue InDouble = N->getOperand(0);
 | |
|   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
 | |
|     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
 | |
| 
 | |
|   // vmovrrd(load f64) -> (load i32), (load i32)
 | |
|   SDNode *InNode = InDouble.getNode();
 | |
|   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
 | |
|       InNode->getValueType(0) == MVT::f64 &&
 | |
|       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
 | |
|       !cast<LoadSDNode>(InNode)->isVolatile()) {
 | |
|     // TODO: Should this be done for non-FrameIndex operands?
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(InNode);
 | |
| 
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     SDLoc DL(LD);
 | |
|     SDValue BasePtr = LD->getBasePtr();
 | |
|     SDValue NewLD1 =
 | |
|         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
 | |
|                     LD->getAlignment(), LD->getMemOperand()->getFlags());
 | |
| 
 | |
|     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
 | |
|                                     DAG.getConstant(4, DL, MVT::i32));
 | |
|     SDValue NewLD2 = DAG.getLoad(
 | |
|         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
 | |
|         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
 | |
| 
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
 | |
|     if (DCI.DAG.getDataLayout().isBigEndian())
 | |
|       std::swap (NewLD1, NewLD2);
 | |
|     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
 | |
| static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op0.getOpcode() == ISD::BITCAST)
 | |
|     Op0 = Op0.getOperand(0);
 | |
|   if (Op1.getOpcode() == ISD::BITCAST)
 | |
|     Op1 = Op1.getOperand(0);
 | |
|   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
 | |
|       Op0.getNode() == Op1.getNode() &&
 | |
|       Op0.getResNo() == 0 && Op1.getResNo() == 1)
 | |
|     return DAG.getNode(ISD::BITCAST, SDLoc(N),
 | |
|                        N->getValueType(0), Op0.getOperand(0));
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
 | |
| /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
 | |
| /// i64 vector to have f64 elements, since the value can then be loaded
 | |
| /// directly into a VFP register.
 | |
| static bool hasNormalLoadOperand(SDNode *N) {
 | |
|   unsigned NumElts = N->getValueType(0).getVectorNumElements();
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDNode *Elt = N->getOperand(i).getNode();
 | |
|     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
 | |
| /// ISD::BUILD_VECTOR.
 | |
| static SDValue PerformBUILD_VECTORCombine(SDNode *N,
 | |
|                                           TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                           const ARMSubtarget *Subtarget) {
 | |
|   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
 | |
|   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
 | |
|   // into a pair of GPRs, which is fine when the value is used as a scalar,
 | |
|   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   if (N->getNumOperands() == 2)
 | |
|     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
 | |
|       return RV;
 | |
| 
 | |
|   // Load i64 elements as f64 values so that type legalization does not split
 | |
|   // them up into i32 values.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
 | |
|     return SDValue();
 | |
|   SDLoc dl(N);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
 | |
|     Ops.push_back(V);
 | |
|     // Make the DAGCombiner fold the bitcast.
 | |
|     DCI.AddToWorklist(V.getNode());
 | |
|   }
 | |
|   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
 | |
|   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
 | |
| }
 | |
| 
 | |
| /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
 | |
| static SDValue
 | |
| PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
 | |
|   // At that time, we may have inserted bitcasts from integer to float.
 | |
|   // If these bitcasts have survived DAGCombine, change the lowering of this
 | |
|   // BUILD_VECTOR in something more vector friendly, i.e., that does not
 | |
|   // force to use floating point types.
 | |
| 
 | |
|   // Make sure we can change the type of the vector.
 | |
|   // This is possible iff:
 | |
|   // 1. The vector is only used in a bitcast to a integer type. I.e.,
 | |
|   //    1.1. Vector is used only once.
 | |
|   //    1.2. Use is a bit convert to an integer type.
 | |
|   // 2. The size of its operands are 32-bits (64-bits are not legal).
 | |
|   EVT VT = N->getValueType(0);
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
| 
 | |
|   // Check 1.1. and 2.
 | |
|   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
 | |
|     return SDValue();
 | |
| 
 | |
|   // By construction, the input type must be float.
 | |
|   assert(EltVT == MVT::f32 && "Unexpected type!");
 | |
| 
 | |
|   // Check 1.2.
 | |
|   SDNode *Use = *N->use_begin();
 | |
|   if (Use->getOpcode() != ISD::BITCAST ||
 | |
|       Use->getValueType(0).isFloatingPoint())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check profitability.
 | |
|   // Model is, if more than half of the relevant operands are bitcast from
 | |
|   // i32, turn the build_vector into a sequence of insert_vector_elt.
 | |
|   // Relevant operands are everything that is not statically
 | |
|   // (i.e., at compile time) bitcasted.
 | |
|   unsigned NumOfBitCastedElts = 0;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned NumOfRelevantElts = NumElts;
 | |
|   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
 | |
|     SDValue Elt = N->getOperand(Idx);
 | |
|     if (Elt->getOpcode() == ISD::BITCAST) {
 | |
|       // Assume only bit cast to i32 will go away.
 | |
|       if (Elt->getOperand(0).getValueType() == MVT::i32)
 | |
|         ++NumOfBitCastedElts;
 | |
|     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
 | |
|       // Constants are statically casted, thus do not count them as
 | |
|       // relevant operands.
 | |
|       --NumOfRelevantElts;
 | |
|   }
 | |
| 
 | |
|   // Check if more than half of the elements require a non-free bitcast.
 | |
|   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   // Create the new vector type.
 | |
|   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
 | |
|   // Check if the type is legal.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (!TLI.isTypeLegal(VecVT))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Combine:
 | |
|   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
 | |
|   // => BITCAST INSERT_VECTOR_ELT
 | |
|   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
 | |
|   //                      (BITCAST EN), N.
 | |
|   SDValue Vec = DAG.getUNDEF(VecVT);
 | |
|   SDLoc dl(N);
 | |
|   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
 | |
|     SDValue V = N->getOperand(Idx);
 | |
|     if (V.isUndef())
 | |
|       continue;
 | |
|     if (V.getOpcode() == ISD::BITCAST &&
 | |
|         V->getOperand(0).getValueType() == MVT::i32)
 | |
|       // Fold obvious case.
 | |
|       V = V.getOperand(0);
 | |
|     else {
 | |
|       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
 | |
|       // Make the DAGCombiner fold the bitcasts.
 | |
|       DCI.AddToWorklist(V.getNode());
 | |
|     }
 | |
|     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
 | |
|     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
 | |
|   }
 | |
|   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
 | |
|   // Make the DAGCombiner fold the bitcasts.
 | |
|   DCI.AddToWorklist(Vec.getNode());
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| /// PerformInsertEltCombine - Target-specific dag combine xforms for
 | |
| /// ISD::INSERT_VECTOR_ELT.
 | |
| static SDValue PerformInsertEltCombine(SDNode *N,
 | |
|                                        TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // Bitcast an i64 load inserted into a vector to f64.
 | |
|   // Otherwise, the i64 value will be legalized to a pair of i32 values.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDNode *Elt = N->getOperand(1).getNode();
 | |
|   if (VT.getVectorElementType() != MVT::i64 ||
 | |
|       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
 | |
|     return SDValue();
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
 | |
|                                  VT.getVectorNumElements());
 | |
|   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
 | |
|   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
 | |
|   // Make the DAGCombiner fold the bitcasts.
 | |
|   DCI.AddToWorklist(Vec.getNode());
 | |
|   DCI.AddToWorklist(V.getNode());
 | |
|   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
 | |
|                                Vec, V, N->getOperand(2));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
 | |
| }
 | |
| 
 | |
| /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
 | |
| /// ISD::VECTOR_SHUFFLE.
 | |
| static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // The LLVM shufflevector instruction does not require the shuffle mask
 | |
|   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
 | |
|   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
 | |
|   // operands do not match the mask length, they are extended by concatenating
 | |
|   // them with undef vectors.  That is probably the right thing for other
 | |
|   // targets, but for NEON it is better to concatenate two double-register
 | |
|   // size vector operands into a single quad-register size vector.  Do that
 | |
|   // transformation here:
 | |
|   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
 | |
|   //   shuffle(concat(v1, v2), undef)
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
 | |
|       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
 | |
|       Op0.getNumOperands() != 2 ||
 | |
|       Op1.getNumOperands() != 2)
 | |
|     return SDValue();
 | |
|   SDValue Concat0Op1 = Op0.getOperand(1);
 | |
|   SDValue Concat1Op1 = Op1.getOperand(1);
 | |
|   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
 | |
|     return SDValue();
 | |
|   // Skip the transformation if any of the types are illegal.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!TLI.isTypeLegal(VT) ||
 | |
|       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
 | |
|       !TLI.isTypeLegal(Concat1Op1.getValueType()))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
 | |
|                                   Op0.getOperand(0), Op1.getOperand(0));
 | |
|   // Translate the shuffle mask.
 | |
|   SmallVector<int, 16> NewMask;
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned HalfElts = NumElts/2;
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | |
|   for (unsigned n = 0; n < NumElts; ++n) {
 | |
|     int MaskElt = SVN->getMaskElt(n);
 | |
|     int NewElt = -1;
 | |
|     if (MaskElt < (int)HalfElts)
 | |
|       NewElt = MaskElt;
 | |
|     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
 | |
|       NewElt = HalfElts + MaskElt - NumElts;
 | |
|     NewMask.push_back(NewElt);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
 | |
|                               DAG.getUNDEF(VT), NewMask);
 | |
| }
 | |
| 
 | |
| /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
 | |
| /// NEON load/store intrinsics, and generic vector load/stores, to merge
 | |
| /// base address updates.
 | |
| /// For generic load/stores, the memory type is assumed to be a vector.
 | |
| /// The caller is assumed to have checked legality.
 | |
| static SDValue CombineBaseUpdate(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
 | |
|                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
 | |
|   const bool isStore = N->getOpcode() == ISD::STORE;
 | |
|   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
 | |
|   SDValue Addr = N->getOperand(AddrOpIdx);
 | |
|   MemSDNode *MemN = cast<MemSDNode>(N);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Search for a use of the address operand that is an increment.
 | |
|   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
 | |
|          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     if (User->getOpcode() != ISD::ADD ||
 | |
|         UI.getUse().getResNo() != Addr.getResNo())
 | |
|       continue;
 | |
| 
 | |
|     // Check that the add is independent of the load/store.  Otherwise, folding
 | |
|     // it would create a cycle. We can avoid searching through Addr as it's a
 | |
|     // predecessor to both.
 | |
|     SmallPtrSet<const SDNode *, 32> Visited;
 | |
|     SmallVector<const SDNode *, 16> Worklist;
 | |
|     Visited.insert(Addr.getNode());
 | |
|     Worklist.push_back(N);
 | |
|     Worklist.push_back(User);
 | |
|     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
 | |
|         SDNode::hasPredecessorHelper(User, Visited, Worklist))
 | |
|       continue;
 | |
| 
 | |
|     // Find the new opcode for the updating load/store.
 | |
|     bool isLoadOp = true;
 | |
|     bool isLaneOp = false;
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned NumVecs = 0;
 | |
|     if (isIntrinsic) {
 | |
|       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | |
|       switch (IntNo) {
 | |
|       default: llvm_unreachable("unexpected intrinsic for Neon base update");
 | |
|       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
 | |
|         NumVecs = 1; break;
 | |
|       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
 | |
|         NumVecs = 2; break;
 | |
|       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
 | |
|         NumVecs = 3; break;
 | |
|       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
 | |
|         NumVecs = 4; break;
 | |
|       case Intrinsic::arm_neon_vld2dup:
 | |
|       case Intrinsic::arm_neon_vld3dup:
 | |
|       case Intrinsic::arm_neon_vld4dup:
 | |
|         // TODO: Support updating VLDxDUP nodes. For now, we just skip
 | |
|         // combining base updates for such intrinsics.
 | |
|         continue;
 | |
|       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
 | |
|         NumVecs = 2; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
 | |
|         NumVecs = 3; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
 | |
|         NumVecs = 4; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
 | |
|         NumVecs = 1; isLoadOp = false; break;
 | |
|       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
 | |
|         NumVecs = 2; isLoadOp = false; break;
 | |
|       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
 | |
|         NumVecs = 3; isLoadOp = false; break;
 | |
|       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
 | |
|         NumVecs = 4; isLoadOp = false; break;
 | |
|       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
 | |
|         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
 | |
|         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
 | |
|       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
 | |
|         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
 | |
|       }
 | |
|     } else {
 | |
|       isLaneOp = true;
 | |
|       switch (N->getOpcode()) {
 | |
|       default: llvm_unreachable("unexpected opcode for Neon base update");
 | |
|       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
 | |
|       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
 | |
|       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
 | |
|       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
 | |
|       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
 | |
|         NumVecs = 1; isLaneOp = false; break;
 | |
|       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
 | |
|         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Find the size of memory referenced by the load/store.
 | |
|     EVT VecTy;
 | |
|     if (isLoadOp) {
 | |
|       VecTy = N->getValueType(0);
 | |
|     } else if (isIntrinsic) {
 | |
|       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
 | |
|     } else {
 | |
|       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
 | |
|       VecTy = N->getOperand(1).getValueType();
 | |
|     }
 | |
| 
 | |
|     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
 | |
|     if (isLaneOp)
 | |
|       NumBytes /= VecTy.getVectorNumElements();
 | |
| 
 | |
|     // If the increment is a constant, it must match the memory ref size.
 | |
|     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | |
|     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
 | |
|     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
 | |
|       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
 | |
|       // separate instructions that make it harder to use a non-constant update.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // OK, we found an ADD we can fold into the base update.
 | |
|     // Now, create a _UPD node, taking care of not breaking alignment.
 | |
| 
 | |
|     EVT AlignedVecTy = VecTy;
 | |
|     unsigned Alignment = MemN->getAlignment();
 | |
| 
 | |
|     // If this is a less-than-standard-aligned load/store, change the type to
 | |
|     // match the standard alignment.
 | |
|     // The alignment is overlooked when selecting _UPD variants; and it's
 | |
|     // easier to introduce bitcasts here than fix that.
 | |
|     // There are 3 ways to get to this base-update combine:
 | |
|     // - intrinsics: they are assumed to be properly aligned (to the standard
 | |
|     //   alignment of the memory type), so we don't need to do anything.
 | |
|     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
 | |
|     //   intrinsics, so, likewise, there's nothing to do.
 | |
|     // - generic load/store instructions: the alignment is specified as an
 | |
|     //   explicit operand, rather than implicitly as the standard alignment
 | |
|     //   of the memory type (like the intrisics).  We need to change the
 | |
|     //   memory type to match the explicit alignment.  That way, we don't
 | |
|     //   generate non-standard-aligned ARMISD::VLDx nodes.
 | |
|     if (isa<LSBaseSDNode>(N)) {
 | |
|       if (Alignment == 0)
 | |
|         Alignment = 1;
 | |
|       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
 | |
|         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
 | |
|         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
 | |
|         assert(!isLaneOp && "Unexpected generic load/store lane.");
 | |
|         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
 | |
|         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
 | |
|       }
 | |
|       // Don't set an explicit alignment on regular load/stores that we want
 | |
|       // to transform to VLD/VST 1_UPD nodes.
 | |
|       // This matches the behavior of regular load/stores, which only get an
 | |
|       // explicit alignment if the MMO alignment is larger than the standard
 | |
|       // alignment of the memory type.
 | |
|       // Intrinsics, however, always get an explicit alignment, set to the
 | |
|       // alignment of the MMO.
 | |
|       Alignment = 1;
 | |
|     }
 | |
| 
 | |
|     // Create the new updating load/store node.
 | |
|     // First, create an SDVTList for the new updating node's results.
 | |
|     EVT Tys[6];
 | |
|     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
 | |
|     unsigned n;
 | |
|     for (n = 0; n < NumResultVecs; ++n)
 | |
|       Tys[n] = AlignedVecTy;
 | |
|     Tys[n++] = MVT::i32;
 | |
|     Tys[n] = MVT::Other;
 | |
|     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
 | |
| 
 | |
|     // Then, gather the new node's operands.
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.push_back(N->getOperand(0)); // incoming chain
 | |
|     Ops.push_back(N->getOperand(AddrOpIdx));
 | |
|     Ops.push_back(Inc);
 | |
| 
 | |
|     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
 | |
|       // Try to match the intrinsic's signature
 | |
|       Ops.push_back(StN->getValue());
 | |
|     } else {
 | |
|       // Loads (and of course intrinsics) match the intrinsics' signature,
 | |
|       // so just add all but the alignment operand.
 | |
|       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
 | |
|         Ops.push_back(N->getOperand(i));
 | |
|     }
 | |
| 
 | |
|     // For all node types, the alignment operand is always the last one.
 | |
|     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
 | |
| 
 | |
|     // If this is a non-standard-aligned STORE, the penultimate operand is the
 | |
|     // stored value.  Bitcast it to the aligned type.
 | |
|     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
 | |
|       SDValue &StVal = Ops[Ops.size()-2];
 | |
|       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
 | |
|     }
 | |
| 
 | |
|     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
 | |
|     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
 | |
|                                            MemN->getMemOperand());
 | |
| 
 | |
|     // Update the uses.
 | |
|     SmallVector<SDValue, 5> NewResults;
 | |
|     for (unsigned i = 0; i < NumResultVecs; ++i)
 | |
|       NewResults.push_back(SDValue(UpdN.getNode(), i));
 | |
| 
 | |
|     // If this is an non-standard-aligned LOAD, the first result is the loaded
 | |
|     // value.  Bitcast it to the expected result type.
 | |
|     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
 | |
|       SDValue &LdVal = NewResults[0];
 | |
|       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
 | |
|     }
 | |
| 
 | |
|     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
 | |
|     DCI.CombineTo(N, NewResults);
 | |
|     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformVLDCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   return CombineBaseUpdate(N, DCI);
 | |
| }
 | |
| 
 | |
| /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
 | |
| /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
 | |
| /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
 | |
| /// return true.
 | |
| static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   EVT VT = N->getValueType(0);
 | |
|   // vldN-dup instructions only support 64-bit vectors for N > 1.
 | |
|   if (!VT.is64BitVector())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
 | |
|   SDNode *VLD = N->getOperand(0).getNode();
 | |
|   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
 | |
|     return false;
 | |
|   unsigned NumVecs = 0;
 | |
|   unsigned NewOpc = 0;
 | |
|   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
 | |
|   if (IntNo == Intrinsic::arm_neon_vld2lane) {
 | |
|     NumVecs = 2;
 | |
|     NewOpc = ARMISD::VLD2DUP;
 | |
|   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
 | |
|     NumVecs = 3;
 | |
|     NewOpc = ARMISD::VLD3DUP;
 | |
|   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
 | |
|     NumVecs = 4;
 | |
|     NewOpc = ARMISD::VLD4DUP;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
 | |
|   // numbers match the load.
 | |
|   unsigned VLDLaneNo =
 | |
|     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
 | |
|   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     // Ignore uses of the chain result.
 | |
|     if (UI.getUse().getResNo() == NumVecs)
 | |
|       continue;
 | |
|     SDNode *User = *UI;
 | |
|     if (User->getOpcode() != ARMISD::VDUPLANE ||
 | |
|         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Create the vldN-dup node.
 | |
|   EVT Tys[5];
 | |
|   unsigned n;
 | |
|   for (n = 0; n < NumVecs; ++n)
 | |
|     Tys[n] = VT;
 | |
|   Tys[n] = MVT::Other;
 | |
|   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
 | |
|   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
 | |
|   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
 | |
|   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
 | |
|                                            Ops, VLDMemInt->getMemoryVT(),
 | |
|                                            VLDMemInt->getMemOperand());
 | |
| 
 | |
|   // Update the uses.
 | |
|   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     unsigned ResNo = UI.getUse().getResNo();
 | |
|     // Ignore uses of the chain result.
 | |
|     if (ResNo == NumVecs)
 | |
|       continue;
 | |
|     SDNode *User = *UI;
 | |
|     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
 | |
|   }
 | |
| 
 | |
|   // Now the vldN-lane intrinsic is dead except for its chain result.
 | |
|   // Update uses of the chain.
 | |
|   std::vector<SDValue> VLDDupResults;
 | |
|   for (unsigned n = 0; n < NumVecs; ++n)
 | |
|     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
 | |
|   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
 | |
|   DCI.CombineTo(VLD, VLDDupResults);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// PerformVDUPLANECombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VDUPLANE.
 | |
| static SDValue PerformVDUPLANECombine(SDNode *N,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
 | |
|   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
 | |
|   if (CombineVLDDUP(N, DCI))
 | |
|     return SDValue(N, 0);
 | |
| 
 | |
|   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
 | |
|   // redundant.  Ignore bit_converts for now; element sizes are checked below.
 | |
|   while (Op.getOpcode() == ISD::BITCAST)
 | |
|     Op = Op.getOperand(0);
 | |
|   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
 | |
|   unsigned EltSize = Op.getScalarValueSizeInBits();
 | |
|   // The canonical VMOV for a zero vector uses a 32-bit element size.
 | |
|   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned EltBits;
 | |
|   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
 | |
|     EltSize = 8;
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (EltSize > VT.getScalarSizeInBits())
 | |
|     return SDValue();
 | |
| 
 | |
|   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
 | |
| }
 | |
| 
 | |
| /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
 | |
| static SDValue PerformVDUPCombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   // Match VDUP(LOAD) -> VLD1DUP.
 | |
|   // We match this pattern here rather than waiting for isel because the
 | |
|   // transform is only legal for unindexed loads.
 | |
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
 | |
|   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
 | |
|       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
 | |
|     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
 | |
|                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
 | |
|     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
 | |
|     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
 | |
|                                              Ops, LD->getMemoryVT(),
 | |
|                                              LD->getMemOperand());
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
 | |
|     return VLDDup;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformLOADCombine(SDNode *N,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // If this is a legal vector load, try to combine it into a VLD1_UPD.
 | |
|   if (ISD::isNormalLoad(N) && VT.isVector() &&
 | |
|       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return CombineBaseUpdate(N, DCI);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSTORECombine - Target-specific dag combine xforms for
 | |
| /// ISD::STORE.
 | |
| static SDValue PerformSTORECombine(SDNode *N,
 | |
|                                    TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   StoreSDNode *St = cast<StoreSDNode>(N);
 | |
|   if (St->isVolatile())
 | |
|     return SDValue();
 | |
| 
 | |
|   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
 | |
|   // pack all of the elements in one place.  Next, store to memory in fewer
 | |
|   // chunks.
 | |
|   SDValue StVal = St->getValue();
 | |
|   EVT VT = StVal.getValueType();
 | |
|   if (St->isTruncatingStore() && VT.isVector()) {
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     EVT StVT = St->getMemoryVT();
 | |
|     unsigned NumElems = VT.getVectorNumElements();
 | |
|     assert(StVT != VT && "Cannot truncate to the same type");
 | |
|     unsigned FromEltSz = VT.getScalarSizeInBits();
 | |
|     unsigned ToEltSz = StVT.getScalarSizeInBits();
 | |
| 
 | |
|     // From, To sizes and ElemCount must be pow of two
 | |
|     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
 | |
| 
 | |
|     // We are going to use the original vector elt for storing.
 | |
|     // Accumulated smaller vector elements must be a multiple of the store size.
 | |
|     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
 | |
| 
 | |
|     unsigned SizeRatio  = FromEltSz / ToEltSz;
 | |
|     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
 | |
| 
 | |
|     // Create a type on which we perform the shuffle.
 | |
|     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
 | |
|                                      NumElems*SizeRatio);
 | |
|     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
 | |
| 
 | |
|     SDLoc DL(St);
 | |
|     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
 | |
|     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
 | |
|     for (unsigned i = 0; i < NumElems; ++i)
 | |
|       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
 | |
|                           ? (i + 1) * SizeRatio - 1
 | |
|                           : i * SizeRatio;
 | |
| 
 | |
|     // Can't shuffle using an illegal type.
 | |
|     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
 | |
| 
 | |
|     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
 | |
|                                 DAG.getUNDEF(WideVec.getValueType()),
 | |
|                                 ShuffleVec);
 | |
|     // At this point all of the data is stored at the bottom of the
 | |
|     // register. We now need to save it to mem.
 | |
| 
 | |
|     // Find the largest store unit
 | |
|     MVT StoreType = MVT::i8;
 | |
|     for (MVT Tp : MVT::integer_valuetypes()) {
 | |
|       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
 | |
|         StoreType = Tp;
 | |
|     }
 | |
|     // Didn't find a legal store type.
 | |
|     if (!TLI.isTypeLegal(StoreType))
 | |
|       return SDValue();
 | |
| 
 | |
|     // Bitcast the original vector into a vector of store-size units
 | |
|     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
 | |
|             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
 | |
|     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
 | |
|     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
 | |
|     SmallVector<SDValue, 8> Chains;
 | |
|     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
 | |
|                                         TLI.getPointerTy(DAG.getDataLayout()));
 | |
|     SDValue BasePtr = St->getBasePtr();
 | |
| 
 | |
|     // Perform one or more big stores into memory.
 | |
|     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
 | |
|     for (unsigned I = 0; I < E; I++) {
 | |
|       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
 | |
|                                    StoreType, ShuffWide,
 | |
|                                    DAG.getIntPtrConstant(I, DL));
 | |
|       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
 | |
|                                 St->getPointerInfo(), St->getAlignment(),
 | |
|                                 St->getMemOperand()->getFlags());
 | |
|       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
 | |
|                             Increment);
 | |
|       Chains.push_back(Ch);
 | |
|     }
 | |
|     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
 | |
|   }
 | |
| 
 | |
|   if (!ISD::isNormalStore(St))
 | |
|     return SDValue();
 | |
| 
 | |
|   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
 | |
|   // ARM stores of arguments in the same cache line.
 | |
|   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
 | |
|       StVal.getNode()->hasOneUse()) {
 | |
|     SelectionDAG  &DAG = DCI.DAG;
 | |
|     bool isBigEndian = DAG.getDataLayout().isBigEndian();
 | |
|     SDLoc DL(St);
 | |
|     SDValue BasePtr = St->getBasePtr();
 | |
|     SDValue NewST1 = DAG.getStore(
 | |
|         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
 | |
|         BasePtr, St->getPointerInfo(), St->getAlignment(),
 | |
|         St->getMemOperand()->getFlags());
 | |
| 
 | |
|     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
 | |
|                                     DAG.getConstant(4, DL, MVT::i32));
 | |
|     return DAG.getStore(NewST1.getValue(0), DL,
 | |
|                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
 | |
|                         OffsetPtr, St->getPointerInfo(),
 | |
|                         std::min(4U, St->getAlignment() / 2),
 | |
|                         St->getMemOperand()->getFlags());
 | |
|   }
 | |
| 
 | |
|   if (StVal.getValueType() == MVT::i64 &&
 | |
|       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
| 
 | |
|     // Bitcast an i64 store extracted from a vector to f64.
 | |
|     // Otherwise, the i64 value will be legalized to a pair of i32 values.
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     SDLoc dl(StVal);
 | |
|     SDValue IntVec = StVal.getOperand(0);
 | |
|     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
 | |
|                                    IntVec.getValueType().getVectorNumElements());
 | |
|     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
 | |
|     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | |
|                                  Vec, StVal.getOperand(1));
 | |
|     dl = SDLoc(N);
 | |
|     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
 | |
|     // Make the DAGCombiner fold the bitcasts.
 | |
|     DCI.AddToWorklist(Vec.getNode());
 | |
|     DCI.AddToWorklist(ExtElt.getNode());
 | |
|     DCI.AddToWorklist(V.getNode());
 | |
|     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
 | |
|                         St->getPointerInfo(), St->getAlignment(),
 | |
|                         St->getMemOperand()->getFlags(), St->getAAInfo());
 | |
|   }
 | |
| 
 | |
|   // If this is a legal vector store, try to combine it into a VST1_UPD.
 | |
|   if (ISD::isNormalStore(N) && VT.isVector() &&
 | |
|       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
 | |
|     return CombineBaseUpdate(N, DCI);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
 | |
| /// can replace combinations of VMUL and VCVT (floating-point to integer)
 | |
| /// when the VMUL has a constant operand that is a power of 2.
 | |
| ///
 | |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
 | |
| ///  vmul.f32        d16, d17, d16
 | |
| ///  vcvt.s32.f32    d16, d16
 | |
| /// becomes:
 | |
| ///  vcvt.s32.f32    d16, d16, #3
 | |
| static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   if (!Subtarget->hasNEON())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Op = N->getOperand(0);
 | |
|   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
 | |
|       Op.getOpcode() != ISD::FMUL)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ConstVec = Op->getOperand(1);
 | |
|   if (!isa<BuildVectorSDNode>(ConstVec))
 | |
|     return SDValue();
 | |
| 
 | |
|   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
 | |
|   uint32_t FloatBits = FloatTy.getSizeInBits();
 | |
|   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
 | |
|   uint32_t IntBits = IntTy.getSizeInBits();
 | |
|   unsigned NumLanes = Op.getValueType().getVectorNumElements();
 | |
|   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
 | |
|     // These instructions only exist converting from f32 to i32. We can handle
 | |
|     // smaller integers by generating an extra truncate, but larger ones would
 | |
|     // be lossy. We also can't handle more then 4 lanes, since these intructions
 | |
|     // only support v2i32/v4i32 types.
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   BitVector UndefElements;
 | |
|   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
 | |
|   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
 | |
|   if (C == -1 || C == 0 || C > 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
 | |
|   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
 | |
|     Intrinsic::arm_neon_vcvtfp2fxu;
 | |
|   SDValue FixConv = DAG.getNode(
 | |
|       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
 | |
|       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
 | |
|       DAG.getConstant(C, dl, MVT::i32));
 | |
| 
 | |
|   if (IntBits < FloatBits)
 | |
|     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
 | |
| 
 | |
|   return FixConv;
 | |
| }
 | |
| 
 | |
| /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
 | |
| /// can replace combinations of VCVT (integer to floating-point) and VDIV
 | |
| /// when the VDIV has a constant operand that is a power of 2.
 | |
| ///
 | |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
 | |
| ///  vcvt.f32.s32    d16, d16
 | |
| ///  vdiv.f32        d16, d17, d16
 | |
| /// becomes:
 | |
| ///  vcvt.f32.s32    d16, d16, #3
 | |
| static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                   const ARMSubtarget *Subtarget) {
 | |
|   if (!Subtarget->hasNEON())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Op = N->getOperand(0);
 | |
|   unsigned OpOpcode = Op.getNode()->getOpcode();
 | |
|   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
 | |
|       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ConstVec = N->getOperand(1);
 | |
|   if (!isa<BuildVectorSDNode>(ConstVec))
 | |
|     return SDValue();
 | |
| 
 | |
|   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
 | |
|   uint32_t FloatBits = FloatTy.getSizeInBits();
 | |
|   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
 | |
|   uint32_t IntBits = IntTy.getSizeInBits();
 | |
|   unsigned NumLanes = Op.getValueType().getVectorNumElements();
 | |
|   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
 | |
|     // These instructions only exist converting from i32 to f32. We can handle
 | |
|     // smaller integers by generating an extra extend, but larger ones would
 | |
|     // be lossy. We also can't handle more then 4 lanes, since these intructions
 | |
|     // only support v2i32/v4i32 types.
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   BitVector UndefElements;
 | |
|   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
 | |
|   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
 | |
|   if (C == -1 || C == 0 || C > 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
 | |
|   SDValue ConvInput = Op.getOperand(0);
 | |
|   if (IntBits < FloatBits)
 | |
|     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
 | |
|                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
 | |
|                             ConvInput);
 | |
| 
 | |
|   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
 | |
|     Intrinsic::arm_neon_vcvtfxu2fp;
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
 | |
|                      Op.getValueType(),
 | |
|                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
 | |
|                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
 | |
| }
 | |
| 
 | |
| /// Getvshiftimm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift operation, where all the elements of the
 | |
| /// build_vector must have the same constant integer value.
 | |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
 | |
|   // Ignore bit_converts.
 | |
|   while (Op.getOpcode() == ISD::BITCAST)
 | |
|     Op = Op.getOperand(0);
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
 | |
|                                       HasAnyUndefs, ElementBits) ||
 | |
|       SplatBitSize > ElementBits)
 | |
|     return false;
 | |
|   Cnt = SplatBits.getSExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift left operation.  That value must be in the range:
 | |
| ///   0 <= Value < ElementBits for a left shift; or
 | |
| ///   0 <= Value <= ElementBits for a long left shift.
 | |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   int64_t ElementBits = VT.getScalarSizeInBits();
 | |
|   if (! getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
 | |
| }
 | |
| 
 | |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift right operation.  For a shift opcode, the value
 | |
| /// is positive, but for an intrinsic the value count must be negative. The
 | |
| /// absolute value must be in the range:
 | |
| ///   1 <= |Value| <= ElementBits for a right shift; or
 | |
| ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
 | |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
 | |
|                          int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   int64_t ElementBits = VT.getScalarSizeInBits();
 | |
|   if (! getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   if (!isIntrinsic)
 | |
|     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
 | |
|   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
 | |
|     Cnt = -Cnt;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
 | |
| static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|   switch (IntNo) {
 | |
|   default:
 | |
|     // Don't do anything for most intrinsics.
 | |
|     break;
 | |
| 
 | |
|   // Vector shifts: check for immediate versions and lower them.
 | |
|   // Note: This is done during DAG combining instead of DAG legalizing because
 | |
|   // the build_vectors for 64-bit vector element shift counts are generally
 | |
|   // not legal, and it is hard to see their values after they get legalized to
 | |
|   // loads from a constant pool.
 | |
|   case Intrinsic::arm_neon_vshifts:
 | |
|   case Intrinsic::arm_neon_vshiftu:
 | |
|   case Intrinsic::arm_neon_vrshifts:
 | |
|   case Intrinsic::arm_neon_vrshiftu:
 | |
|   case Intrinsic::arm_neon_vrshiftn:
 | |
|   case Intrinsic::arm_neon_vqshifts:
 | |
|   case Intrinsic::arm_neon_vqshiftu:
 | |
|   case Intrinsic::arm_neon_vqshiftsu:
 | |
|   case Intrinsic::arm_neon_vqshiftns:
 | |
|   case Intrinsic::arm_neon_vqshiftnu:
 | |
|   case Intrinsic::arm_neon_vqshiftnsu:
 | |
|   case Intrinsic::arm_neon_vqrshiftns:
 | |
|   case Intrinsic::arm_neon_vqrshiftnu:
 | |
|   case Intrinsic::arm_neon_vqrshiftnsu: {
 | |
|     EVT VT = N->getOperand(1).getValueType();
 | |
|     int64_t Cnt;
 | |
|     unsigned VShiftOpc = 0;
 | |
| 
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::arm_neon_vshifts:
 | |
|     case Intrinsic::arm_neon_vshiftu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
 | |
|         VShiftOpc = ARMISD::VSHL;
 | |
|         break;
 | |
|       }
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
 | |
|         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
 | |
|                      ARMISD::VSHRs : ARMISD::VSHRu);
 | |
|         break;
 | |
|       }
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vrshifts:
 | |
|     case Intrinsic::arm_neon_vrshiftu:
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
 | |
|         break;
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vqshifts:
 | |
|     case Intrinsic::arm_neon_vqshiftu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | |
|         break;
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vqshiftsu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for vqshlu intrinsic");
 | |
| 
 | |
|     case Intrinsic::arm_neon_vrshiftn:
 | |
|     case Intrinsic::arm_neon_vqshiftns:
 | |
|     case Intrinsic::arm_neon_vqshiftnu:
 | |
|     case Intrinsic::arm_neon_vqshiftnsu:
 | |
|     case Intrinsic::arm_neon_vqrshiftns:
 | |
|     case Intrinsic::arm_neon_vqrshiftnu:
 | |
|     case Intrinsic::arm_neon_vqrshiftnsu:
 | |
|       // Narrowing shifts require an immediate right shift.
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for narrowing vector shift "
 | |
|                        "intrinsic");
 | |
| 
 | |
|     default:
 | |
|       llvm_unreachable("unhandled vector shift");
 | |
|     }
 | |
| 
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::arm_neon_vshifts:
 | |
|     case Intrinsic::arm_neon_vshiftu:
 | |
|       // Opcode already set above.
 | |
|       break;
 | |
|     case Intrinsic::arm_neon_vrshifts:
 | |
|       VShiftOpc = ARMISD::VRSHRs; break;
 | |
|     case Intrinsic::arm_neon_vrshiftu:
 | |
|       VShiftOpc = ARMISD::VRSHRu; break;
 | |
|     case Intrinsic::arm_neon_vrshiftn:
 | |
|       VShiftOpc = ARMISD::VRSHRN; break;
 | |
|     case Intrinsic::arm_neon_vqshifts:
 | |
|       VShiftOpc = ARMISD::VQSHLs; break;
 | |
|     case Intrinsic::arm_neon_vqshiftu:
 | |
|       VShiftOpc = ARMISD::VQSHLu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftsu:
 | |
|       VShiftOpc = ARMISD::VQSHLsu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftns:
 | |
|       VShiftOpc = ARMISD::VQSHRNs; break;
 | |
|     case Intrinsic::arm_neon_vqshiftnu:
 | |
|       VShiftOpc = ARMISD::VQSHRNu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftnsu:
 | |
|       VShiftOpc = ARMISD::VQSHRNsu; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftns:
 | |
|       VShiftOpc = ARMISD::VQRSHRNs; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftnu:
 | |
|       VShiftOpc = ARMISD::VQRSHRNu; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftnsu:
 | |
|       VShiftOpc = ARMISD::VQRSHRNsu; break;
 | |
|     }
 | |
| 
 | |
|     SDLoc dl(N);
 | |
|     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
 | |
|                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vshiftins: {
 | |
|     EVT VT = N->getOperand(1).getValueType();
 | |
|     int64_t Cnt;
 | |
|     unsigned VShiftOpc = 0;
 | |
| 
 | |
|     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
 | |
|       VShiftOpc = ARMISD::VSLI;
 | |
|     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
 | |
|       VShiftOpc = ARMISD::VSRI;
 | |
|     else {
 | |
|       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
 | |
|     }
 | |
| 
 | |
|     SDLoc dl(N);
 | |
|     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
 | |
|                        N->getOperand(1), N->getOperand(2),
 | |
|                        DAG.getConstant(Cnt, dl, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vqrshifts:
 | |
|   case Intrinsic::arm_neon_vqrshiftu:
 | |
|     // No immediate versions of these to check for.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformShiftCombine - Checks for immediate versions of vector shifts and
 | |
| /// lowers them.  As with the vector shift intrinsics, this is done during DAG
 | |
| /// combining instead of DAG legalizing because the build_vectors for 64-bit
 | |
| /// vector element shift counts are generally not legal, and it is hard to see
 | |
| /// their values after they get legalized to loads from a constant pool.
 | |
| static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                    const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
 | |
|     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
 | |
|     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|       SDValue N0 = N->getOperand(0);
 | |
|       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
 | |
|           DAG.MaskedValueIsZero(N0.getOperand(0),
 | |
|                                 APInt::getHighBitsSet(32, 16)))
 | |
|         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Nothing to be done for scalar shifts.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (!VT.isVector() || !TLI.isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(ST->hasNEON() && "unexpected vector shift");
 | |
|   int64_t Cnt;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: llvm_unreachable("unexpected shift opcode");
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
 | |
|       SDLoc dl(N);
 | |
|       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
 | |
|                          DAG.getConstant(Cnt, dl, MVT::i32));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
 | |
|       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
 | |
|                             ARMISD::VSHRs : ARMISD::VSHRu);
 | |
|       SDLoc dl(N);
 | |
|       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
 | |
|                          DAG.getConstant(Cnt, dl, MVT::i32));
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
 | |
| /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
 | |
| static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                     const ARMSubtarget *ST) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
| 
 | |
|   // Check for sign- and zero-extensions of vector extract operations of 8-
 | |
|   // and 16-bit vector elements.  NEON supports these directly.  They are
 | |
|   // handled during DAG combining because type legalization will promote them
 | |
|   // to 32-bit types and it is messy to recognize the operations after that.
 | |
|   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|     SDValue Vec = N0.getOperand(0);
 | |
|     SDValue Lane = N0.getOperand(1);
 | |
|     EVT VT = N->getValueType(0);
 | |
|     EVT EltVT = N0.getValueType();
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|     if (VT == MVT::i32 &&
 | |
|         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
 | |
|         TLI.isTypeLegal(Vec.getValueType()) &&
 | |
|         isa<ConstantSDNode>(Lane)) {
 | |
| 
 | |
|       unsigned Opc = 0;
 | |
|       switch (N->getOpcode()) {
 | |
|       default: llvm_unreachable("unexpected opcode");
 | |
|       case ISD::SIGN_EXTEND:
 | |
|         Opc = ARMISD::VGETLANEs;
 | |
|         break;
 | |
|       case ISD::ZERO_EXTEND:
 | |
|       case ISD::ANY_EXTEND:
 | |
|         Opc = ARMISD::VGETLANEu;
 | |
|         break;
 | |
|       }
 | |
|       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static const APInt *isPowerOf2Constant(SDValue V) {
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
 | |
|   if (!C)
 | |
|     return nullptr;
 | |
|   const APInt *CV = &C->getAPIntValue();
 | |
|   return CV->isPowerOf2() ? CV : nullptr;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
 | |
|   // If we have a CMOV, OR and AND combination such as:
 | |
|   //   if (x & CN)
 | |
|   //     y |= CM;
 | |
|   //
 | |
|   // And:
 | |
|   //   * CN is a single bit;
 | |
|   //   * All bits covered by CM are known zero in y
 | |
|   //
 | |
|   // Then we can convert this into a sequence of BFI instructions. This will
 | |
|   // always be a win if CM is a single bit, will always be no worse than the
 | |
|   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
 | |
|   // three bits (due to the extra IT instruction).
 | |
| 
 | |
|   SDValue Op0 = CMOV->getOperand(0);
 | |
|   SDValue Op1 = CMOV->getOperand(1);
 | |
|   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
 | |
|   auto CC = CCNode->getAPIntValue().getLimitedValue();
 | |
|   SDValue CmpZ = CMOV->getOperand(4);
 | |
| 
 | |
|   // The compare must be against zero.
 | |
|   if (!isNullConstant(CmpZ->getOperand(1)))
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
 | |
|   SDValue And = CmpZ->getOperand(0);
 | |
|   if (And->getOpcode() != ISD::AND)
 | |
|     return SDValue();
 | |
|   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
 | |
|   if (!AndC)
 | |
|     return SDValue();
 | |
|   SDValue X = And->getOperand(0);
 | |
| 
 | |
|   if (CC == ARMCC::EQ) {
 | |
|     // We're performing an "equal to zero" compare. Swap the operands so we
 | |
|     // canonicalize on a "not equal to zero" compare.
 | |
|     std::swap(Op0, Op1);
 | |
|   } else {
 | |
|     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
 | |
|   }
 | |
| 
 | |
|   if (Op1->getOpcode() != ISD::OR)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
 | |
|   if (!OrC)
 | |
|     return SDValue();
 | |
|   SDValue Y = Op1->getOperand(0);
 | |
| 
 | |
|   if (Op0 != Y)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Now, is it profitable to continue?
 | |
|   APInt OrCI = OrC->getAPIntValue();
 | |
|   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
 | |
|   if (OrCI.countPopulation() > Heuristic)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Lastly, can we determine that the bits defined by OrCI
 | |
|   // are zero in Y?
 | |
|   KnownBits Known;
 | |
|   DAG.computeKnownBits(Y, Known);
 | |
|   if ((OrCI & Known.Zero) != OrCI)
 | |
|     return SDValue();
 | |
| 
 | |
|   // OK, we can do the combine.
 | |
|   SDValue V = Y;
 | |
|   SDLoc dl(X);
 | |
|   EVT VT = X.getValueType();
 | |
|   unsigned BitInX = AndC->logBase2();
 | |
| 
 | |
|   if (BitInX != 0) {
 | |
|     // We must shift X first.
 | |
|     X = DAG.getNode(ISD::SRL, dl, VT, X,
 | |
|                     DAG.getConstant(BitInX, dl, VT));
 | |
|   }
 | |
| 
 | |
|   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
 | |
|        BitInY < NumActiveBits; ++BitInY) {
 | |
|     if (OrCI[BitInY] == 0)
 | |
|       continue;
 | |
|     APInt Mask(VT.getSizeInBits(), 0);
 | |
|     Mask.setBit(BitInY);
 | |
|     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
 | |
|                     // Confusingly, the operand is an *inverted* mask.
 | |
|                     DAG.getConstant(~Mask, dl, VT));
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
 | |
| SDValue
 | |
| ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
 | |
|   SDValue Cmp = N->getOperand(4);
 | |
|   if (Cmp.getOpcode() != ARMISD::CMPZ)
 | |
|     // Only looking at NE cases.
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
|   SDValue LHS = Cmp.getOperand(0);
 | |
|   SDValue RHS = Cmp.getOperand(1);
 | |
|   SDValue Chain = N->getOperand(0);
 | |
|   SDValue BB = N->getOperand(1);
 | |
|   SDValue ARMcc = N->getOperand(2);
 | |
|   ARMCC::CondCodes CC =
 | |
|     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
 | |
| 
 | |
|   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
 | |
|   // -> (brcond Chain BB CC CPSR Cmp)
 | |
|   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
 | |
|       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
 | |
|       LHS->getOperand(0)->hasOneUse()) {
 | |
|     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
 | |
|     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
 | |
|     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
 | |
|     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
 | |
|     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
 | |
|         (LHS01C && LHS01C->getZExtValue() == 1) &&
 | |
|         (LHS1C && LHS1C->getZExtValue() == 1) &&
 | |
|         (RHSC && RHSC->getZExtValue() == 0)) {
 | |
|       return DAG.getNode(
 | |
|           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
 | |
|           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
 | |
| SDValue
 | |
| ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
 | |
|   SDValue Cmp = N->getOperand(4);
 | |
|   if (Cmp.getOpcode() != ARMISD::CMPZ)
 | |
|     // Only looking at EQ and NE cases.
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
|   SDValue LHS = Cmp.getOperand(0);
 | |
|   SDValue RHS = Cmp.getOperand(1);
 | |
|   SDValue FalseVal = N->getOperand(0);
 | |
|   SDValue TrueVal = N->getOperand(1);
 | |
|   SDValue ARMcc = N->getOperand(2);
 | |
|   ARMCC::CondCodes CC =
 | |
|     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
 | |
| 
 | |
|   // BFI is only available on V6T2+.
 | |
|   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
 | |
|     SDValue R = PerformCMOVToBFICombine(N, DAG);
 | |
|     if (R)
 | |
|       return R;
 | |
|   }
 | |
| 
 | |
|   // Simplify
 | |
|   //   mov     r1, r0
 | |
|   //   cmp     r1, x
 | |
|   //   mov     r0, y
 | |
|   //   moveq   r0, x
 | |
|   // to
 | |
|   //   cmp     r0, x
 | |
|   //   movne   r0, y
 | |
|   //
 | |
|   //   mov     r1, r0
 | |
|   //   cmp     r1, x
 | |
|   //   mov     r0, x
 | |
|   //   movne   r0, y
 | |
|   // to
 | |
|   //   cmp     r0, x
 | |
|   //   movne   r0, y
 | |
|   /// FIXME: Turn this into a target neutral optimization?
 | |
|   SDValue Res;
 | |
|   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
 | |
|     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
 | |
|                       N->getOperand(3), Cmp);
 | |
|   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
 | |
|     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
 | |
|                       N->getOperand(3), NewCmp);
 | |
|   }
 | |
| 
 | |
|   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
 | |
|   // -> (cmov F T CC CPSR Cmp)
 | |
|   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
 | |
|     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
 | |
|     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
 | |
|     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
 | |
|     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
 | |
|         (LHS1C && LHS1C->getZExtValue() == 1) &&
 | |
|         (RHSC && RHSC->getZExtValue() == 0)) {
 | |
|       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
 | |
|                          LHS->getOperand(2), LHS->getOperand(3),
 | |
|                          LHS->getOperand(4));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!VT.isInteger())
 | |
|       return SDValue();
 | |
| 
 | |
|   // Materialize a boolean comparison for integers so we can avoid branching.
 | |
|   if (isNullConstant(FalseVal)) {
 | |
|     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
 | |
|       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
 | |
|         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
 | |
|         // right 5 bits will make that 32 be 1, otherwise it will be 0.
 | |
|         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
 | |
|         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
 | |
|         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
 | |
|                           DAG.getConstant(5, dl, MVT::i32));
 | |
|       } else {
 | |
|         // CMOV 0, 1, ==, (CMPZ x, y) ->
 | |
|         //     (ADDCARRY (SUB x, y), t:0, t:1)
 | |
|         // where t = (SUBCARRY 0, (SUB x, y), 0)
 | |
|         //
 | |
|         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
 | |
|         // x != y. In other words, a carry C == 1 when x == y, C == 0
 | |
|         // otherwise.
 | |
|         // The final ADDCARRY computes
 | |
|         //     x - y + (0 - (x - y)) + C == C
 | |
|         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
 | |
|         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | |
|         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
 | |
|         // ISD::SUBCARRY returns a borrow but we want the carry here
 | |
|         // actually.
 | |
|         SDValue Carry =
 | |
|             DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
 | |
|         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
 | |
|       }
 | |
|     } else if (CC == ARMCC::NE && LHS != RHS &&
 | |
|                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
 | |
|       // This seems pointless but will allow us to combine it further below.
 | |
|       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
 | |
|       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
 | |
|       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
 | |
|                         N->getOperand(3), Cmp);
 | |
|     }
 | |
|   } else if (isNullConstant(TrueVal)) {
 | |
|     if (CC == ARMCC::EQ && LHS != RHS &&
 | |
|         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
 | |
|       // This seems pointless but will allow us to combine it further below
 | |
|       // Note that we change == for != as this is the dual for the case above.
 | |
|       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
 | |
|       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
 | |
|       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
 | |
|                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
 | |
|                         N->getOperand(3), Cmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // On Thumb1, the DAG above may be further combined if z is a power of 2
 | |
|   // (z == 2 ^ K).
 | |
|   // CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
 | |
|   //       merge t3, t4
 | |
|   // where t1 = (SUBCARRY (SUB x, y), z, 0)
 | |
|   //       t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
 | |
|   //       t3 = if K != 0 then (SHL t2:0, K) else t2:0
 | |
|   //       t4 = (SUB 1, t2:1)   [ we want a carry, not a borrow ]
 | |
|   const APInt *TrueConst;
 | |
|   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
 | |
|       (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
 | |
|       (FalseVal.getOperand(1) == RHS) &&
 | |
|       (TrueConst = isPowerOf2Constant(TrueVal))) {
 | |
|     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
 | |
|     unsigned ShiftAmount = TrueConst->logBase2();
 | |
|     if (ShiftAmount)
 | |
|       TrueVal = DAG.getConstant(1, dl, VT);
 | |
|     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
 | |
|     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
 | |
|     // Make it a carry, not a borrow.
 | |
|     SDValue Carry = DAG.getNode(
 | |
|         ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
 | |
|     Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
 | |
| 
 | |
|     if (ShiftAmount)
 | |
|       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
 | |
|                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   if (Res.getNode()) {
 | |
|     KnownBits Known;
 | |
|     DAG.computeKnownBits(SDValue(N,0), Known);
 | |
|     // Capture demanded bits information that would be otherwise lost.
 | |
|     if (Known.Zero == 0xfffffffe)
 | |
|       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
 | |
|                         DAG.getValueType(MVT::i1));
 | |
|     else if (Known.Zero == 0xffffff00)
 | |
|       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
 | |
|                         DAG.getValueType(MVT::i8));
 | |
|     else if (Known.Zero == 0xffff0000)
 | |
|       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
 | |
|                         DAG.getValueType(MVT::i16));
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
 | |
|   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
 | |
|   case ISD::SUB:        return PerformSUBCombine(N, DCI);
 | |
|   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
 | |
|   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
 | |
|   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
 | |
|   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
 | |
|   case ARMISD::ADDC:
 | |
|   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
 | |
|   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
 | |
|   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
 | |
|   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
 | |
|   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
 | |
|   case ISD::STORE:      return PerformSTORECombine(N, DCI);
 | |
|   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
 | |
|   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
 | |
|   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
 | |
|   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
 | |
|   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:
 | |
|     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::FDIV:
 | |
|     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
 | |
|   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
 | |
|   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
 | |
|   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
 | |
|   case ARMISD::VLD1DUP:
 | |
|   case ARMISD::VLD2DUP:
 | |
|   case ARMISD::VLD3DUP:
 | |
|   case ARMISD::VLD4DUP:
 | |
|     return PerformVLDCombine(N, DCI);
 | |
|   case ARMISD::BUILD_VECTOR:
 | |
|     return PerformARMBUILD_VECTORCombine(N, DCI);
 | |
|   case ARMISD::SMULWB: {
 | |
|     unsigned BitWidth = N->getValueType(0).getSizeInBits();
 | |
|     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
 | |
|     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::SMULWT: {
 | |
|     unsigned BitWidth = N->getValueType(0).getSizeInBits();
 | |
|     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
 | |
|     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::SMLALBB: {
 | |
|     unsigned BitWidth = N->getValueType(0).getSizeInBits();
 | |
|     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
 | |
|     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
 | |
|         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::SMLALBT: {
 | |
|     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
 | |
|     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
 | |
|     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
 | |
|     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
 | |
|     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
 | |
|         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::SMLALTB: {
 | |
|     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
 | |
|     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
 | |
|     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
 | |
|     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
 | |
|     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
 | |
|         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::SMLALTT: {
 | |
|     unsigned BitWidth = N->getValueType(0).getSizeInBits();
 | |
|     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
 | |
|     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
 | |
|         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
 | |
|       return SDValue();
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | |
|     case Intrinsic::arm_neon_vld1:
 | |
|     case Intrinsic::arm_neon_vld1x2:
 | |
|     case Intrinsic::arm_neon_vld1x3:
 | |
|     case Intrinsic::arm_neon_vld1x4:
 | |
|     case Intrinsic::arm_neon_vld2:
 | |
|     case Intrinsic::arm_neon_vld3:
 | |
|     case Intrinsic::arm_neon_vld4:
 | |
|     case Intrinsic::arm_neon_vld2lane:
 | |
|     case Intrinsic::arm_neon_vld3lane:
 | |
|     case Intrinsic::arm_neon_vld4lane:
 | |
|     case Intrinsic::arm_neon_vld2dup:
 | |
|     case Intrinsic::arm_neon_vld3dup:
 | |
|     case Intrinsic::arm_neon_vld4dup:
 | |
|     case Intrinsic::arm_neon_vst1:
 | |
|     case Intrinsic::arm_neon_vst1x2:
 | |
|     case Intrinsic::arm_neon_vst1x3:
 | |
|     case Intrinsic::arm_neon_vst1x4:
 | |
|     case Intrinsic::arm_neon_vst2:
 | |
|     case Intrinsic::arm_neon_vst3:
 | |
|     case Intrinsic::arm_neon_vst4:
 | |
|     case Intrinsic::arm_neon_vst2lane:
 | |
|     case Intrinsic::arm_neon_vst3lane:
 | |
|     case Intrinsic::arm_neon_vst4lane:
 | |
|       return PerformVLDCombine(N, DCI);
 | |
|     default: break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
 | |
|                                                           EVT VT) const {
 | |
|   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | |
|                                                        unsigned,
 | |
|                                                        unsigned,
 | |
|                                                        bool *Fast) const {
 | |
|   // Depends what it gets converted into if the type is weird.
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
 | |
|   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     return false;
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32: {
 | |
|     // Unaligned access can use (for example) LRDB, LRDH, LDR
 | |
|     if (AllowsUnaligned) {
 | |
|       if (Fast)
 | |
|         *Fast = Subtarget->hasV7Ops();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case MVT::f64:
 | |
|   case MVT::v2f64: {
 | |
|     // For any little-endian targets with neon, we can support unaligned ld/st
 | |
|     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
 | |
|     // A big-endian target may also explicitly support unaligned accesses
 | |
|     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
 | |
|       if (Fast)
 | |
|         *Fast = true;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
 | |
|                        unsigned AlignCheck) {
 | |
|   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
 | |
|           (DstAlign == 0 || DstAlign % AlignCheck == 0));
 | |
| }
 | |
| 
 | |
| EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
 | |
|                                            unsigned DstAlign, unsigned SrcAlign,
 | |
|                                            bool IsMemset, bool ZeroMemset,
 | |
|                                            bool MemcpyStrSrc,
 | |
|                                            MachineFunction &MF) const {
 | |
|   const Function &F = MF.getFunction();
 | |
| 
 | |
|   // See if we can use NEON instructions for this...
 | |
|   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
 | |
|       !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
 | |
|     bool Fast;
 | |
|     if (Size >= 16 &&
 | |
|         (memOpAlign(SrcAlign, DstAlign, 16) ||
 | |
|          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
 | |
|       return MVT::v2f64;
 | |
|     } else if (Size >= 8 &&
 | |
|                (memOpAlign(SrcAlign, DstAlign, 8) ||
 | |
|                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
 | |
|                  Fast))) {
 | |
|       return MVT::f64;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Let the target-independent logic figure it out.
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| // 64-bit integers are split into their high and low parts and held in two
 | |
| // different registers, so the trunc is free since the low register can just
 | |
| // be used.
 | |
| bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
 | |
|   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
 | |
|   return (SrcBits == 64 && DestBits == 32);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
 | |
|   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
 | |
|       !DstVT.isInteger())
 | |
|     return false;
 | |
|   unsigned SrcBits = SrcVT.getSizeInBits();
 | |
|   unsigned DestBits = DstVT.getSizeInBits();
 | |
|   return (SrcBits == 64 && DestBits == 32);
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | |
|   if (Val.getOpcode() != ISD::LOAD)
 | |
|     return false;
 | |
| 
 | |
|   EVT VT1 = Val.getValueType();
 | |
|   if (!VT1.isSimple() || !VT1.isInteger() ||
 | |
|       !VT2.isSimple() || !VT2.isInteger())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT1.getSimpleVT().SimpleTy) {
 | |
|   default: break;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isFNegFree(EVT VT) const {
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
 | |
|   // negate values directly (fneg is free). So, we don't want to let the DAG
 | |
|   // combiner rewrite fneg into xors and some other instructions.  For f16 and
 | |
|   // FullFP16 argument passing, some bitcast nodes may be introduced,
 | |
|   // triggering this DAG combine rewrite, so we are avoiding that with this.
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: break;
 | |
|   case MVT::f16:
 | |
|     return Subtarget->hasFullFP16();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
 | |
|   EVT VT = ExtVal.getValueType();
 | |
| 
 | |
|   if (!isTypeLegal(VT))
 | |
|     return false;
 | |
| 
 | |
|   // Don't create a loadext if we can fold the extension into a wide/long
 | |
|   // instruction.
 | |
|   // If there's more than one user instruction, the loadext is desirable no
 | |
|   // matter what.  There can be two uses by the same instruction.
 | |
|   if (ExtVal->use_empty() ||
 | |
|       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
 | |
|     return true;
 | |
| 
 | |
|   SDNode *U = *ExtVal->use_begin();
 | |
|   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
 | |
|        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   if (!isTypeLegal(EVT::getEVT(Ty1)))
 | |
|     return false;
 | |
| 
 | |
|   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
 | |
| 
 | |
|   // Assuming the caller doesn't have a zeroext or signext return parameter,
 | |
|   // truncation all the way down to i1 is valid.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
 | |
|                                                 const AddrMode &AM, Type *Ty,
 | |
|                                                 unsigned AS) const {
 | |
|   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
 | |
|     if (Subtarget->hasFPAO())
 | |
|       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
 | |
|     return 0;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
 | |
|   if (V < 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Scale = 1;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|     // Scale == 1;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     // Scale == 2;
 | |
|     Scale = 2;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     // Scale == 4;
 | |
|     Scale = 4;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if ((V & (Scale - 1)) != 0)
 | |
|     return false;
 | |
|   V /= Scale;
 | |
|   return V == (V & ((1LL << 5) - 1));
 | |
| }
 | |
| 
 | |
| static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   bool isNeg = false;
 | |
|   if (V < 0) {
 | |
|     isNeg = true;
 | |
|     V = - V;
 | |
|   }
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     // + imm12 or - imm8
 | |
|     if (isNeg)
 | |
|       return V == (V & ((1LL << 8) - 1));
 | |
|     return V == (V & ((1LL << 12) - 1));
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     // Same as ARM mode. FIXME: NEON?
 | |
|     if (!Subtarget->hasVFP2())
 | |
|       return false;
 | |
|     if ((V & 3) != 0)
 | |
|       return false;
 | |
|     V >>= 2;
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value can be used
 | |
| /// as the offset of the target addressing mode for load / store of the
 | |
| /// given type.
 | |
| static bool isLegalAddressImmediate(int64_t V, EVT VT,
 | |
|                                     const ARMSubtarget *Subtarget) {
 | |
|   if (V == 0)
 | |
|     return true;
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return isLegalT1AddressImmediate(V, VT);
 | |
|   else if (Subtarget->isThumb2())
 | |
|     return isLegalT2AddressImmediate(V, VT, Subtarget);
 | |
| 
 | |
|   // ARM mode.
 | |
|   if (V < 0)
 | |
|     V = - V;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i32:
 | |
|     // +- imm12
 | |
|     return V == (V & ((1LL << 12) - 1));
 | |
|   case MVT::i16:
 | |
|     // +- imm8
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     if (!Subtarget->hasVFP2()) // FIXME: NEON?
 | |
|       return false;
 | |
|     if ((V & 3) != 0)
 | |
|       return false;
 | |
|     V >>= 2;
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
 | |
|                                                       EVT VT) const {
 | |
|   int Scale = AM.Scale;
 | |
|   if (Scale < 0)
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     if (Scale == 1)
 | |
|       return true;
 | |
|     // r + r << imm
 | |
|     Scale = Scale & ~1;
 | |
|     return Scale == 2 || Scale == 4 || Scale == 8;
 | |
|   case MVT::i64:
 | |
|     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
 | |
|     // version in Thumb mode.
 | |
|     // r + r
 | |
|     if (Scale == 1)
 | |
|       return true;
 | |
|     // r * 2 (this can be lowered to r + r).
 | |
|     if (!AM.HasBaseReg && Scale == 2)
 | |
|       return true;
 | |
|     return false;
 | |
|   case MVT::isVoid:
 | |
|     // Note, we allow "void" uses (basically, uses that aren't loads or
 | |
|     // stores), because arm allows folding a scale into many arithmetic
 | |
|     // operations.  This should be made more precise and revisited later.
 | |
| 
 | |
|     // Allow r << imm, but the imm has to be a multiple of two.
 | |
|     if (Scale & 1) return false;
 | |
|     return isPowerOf2_32(Scale);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
 | |
|                                                       EVT VT) const {
 | |
|   const int Scale = AM.Scale;
 | |
| 
 | |
|   // Negative scales are not supported in Thumb1.
 | |
|   if (Scale < 0)
 | |
|     return false;
 | |
| 
 | |
|   // Thumb1 addressing modes do not support register scaling excepting the
 | |
|   // following cases:
 | |
|   // 1. Scale == 1 means no scaling.
 | |
|   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
 | |
|   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
 | |
| }
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                               const AddrMode &AM, Type *Ty,
 | |
|                                               unsigned AS, Instruction *I) const {
 | |
|   EVT VT = getValueType(DL, Ty, true);
 | |
|   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
 | |
|     return false;
 | |
| 
 | |
|   // Can never fold addr of global into load/store.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // no scale reg, must be "r+i" or "r", or "i".
 | |
|     break;
 | |
|   default:
 | |
|     // ARM doesn't support any R+R*scale+imm addr modes.
 | |
|     if (AM.BaseOffs)
 | |
|       return false;
 | |
| 
 | |
|     if (!VT.isSimple())
 | |
|       return false;
 | |
| 
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       return isLegalT1ScaledAddressingMode(AM, VT);
 | |
| 
 | |
|     if (Subtarget->isThumb2())
 | |
|       return isLegalT2ScaledAddressingMode(AM, VT);
 | |
| 
 | |
|     int Scale = AM.Scale;
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: return false;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i32:
 | |
|       if (Scale < 0) Scale = -Scale;
 | |
|       if (Scale == 1)
 | |
|         return true;
 | |
|       // r + r << imm
 | |
|       return isPowerOf2_32(Scale & ~1);
 | |
|     case MVT::i16:
 | |
|     case MVT::i64:
 | |
|       // r +/- r
 | |
|       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
 | |
|         return true;
 | |
|       // r * 2 (this can be lowered to r + r).
 | |
|       if (!AM.HasBaseReg && Scale == 2)
 | |
|         return true;
 | |
|       return false;
 | |
| 
 | |
|     case MVT::isVoid:
 | |
|       // Note, we allow "void" uses (basically, uses that aren't loads or
 | |
|       // stores), because arm allows folding a scale into many arithmetic
 | |
|       // operations.  This should be made more precise and revisited later.
 | |
| 
 | |
|       // Allow r << imm, but the imm has to be a multiple of two.
 | |
|       if (Scale & 1) return false;
 | |
|       return isPowerOf2_32(Scale);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal
 | |
| /// icmp immediate, that is the target has icmp instructions which can compare
 | |
| /// a register against the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   // Thumb2 and ARM modes can use cmn for negative immediates.
 | |
|   if (!Subtarget->isThumb())
 | |
|     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
 | |
|            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
 | |
|   if (Subtarget->isThumb2())
 | |
|     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
 | |
|            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
 | |
|   // Thumb1 doesn't have cmn, and only 8-bit immediates.
 | |
|   return Imm >= 0 && Imm <= 255;
 | |
| }
 | |
| 
 | |
| /// isLegalAddImmediate - Return true if the specified immediate is a legal add
 | |
| /// *or sub* immediate, that is the target has add or sub instructions which can
 | |
| /// add a register with the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | |
|   // Same encoding for add/sub, just flip the sign.
 | |
|   int64_t AbsImm = std::abs(Imm);
 | |
|   if (!Subtarget->isThumb())
 | |
|     return ARM_AM::getSOImmVal(AbsImm) != -1;
 | |
|   if (Subtarget->isThumb2())
 | |
|     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
 | |
|   // Thumb1 only has 8-bit unsigned immediate.
 | |
|   return AbsImm >= 0 && AbsImm <= 255;
 | |
| }
 | |
| 
 | |
| static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                       bool isSEXTLoad, SDValue &Base,
 | |
|                                       SDValue &Offset, bool &isInc,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
 | |
|     // AddressingMode 3
 | |
|     Base = Ptr->getOperand(0);
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC < 0 && RHSC > -256) {
 | |
|         assert(Ptr->getOpcode() == ISD::ADD);
 | |
|         isInc = false;
 | |
|         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     return true;
 | |
|   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
 | |
|     // AddressingMode 2
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC < 0 && RHSC > -0x1000) {
 | |
|         assert(Ptr->getOpcode() == ISD::ADD);
 | |
|         isInc = false;
 | |
|         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
 | |
|         Base = Ptr->getOperand(0);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Ptr->getOpcode() == ISD::ADD) {
 | |
|       isInc = true;
 | |
|       ARM_AM::ShiftOpc ShOpcVal=
 | |
|         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
 | |
|       if (ShOpcVal != ARM_AM::no_shift) {
 | |
|         Base = Ptr->getOperand(1);
 | |
|         Offset = Ptr->getOperand(0);
 | |
|       } else {
 | |
|         Base = Ptr->getOperand(0);
 | |
|         Offset = Ptr->getOperand(1);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Base = Ptr->getOperand(0);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                      bool isSEXTLoad, SDValue &Base,
 | |
|                                      SDValue &Offset, bool &isInc,
 | |
|                                      SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   Base = Ptr->getOperand(0);
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|     int RHSC = (int)RHS->getZExtValue();
 | |
|     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
 | |
|       assert(Ptr->getOpcode() == ISD::ADD);
 | |
|       isInc = false;
 | |
|       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
 | |
|       return true;
 | |
|     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
 | |
|       isInc = Ptr->getOpcode() == ISD::ADD;
 | |
|       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool
 | |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                              SDValue &Offset,
 | |
|                                              ISD::MemIndexedMode &AM,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     VT  = LD->getMemoryVT();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     Ptr = ST->getBasePtr();
 | |
|     VT  = ST->getMemoryVT();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool isInc;
 | |
|   bool isLegal = false;
 | |
|   if (Subtarget->isThumb2())
 | |
|     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | |
|                                        Offset, isInc, DAG);
 | |
|   else
 | |
|     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | |
|                                         Offset, isInc, DAG);
 | |
|   if (!isLegal)
 | |
|     return false;
 | |
| 
 | |
|   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if this node can be
 | |
| /// combined with a load / store to form a post-indexed load / store.
 | |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                                    SDValue &Base,
 | |
|                                                    SDValue &Offset,
 | |
|                                                    ISD::MemIndexedMode &AM,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false, isNonExt;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT  = LD->getMemoryVT();
 | |
|     Ptr = LD->getBasePtr();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT  = ST->getMemoryVT();
 | |
|     Ptr = ST->getBasePtr();
 | |
|     isNonExt = !ST->isTruncatingStore();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
 | |
|     // must be non-extending/truncating, i32, with an offset of 4.
 | |
|     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
 | |
|     if (Op->getOpcode() != ISD::ADD || !isNonExt)
 | |
|       return false;
 | |
|     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
 | |
|     if (!RHS || RHS->getZExtValue() != 4)
 | |
|       return false;
 | |
| 
 | |
|     Offset = Op->getOperand(1);
 | |
|     Base = Op->getOperand(0);
 | |
|     AM = ISD::POST_INC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isInc;
 | |
|   bool isLegal = false;
 | |
|   if (Subtarget->isThumb2())
 | |
|     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                        isInc, DAG);
 | |
|   else
 | |
|     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                         isInc, DAG);
 | |
|   if (!isLegal)
 | |
|     return false;
 | |
| 
 | |
|   if (Ptr != Base) {
 | |
|     // Swap base ptr and offset to catch more post-index load / store when
 | |
|     // it's legal. In Thumb2 mode, offset must be an immediate.
 | |
|     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
 | |
|         !Subtarget->isThumb2())
 | |
|       std::swap(Base, Offset);
 | |
| 
 | |
|     // Post-indexed load / store update the base pointer.
 | |
|     if (Ptr != Base)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | |
|                                                       KnownBits &Known,
 | |
|                                                       const APInt &DemandedElts,
 | |
|                                                       const SelectionDAG &DAG,
 | |
|                                                       unsigned Depth) const {
 | |
|   unsigned BitWidth = Known.getBitWidth();
 | |
|   Known.resetAll();
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ARMISD::ADDC:
 | |
|   case ARMISD::ADDE:
 | |
|   case ARMISD::SUBC:
 | |
|   case ARMISD::SUBE:
 | |
|     // Special cases when we convert a carry to a boolean.
 | |
|     if (Op.getResNo() == 0) {
 | |
|       SDValue LHS = Op.getOperand(0);
 | |
|       SDValue RHS = Op.getOperand(1);
 | |
|       // (ADDE 0, 0, C) will give us a single bit.
 | |
|       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
 | |
|           isNullConstant(RHS)) {
 | |
|         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ARMISD::CMOV: {
 | |
|     // Bits are known zero/one if known on the LHS and RHS.
 | |
|     DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
 | |
|     if (Known.isUnknown())
 | |
|       return;
 | |
| 
 | |
|     KnownBits KnownRHS;
 | |
|     DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
 | |
|     Known.Zero &= KnownRHS.Zero;
 | |
|     Known.One  &= KnownRHS.One;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
 | |
|     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
 | |
|     switch (IntID) {
 | |
|     default: return;
 | |
|     case Intrinsic::arm_ldaex:
 | |
|     case Intrinsic::arm_ldrex: {
 | |
|       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
 | |
|       unsigned MemBits = VT.getScalarSizeInBits();
 | |
|       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
 | |
|       return;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   case ARMISD::BFI: {
 | |
|     // Conservatively, we can recurse down the first operand
 | |
|     // and just mask out all affected bits.
 | |
|     DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
 | |
| 
 | |
|     // The operand to BFI is already a mask suitable for removing the bits it
 | |
|     // sets.
 | |
|     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
 | |
|     const APInt &Mask = CI->getAPIntValue();
 | |
|     Known.Zero &= Mask;
 | |
|     Known.One &= Mask;
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
 | |
|                                                 const APInt &DemandedAPInt,
 | |
|                                                 TargetLoweringOpt &TLO) const {
 | |
|   // Delay optimization, so we don't have to deal with illegal types, or block
 | |
|   // optimizations.
 | |
|   if (!TLO.LegalOps)
 | |
|     return false;
 | |
| 
 | |
|   // Only optimize AND for now.
 | |
|   if (Op.getOpcode() != ISD::AND)
 | |
|     return false;
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Ignore vectors.
 | |
|   if (VT.isVector())
 | |
|     return false;
 | |
| 
 | |
|   assert(VT == MVT::i32 && "Unexpected integer type");
 | |
| 
 | |
|   // Make sure the RHS really is a constant.
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Mask = C->getZExtValue();
 | |
| 
 | |
|   unsigned Demanded = DemandedAPInt.getZExtValue();
 | |
|   unsigned ShrunkMask = Mask & Demanded;
 | |
|   unsigned ExpandedMask = Mask | ~Demanded;
 | |
| 
 | |
|   // If the mask is all zeros, let the target-independent code replace the
 | |
|   // result with zero.
 | |
|   if (ShrunkMask == 0)
 | |
|     return false;
 | |
| 
 | |
|   // If the mask is all ones, erase the AND. (Currently, the target-independent
 | |
|   // code won't do this, so we have to do it explicitly to avoid an infinite
 | |
|   // loop in obscure cases.)
 | |
|   if (ExpandedMask == ~0U)
 | |
|     return TLO.CombineTo(Op, Op.getOperand(0));
 | |
| 
 | |
|   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
 | |
|     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
 | |
|   };
 | |
|   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
 | |
|     if (NewMask == Mask)
 | |
|       return true;
 | |
|     SDLoc DL(Op);
 | |
|     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
 | |
|     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
 | |
|     return TLO.CombineTo(Op, NewOp);
 | |
|   };
 | |
| 
 | |
|   // Prefer uxtb mask.
 | |
|   if (IsLegalMask(0xFF))
 | |
|     return UseMask(0xFF);
 | |
| 
 | |
|   // Prefer uxth mask.
 | |
|   if (IsLegalMask(0xFFFF))
 | |
|     return UseMask(0xFFFF);
 | |
| 
 | |
|   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
 | |
|   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
 | |
|   if (ShrunkMask < 256)
 | |
|     return UseMask(ShrunkMask);
 | |
| 
 | |
|   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
 | |
|   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
 | |
|   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
 | |
|     return UseMask(ExpandedMask);
 | |
| 
 | |
|   // Potential improvements:
 | |
|   //
 | |
|   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
 | |
|   // We could try to prefer Thumb1 immediates which can be lowered to a
 | |
|   // two-instruction sequence.
 | |
|   // We could try to recognize more legal ARM/Thumb2 immediates here.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
 | |
|   // Looking for "rev" which is V6+.
 | |
|   if (!Subtarget->hasV6Ops())
 | |
|     return false;
 | |
| 
 | |
|   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
 | |
|   std::string AsmStr = IA->getAsmString();
 | |
|   SmallVector<StringRef, 4> AsmPieces;
 | |
|   SplitString(AsmStr, AsmPieces, ";\n");
 | |
| 
 | |
|   switch (AsmPieces.size()) {
 | |
|   default: return false;
 | |
|   case 1:
 | |
|     AsmStr = AsmPieces[0];
 | |
|     AsmPieces.clear();
 | |
|     SplitString(AsmStr, AsmPieces, " \t,");
 | |
| 
 | |
|     // rev $0, $1
 | |
|     if (AsmPieces.size() == 3 &&
 | |
|         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
 | |
|         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
 | |
|       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
 | |
|       if (Ty && Ty->getBitWidth() == 32)
 | |
|         return IntrinsicLowering::LowerToByteSwap(CI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
 | |
|   // At this point, we have to lower this constraint to something else, so we
 | |
|   // lower it to an "r" or "w". However, by doing this we will force the result
 | |
|   // to be in register, while the X constraint is much more permissive.
 | |
|   //
 | |
|   // Although we are correct (we are free to emit anything, without
 | |
|   // constraints), we might break use cases that would expect us to be more
 | |
|   // efficient and emit something else.
 | |
|   if (!Subtarget->hasVFP2())
 | |
|     return "r";
 | |
|   if (ConstraintVT.isFloatingPoint())
 | |
|     return "w";
 | |
|   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
 | |
|      (ConstraintVT.getSizeInBits() == 64 ||
 | |
|       ConstraintVT.getSizeInBits() == 128))
 | |
|     return "w";
 | |
| 
 | |
|   return "r";
 | |
| }
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| ARMTargetLowering::ConstraintType
 | |
| ARMTargetLowering::getConstraintType(StringRef Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default:  break;
 | |
|     case 'l': return C_RegisterClass;
 | |
|     case 'w': return C_RegisterClass;
 | |
|     case 'h': return C_RegisterClass;
 | |
|     case 'x': return C_RegisterClass;
 | |
|     case 't': return C_RegisterClass;
 | |
|     case 'j': return C_Other; // Constant for movw.
 | |
|       // An address with a single base register. Due to the way we
 | |
|       // currently handle addresses it is the same as an 'r' memory constraint.
 | |
|     case 'Q': return C_Memory;
 | |
|     }
 | |
|   } else if (Constraint.size() == 2) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     // All 'U+' constraints are addresses.
 | |
|     case 'U': return C_Memory;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
| ARMTargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (!CallOperandVal)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
|   case 'l':
 | |
|     if (type->isIntegerTy()) {
 | |
|       if (Subtarget->isThumb())
 | |
|         weight = CW_SpecificReg;
 | |
|       else
 | |
|         weight = CW_Register;
 | |
|     }
 | |
|     break;
 | |
|   case 'w':
 | |
|     if (type->isFloatingPointTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
 | |
| 
 | |
| RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
 | |
|     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC ARM Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'l': // Low regs or general regs.
 | |
|       if (Subtarget->isThumb())
 | |
|         return RCPair(0U, &ARM::tGPRRegClass);
 | |
|       return RCPair(0U, &ARM::GPRRegClass);
 | |
|     case 'h': // High regs or no regs.
 | |
|       if (Subtarget->isThumb())
 | |
|         return RCPair(0U, &ARM::hGPRRegClass);
 | |
|       break;
 | |
|     case 'r':
 | |
|       if (Subtarget->isThumb1Only())
 | |
|         return RCPair(0U, &ARM::tGPRRegClass);
 | |
|       return RCPair(0U, &ARM::GPRRegClass);
 | |
|     case 'w':
 | |
|       if (VT == MVT::Other)
 | |
|         break;
 | |
|       if (VT == MVT::f32)
 | |
|         return RCPair(0U, &ARM::SPRRegClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return RCPair(0U, &ARM::DPRRegClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return RCPair(0U, &ARM::QPRRegClass);
 | |
|       break;
 | |
|     case 'x':
 | |
|       if (VT == MVT::Other)
 | |
|         break;
 | |
|       if (VT == MVT::f32)
 | |
|         return RCPair(0U, &ARM::SPR_8RegClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return RCPair(0U, &ARM::DPR_8RegClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return RCPair(0U, &ARM::QPR_8RegClass);
 | |
|       break;
 | |
|     case 't':
 | |
|       if (VT == MVT::Other)
 | |
|         break;
 | |
|       if (VT == MVT::f32 || VT == MVT::i32)
 | |
|         return RCPair(0U, &ARM::SPRRegClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return RCPair(0U, &ARM::DPR_VFP2RegClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return RCPair(0U, &ARM::QPR_VFP2RegClass);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (StringRef("{cc}").equals_lower(Constraint))
 | |
|     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      std::string &Constraint,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result;
 | |
| 
 | |
|   // Currently only support length 1 constraints.
 | |
|   if (Constraint.length() != 1) return;
 | |
| 
 | |
|   char ConstraintLetter = Constraint[0];
 | |
|   switch (ConstraintLetter) {
 | |
|   default: break;
 | |
|   case 'j':
 | |
|   case 'I': case 'J': case 'K': case 'L':
 | |
|   case 'M': case 'N': case 'O':
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!C)
 | |
|       return;
 | |
| 
 | |
|     int64_t CVal64 = C->getSExtValue();
 | |
|     int CVal = (int) CVal64;
 | |
|     // None of these constraints allow values larger than 32 bits.  Check
 | |
|     // that the value fits in an int.
 | |
|     if (CVal != CVal64)
 | |
|       return;
 | |
| 
 | |
|     switch (ConstraintLetter) {
 | |
|       case 'j':
 | |
|         // Constant suitable for movw, must be between 0 and
 | |
|         // 65535.
 | |
|         if (Subtarget->hasV6T2Ops())
 | |
|           if (CVal >= 0 && CVal <= 65535)
 | |
|             break;
 | |
|         return;
 | |
|       case 'I':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between 0 and 255, for ADD
 | |
|           // immediates.
 | |
|           if (CVal >= 0 && CVal <= 255)
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant that can be used as an immediate value in a
 | |
|           // data-processing instruction.
 | |
|           if (ARM_AM::getT2SOImmVal(CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant that can be used as an immediate value in a
 | |
|           // data-processing instruction.
 | |
|           if (ARM_AM::getSOImmVal(CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'J':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between -255 and -1, for negated ADD
 | |
|           // immediates. This can be used in GCC with an "n" modifier that
 | |
|           // prints the negated value, for use with SUB instructions. It is
 | |
|           // not useful otherwise but is implemented for compatibility.
 | |
|           if (CVal >= -255 && CVal <= -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // This must be a constant between -4095 and 4095. It is not clear
 | |
|           // what this constraint is intended for. Implemented for
 | |
|           // compatibility with GCC.
 | |
|           if (CVal >= -4095 && CVal <= 4095)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'K':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // A 32-bit value where only one byte has a nonzero value. Exclude
 | |
|           // zero to match GCC. This constraint is used by GCC internally for
 | |
|           // constants that can be loaded with a move/shift combination.
 | |
|           // It is not useful otherwise but is implemented for compatibility.
 | |
|           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant whose bitwise inverse can be used as an immediate
 | |
|           // value in a data-processing instruction. This can be used in GCC
 | |
|           // with a "B" modifier that prints the inverted value, for use with
 | |
|           // BIC and MVN instructions. It is not useful otherwise but is
 | |
|           // implemented for compatibility.
 | |
|           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant whose bitwise inverse can be used as an immediate
 | |
|           // value in a data-processing instruction. This can be used in GCC
 | |
|           // with a "B" modifier that prints the inverted value, for use with
 | |
|           // BIC and MVN instructions. It is not useful otherwise but is
 | |
|           // implemented for compatibility.
 | |
|           if (ARM_AM::getSOImmVal(~CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'L':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between -7 and 7,
 | |
|           // for 3-operand ADD/SUB immediate instructions.
 | |
|           if (CVal >= -7 && CVal < 7)
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant whose negation can be used as an immediate value in a
 | |
|           // data-processing instruction. This can be used in GCC with an "n"
 | |
|           // modifier that prints the negated value, for use with SUB
 | |
|           // instructions. It is not useful otherwise but is implemented for
 | |
|           // compatibility.
 | |
|           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant whose negation can be used as an immediate value in a
 | |
|           // data-processing instruction. This can be used in GCC with an "n"
 | |
|           // modifier that prints the negated value, for use with SUB
 | |
|           // instructions. It is not useful otherwise but is implemented for
 | |
|           // compatibility.
 | |
|           if (ARM_AM::getSOImmVal(-CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'M':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a multiple of 4 between 0 and 1020, for
 | |
|           // ADD sp + immediate.
 | |
|           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
 | |
|             break;
 | |
|         } else {
 | |
|           // A power of two or a constant between 0 and 32.  This is used in
 | |
|           // GCC for the shift amount on shifted register operands, but it is
 | |
|           // useful in general for any shift amounts.
 | |
|           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'N':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a constant between 0 and 31, for shift amounts.
 | |
|           if (CVal >= 0 && CVal <= 31)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'O':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a multiple of 4 between -508 and 508, for
 | |
|           // ADD/SUB sp = sp + immediate.
 | |
|           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| static RTLIB::Libcall getDivRemLibcall(
 | |
|     const SDNode *N, MVT::SimpleValueType SVT) {
 | |
|   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
 | |
|           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
 | |
|          "Unhandled Opcode in getDivRemLibcall");
 | |
|   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
 | |
|                   N->getOpcode() == ISD::SREM;
 | |
|   RTLIB::Libcall LC;
 | |
|   switch (SVT) {
 | |
|   default: llvm_unreachable("Unexpected request for libcall!");
 | |
|   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
 | |
|   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
 | |
|   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
 | |
|   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
 | |
|   }
 | |
|   return LC;
 | |
| }
 | |
| 
 | |
| static TargetLowering::ArgListTy getDivRemArgList(
 | |
|     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
 | |
|   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
 | |
|           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
 | |
|          "Unhandled Opcode in getDivRemArgList");
 | |
|   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
 | |
|                   N->getOpcode() == ISD::SREM;
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     EVT ArgVT = N->getOperand(i).getValueType();
 | |
|     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
 | |
|     Entry.Node = N->getOperand(i);
 | |
|     Entry.Ty = ArgTy;
 | |
|     Entry.IsSExt = isSigned;
 | |
|     Entry.IsZExt = !isSigned;
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
|   if (Subtarget->isTargetWindows() && Args.size() >= 2)
 | |
|     std::swap(Args[0], Args[1]);
 | |
|   return Args;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
 | |
|           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
 | |
|           Subtarget->isTargetWindows()) &&
 | |
|          "Register-based DivRem lowering only");
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
 | |
|          "Invalid opcode for Div/Rem lowering");
 | |
|   bool isSigned = (Opcode == ISD::SDIVREM);
 | |
|   EVT VT = Op->getValueType(0);
 | |
|   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // If the target has hardware divide, use divide + multiply + subtract:
 | |
|   //     div = a / b
 | |
|   //     rem = a - b * div
 | |
|   //     return {div, rem}
 | |
|   // This should be lowered into UDIV/SDIV + MLS later on.
 | |
|   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
 | |
|                                         : Subtarget->hasDivideInARMMode();
 | |
|   if (hasDivide && Op->getValueType(0).isSimple() &&
 | |
|       Op->getSimpleValueType(0) == MVT::i32) {
 | |
|     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
 | |
|     const SDValue Dividend = Op->getOperand(0);
 | |
|     const SDValue Divisor = Op->getOperand(1);
 | |
|     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
 | |
|     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
 | |
|     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
 | |
| 
 | |
|     SDValue Values[2] = {Div, Rem};
 | |
|     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
 | |
|   }
 | |
| 
 | |
|   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
 | |
|                                        VT.getSimpleVT().SimpleTy);
 | |
|   SDValue InChain = DAG.getEntryNode();
 | |
| 
 | |
|   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
 | |
|                                                     DAG.getContext(),
 | |
|                                                     Subtarget);
 | |
| 
 | |
|   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | |
|                                          getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   Type *RetTy = StructType::get(Ty, Ty);
 | |
| 
 | |
|   if (Subtarget->isTargetWindows())
 | |
|     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl).setChain(InChain)
 | |
|     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
 | |
|     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
 | |
| 
 | |
|   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
 | |
|   return CallInfo.first;
 | |
| }
 | |
| 
 | |
| // Lowers REM using divmod helpers
 | |
| // see RTABI section 4.2/4.3
 | |
| SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
 | |
|   // Build return types (div and rem)
 | |
|   std::vector<Type*> RetTyParams;
 | |
|   Type *RetTyElement;
 | |
| 
 | |
|   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("Unexpected request for libcall!");
 | |
|   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
 | |
|   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
 | |
|   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
 | |
|   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
 | |
|   }
 | |
| 
 | |
|   RetTyParams.push_back(RetTyElement);
 | |
|   RetTyParams.push_back(RetTyElement);
 | |
|   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
 | |
|   Type *RetTy = StructType::get(*DAG.getContext(), ret);
 | |
| 
 | |
|   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
 | |
|                                                              SimpleTy);
 | |
|   SDValue InChain = DAG.getEntryNode();
 | |
|   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
 | |
|                                                     Subtarget);
 | |
|   bool isSigned = N->getOpcode() == ISD::SREM;
 | |
|   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | |
|                                          getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   if (Subtarget->isTargetWindows())
 | |
|     InChain = WinDBZCheckDenominator(DAG, N, InChain);
 | |
| 
 | |
|   // Lower call
 | |
|   CallLoweringInfo CLI(DAG);
 | |
|   CLI.setChain(InChain)
 | |
|      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
 | |
|      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
| 
 | |
|   // Return second (rem) result operand (first contains div)
 | |
|   SDNode *ResNode = CallResult.first.getNode();
 | |
|   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
 | |
|   return ResNode->getOperand(1);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetWindows() && "unsupported target platform");
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
| 
 | |
|   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
 | |
|           "no-stack-arg-probe")) {
 | |
|     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | |
|     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
 | |
|     Chain = SP.getValue(1);
 | |
|     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
 | |
|     if (Align)
 | |
|       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
 | |
|                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
 | |
|     SDValue Ops[2] = { SP, Chain };
 | |
|     return DAG.getMergeValues(Ops, DL);
 | |
|   }
 | |
| 
 | |
|   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
 | |
|                               DAG.getConstant(2, DL, MVT::i32));
 | |
| 
 | |
|   SDValue Flag;
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
 | |
| 
 | |
|   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
 | |
|   Chain = NewSP.getValue(1);
 | |
| 
 | |
|   SDValue Ops[2] = { NewSP, Chain };
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
 | |
|          "Unexpected type for custom-lowering FP_EXTEND");
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
| 
 | |
|   SDValue SrcVal = Op.getOperand(0);
 | |
|   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
 | |
|                      SDLoc(Op)).first;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
 | |
|          Subtarget->isFPOnlySP() &&
 | |
|          "Unexpected type for custom-lowering FP_ROUND");
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
 | |
| 
 | |
|   SDValue SrcVal = Op.getOperand(0);
 | |
|   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
 | |
|                      SDLoc(Op)).first;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The ARM target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARM::isBitFieldInvertedMask(unsigned v) {
 | |
|   if (v == 0xffffffff)
 | |
|     return false;
 | |
| 
 | |
|   // there can be 1's on either or both "outsides", all the "inside"
 | |
|   // bits must be 0's
 | |
|   return isShiftedMask_32(~v);
 | |
| }
 | |
| 
 | |
| /// isFPImmLegal - Returns true if the target can instruction select the
 | |
| /// specified FP immediate natively. If false, the legalizer will
 | |
| /// materialize the FP immediate as a load from a constant pool.
 | |
| bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   if (!Subtarget->hasVFP3())
 | |
|     return false;
 | |
|   if (VT == MVT::f16 && Subtarget->hasFullFP16())
 | |
|     return ARM_AM::getFP16Imm(Imm) != -1;
 | |
|   if (VT == MVT::f32)
 | |
|     return ARM_AM::getFP32Imm(Imm) != -1;
 | |
|   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
 | |
|     return ARM_AM::getFP64Imm(Imm) != -1;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
 | |
| /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
 | |
| /// specified in the intrinsic calls.
 | |
| bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                            const CallInst &I,
 | |
|                                            MachineFunction &MF,
 | |
|                                            unsigned Intrinsic) const {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::arm_neon_vld1:
 | |
|   case Intrinsic::arm_neon_vld2:
 | |
|   case Intrinsic::arm_neon_vld3:
 | |
|   case Intrinsic::arm_neon_vld4:
 | |
|   case Intrinsic::arm_neon_vld2lane:
 | |
|   case Intrinsic::arm_neon_vld3lane:
 | |
|   case Intrinsic::arm_neon_vld4lane:
 | |
|   case Intrinsic::arm_neon_vld2dup:
 | |
|   case Intrinsic::arm_neon_vld3dup:
 | |
|   case Intrinsic::arm_neon_vld4dup: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     // Conservatively set memVT to the entire set of vectors loaded.
 | |
|     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | |
|     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
 | |
|     // volatile loads with NEON intrinsics not supported
 | |
|     Info.flags = MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vld1x2:
 | |
|   case Intrinsic::arm_neon_vld1x3:
 | |
|   case Intrinsic::arm_neon_vld1x4: {
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     // Conservatively set memVT to the entire set of vectors loaded.
 | |
|     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | |
|     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 0;
 | |
|     // volatile loads with NEON intrinsics not supported
 | |
|     Info.flags = MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vst1:
 | |
|   case Intrinsic::arm_neon_vst2:
 | |
|   case Intrinsic::arm_neon_vst3:
 | |
|   case Intrinsic::arm_neon_vst4:
 | |
|   case Intrinsic::arm_neon_vst2lane:
 | |
|   case Intrinsic::arm_neon_vst3lane:
 | |
|   case Intrinsic::arm_neon_vst4lane: {
 | |
|     Info.opc = ISD::INTRINSIC_VOID;
 | |
|     // Conservatively set memVT to the entire set of vectors stored.
 | |
|     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | |
|     unsigned NumElts = 0;
 | |
|     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
 | |
|       Type *ArgTy = I.getArgOperand(ArgI)->getType();
 | |
|       if (!ArgTy->isVectorTy())
 | |
|         break;
 | |
|       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
 | |
|     }
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
 | |
|     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
 | |
|     // volatile stores with NEON intrinsics not supported
 | |
|     Info.flags = MachineMemOperand::MOStore;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_neon_vst1x2:
 | |
|   case Intrinsic::arm_neon_vst1x3:
 | |
|   case Intrinsic::arm_neon_vst1x4: {
 | |
|     Info.opc = ISD::INTRINSIC_VOID;
 | |
|     // Conservatively set memVT to the entire set of vectors stored.
 | |
|     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | |
|     unsigned NumElts = 0;
 | |
|     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
 | |
|       Type *ArgTy = I.getArgOperand(ArgI)->getType();
 | |
|       if (!ArgTy->isVectorTy())
 | |
|         break;
 | |
|       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
 | |
|     }
 | |
|     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 0;
 | |
|     // volatile stores with NEON intrinsics not supported
 | |
|     Info.flags = MachineMemOperand::MOStore;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_ldaex:
 | |
|   case Intrinsic::arm_ldrex: {
 | |
|     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | |
|     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::getVT(PtrTy->getElementType());
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
 | |
|     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_stlex:
 | |
|   case Intrinsic::arm_strex: {
 | |
|     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
 | |
|     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::getVT(PtrTy->getElementType());
 | |
|     Info.ptrVal = I.getArgOperand(1);
 | |
|     Info.offset = 0;
 | |
|     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
 | |
|     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::arm_stlexd:
 | |
|   case Intrinsic::arm_strexd:
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i64;
 | |
|     Info.ptrVal = I.getArgOperand(2);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 8;
 | |
|     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::arm_ldaexd:
 | |
|   case Intrinsic::arm_ldrexd:
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i64;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 8;
 | |
|     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
 | |
|     return true;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if it is beneficial to convert a load of a constant
 | |
| /// to just the constant itself.
 | |
| bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | |
|                                                           Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned Bits = Ty->getPrimitiveSizeInBits();
 | |
|   if (Bits == 0 || Bits > 32)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
 | |
|                                                 unsigned Index) const {
 | |
|   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
 | |
|     return false;
 | |
| 
 | |
|   return (Index == 0 || Index == ResVT.getVectorNumElements());
 | |
| }
 | |
| 
 | |
| Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
 | |
|                                         ARM_MB::MemBOpt Domain) const {
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
| 
 | |
|   // First, if the target has no DMB, see what fallback we can use.
 | |
|   if (!Subtarget->hasDataBarrier()) {
 | |
|     // Some ARMv6 cpus can support data barriers with an mcr instruction.
 | |
|     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
 | |
|     // here.
 | |
|     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
 | |
|       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
 | |
|       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
 | |
|                         Builder.getInt32(0), Builder.getInt32(7),
 | |
|                         Builder.getInt32(10), Builder.getInt32(5)};
 | |
|       return Builder.CreateCall(MCR, args);
 | |
|     } else {
 | |
|       // Instead of using barriers, atomic accesses on these subtargets use
 | |
|       // libcalls.
 | |
|       llvm_unreachable("makeDMB on a target so old that it has no barriers");
 | |
|     }
 | |
|   } else {
 | |
|     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
 | |
|     // Only a full system barrier exists in the M-class architectures.
 | |
|     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
 | |
|     Constant *CDomain = Builder.getInt32(Domain);
 | |
|     return Builder.CreateCall(DMB, CDomain);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
 | |
| Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
 | |
|                                                  Instruction *Inst,
 | |
|                                                  AtomicOrdering Ord) const {
 | |
|   switch (Ord) {
 | |
|   case AtomicOrdering::NotAtomic:
 | |
|   case AtomicOrdering::Unordered:
 | |
|     llvm_unreachable("Invalid fence: unordered/non-atomic");
 | |
|   case AtomicOrdering::Monotonic:
 | |
|   case AtomicOrdering::Acquire:
 | |
|     return nullptr; // Nothing to do
 | |
|   case AtomicOrdering::SequentiallyConsistent:
 | |
|     if (!Inst->hasAtomicStore())
 | |
|       return nullptr; // Nothing to do
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case AtomicOrdering::Release:
 | |
|   case AtomicOrdering::AcquireRelease:
 | |
|     if (Subtarget->preferISHSTBarriers())
 | |
|       return makeDMB(Builder, ARM_MB::ISHST);
 | |
|     // FIXME: add a comment with a link to documentation justifying this.
 | |
|     else
 | |
|       return makeDMB(Builder, ARM_MB::ISH);
 | |
|   }
 | |
|   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
 | |
| }
 | |
| 
 | |
| Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
 | |
|                                                   Instruction *Inst,
 | |
|                                                   AtomicOrdering Ord) const {
 | |
|   switch (Ord) {
 | |
|   case AtomicOrdering::NotAtomic:
 | |
|   case AtomicOrdering::Unordered:
 | |
|     llvm_unreachable("Invalid fence: unordered/not-atomic");
 | |
|   case AtomicOrdering::Monotonic:
 | |
|   case AtomicOrdering::Release:
 | |
|     return nullptr; // Nothing to do
 | |
|   case AtomicOrdering::Acquire:
 | |
|   case AtomicOrdering::AcquireRelease:
 | |
|   case AtomicOrdering::SequentiallyConsistent:
 | |
|     return makeDMB(Builder, ARM_MB::ISH);
 | |
|   }
 | |
|   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
 | |
| }
 | |
| 
 | |
| // Loads and stores less than 64-bits are already atomic; ones above that
 | |
| // are doomed anyway, so defer to the default libcall and blame the OS when
 | |
| // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
 | |
| // anything for those.
 | |
| bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
 | |
|   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
 | |
|   return (Size == 64) && !Subtarget->isMClass();
 | |
| }
 | |
| 
 | |
| // Loads and stores less than 64-bits are already atomic; ones above that
 | |
| // are doomed anyway, so defer to the default libcall and blame the OS when
 | |
| // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
 | |
| // anything for those.
 | |
| // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
 | |
| // guarantee, see DDI0406C ARM architecture reference manual,
 | |
| // sections A8.8.72-74 LDRD)
 | |
| TargetLowering::AtomicExpansionKind
 | |
| ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
 | |
|   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
 | |
|   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
 | |
|                                                   : AtomicExpansionKind::None;
 | |
| }
 | |
| 
 | |
| // For the real atomic operations, we have ldrex/strex up to 32 bits,
 | |
| // and up to 64 bits on the non-M profiles
 | |
| TargetLowering::AtomicExpansionKind
 | |
| ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
 | |
|   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
 | |
|   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
 | |
|   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
 | |
|              ? AtomicExpansionKind::LLSC
 | |
|              : AtomicExpansionKind::None;
 | |
| }
 | |
| 
 | |
| TargetLowering::AtomicExpansionKind
 | |
| ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
 | |
|   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
 | |
|   // implement cmpxchg without spilling. If the address being exchanged is also
 | |
|   // on the stack and close enough to the spill slot, this can lead to a
 | |
|   // situation where the monitor always gets cleared and the atomic operation
 | |
|   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
 | |
|   bool HasAtomicCmpXchg =
 | |
|       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
 | |
|   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
 | |
|     return AtomicExpansionKind::LLSC;
 | |
|   return AtomicExpansionKind::None;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::shouldInsertFencesForAtomic(
 | |
|     const Instruction *I) const {
 | |
|   return InsertFencesForAtomic;
 | |
| }
 | |
| 
 | |
| // This has so far only been implemented for MachO.
 | |
| bool ARMTargetLowering::useLoadStackGuardNode() const {
 | |
|   return Subtarget->isTargetMachO();
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
 | |
|                                                   unsigned &Cost) const {
 | |
|   // If we do not have NEON, vector types are not natively supported.
 | |
|   if (!Subtarget->hasNEON())
 | |
|     return false;
 | |
| 
 | |
|   // Floating point values and vector values map to the same register file.
 | |
|   // Therefore, although we could do a store extract of a vector type, this is
 | |
|   // better to leave at float as we have more freedom in the addressing mode for
 | |
|   // those.
 | |
|   if (VectorTy->isFPOrFPVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   // If the index is unknown at compile time, this is very expensive to lower
 | |
|   // and it is not possible to combine the store with the extract.
 | |
|   if (!isa<ConstantInt>(Idx))
 | |
|     return false;
 | |
| 
 | |
|   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
 | |
|   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
 | |
|   // We can do a store + vector extract on any vector that fits perfectly in a D
 | |
|   // or Q register.
 | |
|   if (BitWidth == 64 || BitWidth == 128) {
 | |
|     Cost = 0;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isCheapToSpeculateCttz() const {
 | |
|   return Subtarget->hasV6T2Ops();
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
 | |
|   return Subtarget->hasV6T2Ops();
 | |
| }
 | |
| 
 | |
| Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
 | |
|                                          AtomicOrdering Ord) const {
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
|   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
 | |
|   bool IsAcquire = isAcquireOrStronger(Ord);
 | |
| 
 | |
|   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
 | |
|   // intrinsic must return {i32, i32} and we have to recombine them into a
 | |
|   // single i64 here.
 | |
|   if (ValTy->getPrimitiveSizeInBits() == 64) {
 | |
|     Intrinsic::ID Int =
 | |
|         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
 | |
|     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
 | |
| 
 | |
|     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | |
|     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
 | |
| 
 | |
|     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
 | |
|     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
 | |
|     if (!Subtarget->isLittle())
 | |
|       std::swap (Lo, Hi);
 | |
|     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
 | |
|     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
 | |
|     return Builder.CreateOr(
 | |
|         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
 | |
|   }
 | |
| 
 | |
|   Type *Tys[] = { Addr->getType() };
 | |
|   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
 | |
|   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
 | |
| 
 | |
|   return Builder.CreateTruncOrBitCast(
 | |
|       Builder.CreateCall(Ldrex, Addr),
 | |
|       cast<PointerType>(Addr->getType())->getElementType());
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
 | |
|     IRBuilder<> &Builder) const {
 | |
|   if (!Subtarget->hasV7Ops())
 | |
|     return;
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
|   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
 | |
| }
 | |
| 
 | |
| Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
 | |
|                                                Value *Addr,
 | |
|                                                AtomicOrdering Ord) const {
 | |
|   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | |
|   bool IsRelease = isReleaseOrStronger(Ord);
 | |
| 
 | |
|   // Since the intrinsics must have legal type, the i64 intrinsics take two
 | |
|   // parameters: "i32, i32". We must marshal Val into the appropriate form
 | |
|   // before the call.
 | |
|   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
 | |
|     Intrinsic::ID Int =
 | |
|         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
 | |
|     Function *Strex = Intrinsic::getDeclaration(M, Int);
 | |
|     Type *Int32Ty = Type::getInt32Ty(M->getContext());
 | |
| 
 | |
|     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
 | |
|     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
 | |
|     if (!Subtarget->isLittle())
 | |
|       std::swap(Lo, Hi);
 | |
|     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | |
|     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
 | |
|   }
 | |
| 
 | |
|   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
 | |
|   Type *Tys[] = { Addr->getType() };
 | |
|   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
 | |
| 
 | |
|   return Builder.CreateCall(
 | |
|       Strex, {Builder.CreateZExtOrBitCast(
 | |
|                   Val, Strex->getFunctionType()->getParamType(0)),
 | |
|               Addr});
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ARMTargetLowering::alignLoopsWithOptSize() const {
 | |
|   return Subtarget->isMClass();
 | |
| }
 | |
| 
 | |
| /// A helper function for determining the number of interleaved accesses we
 | |
| /// will generate when lowering accesses of the given type.
 | |
| unsigned
 | |
| ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
 | |
|                                              const DataLayout &DL) const {
 | |
|   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isLegalInterleavedAccessType(
 | |
|     VectorType *VecTy, const DataLayout &DL) const {
 | |
| 
 | |
|   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
 | |
|   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
 | |
| 
 | |
|   // Ensure the vector doesn't have f16 elements. Even though we could do an
 | |
|   // i16 vldN, we can't hold the f16 vectors and will end up converting via
 | |
|   // f32.
 | |
|   if (VecTy->getElementType()->isHalfTy())
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the number of vector elements is greater than 1.
 | |
|   if (VecTy->getNumElements() < 2)
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the element type is legal.
 | |
|   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
 | |
|   // 128 will be split into multiple interleaved accesses.
 | |
|   return VecSize == 64 || VecSize % 128 == 0;
 | |
| }
 | |
| 
 | |
| /// Lower an interleaved load into a vldN intrinsic.
 | |
| ///
 | |
| /// E.g. Lower an interleaved load (Factor = 2):
 | |
| ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
 | |
| ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
 | |
| ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
 | |
| ///
 | |
| ///      Into:
 | |
| ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
 | |
| ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
 | |
| ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
 | |
| bool ARMTargetLowering::lowerInterleavedLoad(
 | |
|     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
 | |
|     ArrayRef<unsigned> Indices, unsigned Factor) const {
 | |
|   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | |
|          "Invalid interleave factor");
 | |
|   assert(!Shuffles.empty() && "Empty shufflevector input");
 | |
|   assert(Shuffles.size() == Indices.size() &&
 | |
|          "Unmatched number of shufflevectors and indices");
 | |
| 
 | |
|   VectorType *VecTy = Shuffles[0]->getType();
 | |
|   Type *EltTy = VecTy->getVectorElementType();
 | |
| 
 | |
|   const DataLayout &DL = LI->getModule()->getDataLayout();
 | |
| 
 | |
|   // Skip if we do not have NEON and skip illegal vector types. We can
 | |
|   // "legalize" wide vector types into multiple interleaved accesses as long as
 | |
|   // the vector types are divisible by 128.
 | |
|   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
 | |
| 
 | |
|   // A pointer vector can not be the return type of the ldN intrinsics. Need to
 | |
|   // load integer vectors first and then convert to pointer vectors.
 | |
|   if (EltTy->isPointerTy())
 | |
|     VecTy =
 | |
|         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
 | |
| 
 | |
|   IRBuilder<> Builder(LI);
 | |
| 
 | |
|   // The base address of the load.
 | |
|   Value *BaseAddr = LI->getPointerOperand();
 | |
| 
 | |
|   if (NumLoads > 1) {
 | |
|     // If we're going to generate more than one load, reset the sub-vector type
 | |
|     // to something legal.
 | |
|     VecTy = VectorType::get(VecTy->getVectorElementType(),
 | |
|                             VecTy->getVectorNumElements() / NumLoads);
 | |
| 
 | |
|     // We will compute the pointer operand of each load from the original base
 | |
|     // address using GEPs. Cast the base address to a pointer to the scalar
 | |
|     // element type.
 | |
|     BaseAddr = Builder.CreateBitCast(
 | |
|         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
 | |
|                       LI->getPointerAddressSpace()));
 | |
|   }
 | |
| 
 | |
|   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
 | |
| 
 | |
|   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
 | |
|   Type *Tys[] = {VecTy, Int8Ptr};
 | |
|   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
 | |
|                                             Intrinsic::arm_neon_vld3,
 | |
|                                             Intrinsic::arm_neon_vld4};
 | |
|   Function *VldnFunc =
 | |
|       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
 | |
| 
 | |
|   // Holds sub-vectors extracted from the load intrinsic return values. The
 | |
|   // sub-vectors are associated with the shufflevector instructions they will
 | |
|   // replace.
 | |
|   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
 | |
| 
 | |
|   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
 | |
|     // If we're generating more than one load, compute the base address of
 | |
|     // subsequent loads as an offset from the previous.
 | |
|     if (LoadCount > 0)
 | |
|       BaseAddr = Builder.CreateConstGEP1_32(
 | |
|           BaseAddr, VecTy->getVectorNumElements() * Factor);
 | |
| 
 | |
|     SmallVector<Value *, 2> Ops;
 | |
|     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
 | |
|     Ops.push_back(Builder.getInt32(LI->getAlignment()));
 | |
| 
 | |
|     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
 | |
| 
 | |
|     // Replace uses of each shufflevector with the corresponding vector loaded
 | |
|     // by ldN.
 | |
|     for (unsigned i = 0; i < Shuffles.size(); i++) {
 | |
|       ShuffleVectorInst *SV = Shuffles[i];
 | |
|       unsigned Index = Indices[i];
 | |
| 
 | |
|       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
 | |
| 
 | |
|       // Convert the integer vector to pointer vector if the element is pointer.
 | |
|       if (EltTy->isPointerTy())
 | |
|         SubVec = Builder.CreateIntToPtr(
 | |
|             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
 | |
|                                     VecTy->getVectorNumElements()));
 | |
| 
 | |
|       SubVecs[SV].push_back(SubVec);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace uses of the shufflevector instructions with the sub-vectors
 | |
|   // returned by the load intrinsic. If a shufflevector instruction is
 | |
|   // associated with more than one sub-vector, those sub-vectors will be
 | |
|   // concatenated into a single wide vector.
 | |
|   for (ShuffleVectorInst *SVI : Shuffles) {
 | |
|     auto &SubVec = SubVecs[SVI];
 | |
|     auto *WideVec =
 | |
|         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
 | |
|     SVI->replaceAllUsesWith(WideVec);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Lower an interleaved store into a vstN intrinsic.
 | |
| ///
 | |
| /// E.g. Lower an interleaved store (Factor = 3):
 | |
| ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
 | |
| ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
 | |
| ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
 | |
| ///
 | |
| ///      Into:
 | |
| ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
 | |
| ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
 | |
| ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
 | |
| ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
 | |
| ///
 | |
| /// Note that the new shufflevectors will be removed and we'll only generate one
 | |
| /// vst3 instruction in CodeGen.
 | |
| ///
 | |
| /// Example for a more general valid mask (Factor 3). Lower:
 | |
| ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
 | |
| ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
 | |
| ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
 | |
| ///
 | |
| ///      Into:
 | |
| ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
 | |
| ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
 | |
| ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
 | |
| ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
 | |
| bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
 | |
|                                               ShuffleVectorInst *SVI,
 | |
|                                               unsigned Factor) const {
 | |
|   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | |
|          "Invalid interleave factor");
 | |
| 
 | |
|   VectorType *VecTy = SVI->getType();
 | |
|   assert(VecTy->getVectorNumElements() % Factor == 0 &&
 | |
|          "Invalid interleaved store");
 | |
| 
 | |
|   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
 | |
|   Type *EltTy = VecTy->getVectorElementType();
 | |
|   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
 | |
| 
 | |
|   const DataLayout &DL = SI->getModule()->getDataLayout();
 | |
| 
 | |
|   // Skip if we do not have NEON and skip illegal vector types. We can
 | |
|   // "legalize" wide vector types into multiple interleaved accesses as long as
 | |
|   // the vector types are divisible by 128.
 | |
|   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
 | |
| 
 | |
|   Value *Op0 = SVI->getOperand(0);
 | |
|   Value *Op1 = SVI->getOperand(1);
 | |
|   IRBuilder<> Builder(SI);
 | |
| 
 | |
|   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
 | |
|   // vectors to integer vectors.
 | |
|   if (EltTy->isPointerTy()) {
 | |
|     Type *IntTy = DL.getIntPtrType(EltTy);
 | |
| 
 | |
|     // Convert to the corresponding integer vector.
 | |
|     Type *IntVecTy =
 | |
|         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
 | |
|     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
 | |
|     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
 | |
| 
 | |
|     SubVecTy = VectorType::get(IntTy, LaneLen);
 | |
|   }
 | |
| 
 | |
|   // The base address of the store.
 | |
|   Value *BaseAddr = SI->getPointerOperand();
 | |
| 
 | |
|   if (NumStores > 1) {
 | |
|     // If we're going to generate more than one store, reset the lane length
 | |
|     // and sub-vector type to something legal.
 | |
|     LaneLen /= NumStores;
 | |
|     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
 | |
| 
 | |
|     // We will compute the pointer operand of each store from the original base
 | |
|     // address using GEPs. Cast the base address to a pointer to the scalar
 | |
|     // element type.
 | |
|     BaseAddr = Builder.CreateBitCast(
 | |
|         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
 | |
|                       SI->getPointerAddressSpace()));
 | |
|   }
 | |
| 
 | |
|   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
 | |
| 
 | |
|   auto Mask = SVI->getShuffleMask();
 | |
| 
 | |
|   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
 | |
|   Type *Tys[] = {Int8Ptr, SubVecTy};
 | |
|   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
 | |
|                                              Intrinsic::arm_neon_vst3,
 | |
|                                              Intrinsic::arm_neon_vst4};
 | |
| 
 | |
|   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
 | |
|     // If we generating more than one store, we compute the base address of
 | |
|     // subsequent stores as an offset from the previous.
 | |
|     if (StoreCount > 0)
 | |
|       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
 | |
| 
 | |
|     SmallVector<Value *, 6> Ops;
 | |
|     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
 | |
| 
 | |
|     Function *VstNFunc =
 | |
|         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
 | |
| 
 | |
|     // Split the shufflevector operands into sub vectors for the new vstN call.
 | |
|     for (unsigned i = 0; i < Factor; i++) {
 | |
|       unsigned IdxI = StoreCount * LaneLen * Factor + i;
 | |
|       if (Mask[IdxI] >= 0) {
 | |
|         Ops.push_back(Builder.CreateShuffleVector(
 | |
|             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
 | |
|       } else {
 | |
|         unsigned StartMask = 0;
 | |
|         for (unsigned j = 1; j < LaneLen; j++) {
 | |
|           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
 | |
|           if (Mask[IdxJ * Factor + IdxI] >= 0) {
 | |
|             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // Note: If all elements in a chunk are undefs, StartMask=0!
 | |
|         // Note: Filling undef gaps with random elements is ok, since
 | |
|         // those elements were being written anyway (with undefs).
 | |
|         // In the case of all undefs we're defaulting to using elems from 0
 | |
|         // Note: StartMask cannot be negative, it's checked in
 | |
|         // isReInterleaveMask
 | |
|         Ops.push_back(Builder.CreateShuffleVector(
 | |
|             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(Builder.getInt32(SI->getAlignment()));
 | |
|     Builder.CreateCall(VstNFunc, Ops);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| enum HABaseType {
 | |
|   HA_UNKNOWN = 0,
 | |
|   HA_FLOAT,
 | |
|   HA_DOUBLE,
 | |
|   HA_VECT64,
 | |
|   HA_VECT128
 | |
| };
 | |
| 
 | |
| static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
 | |
|                                    uint64_t &Members) {
 | |
|   if (auto *ST = dyn_cast<StructType>(Ty)) {
 | |
|     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
 | |
|       uint64_t SubMembers = 0;
 | |
|       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
 | |
|         return false;
 | |
|       Members += SubMembers;
 | |
|     }
 | |
|   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
 | |
|     uint64_t SubMembers = 0;
 | |
|     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
 | |
|       return false;
 | |
|     Members += SubMembers * AT->getNumElements();
 | |
|   } else if (Ty->isFloatTy()) {
 | |
|     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
 | |
|       return false;
 | |
|     Members = 1;
 | |
|     Base = HA_FLOAT;
 | |
|   } else if (Ty->isDoubleTy()) {
 | |
|     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
 | |
|       return false;
 | |
|     Members = 1;
 | |
|     Base = HA_DOUBLE;
 | |
|   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
 | |
|     Members = 1;
 | |
|     switch (Base) {
 | |
|     case HA_FLOAT:
 | |
|     case HA_DOUBLE:
 | |
|       return false;
 | |
|     case HA_VECT64:
 | |
|       return VT->getBitWidth() == 64;
 | |
|     case HA_VECT128:
 | |
|       return VT->getBitWidth() == 128;
 | |
|     case HA_UNKNOWN:
 | |
|       switch (VT->getBitWidth()) {
 | |
|       case 64:
 | |
|         Base = HA_VECT64;
 | |
|         return true;
 | |
|       case 128:
 | |
|         Base = HA_VECT128;
 | |
|         return true;
 | |
|       default:
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return (Members > 0 && Members <= 4);
 | |
| }
 | |
| 
 | |
| /// Return the correct alignment for the current calling convention.
 | |
| unsigned
 | |
| ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
 | |
|                                                  DataLayout DL) const {
 | |
|   if (!ArgTy->isVectorTy())
 | |
|     return DL.getABITypeAlignment(ArgTy);
 | |
| 
 | |
|   // Avoid over-aligning vector parameters. It would require realigning the
 | |
|   // stack and waste space for no real benefit.
 | |
|   return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
 | |
| }
 | |
| 
 | |
| /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
 | |
| /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
 | |
| /// passing according to AAPCS rules.
 | |
| bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
 | |
|     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
 | |
|   if (getEffectiveCallingConv(CallConv, isVarArg) !=
 | |
|       CallingConv::ARM_AAPCS_VFP)
 | |
|     return false;
 | |
| 
 | |
|   HABaseType Base = HA_UNKNOWN;
 | |
|   uint64_t Members = 0;
 | |
|   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
 | |
|   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
 | |
| 
 | |
|   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
 | |
|   return IsHA || IsIntArray;
 | |
| }
 | |
| 
 | |
| unsigned ARMTargetLowering::getExceptionPointerRegister(
 | |
|     const Constant *PersonalityFn) const {
 | |
|   // Platforms which do not use SjLj EH may return values in these registers
 | |
|   // via the personality function.
 | |
|   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
 | |
| }
 | |
| 
 | |
| unsigned ARMTargetLowering::getExceptionSelectorRegister(
 | |
|     const Constant *PersonalityFn) const {
 | |
|   // Platforms which do not use SjLj EH may return values in these registers
 | |
|   // via the personality function.
 | |
|   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
 | |
|   // Update IsSplitCSR in ARMFunctionInfo.
 | |
|   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
 | |
|   AFI->setIsSplitCSR(true);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::insertCopiesSplitCSR(
 | |
|     MachineBasicBlock *Entry,
 | |
|     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
 | |
|   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
 | |
|   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
 | |
|   if (!IStart)
 | |
|     return;
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
 | |
|   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
 | |
|   MachineBasicBlock::iterator MBBI = Entry->begin();
 | |
|   for (const MCPhysReg *I = IStart; *I; ++I) {
 | |
|     const TargetRegisterClass *RC = nullptr;
 | |
|     if (ARM::GPRRegClass.contains(*I))
 | |
|       RC = &ARM::GPRRegClass;
 | |
|     else if (ARM::DPRRegClass.contains(*I))
 | |
|       RC = &ARM::DPRRegClass;
 | |
|     else
 | |
|       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | |
| 
 | |
|     unsigned NewVR = MRI->createVirtualRegister(RC);
 | |
|     // Create copy from CSR to a virtual register.
 | |
|     // FIXME: this currently does not emit CFI pseudo-instructions, it works
 | |
|     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
 | |
|     // nounwind. If we want to generalize this later, we may need to emit
 | |
|     // CFI pseudo-instructions.
 | |
|     assert(Entry->getParent()->getFunction().hasFnAttribute(
 | |
|                Attribute::NoUnwind) &&
 | |
|            "Function should be nounwind in insertCopiesSplitCSR!");
 | |
|     Entry->addLiveIn(*I);
 | |
|     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
 | |
|         .addReg(*I);
 | |
| 
 | |
|     // Insert the copy-back instructions right before the terminator.
 | |
|     for (auto *Exit : Exits)
 | |
|       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
 | |
|               TII->get(TargetOpcode::COPY), *I)
 | |
|           .addReg(NewVR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
 | |
|   MF.getFrameInfo().computeMaxCallFrameSize(MF);
 | |
|   TargetLoweringBase::finalizeLowering(MF);
 | |
| }
 |