423 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			423 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// This file implements the targeting of the Machinelegalizer class for ARM.
 | 
						|
/// \todo This should be generated by TableGen.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ARMLegalizerInfo.h"
 | 
						|
#include "ARMCallLowering.h"
 | 
						|
#include "ARMSubtarget.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
 | 
						|
#include "llvm/CodeGen/LowLevelType.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace LegalizeActions;
 | 
						|
 | 
						|
/// FIXME: The following static functions are SizeChangeStrategy functions
 | 
						|
/// that are meant to temporarily mimic the behaviour of the old legalization
 | 
						|
/// based on doubling/halving non-legal types as closely as possible. This is
 | 
						|
/// not entirly possible as only legalizing the types that are exactly a power
 | 
						|
/// of 2 times the size of the legal types would require specifying all those
 | 
						|
/// sizes explicitly.
 | 
						|
/// In practice, not specifying those isn't a problem, and the below functions
 | 
						|
/// should disappear quickly as we add support for legalizing non-power-of-2
 | 
						|
/// sized types further.
 | 
						|
static void
 | 
						|
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
 | 
						|
                                const LegalizerInfo::SizeAndActionsVec &v) {
 | 
						|
  for (unsigned i = 0; i < v.size(); ++i) {
 | 
						|
    result.push_back(v[i]);
 | 
						|
    if (i + 1 < v[i].first && i + 1 < v.size() &&
 | 
						|
        v[i + 1].first != v[i].first + 1)
 | 
						|
      result.push_back({v[i].first + 1, Unsupported});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static LegalizerInfo::SizeAndActionsVec
 | 
						|
widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
 | 
						|
  assert(v.size() >= 1);
 | 
						|
  assert(v[0].first > 17);
 | 
						|
  LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported},
 | 
						|
                                             {8, WidenScalar},
 | 
						|
                                             {9, Unsupported},
 | 
						|
                                             {16, WidenScalar},
 | 
						|
                                             {17, Unsupported}};
 | 
						|
  addAndInterleaveWithUnsupported(result, v);
 | 
						|
  auto Largest = result.back().first;
 | 
						|
  result.push_back({Largest + 1, Unsupported});
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
static bool AEABI(const ARMSubtarget &ST) {
 | 
						|
  return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
 | 
						|
}
 | 
						|
 | 
						|
ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
 | 
						|
  using namespace TargetOpcode;
 | 
						|
 | 
						|
  const LLT p0 = LLT::pointer(0, 32);
 | 
						|
 | 
						|
  const LLT s1 = LLT::scalar(1);
 | 
						|
  const LLT s8 = LLT::scalar(8);
 | 
						|
  const LLT s16 = LLT::scalar(16);
 | 
						|
  const LLT s32 = LLT::scalar(32);
 | 
						|
  const LLT s64 = LLT::scalar(64);
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
 | 
						|
  getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
 | 
						|
      .legalFor({s32})
 | 
						|
      .minScalar(0, s32);
 | 
						|
 | 
						|
  if (ST.hasDivideInARMMode())
 | 
						|
    getActionDefinitionsBuilder({G_SDIV, G_UDIV})
 | 
						|
        .legalFor({s32})
 | 
						|
        .clampScalar(0, s32, s32);
 | 
						|
  else
 | 
						|
    getActionDefinitionsBuilder({G_SDIV, G_UDIV})
 | 
						|
        .libcallFor({s32})
 | 
						|
        .clampScalar(0, s32, s32);
 | 
						|
 | 
						|
  for (unsigned Op : {G_SREM, G_UREM}) {
 | 
						|
    setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
 | 
						|
    if (ST.hasDivideInARMMode())
 | 
						|
      setAction({Op, s32}, Lower);
 | 
						|
    else if (AEABI(ST))
 | 
						|
      setAction({Op, s32}, Custom);
 | 
						|
    else
 | 
						|
      setAction({Op, s32}, Libcall);
 | 
						|
  }
 | 
						|
 | 
						|
  getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
 | 
						|
      .legalForCartesianProduct({s32}, {s1, s8, s16});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
 | 
						|
  getActionDefinitionsBuilder(G_PTRTOINT).legalFor({{s32, p0}});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL}).legalFor({s32});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_GEP).legalFor({{p0, s32}});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_SELECT).legalForCartesianProduct({s32, p0},
 | 
						|
                                                                 {s1});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_CONSTANT)
 | 
						|
      .legalFor({s32, p0})
 | 
						|
      .clampScalar(0, s32, s32);
 | 
						|
 | 
						|
  getActionDefinitionsBuilder(G_ICMP)
 | 
						|
      .legalForCartesianProduct({s1}, {s32, p0})
 | 
						|
      .minScalar(1, s32);
 | 
						|
 | 
						|
  // We're keeping these builders around because we'll want to add support for
 | 
						|
  // floating point to them.
 | 
						|
  auto &LoadStoreBuilder =
 | 
						|
      getActionDefinitionsBuilder({G_LOAD, G_STORE})
 | 
						|
          .legalForCartesianProduct({s1, s8, s16, s32, p0}, {p0});
 | 
						|
 | 
						|
  auto &PhiBuilder =
 | 
						|
      getActionDefinitionsBuilder(G_PHI).legalFor({s32, p0}).minScalar(0, s32);
 | 
						|
 | 
						|
  if (!ST.useSoftFloat() && ST.hasVFP2()) {
 | 
						|
    getActionDefinitionsBuilder(
 | 
						|
        {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
 | 
						|
        .legalFor({s32, s64});
 | 
						|
 | 
						|
    LoadStoreBuilder.legalFor({{s64, p0}});
 | 
						|
    PhiBuilder.legalFor({s64});
 | 
						|
 | 
						|
    getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
 | 
						|
                                                                 {s32, s64});
 | 
						|
 | 
						|
    getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
 | 
						|
    getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
 | 
						|
 | 
						|
    getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
 | 
						|
    getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
 | 
						|
 | 
						|
    getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
 | 
						|
        .legalForCartesianProduct({s32}, {s32, s64});
 | 
						|
    getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
 | 
						|
        .legalForCartesianProduct({s32, s64}, {s32});
 | 
						|
  } else {
 | 
						|
    getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
 | 
						|
        .libcallFor({s32, s64});
 | 
						|
 | 
						|
    LoadStoreBuilder.maxScalar(0, s32);
 | 
						|
 | 
						|
    for (auto Ty : {s32, s64})
 | 
						|
      setAction({G_FNEG, Ty}, Lower);
 | 
						|
 | 
						|
    getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
 | 
						|
 | 
						|
    getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
 | 
						|
                                                                  {s32, s64});
 | 
						|
 | 
						|
    if (AEABI(ST))
 | 
						|
      setFCmpLibcallsAEABI();
 | 
						|
    else
 | 
						|
      setFCmpLibcallsGNU();
 | 
						|
 | 
						|
    getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
 | 
						|
    getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
 | 
						|
 | 
						|
    getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
 | 
						|
        .libcallForCartesianProduct({s32}, {s32, s64});
 | 
						|
    getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
 | 
						|
        .libcallForCartesianProduct({s32, s64}, {s32});
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ST.useSoftFloat() && ST.hasVFP4())
 | 
						|
    getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
 | 
						|
  else
 | 
						|
    getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
 | 
						|
 | 
						|
  getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
 | 
						|
 | 
						|
  computeTables();
 | 
						|
  verify(*ST.getInstrInfo());
 | 
						|
}
 | 
						|
 | 
						|
void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
 | 
						|
  // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
 | 
						|
  // default-initialized.
 | 
						|
  FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
 | 
						|
      {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OGE] = {
 | 
						|
      {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OGT] = {
 | 
						|
      {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OLE] = {
 | 
						|
      {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OLT] = {
 | 
						|
      {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UNO] = {
 | 
						|
      {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ONE] = {
 | 
						|
      {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
 | 
						|
      {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
 | 
						|
      {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
 | 
						|
      {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
 | 
						|
  FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
 | 
						|
      {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OGE] = {
 | 
						|
      {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OGT] = {
 | 
						|
      {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OLE] = {
 | 
						|
      {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OLT] = {
 | 
						|
      {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UNO] = {
 | 
						|
      {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ONE] = {
 | 
						|
      {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
 | 
						|
      {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
 | 
						|
      {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
 | 
						|
      {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
 | 
						|
}
 | 
						|
 | 
						|
void ARMLegalizerInfo::setFCmpLibcallsGNU() {
 | 
						|
  // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
 | 
						|
  // default-initialized.
 | 
						|
  FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
 | 
						|
                                       {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
 | 
						|
  FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
 | 
						|
                                       {RTLIB::UO_F32, CmpInst::ICMP_NE}};
 | 
						|
 | 
						|
  FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
 | 
						|
                                       {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
 | 
						|
  FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
 | 
						|
                                       {RTLIB::UO_F64, CmpInst::ICMP_NE}};
 | 
						|
}
 | 
						|
 | 
						|
ARMLegalizerInfo::FCmpLibcallsList
 | 
						|
ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
 | 
						|
                                  unsigned Size) const {
 | 
						|
  assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
 | 
						|
  if (Size == 32)
 | 
						|
    return FCmp32Libcalls[Predicate];
 | 
						|
  if (Size == 64)
 | 
						|
    return FCmp64Libcalls[Predicate];
 | 
						|
  llvm_unreachable("Unsupported size for FCmp predicate");
 | 
						|
}
 | 
						|
 | 
						|
bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
 | 
						|
                                      MachineRegisterInfo &MRI,
 | 
						|
                                      MachineIRBuilder &MIRBuilder) const {
 | 
						|
  using namespace TargetOpcode;
 | 
						|
 | 
						|
  MIRBuilder.setInstr(MI);
 | 
						|
  LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
 | 
						|
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case G_SREM:
 | 
						|
  case G_UREM: {
 | 
						|
    unsigned OriginalResult = MI.getOperand(0).getReg();
 | 
						|
    auto Size = MRI.getType(OriginalResult).getSizeInBits();
 | 
						|
    if (Size != 32)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto Libcall =
 | 
						|
        MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
 | 
						|
 | 
						|
    // Our divmod libcalls return a struct containing the quotient and the
 | 
						|
    // remainder. We need to create a virtual register for it.
 | 
						|
    Type *ArgTy = Type::getInt32Ty(Ctx);
 | 
						|
    StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
 | 
						|
    auto RetVal = MRI.createGenericVirtualRegister(
 | 
						|
        getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
 | 
						|
 | 
						|
    auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy},
 | 
						|
                                {{MI.getOperand(1).getReg(), ArgTy},
 | 
						|
                                 {MI.getOperand(2).getReg(), ArgTy}});
 | 
						|
    if (Status != LegalizerHelper::Legalized)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The remainder is the second result of divmod. Split the return value into
 | 
						|
    // a new, unused register for the quotient and the destination of the
 | 
						|
    // original instruction for the remainder.
 | 
						|
    MIRBuilder.buildUnmerge(
 | 
						|
        {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
 | 
						|
        RetVal);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case G_FCMP: {
 | 
						|
    assert(MRI.getType(MI.getOperand(2).getReg()) ==
 | 
						|
               MRI.getType(MI.getOperand(3).getReg()) &&
 | 
						|
           "Mismatched operands for G_FCMP");
 | 
						|
    auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
 | 
						|
 | 
						|
    auto OriginalResult = MI.getOperand(0).getReg();
 | 
						|
    auto Predicate =
 | 
						|
        static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
 | 
						|
    auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
 | 
						|
 | 
						|
    if (Libcalls.empty()) {
 | 
						|
      assert((Predicate == CmpInst::FCMP_TRUE ||
 | 
						|
              Predicate == CmpInst::FCMP_FALSE) &&
 | 
						|
             "Predicate needs libcalls, but none specified");
 | 
						|
      MIRBuilder.buildConstant(OriginalResult,
 | 
						|
                               Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
 | 
						|
      MI.eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
 | 
						|
    auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
 | 
						|
    auto *RetTy = Type::getInt32Ty(Ctx);
 | 
						|
 | 
						|
    SmallVector<unsigned, 2> Results;
 | 
						|
    for (auto Libcall : Libcalls) {
 | 
						|
      auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
 | 
						|
      auto Status =
 | 
						|
          createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
 | 
						|
                        {{MI.getOperand(2).getReg(), ArgTy},
 | 
						|
                         {MI.getOperand(3).getReg(), ArgTy}});
 | 
						|
 | 
						|
      if (Status != LegalizerHelper::Legalized)
 | 
						|
        return false;
 | 
						|
 | 
						|
      auto ProcessedResult =
 | 
						|
          Libcalls.size() == 1
 | 
						|
              ? OriginalResult
 | 
						|
              : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
 | 
						|
 | 
						|
      // We have a result, but we need to transform it into a proper 1-bit 0 or
 | 
						|
      // 1, taking into account the different peculiarities of the values
 | 
						|
      // returned by the comparison functions.
 | 
						|
      CmpInst::Predicate ResultPred = Libcall.Predicate;
 | 
						|
      if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
 | 
						|
        // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
 | 
						|
        // to keep the types consistent.
 | 
						|
        MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
 | 
						|
      } else {
 | 
						|
        // We need to compare against 0.
 | 
						|
        assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
 | 
						|
        auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
 | 
						|
        MIRBuilder.buildConstant(Zero, 0);
 | 
						|
        MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
 | 
						|
      }
 | 
						|
      Results.push_back(ProcessedResult);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Results.size() != 1) {
 | 
						|
      assert(Results.size() == 2 && "Unexpected number of results");
 | 
						|
      MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case G_FCONSTANT: {
 | 
						|
    // Convert to integer constants, while preserving the binary representation.
 | 
						|
    auto AsInteger =
 | 
						|
        MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
 | 
						|
    MIRBuilder.buildConstant(MI.getOperand(0).getReg(),
 | 
						|
                             *ConstantInt::get(Ctx, AsInteger));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 |