516 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			516 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "ARM.h"
 | |
| #include "ARMMacroFusion.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "ARMTargetObjectFile.h"
 | |
| #include "ARMTargetTransformInfo.h"
 | |
| #include "MCTargetDesc/ARMMCTargetDesc.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/ExecutionDomainFix.h"
 | |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h"
 | |
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
 | |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
 | |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
 | |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h"
 | |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineScheduler.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TargetParser.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include <cassert>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
 | |
|                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
 | |
|                    cl::init(false));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
 | |
|                  cl::desc("Run SimplifyCFG after expanding atomic operations"
 | |
|                           " to make use of cmpxchg flow-based information"),
 | |
|                  cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
 | |
|                       cl::desc("Enable ARM load/store optimization pass"),
 | |
|                       cl::init(true));
 | |
| 
 | |
| // FIXME: Unify control over GlobalMerge.
 | |
| static cl::opt<cl::boolOrDefault>
 | |
| EnableGlobalMerge("arm-global-merge", cl::Hidden,
 | |
|                   cl::desc("Enable the global merge pass"));
 | |
| 
 | |
| namespace llvm {
 | |
|   void initializeARMExecutionDomainFixPass(PassRegistry&);
 | |
| }
 | |
| 
 | |
| extern "C" void LLVMInitializeARMTarget() {
 | |
|   // Register the target.
 | |
|   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
 | |
|   RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
 | |
|   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
 | |
|   RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
 | |
| 
 | |
|   PassRegistry &Registry = *PassRegistry::getPassRegistry();
 | |
|   initializeGlobalISel(Registry);
 | |
|   initializeARMLoadStoreOptPass(Registry);
 | |
|   initializeARMPreAllocLoadStoreOptPass(Registry);
 | |
|   initializeARMParallelDSPPass(Registry);
 | |
|   initializeARMCodeGenPreparePass(Registry);
 | |
|   initializeARMConstantIslandsPass(Registry);
 | |
|   initializeARMExecutionDomainFixPass(Registry);
 | |
|   initializeARMExpandPseudoPass(Registry);
 | |
|   initializeThumb2SizeReducePass(Registry);
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
 | |
|   if (TT.isOSBinFormatMachO())
 | |
|     return llvm::make_unique<TargetLoweringObjectFileMachO>();
 | |
|   if (TT.isOSWindows())
 | |
|     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
 | |
|   return llvm::make_unique<ARMElfTargetObjectFile>();
 | |
| }
 | |
| 
 | |
| static ARMBaseTargetMachine::ARMABI
 | |
| computeTargetABI(const Triple &TT, StringRef CPU,
 | |
|                  const TargetOptions &Options) {
 | |
|   StringRef ABIName = Options.MCOptions.getABIName();
 | |
| 
 | |
|   if (ABIName.empty())
 | |
|     ABIName = ARM::computeDefaultTargetABI(TT, CPU);
 | |
| 
 | |
|   if (ABIName == "aapcs16")
 | |
|     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
 | |
|   else if (ABIName.startswith("aapcs"))
 | |
|     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
 | |
|   else if (ABIName.startswith("apcs"))
 | |
|     return ARMBaseTargetMachine::ARM_ABI_APCS;
 | |
| 
 | |
|   llvm_unreachable("Unhandled/unknown ABI Name!");
 | |
|   return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
 | |
| }
 | |
| 
 | |
| static std::string computeDataLayout(const Triple &TT, StringRef CPU,
 | |
|                                      const TargetOptions &Options,
 | |
|                                      bool isLittle) {
 | |
|   auto ABI = computeTargetABI(TT, CPU, Options);
 | |
|   std::string Ret;
 | |
| 
 | |
|   if (isLittle)
 | |
|     // Little endian.
 | |
|     Ret += "e";
 | |
|   else
 | |
|     // Big endian.
 | |
|     Ret += "E";
 | |
| 
 | |
|   Ret += DataLayout::getManglingComponent(TT);
 | |
| 
 | |
|   // Pointers are 32 bits and aligned to 32 bits.
 | |
|   Ret += "-p:32:32";
 | |
| 
 | |
|   // ABIs other than APCS have 64 bit integers with natural alignment.
 | |
|   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
 | |
|     Ret += "-i64:64";
 | |
| 
 | |
|   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
 | |
|   // bits, others to 64 bits. We always try to align to 64 bits.
 | |
|   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
 | |
|     Ret += "-f64:32:64";
 | |
| 
 | |
|   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
 | |
|   // to 64. We always ty to give them natural alignment.
 | |
|   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
 | |
|     Ret += "-v64:32:64-v128:32:128";
 | |
|   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
 | |
|     Ret += "-v128:64:128";
 | |
| 
 | |
|   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
 | |
|   // particular hardware support on 32-bit ARM).
 | |
|   Ret += "-a:0:32";
 | |
| 
 | |
|   // Integer registers are 32 bits.
 | |
|   Ret += "-n32";
 | |
| 
 | |
|   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
 | |
|   // aligned everywhere else.
 | |
|   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
 | |
|     Ret += "-S128";
 | |
|   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
 | |
|     Ret += "-S64";
 | |
|   else
 | |
|     Ret += "-S32";
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static Reloc::Model getEffectiveRelocModel(const Triple &TT,
 | |
|                                            Optional<Reloc::Model> RM) {
 | |
|   if (!RM.hasValue())
 | |
|     // Default relocation model on Darwin is PIC.
 | |
|     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
 | |
| 
 | |
|   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
 | |
|     assert(TT.isOSBinFormatELF() &&
 | |
|            "ROPI/RWPI currently only supported for ELF");
 | |
| 
 | |
|   // DynamicNoPIC is only used on darwin.
 | |
|   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
 | |
|     return Reloc::Static;
 | |
| 
 | |
|   return *RM;
 | |
| }
 | |
| 
 | |
| static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) {
 | |
|   if (CM)
 | |
|     return *CM;
 | |
|   return CodeModel::Small;
 | |
| }
 | |
| 
 | |
| /// Create an ARM architecture model.
 | |
| ///
 | |
| ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
 | |
|                                            StringRef CPU, StringRef FS,
 | |
|                                            const TargetOptions &Options,
 | |
|                                            Optional<Reloc::Model> RM,
 | |
|                                            Optional<CodeModel::Model> CM,
 | |
|                                            CodeGenOpt::Level OL, bool isLittle)
 | |
|     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
 | |
|                         CPU, FS, Options, getEffectiveRelocModel(TT, RM),
 | |
|                         getEffectiveCodeModel(CM), OL),
 | |
|       TargetABI(computeTargetABI(TT, CPU, Options)),
 | |
|       TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
 | |
| 
 | |
|   // Default to triple-appropriate float ABI
 | |
|   if (Options.FloatABIType == FloatABI::Default) {
 | |
|     if (isTargetHardFloat())
 | |
|       this->Options.FloatABIType = FloatABI::Hard;
 | |
|     else
 | |
|       this->Options.FloatABIType = FloatABI::Soft;
 | |
|   }
 | |
| 
 | |
|   // Default to triple-appropriate EABI
 | |
|   if (Options.EABIVersion == EABI::Default ||
 | |
|       Options.EABIVersion == EABI::Unknown) {
 | |
|     // musl is compatible with glibc with regard to EABI version
 | |
|     if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
 | |
|          TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
 | |
|          TargetTriple.getEnvironment() == Triple::MuslEABI ||
 | |
|          TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
 | |
|         !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
 | |
|       this->Options.EABIVersion = EABI::GNU;
 | |
|     else
 | |
|       this->Options.EABIVersion = EABI::EABI5;
 | |
|   }
 | |
| 
 | |
|   if (TT.isOSBinFormatMachO()) {
 | |
|     this->Options.TrapUnreachable = true;
 | |
|     this->Options.NoTrapAfterNoreturn = true;
 | |
|   }
 | |
| 
 | |
|   initAsmInfo();
 | |
| }
 | |
| 
 | |
| ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
 | |
| 
 | |
| const ARMSubtarget *
 | |
| ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
 | |
|   Attribute CPUAttr = F.getFnAttribute("target-cpu");
 | |
|   Attribute FSAttr = F.getFnAttribute("target-features");
 | |
| 
 | |
|   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
 | |
|                         ? CPUAttr.getValueAsString().str()
 | |
|                         : TargetCPU;
 | |
|   std::string FS = !FSAttr.hasAttribute(Attribute::None)
 | |
|                        ? FSAttr.getValueAsString().str()
 | |
|                        : TargetFS;
 | |
| 
 | |
|   // FIXME: This is related to the code below to reset the target options,
 | |
|   // we need to know whether or not the soft float flag is set on the
 | |
|   // function before we can generate a subtarget. We also need to use
 | |
|   // it as a key for the subtarget since that can be the only difference
 | |
|   // between two functions.
 | |
|   bool SoftFloat =
 | |
|       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
 | |
|   // If the soft float attribute is set on the function turn on the soft float
 | |
|   // subtarget feature.
 | |
|   if (SoftFloat)
 | |
|     FS += FS.empty() ? "+soft-float" : ",+soft-float";
 | |
| 
 | |
|   auto &I = SubtargetMap[CPU + FS];
 | |
|   if (!I) {
 | |
|     // This needs to be done before we create a new subtarget since any
 | |
|     // creation will depend on the TM and the code generation flags on the
 | |
|     // function that reside in TargetOptions.
 | |
|     resetTargetOptions(F);
 | |
|     I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
 | |
| 
 | |
|     if (!I->isThumb() && !I->hasARMOps())
 | |
|       F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
 | |
|           "instructions, but the target does not support ARM mode execution.");
 | |
|   }
 | |
| 
 | |
|   return I.get();
 | |
| }
 | |
| 
 | |
| TargetTransformInfo
 | |
| ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
 | |
|   return TargetTransformInfo(ARMTTIImpl(this, F));
 | |
| }
 | |
| 
 | |
| ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
 | |
|                                        StringRef CPU, StringRef FS,
 | |
|                                        const TargetOptions &Options,
 | |
|                                        Optional<Reloc::Model> RM,
 | |
|                                        Optional<CodeModel::Model> CM,
 | |
|                                        CodeGenOpt::Level OL, bool JIT)
 | |
|     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
 | |
| 
 | |
| ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
 | |
|                                        StringRef CPU, StringRef FS,
 | |
|                                        const TargetOptions &Options,
 | |
|                                        Optional<Reloc::Model> RM,
 | |
|                                        Optional<CodeModel::Model> CM,
 | |
|                                        CodeGenOpt::Level OL, bool JIT)
 | |
|     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ARM Code Generator Pass Configuration Options.
 | |
| class ARMPassConfig : public TargetPassConfig {
 | |
| public:
 | |
|   ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
 | |
|       : TargetPassConfig(TM, PM) {
 | |
|     if (TM.getOptLevel() != CodeGenOpt::None) {
 | |
|       ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
 | |
|                               TM.getTargetFeatureString());
 | |
|       if (STI.hasFeature(ARM::FeatureUseMISched))
 | |
|         substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ARMBaseTargetMachine &getARMTargetMachine() const {
 | |
|     return getTM<ARMBaseTargetMachine>();
 | |
|   }
 | |
| 
 | |
|   ScheduleDAGInstrs *
 | |
|   createMachineScheduler(MachineSchedContext *C) const override {
 | |
|     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
 | |
|     // add DAG Mutations here.
 | |
|     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
 | |
|     if (ST.hasFusion())
 | |
|       DAG->addMutation(createARMMacroFusionDAGMutation());
 | |
|     return DAG;
 | |
|   }
 | |
| 
 | |
|   ScheduleDAGInstrs *
 | |
|   createPostMachineScheduler(MachineSchedContext *C) const override {
 | |
|     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
 | |
|     // add DAG Mutations here.
 | |
|     const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
 | |
|     if (ST.hasFusion())
 | |
|       DAG->addMutation(createARMMacroFusionDAGMutation());
 | |
|     return DAG;
 | |
|   }
 | |
| 
 | |
|   void addIRPasses() override;
 | |
|   void addCodeGenPrepare() override;
 | |
|   bool addPreISel() override;
 | |
|   bool addInstSelector() override;
 | |
|   bool addIRTranslator() override;
 | |
|   bool addLegalizeMachineIR() override;
 | |
|   bool addRegBankSelect() override;
 | |
|   bool addGlobalInstructionSelect() override;
 | |
|   void addPreRegAlloc() override;
 | |
|   void addPreSched2() override;
 | |
|   void addPreEmitPass() override;
 | |
| };
 | |
| 
 | |
| class ARMExecutionDomainFix : public ExecutionDomainFix {
 | |
| public:
 | |
|   static char ID;
 | |
|   ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
 | |
|   StringRef getPassName() const override {
 | |
|     return "ARM Execution Domain Fix";
 | |
|   }
 | |
| };
 | |
| char ARMExecutionDomainFix::ID;
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
 | |
|   "ARM Execution Domain Fix", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
 | |
| INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
 | |
|   "ARM Execution Domain Fix", false, false)
 | |
| 
 | |
| TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
 | |
|   return new ARMPassConfig(*this, PM);
 | |
| }
 | |
| 
 | |
| void ARMPassConfig::addIRPasses() {
 | |
|   if (TM->Options.ThreadModel == ThreadModel::Single)
 | |
|     addPass(createLowerAtomicPass());
 | |
|   else
 | |
|     addPass(createAtomicExpandPass());
 | |
| 
 | |
|   // Cmpxchg instructions are often used with a subsequent comparison to
 | |
|   // determine whether it succeeded. We can exploit existing control-flow in
 | |
|   // ldrex/strex loops to simplify this, but it needs tidying up.
 | |
|   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
 | |
|     addPass(createCFGSimplificationPass(
 | |
|         1, false, false, true, true, [this](const Function &F) {
 | |
|           const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
 | |
|           return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
 | |
|         }));
 | |
| 
 | |
|   TargetPassConfig::addIRPasses();
 | |
| 
 | |
|   // Match interleaved memory accesses to ldN/stN intrinsics.
 | |
|   if (TM->getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createInterleavedAccessPass());
 | |
| }
 | |
| 
 | |
| void ARMPassConfig::addCodeGenPrepare() {
 | |
|   if (getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createARMCodeGenPreparePass());
 | |
|   TargetPassConfig::addCodeGenPrepare();
 | |
| }
 | |
| 
 | |
| bool ARMPassConfig::addPreISel() {
 | |
|   if (getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createARMParallelDSPPass());
 | |
| 
 | |
|   if ((TM->getOptLevel() != CodeGenOpt::None &&
 | |
|        EnableGlobalMerge == cl::BOU_UNSET) ||
 | |
|       EnableGlobalMerge == cl::BOU_TRUE) {
 | |
|     // FIXME: This is using the thumb1 only constant value for
 | |
|     // maximal global offset for merging globals. We may want
 | |
|     // to look into using the old value for non-thumb1 code of
 | |
|     // 4095 based on the TargetMachine, but this starts to become
 | |
|     // tricky when doing code gen per function.
 | |
|     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
 | |
|                                (EnableGlobalMerge == cl::BOU_UNSET);
 | |
|     // Merging of extern globals is enabled by default on non-Mach-O as we
 | |
|     // expect it to be generally either beneficial or harmless. On Mach-O it
 | |
|     // is disabled as we emit the .subsections_via_symbols directive which
 | |
|     // means that merging extern globals is not safe.
 | |
|     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
 | |
|     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
 | |
|                                   MergeExternalByDefault));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMPassConfig::addInstSelector() {
 | |
|   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMPassConfig::addIRTranslator() {
 | |
|   addPass(new IRTranslator());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMPassConfig::addLegalizeMachineIR() {
 | |
|   addPass(new Legalizer());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMPassConfig::addRegBankSelect() {
 | |
|   addPass(new RegBankSelect());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMPassConfig::addGlobalInstructionSelect() {
 | |
|   addPass(new InstructionSelect());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ARMPassConfig::addPreRegAlloc() {
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createMLxExpansionPass());
 | |
| 
 | |
|     if (EnableARMLoadStoreOpt)
 | |
|       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
 | |
| 
 | |
|     if (!DisableA15SDOptimization)
 | |
|       addPass(createA15SDOptimizerPass());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMPassConfig::addPreSched2() {
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     if (EnableARMLoadStoreOpt)
 | |
|       addPass(createARMLoadStoreOptimizationPass());
 | |
| 
 | |
|     addPass(new ARMExecutionDomainFix());
 | |
|     addPass(createBreakFalseDeps());
 | |
|   }
 | |
| 
 | |
|   // Expand some pseudo instructions into multiple instructions to allow
 | |
|   // proper scheduling.
 | |
|   addPass(createARMExpandPseudoPass());
 | |
| 
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     // in v8, IfConversion depends on Thumb instruction widths
 | |
|     addPass(createThumb2SizeReductionPass([this](const Function &F) {
 | |
|       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
 | |
|     }));
 | |
| 
 | |
|     addPass(createIfConverter([](const MachineFunction &MF) {
 | |
|       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
 | |
|     }));
 | |
|   }
 | |
|   addPass(createThumb2ITBlockPass());
 | |
| }
 | |
| 
 | |
| void ARMPassConfig::addPreEmitPass() {
 | |
|   addPass(createThumb2SizeReductionPass());
 | |
| 
 | |
|   // Constant island pass work on unbundled instructions.
 | |
|   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
 | |
|     return MF.getSubtarget<ARMSubtarget>().isThumb2();
 | |
|   }));
 | |
| 
 | |
|   // Don't optimize barriers at -O0.
 | |
|   if (getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createARMOptimizeBarriersPass());
 | |
| 
 | |
|   addPass(createARMConstantIslandPass());
 | |
| }
 |