3022 lines
		
	
	
		
			133 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			3022 lines
		
	
	
		
			133 KiB
		
	
	
	
		
			TableGen
		
	
	
	
//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Table of contents:
 | 
						|
//     (0) Definitions
 | 
						|
//     (1) Immediates
 | 
						|
//     (2) Type casts
 | 
						|
//     (3) Extend/truncate
 | 
						|
//     (4) Logical
 | 
						|
//     (5) Compare
 | 
						|
//     (6) Select
 | 
						|
//     (7) Insert/extract
 | 
						|
//     (8) Shift/permute
 | 
						|
//     (9) Arithmetic/bitwise
 | 
						|
//    (10) Bit
 | 
						|
//    (11) PIC
 | 
						|
//    (12) Load
 | 
						|
//    (13) Store
 | 
						|
//    (14) Memop
 | 
						|
//    (15) Call
 | 
						|
//    (16) Branch
 | 
						|
//    (17) Misc
 | 
						|
 | 
						|
// Guidelines (in no particular order):
 | 
						|
// 1. Avoid relying on pattern ordering to give preference to one pattern
 | 
						|
//    over another, prefer using AddedComplexity instead. The reason for
 | 
						|
//    this is to avoid unintended conseqeuences (caused by altering the
 | 
						|
//    order) when making changes. The current order of patterns in this
 | 
						|
//    file obviously does play some role, but none of the ordering was
 | 
						|
//    deliberately chosen (other than to create a logical structure of
 | 
						|
//    this file). When making changes, adding AddedComplexity to existing
 | 
						|
//    patterns may be needed.
 | 
						|
// 2. Maintain the logical structure of the file, try to put new patterns
 | 
						|
//    in designated sections.
 | 
						|
// 3. Do not use A2_combinew instruction directly, use Combinew fragment
 | 
						|
//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
 | 
						|
// 4. Most selection macros are based on PatFrags. For DAGs that involve
 | 
						|
//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
 | 
						|
//    whenever possible (see the Definitions section). When adding new
 | 
						|
//    macro, try to make is general to enable reuse across sections.
 | 
						|
// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
 | 
						|
//    that the nested operation has only one use. Having it separated in case
 | 
						|
//    of multiple uses avoids duplication of (processor) work.
 | 
						|
// 6. The v4 vector instructions (64-bit) are treated as core instructions,
 | 
						|
//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
 | 
						|
// 7. When adding a pattern for an instruction with a constant-extendable
 | 
						|
//    operand, allow all possible kinds of inputs for the immediate value
 | 
						|
//    (see AnyImm/anyimm and their variants in the Definitions section).
 | 
						|
 | 
						|
 | 
						|
// --(0) Definitions -----------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
// This complex pattern exists only to create a machine instruction operand
 | 
						|
// of type "frame index". There doesn't seem to be a way to do that directly
 | 
						|
// in the patterns.
 | 
						|
def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
 | 
						|
 | 
						|
// These complex patterns are not strictly necessary, since global address
 | 
						|
// folding will happen during DAG combining. For distinguishing between GA
 | 
						|
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
 | 
						|
def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
 | 
						|
def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
 | 
						|
def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
 | 
						|
def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
 | 
						|
 | 
						|
// Global address or a constant being a multiple of 2^n.
 | 
						|
def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
 | 
						|
def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
 | 
						|
def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
 | 
						|
def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
 | 
						|
 | 
						|
 | 
						|
// Type helper frags.
 | 
						|
def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
 | 
						|
def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
 | 
						|
def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
 | 
						|
def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
 | 
						|
def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;
 | 
						|
 | 
						|
def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
 | 
						|
def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
 | 
						|
def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;
 | 
						|
 | 
						|
def HQ8:    PatLeaf<(VecQ8   HvxQR:$R)>;
 | 
						|
def HQ16:   PatLeaf<(VecQ16  HvxQR:$R)>;
 | 
						|
def HQ32:   PatLeaf<(VecQ32  HvxQR:$R)>;
 | 
						|
 | 
						|
def HVI8:   PatLeaf<(VecI8   HvxVR:$R)>;
 | 
						|
def HVI16:  PatLeaf<(VecI16  HvxVR:$R)>;
 | 
						|
def HVI32:  PatLeaf<(VecI32  HvxVR:$R)>;
 | 
						|
 | 
						|
def HWI8:   PatLeaf<(VecPI8  HvxWR:$R)>;
 | 
						|
def HWI16:  PatLeaf<(VecPI16 HvxWR:$R)>;
 | 
						|
def HWI32:  PatLeaf<(VecPI32 HvxWR:$R)>;
 | 
						|
 | 
						|
def SDTVecVecIntOp:
 | 
						|
  SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
 | 
						|
                       SDTCisVT<3,i32>]>;
 | 
						|
 | 
						|
def HexagonVALIGN:     SDNode<"HexagonISD::VALIGN",     SDTVecVecIntOp>;
 | 
						|
def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;
 | 
						|
 | 
						|
def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
 | 
						|
                    (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
 | 
						|
def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;
 | 
						|
 | 
						|
// Pattern fragments to extract the low and high subregisters from a
 | 
						|
// 64-bit value.
 | 
						|
def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
 | 
						|
def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
 | 
						|
 | 
						|
def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
 | 
						|
  return isOrEquivalentToAdd(N);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsPow2_32: PatLeaf<(i32 imm), [{
 | 
						|
  uint32_t V = N->getZExtValue();
 | 
						|
  return isPowerOf2_32(V);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsPow2_64: PatLeaf<(i64 imm), [{
 | 
						|
  uint64_t V = N->getZExtValue();
 | 
						|
  return isPowerOf2_64(V);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsNPow2_32: PatLeaf<(i32 imm), [{
 | 
						|
  uint32_t NV = ~N->getZExtValue();
 | 
						|
  return isPowerOf2_32(NV);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsPow2_64L: PatLeaf<(i64 imm), [{
 | 
						|
  uint64_t V = N->getZExtValue();
 | 
						|
  return isPowerOf2_64(V) && Log2_64(V) < 32;
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsPow2_64H: PatLeaf<(i64 imm), [{
 | 
						|
  uint64_t V = N->getZExtValue();
 | 
						|
  return isPowerOf2_64(V) && Log2_64(V) >= 32;
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsNPow2_64L: PatLeaf<(i64 imm), [{
 | 
						|
  uint64_t NV = ~N->getZExtValue();
 | 
						|
  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsNPow2_64H: PatLeaf<(i64 imm), [{
 | 
						|
  uint64_t NV = ~N->getZExtValue();
 | 
						|
  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
 | 
						|
}]>;
 | 
						|
 | 
						|
class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
 | 
						|
  "uint64_t V = N->getZExtValue();" #
 | 
						|
  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
 | 
						|
>;
 | 
						|
 | 
						|
def SDEC1: SDNodeXForm<imm, [{
 | 
						|
  int32_t V = N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def UDEC1: SDNodeXForm<imm, [{
 | 
						|
  uint32_t V = N->getZExtValue();
 | 
						|
  assert(V >= 1);
 | 
						|
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def UDEC32: SDNodeXForm<imm, [{
 | 
						|
  uint32_t V = N->getZExtValue();
 | 
						|
  assert(V >= 32);
 | 
						|
  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def Log2_32: SDNodeXForm<imm, [{
 | 
						|
  uint32_t V = N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def Log2_64: SDNodeXForm<imm, [{
 | 
						|
  uint64_t V = N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def LogN2_32: SDNodeXForm<imm, [{
 | 
						|
  uint32_t NV = ~N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def LogN2_64: SDNodeXForm<imm, [{
 | 
						|
  uint64_t NV = ~N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def NegImm8: SDNodeXForm<imm, [{
 | 
						|
  int8_t NV = -N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def NegImm16: SDNodeXForm<imm, [{
 | 
						|
  int16_t NV = -N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def NegImm32: SDNodeXForm<imm, [{
 | 
						|
  int32_t NV = -N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
 | 
						|
// Helpers for type promotions/contractions.
 | 
						|
def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
 | 
						|
def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
 | 
						|
def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
 | 
						|
def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
 | 
						|
 | 
						|
def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
 | 
						|
  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
 | 
						|
 | 
						|
def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
 | 
						|
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
 | 
						|
def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
 | 
						|
def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
 | 
						|
 | 
						|
// Global address or an aligned constant.
 | 
						|
def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
 | 
						|
def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
 | 
						|
def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
 | 
						|
def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
 | 
						|
 | 
						|
def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
 | 
						|
def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
 | 
						|
 | 
						|
// This complex pattern is really only to detect various forms of
 | 
						|
// sign-extension i32->i64. The selected value will be of type i64
 | 
						|
// whose low word is the value being extended. The high word is
 | 
						|
// unspecified.
 | 
						|
def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
 | 
						|
 | 
						|
def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
 | 
						|
def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
 | 
						|
def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
 | 
						|
 | 
						|
def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
 | 
						|
         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;
 | 
						|
 | 
						|
 | 
						|
// Converters from unary/binary SDNode to PatFrag.
 | 
						|
class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
 | 
						|
class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
 | 
						|
 | 
						|
class Not2<PatFrag P>
 | 
						|
  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
 | 
						|
 | 
						|
// If there is a constant operand that feeds the and/or instruction,
 | 
						|
// do not generate the compound instructions.
 | 
						|
// It is not always profitable, as some times we end up with a transfer.
 | 
						|
// Check the below example.
 | 
						|
// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
 | 
						|
// Instead this is preferable.
 | 
						|
// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
 | 
						|
class Su_ni1<PatFrag Op>
 | 
						|
  : PatFrag<Op.Operands, !head(Op.Fragments), [{
 | 
						|
            if (hasOneUse(N)){
 | 
						|
              // Check if Op1 is an immediate operand.
 | 
						|
              SDValue Op1 = N->getOperand(1);
 | 
						|
              return !dyn_cast<ConstantSDNode>(Op1);
 | 
						|
            }
 | 
						|
            return false;}],
 | 
						|
            Op.OperandTransform>;
 | 
						|
 | 
						|
class Su<PatFrag Op>
 | 
						|
  : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
 | 
						|
            Op.OperandTransform>;
 | 
						|
 | 
						|
// Main selection macros.
 | 
						|
 | 
						|
class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
 | 
						|
  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
 | 
						|
 | 
						|
class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
 | 
						|
                 PatFrag RegPred, PatFrag ImmPred>
 | 
						|
  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
 | 
						|
        (MI RegPred:$Rs, imm:$I)>;
 | 
						|
 | 
						|
class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
 | 
						|
                 PatFrag RsPred, PatFrag RtPred = RsPred>
 | 
						|
  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
 | 
						|
        (MI RsPred:$Rs, RtPred:$Rt)>;
 | 
						|
 | 
						|
class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
 | 
						|
                 PatFrag RegPred, PatFrag ImmPred>
 | 
						|
  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
 | 
						|
        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
 | 
						|
 | 
						|
class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
 | 
						|
                 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
 | 
						|
  : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
 | 
						|
        (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
 | 
						|
 | 
						|
multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
 | 
						|
                          InstHexagon InstA, InstHexagon InstB> {
 | 
						|
  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
 | 
						|
           (InstA Val:$A, Val:$B)>;
 | 
						|
  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
 | 
						|
           (InstB Val:$A, Val:$B)>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Frags for commonly used SDNodes.
 | 
						|
def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
 | 
						|
def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
 | 
						|
def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;
 | 
						|
 | 
						|
def Rol: pf2<rotl>;
 | 
						|
 | 
						|
// --(1) Immediate -------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def SDTHexagonCONST32
 | 
						|
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
 | 
						|
 | 
						|
def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
 | 
						|
def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
 | 
						|
def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
 | 
						|
def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;
 | 
						|
 | 
						|
def TruncI64ToI32: SDNodeXForm<imm, [{
 | 
						|
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
 | 
						|
def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
 | 
						|
 | 
						|
def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
 | 
						|
def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
 | 
						|
def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
 | 
						|
def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
 | 
						|
def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
 | 
						|
def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
 | 
						|
def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
 | 
						|
// The HVX load patterns also match CP directly. Make sure that if
 | 
						|
// the selection of this opcode changes, it's updated in all places.
 | 
						|
 | 
						|
def: Pat<(i1 0),        (PS_false)>;
 | 
						|
def: Pat<(i1 1),        (PS_true)>;
 | 
						|
def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>;
 | 
						|
 | 
						|
def ftoi : SDNodeXForm<fpimm, [{
 | 
						|
  APInt I = N->getValueAPF().bitcastToAPInt();
 | 
						|
  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
 | 
						|
                                   MVT::getIntegerVT(I.getBitWidth()));
 | 
						|
}]>;
 | 
						|
 | 
						|
def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
 | 
						|
def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;
 | 
						|
 | 
						|
def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
 | 
						|
 | 
						|
// --(2) Type cast -------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
 | 
						|
  def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;
 | 
						|
 | 
						|
  def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
 | 
						|
  def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
 | 
						|
  def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
 | 
						|
  def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;
 | 
						|
 | 
						|
  def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
 | 
						|
  def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
 | 
						|
  def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
 | 
						|
  def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;
 | 
						|
 | 
						|
  def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
 | 
						|
  def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
 | 
						|
  def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
 | 
						|
  def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;
 | 
						|
 | 
						|
  def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
 | 
						|
  def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
 | 
						|
  def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
 | 
						|
  def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
 | 
						|
}
 | 
						|
 | 
						|
// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
 | 
						|
  def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
 | 
						|
  def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
 | 
						|
  def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Cast_pat<ValueType Ta, ValueType Tb, RegisterClass RC> {
 | 
						|
  def: Pat<(Tb (bitconvert (Ta RC:$Rs))), (Tb RC:$Rs)>;
 | 
						|
  def: Pat<(Ta (bitconvert (Tb RC:$Rs))), (Ta RC:$Rs)>;
 | 
						|
}
 | 
						|
 | 
						|
// Bit convert vector types to integers.
 | 
						|
defm: Cast_pat<v4i8,  i32, IntRegs>;
 | 
						|
defm: Cast_pat<v2i16, i32, IntRegs>;
 | 
						|
defm: Cast_pat<v8i8,  i64, DoubleRegs>;
 | 
						|
defm: Cast_pat<v4i16, i64, DoubleRegs>;
 | 
						|
defm: Cast_pat<v2i32, i64, DoubleRegs>;
 | 
						|
 | 
						|
 | 
						|
// --(3) Extend/truncate -------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
 | 
						|
def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
 | 
						|
def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
 | 
						|
def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
 | 
						|
def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
 | 
						|
 | 
						|
def: Pat<(i64 (sext I1:$Pu)),
 | 
						|
         (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
 | 
						|
                   (C2_muxii PredRegs:$Pu, -1, 0))>;
 | 
						|
 | 
						|
def: Pat<(i32   (sext I1:$Pu)),   (C2_muxii I1:$Pu, -1, 0)>;
 | 
						|
def: Pat<(i32   (zext I1:$Pu)),   (C2_muxii I1:$Pu, 1, 0)>;
 | 
						|
def: Pat<(i64   (zext I1:$Pu)),   (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
 | 
						|
def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
 | 
						|
def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
 | 
						|
def: Pat<(v4i8  (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
 | 
						|
def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
 | 
						|
def: Pat<(v8i8  (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;
 | 
						|
 | 
						|
def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
 | 
						|
def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
 | 
						|
def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;
 | 
						|
 | 
						|
def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
 | 
						|
def: Pat<(i1 (trunc I64:$Rs)),  (C2_tfrrp (LoReg $Rs))>;
 | 
						|
 | 
						|
let AddedComplexity = 20 in {
 | 
						|
  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
 | 
						|
  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(i32 (anyext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
 | 
						|
def: Pat<(i64 (anyext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
 | 
						|
 | 
						|
def Vsplatpi: OutPatFrag<(ops node:$V),
 | 
						|
                         (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;
 | 
						|
def: Pat<(v8i8 (zext V8I1:$Pu)),
 | 
						|
         (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;
 | 
						|
def: Pat<(v4i16 (zext V4I1:$Pu)),
 | 
						|
         (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
 | 
						|
def: Pat<(v2i32 (zext V2I1:$Pu)),
 | 
						|
         (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
 | 
						|
 | 
						|
def: Pat<(v4i8 (zext V4I1:$Pu)),
 | 
						|
         (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
 | 
						|
def: Pat<(v2i16 (zext V2I1:$Pu)),
 | 
						|
         (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
 | 
						|
 | 
						|
def: Pat<(v4i16 (zext   V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
 | 
						|
def: Pat<(v2i32 (zext   V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
 | 
						|
def: Pat<(v4i16 (anyext V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
 | 
						|
def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
 | 
						|
def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
 | 
						|
def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
 | 
						|
 | 
						|
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
 | 
						|
         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
 | 
						|
 | 
						|
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
 | 
						|
         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
 | 
						|
 | 
						|
// Truncate: from vector B copy all 'E'ven 'B'yte elements:
 | 
						|
// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
 | 
						|
def: Pat<(v4i8 (trunc V4I16:$Rs)),
 | 
						|
         (S2_vtrunehb V4I16:$Rs)>;
 | 
						|
 | 
						|
// Truncate: from vector B copy all 'O'dd 'B'yte elements:
 | 
						|
// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
 | 
						|
// S2_vtrunohb
 | 
						|
 | 
						|
// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
 | 
						|
// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
 | 
						|
// S2_vtruneh
 | 
						|
 | 
						|
def: Pat<(v2i16 (trunc V2I32:$Rs)),
 | 
						|
         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;
 | 
						|
 | 
						|
 | 
						|
// --(4) Logical ---------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
 | 
						|
def: Pat<(not V8I1:$Ps),    (C2_not V8I1:$Ps)>;
 | 
						|
def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;
 | 
						|
 | 
						|
multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> {
 | 
						|
  def: OpR_RR_pat<MI, Op,   i1,   I1>;
 | 
						|
  def: OpR_RR_pat<MI, Op, v2i1, V2I1>;
 | 
						|
  def: OpR_RR_pat<MI, Op, v4i1, V4I1>;
 | 
						|
  def: OpR_RR_pat<MI, Op, v8i1, V8I1>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> {
 | 
						|
  def: AccRRR_pat<MI, AccOp, Op,   I1,   I1,   I1>;
 | 
						|
  def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>;
 | 
						|
  def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>;
 | 
						|
  def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>;
 | 
						|
}
 | 
						|
 | 
						|
defm: BoolOpR_RR_pat<C2_and,   And>;
 | 
						|
defm: BoolOpR_RR_pat<C2_or,    Or>;
 | 
						|
defm: BoolOpR_RR_pat<C2_xor,   Xor>;
 | 
						|
defm: BoolOpR_RR_pat<C2_andn,  Not2<And>>;
 | 
						|
defm: BoolOpR_RR_pat<C2_orn,   Not2<Or>>;
 | 
						|
 | 
						|
// op(Ps, op(Pt, Pu))
 | 
						|
defm: BoolAccRRR_pat<C4_and_and,   And, Su<And>>;
 | 
						|
defm: BoolAccRRR_pat<C4_and_or,    And, Su<Or>>;
 | 
						|
defm: BoolAccRRR_pat<C4_or_and,    Or,  Su<And>>;
 | 
						|
defm: BoolAccRRR_pat<C4_or_or,     Or,  Su<Or>>;
 | 
						|
 | 
						|
// op(Ps, op(Pt, ~Pu))
 | 
						|
defm: BoolAccRRR_pat<C4_and_andn,  And, Su<Not2<And>>>;
 | 
						|
defm: BoolAccRRR_pat<C4_and_orn,   And, Su<Not2<Or>>>;
 | 
						|
defm: BoolAccRRR_pat<C4_or_andn,   Or,  Su<Not2<And>>>;
 | 
						|
defm: BoolAccRRR_pat<C4_or_orn,    Or,  Su<Not2<Or>>>;
 | 
						|
 | 
						|
 | 
						|
// --(5) Compare ---------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
 | 
						|
// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
 | 
						|
 | 
						|
def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
 | 
						|
def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
 | 
						|
def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;
 | 
						|
 | 
						|
def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
 | 
						|
         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
 | 
						|
def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
 | 
						|
         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
 | 
						|
 | 
						|
def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
 | 
						|
         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
 | 
						|
def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
 | 
						|
         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
 | 
						|
 | 
						|
// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
 | 
						|
// that reverse the order of the operands.
 | 
						|
class RevCmp<PatFrag F>
 | 
						|
  : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
 | 
						|
            F.OperandTransform>;
 | 
						|
 | 
						|
def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
 | 
						|
def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
 | 
						|
def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
 | 
						|
def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
 | 
						|
def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
 | 
						|
def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
 | 
						|
def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
 | 
						|
def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
 | 
						|
def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
 | 
						|
def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
 | 
						|
def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
 | 
						|
def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
 | 
						|
def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
 | 
						|
def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
 | 
						|
def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;
 | 
						|
 | 
						|
  def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
 | 
						|
  def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;
 | 
						|
}
 | 
						|
 | 
						|
// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
 | 
						|
 | 
						|
def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
 | 
						|
         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
 | 
						|
def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
 | 
						|
         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
 | 
						|
def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
 | 
						|
         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
 | 
						|
 | 
						|
class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
 | 
						|
                  PatFrag RsPred, PatFrag RtPred = RsPred>
 | 
						|
  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
 | 
						|
        (Output RsPred:$Rs, RtPred:$Rt)>;
 | 
						|
 | 
						|
class Outn<InstHexagon MI>
 | 
						|
  : OutPatFrag<(ops node:$Rs, node:$Rt),
 | 
						|
               (C2_not (MI $Rs, $Rt))>;
 | 
						|
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpeq>,    setne,          i1,   I32>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgt>,    setle,          i1,   I32>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgtu>,   setule,         i1,   I32>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgt>,    RevCmp<setge>,  i1,   I32>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgtu>,   RevCmp<setuge>, i1,   I32>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpeqp>,   setne,          i1,   I64>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgtp>,   setle,          i1,   I64>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgtup>,  setule,         i1,   I64>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgtp>,   RevCmp<setge>,  i1,   I64>;
 | 
						|
def: OpmR_RR_pat<Outn<C2_cmpgtup>,  RevCmp<setuge>, i1,   I64>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpbeq>,  setne,          v8i1, V8I8>;
 | 
						|
def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  setle,          v8i1, V8I8>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule,         v8i1, V8I8>;
 | 
						|
def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  RevCmp<setge>,  v8i1, V8I8>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpheq>,  setne,          v4i1, V4I16>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmphgt>,  setle,          v4i1, V4I16>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule,         v4i1, V4I16>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmphgt>,  RevCmp<setge>,  v4i1, V4I16>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpweq>,  setne,          v2i1, V2I32>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  setle,          v2i1, V2I32>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule,         v2i1, V2I32>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  RevCmp<setge>,  v2i1, V2I32>;
 | 
						|
def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;
 | 
						|
 | 
						|
let AddedComplexity = 100 in {
 | 
						|
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
 | 
						|
           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
 | 
						|
           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
 | 
						|
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
 | 
						|
           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
 | 
						|
           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
 | 
						|
}
 | 
						|
 | 
						|
// PatFrag for AsserZext which takes the original type as a parameter.
 | 
						|
def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
 | 
						|
def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
 | 
						|
class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
 | 
						|
 | 
						|
multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
 | 
						|
                      PatLeaf ImmPred, int Mask> {
 | 
						|
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
 | 
						|
           (MI I32:$Rs, imm:$I)>;
 | 
						|
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
 | 
						|
           (MI I32:$Rs, imm:$I)>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
 | 
						|
                     PatLeaf ImmPred, int Mask> {
 | 
						|
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
 | 
						|
           (C2_not (MI I32:$Rs, imm:$I))>;
 | 
						|
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
 | 
						|
           (C2_not (MI I32:$Rs, imm:$I))>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
 | 
						|
                      PatLeaf ImmPred, int Mask> {
 | 
						|
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
 | 
						|
           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
 | 
						|
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
 | 
						|
           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 200 in {
 | 
						|
  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
 | 
						|
  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
 | 
						|
  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
 | 
						|
  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
 | 
						|
  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
 | 
						|
  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
 | 
						|
  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
 | 
						|
  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
 | 
						|
         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
 | 
						|
         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
 | 
						|
         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
 | 
						|
def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
 | 
						|
         (A4_rcmpneqi I32:$Rs, imm:$s8)>;
 | 
						|
 | 
						|
def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
 | 
						|
def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
 | 
						|
def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
 | 
						|
def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, I1:$Pt)>;
 | 
						|
 | 
						|
// Floating-point comparisons with checks for ordered/unordered status.
 | 
						|
 | 
						|
class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
 | 
						|
  : OutPatFrag<(ops node:$Rs, node:$Rt),
 | 
						|
               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
 | 
						|
 | 
						|
class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
 | 
						|
class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;
 | 
						|
 | 
						|
class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
 | 
						|
class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;
 | 
						|
 | 
						|
  def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
 | 
						|
  def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
 | 
						|
  def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
 | 
						|
  def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
 | 
						|
  def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
 | 
						|
  def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;
 | 
						|
}
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;
 | 
						|
 | 
						|
  def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
 | 
						|
  def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;
 | 
						|
 | 
						|
  def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
 | 
						|
  def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// --(6) Select ----------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
 | 
						|
         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
 | 
						|
         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
 | 
						|
def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
 | 
						|
         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
 | 
						|
def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
 | 
						|
         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
 | 
						|
 | 
						|
def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
 | 
						|
         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
 | 
						|
def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
 | 
						|
         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
 | 
						|
def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
 | 
						|
         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
 | 
						|
def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
 | 
						|
         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
 | 
						|
 | 
						|
// Map from a 64-bit select to an emulated 64-bit mux.
 | 
						|
// Hexagon does not support 64-bit MUXes; so emulate with combines.
 | 
						|
def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
 | 
						|
         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
 | 
						|
                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
 | 
						|
           (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
 | 
						|
  def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
 | 
						|
           (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
 | 
						|
  def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
 | 
						|
           (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
 | 
						|
  def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
 | 
						|
           (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
 | 
						|
                     (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
 | 
						|
 | 
						|
  def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
 | 
						|
           (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
 | 
						|
  def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
 | 
						|
           (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
 | 
						|
 | 
						|
  def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
 | 
						|
           (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
 | 
						|
  def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
 | 
						|
           (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(select I1:$Pu, V4I8:$Rs, V4I8:$Rt),
 | 
						|
         (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
 | 
						|
def: Pat<(select I1:$Pu, V2I16:$Rs, V2I16:$Rt),
 | 
						|
         (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
 | 
						|
def: Pat<(select I1:$Pu, V2I32:$Rs, V2I32:$Rt),
 | 
						|
         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
 | 
						|
                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
 | 
						|
 | 
						|
def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
 | 
						|
         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
 | 
						|
def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
 | 
						|
         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
 | 
						|
def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
 | 
						|
         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
 | 
						|
 | 
						|
// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
 | 
						|
def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
 | 
						|
         (C2_or (C2_and  I1:$Pu, I1:$Pv),
 | 
						|
                (C2_andn I1:$Pw, I1:$Pu))>;
 | 
						|
 | 
						|
 | 
						|
def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
 | 
						|
  return isPositiveHalfWord(N);
 | 
						|
}]>;
 | 
						|
 | 
						|
multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
 | 
						|
                            InstHexagon InstB> {
 | 
						|
  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
 | 
						|
                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
 | 
						|
           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
 | 
						|
                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
 | 
						|
           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 200 in {
 | 
						|
  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
 | 
						|
  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
 | 
						|
  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
 | 
						|
  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
 | 
						|
  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
 | 
						|
  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
 | 
						|
  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
 | 
						|
  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 200 in {
 | 
						|
  defm: SelMinMax_pats<setge,  I32, A2_max,   A2_min>;
 | 
						|
  defm: SelMinMax_pats<setgt,  I32, A2_max,   A2_min>;
 | 
						|
  defm: SelMinMax_pats<setle,  I32, A2_min,   A2_max>;
 | 
						|
  defm: SelMinMax_pats<setlt,  I32, A2_min,   A2_max>;
 | 
						|
  defm: SelMinMax_pats<setuge, I32, A2_maxu,  A2_minu>;
 | 
						|
  defm: SelMinMax_pats<setugt, I32, A2_maxu,  A2_minu>;
 | 
						|
  defm: SelMinMax_pats<setule, I32, A2_minu,  A2_maxu>;
 | 
						|
  defm: SelMinMax_pats<setult, I32, A2_minu,  A2_maxu>;
 | 
						|
 | 
						|
  defm: SelMinMax_pats<setge,  I64, A2_maxp,  A2_minp>;
 | 
						|
  defm: SelMinMax_pats<setgt,  I64, A2_maxp,  A2_minp>;
 | 
						|
  defm: SelMinMax_pats<setle,  I64, A2_minp,  A2_maxp>;
 | 
						|
  defm: SelMinMax_pats<setlt,  I64, A2_minp,  A2_maxp>;
 | 
						|
  defm: SelMinMax_pats<setuge, I64, A2_maxup, A2_minup>;
 | 
						|
  defm: SelMinMax_pats<setugt, I64, A2_maxup, A2_minup>;
 | 
						|
  defm: SelMinMax_pats<setule, I64, A2_minup, A2_maxup>;
 | 
						|
  defm: SelMinMax_pats<setult, I64, A2_minup, A2_maxup>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 100, Predicates = [HasV5] in {
 | 
						|
  defm: SelMinMax_pats<setolt, F32, F2_sfmin, F2_sfmax>;
 | 
						|
  defm: SelMinMax_pats<setole, F32, F2_sfmin, F2_sfmax>;
 | 
						|
  defm: SelMinMax_pats<setogt, F32, F2_sfmax, F2_sfmin>;
 | 
						|
  defm: SelMinMax_pats<setoge, F32, F2_sfmax, F2_sfmin>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// --(7) Insert/extract --------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def SDTHexagonINSERT:
 | 
						|
  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
 | 
						|
                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
 | 
						|
def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
 | 
						|
 | 
						|
let AddedComplexity = 10 in {
 | 
						|
  def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
 | 
						|
           (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
 | 
						|
  def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
 | 
						|
           (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
 | 
						|
}
 | 
						|
def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
 | 
						|
         (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
 | 
						|
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
 | 
						|
         (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;
 | 
						|
 | 
						|
def SDTHexagonEXTRACTU
 | 
						|
  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
 | 
						|
                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
 | 
						|
def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
 | 
						|
 | 
						|
let AddedComplexity = 10 in {
 | 
						|
  def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
 | 
						|
           (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
 | 
						|
  def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
 | 
						|
           (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
 | 
						|
}
 | 
						|
def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
 | 
						|
         (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
 | 
						|
def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
 | 
						|
         (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;
 | 
						|
 | 
						|
def SDTHexagonVSPLAT:
 | 
						|
  SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
 | 
						|
 | 
						|
def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;
 | 
						|
 | 
						|
def: Pat<(v4i8  (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
 | 
						|
def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
 | 
						|
def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
 | 
						|
         (A2_combineii imm:$s8, imm:$s8)>;
 | 
						|
def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
 | 
						|
 | 
						|
let AddedComplexity = 10 in
 | 
						|
def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
 | 
						|
     Requires<[HasV62]>;
 | 
						|
def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)),
 | 
						|
         (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;
 | 
						|
 | 
						|
 | 
						|
// --(8) Shift/permute ---------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
 | 
						|
  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
 | 
						|
 | 
						|
def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;
 | 
						|
 | 
						|
def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
 | 
						|
 | 
						|
// The complexity of the combines involving immediates should be greater
 | 
						|
// than the complexity of the combine with two registers.
 | 
						|
let AddedComplexity = 50 in {
 | 
						|
  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
 | 
						|
           (A4_combineri IntRegs:$Rs, imm:$s8)>;
 | 
						|
  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
 | 
						|
           (A4_combineir imm:$s8, IntRegs:$Rs)>;
 | 
						|
}
 | 
						|
 | 
						|
// The complexity of the combine with two immediates should be greater than
 | 
						|
// the complexity of a combine involving a register.
 | 
						|
let AddedComplexity = 75 in {
 | 
						|
  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
 | 
						|
           (A4_combineii imm:$s8, imm:$u6)>;
 | 
						|
  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
 | 
						|
           (A2_combineii imm:$s8, imm:$S8)>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
 | 
						|
def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
 | 
						|
                                     (A2_swiz (HiReg $Rss)))>;
 | 
						|
 | 
						|
def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
 | 
						|
def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
 | 
						|
def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;
 | 
						|
 | 
						|
def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
 | 
						|
 | 
						|
def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
 | 
						|
def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
 | 
						|
def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
 | 
						|
def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
 | 
						|
def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
 | 
						|
def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
 | 
						|
 | 
						|
let Predicates = [HasV60] in {
 | 
						|
  def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
 | 
						|
  def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
 | 
						|
         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
 | 
						|
def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
 | 
						|
         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>, Requires<[HasV5]>;
 | 
						|
 | 
						|
// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
 | 
						|
let AddedComplexity = 120 in
 | 
						|
def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
 | 
						|
         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
 | 
						|
 | 
						|
let AddedComplexity = 100 in {
 | 
						|
  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;
 | 
						|
 | 
						|
  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;
 | 
						|
 | 
						|
  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
 | 
						|
  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;
 | 
						|
 | 
						|
  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
 | 
						|
  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
 | 
						|
  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;
 | 
						|
 | 
						|
  let Predicates = [HasV60] in {
 | 
						|
    def: AccRRI_pat<S6_rol_i_r_acc,   Add, Su<Rol>, I32, u5_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_r_nac,   Sub, Su<Rol>, I32, u5_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_r_and,   And, Su<Rol>, I32, u5_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_r_or,    Or,  Su<Rol>, I32, u5_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_r_xacc,  Xor, Su<Rol>, I32, u5_0ImmPred>;
 | 
						|
 | 
						|
    def: AccRRI_pat<S6_rol_i_p_acc,   Add, Su<Rol>, I64, u6_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_p_nac,   Sub, Su<Rol>, I64, u6_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_p_and,   And, Su<Rol>, I64, u6_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_p_or,    Or,  Su<Rol>, I64, u6_0ImmPred>;
 | 
						|
    def: AccRRI_pat<S6_rol_i_p_xacc,  Xor, Su<Rol>, I64, u6_0ImmPred>;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 100 in {
 | 
						|
  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32, I32>;
 | 
						|
 | 
						|
  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I64, I32>;
 | 
						|
 | 
						|
  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32, I32>;
 | 
						|
 | 
						|
  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I64, I32>;
 | 
						|
 | 
						|
  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32, I32>;
 | 
						|
 | 
						|
  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I64, I32>;
 | 
						|
  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I64, I32>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
 | 
						|
                  PatFrag RegPred, PatFrag ImmPred>
 | 
						|
  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
 | 
						|
        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
 | 
						|
 | 
						|
let AddedComplexity = 200 in {
 | 
						|
  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
 | 
						|
  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
 | 
						|
}
 | 
						|
 | 
						|
// Prefer this pattern to S2_asl_i_p_or for the special case of joining
 | 
						|
// two 32-bit words into a 64-bit word.
 | 
						|
let AddedComplexity = 200 in
 | 
						|
def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
 | 
						|
         (Combinew I32:$a, I32:$b)>;
 | 
						|
 | 
						|
def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
 | 
						|
                     (Zext64 (and I32:$a, (i32 65535)))),
 | 
						|
                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
 | 
						|
             (shl (Aext64 I32:$d), (i32 48))),
 | 
						|
         (Combinew (A2_combine_ll I32:$d, I32:$c),
 | 
						|
                   (A2_combine_ll I32:$b, I32:$a))>;
 | 
						|
 | 
						|
let AddedComplexity = 200 in {
 | 
						|
  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
 | 
						|
           (A2_combine_ll I32:$Rt, I32:$Rs)>;
 | 
						|
  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
 | 
						|
           (A2_combine_lh I32:$Rt, I32:$Rs)>;
 | 
						|
  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
 | 
						|
           (A2_combine_hl I32:$Rt, I32:$Rs)>;
 | 
						|
  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
 | 
						|
           (A2_combine_hh I32:$Rt, I32:$Rs)>;
 | 
						|
}
 | 
						|
 | 
						|
def SDTHexagonVShift
 | 
						|
  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
 | 
						|
 | 
						|
def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
 | 
						|
def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
 | 
						|
def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
 | 
						|
 | 
						|
def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
 | 
						|
def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
 | 
						|
 | 
						|
def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
 | 
						|
def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
 | 
						|
def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
 | 
						|
def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
 | 
						|
def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
 | 
						|
def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
 | 
						|
 | 
						|
def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
 | 
						|
         (S2_asr_i_vw V2I32:$b, imm:$c)>;
 | 
						|
def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
 | 
						|
         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
 | 
						|
def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
 | 
						|
         (S2_asl_i_vw V2I32:$b, imm:$c)>;
 | 
						|
def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
 | 
						|
         (S2_asr_i_vh V4I16:$b, imm:$c)>;
 | 
						|
def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
 | 
						|
         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
 | 
						|
def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
 | 
						|
         (S2_asl_i_vh V4I16:$b, imm:$c)>;
 | 
						|
 | 
						|
 | 
						|
// --(9) Arithmetic/bitwise ----------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def: Pat<(abs  I32:$Rs), (A2_abs   I32:$Rs)>;
 | 
						|
def: Pat<(abs  I64:$Rs), (A2_absp  I64:$Rs)>;
 | 
						|
def: Pat<(not  I32:$Rs), (A2_subri -1, I32:$Rs)>;
 | 
						|
def: Pat<(not  I64:$Rs), (A2_notp  I64:$Rs)>;
 | 
						|
def: Pat<(ineg I64:$Rs), (A2_negp  I64:$Rs)>;
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
 | 
						|
  def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
 | 
						|
 | 
						|
  def: Pat<(fabs F64:$Rs),
 | 
						|
           (Combinew (S2_clrbit_i (HiReg $Rs), 31),
 | 
						|
                     (i32 (LoReg $Rs)))>;
 | 
						|
  def: Pat<(fneg F64:$Rs),
 | 
						|
           (Combinew (S2_togglebit_i (HiReg $Rs), 31),
 | 
						|
                     (i32 (LoReg $Rs)))>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
 | 
						|
def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
 | 
						|
def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
 | 
						|
def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;
 | 
						|
 | 
						|
def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
 | 
						|
def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
 | 
						|
def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
 | 
						|
def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
 | 
						|
def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
 | 
						|
def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
 | 
						|
def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
 | 
						|
def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
 | 
						|
def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
 | 
						|
def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
 | 
						|
def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
 | 
						|
def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;
 | 
						|
 | 
						|
def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
 | 
						|
def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;
 | 
						|
 | 
						|
def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
 | 
						|
def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;
 | 
						|
 | 
						|
def: OpR_RR_pat<A2_and,       And,        v4i8,  V4I8>;
 | 
						|
def: OpR_RR_pat<A2_xor,       Xor,        v4i8,  V4I8>;
 | 
						|
def: OpR_RR_pat<A2_or,        Or,         v4i8,  V4I8>;
 | 
						|
def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
 | 
						|
def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
 | 
						|
def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;
 | 
						|
def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
 | 
						|
def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
 | 
						|
def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
 | 
						|
def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
 | 
						|
def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
 | 
						|
def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;
 | 
						|
 | 
						|
def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
 | 
						|
def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
 | 
						|
def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
 | 
						|
def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
 | 
						|
def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;
 | 
						|
 | 
						|
// Arithmetic on predicates.
 | 
						|
def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
 | 
						|
def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
 | 
						|
def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
 | 
						|
def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
 | 
						|
def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
 | 
						|
def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
 | 
						|
  def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;
 | 
						|
}
 | 
						|
 | 
						|
// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
 | 
						|
// over add-add with individual multiplies as inputs.
 | 
						|
let AddedComplexity = 10 in {
 | 
						|
  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
 | 
						|
  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
 | 
						|
  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32, I32>;
 | 
						|
}
 | 
						|
 | 
						|
def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
 | 
						|
def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
 | 
						|
def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32, I32>;
 | 
						|
 | 
						|
// Mulh for vectors
 | 
						|
//
 | 
						|
def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
 | 
						|
         (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
 | 
						|
                   (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;
 | 
						|
 | 
						|
def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)),
 | 
						|
         (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)),
 | 
						|
                   (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>;
 | 
						|
 | 
						|
def Mulhub:
 | 
						|
  OutPatFrag<(ops node:$Rss, node:$Rtt),
 | 
						|
             (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))),
 | 
						|
                       (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>;
 | 
						|
 | 
						|
// Equivalent of byte-wise arithmetic shift right by 7 in v8i8.
 | 
						|
def Asr7:
 | 
						|
  OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>;
 | 
						|
 | 
						|
def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)),
 | 
						|
         (Mulhub $Rss, $Rtt)>;
 | 
						|
 | 
						|
def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)),
 | 
						|
         (A2_vsubub
 | 
						|
           (Mulhub $Rss, $Rtt),
 | 
						|
           (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)),
 | 
						|
                      (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>;
 | 
						|
 | 
						|
def Mpysh:
 | 
						|
  OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
 | 
						|
def Mpyshh:
 | 
						|
  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>;
 | 
						|
def Mpyshl:
 | 
						|
  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>;
 | 
						|
 | 
						|
def Mulhsh:
 | 
						|
  OutPatFrag<(ops node:$Rss, node:$Rtt),
 | 
						|
             (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)),
 | 
						|
                                      (LoReg (Mpyshh $Rss, $Rtt))),
 | 
						|
                       (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)),
 | 
						|
                                      (LoReg (Mpyshl $Rss, $Rtt))))>;
 | 
						|
 | 
						|
def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>;
 | 
						|
 | 
						|
def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
 | 
						|
         (A2_vaddh
 | 
						|
           (Mulhsh $Rss, $Rtt),
 | 
						|
           (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
 | 
						|
                     (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;
 | 
						|
 | 
						|
 | 
						|
def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
 | 
						|
         (M2_mpysin IntRegs:$Rs, imm:$u8)>;
 | 
						|
 | 
						|
def n8_0ImmPred: PatLeaf<(i32 imm), [{
 | 
						|
  int64_t V = N->getSExtValue();
 | 
						|
  return -255 <= V && V <= 0;
 | 
						|
}]>;
 | 
						|
 | 
						|
// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
 | 
						|
def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
 | 
						|
         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
 | 
						|
 | 
						|
def: Pat<(add Sext64:$Rs, I64:$Rt),
 | 
						|
         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
 | 
						|
 | 
						|
def: AccRRR_pat<M4_and_and,   And, Su_ni1<And>,  I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_and_or,    And, Su_ni1<Or>,   I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,      I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_or_and,    Or,  Su_ni1<And>,  I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_or_or,     Or,  Su_ni1<Or>,   I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,      I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_xor_and,   Xor, Su_ni1<And>,  I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_xor_or,    Xor, Su_ni1<Or>,   I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,      I32,  I32,  I32>;
 | 
						|
def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,      I64,  I64,  I64>;
 | 
						|
 | 
						|
// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
 | 
						|
// one argument matches the patterns below, and with the other argument
 | 
						|
// matches S2_asl_r_r_or, etc, prefer the patterns below.
 | 
						|
let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
 | 
						|
  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32,  I32>;
 | 
						|
  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32,  I32>;
 | 
						|
  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32,  I32>;
 | 
						|
}
 | 
						|
 | 
						|
// S4_addaddi and S4_subaddi don't have tied operands, so give them
 | 
						|
// a bit of preference.
 | 
						|
let AddedComplexity = 30 in {
 | 
						|
  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
 | 
						|
           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
 | 
						|
  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
 | 
						|
           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
 | 
						|
  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
 | 
						|
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
 | 
						|
  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
 | 
						|
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
 | 
						|
  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
 | 
						|
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
 | 
						|
}
 | 
						|
 | 
						|
def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
 | 
						|
         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
 | 
						|
def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
 | 
						|
         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
 | 
						|
def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
 | 
						|
         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
 | 
						|
 | 
						|
 | 
						|
def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
 | 
						|
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
 | 
						|
def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
 | 
						|
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
 | 
						|
 | 
						|
def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
 | 
						|
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
 | 
						|
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
 | 
						|
         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
 | 
						|
 | 
						|
def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
 | 
						|
         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
 | 
						|
def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
 | 
						|
         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
 | 
						|
def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
 | 
						|
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
 | 
						|
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
 | 
						|
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
 | 
						|
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
 | 
						|
 | 
						|
// Add halfword.
 | 
						|
def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
 | 
						|
         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
 | 
						|
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
 | 
						|
         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
 | 
						|
def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
 | 
						|
         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
 | 
						|
 | 
						|
// Subtract halfword.
 | 
						|
def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
 | 
						|
         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
 | 
						|
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
 | 
						|
         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
 | 
						|
def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
 | 
						|
         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
 | 
						|
 | 
						|
def: Pat<(mul I64:$Rss, I64:$Rtt),
 | 
						|
         (Combinew
 | 
						|
           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
 | 
						|
                             (LoReg $Rss),
 | 
						|
                             (HiReg $Rtt)),
 | 
						|
                    (LoReg $Rtt),
 | 
						|
                    (HiReg $Rss)),
 | 
						|
           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
 | 
						|
 | 
						|
def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
 | 
						|
  (A2_addp
 | 
						|
    (M2_dpmpyuu_acc_s0
 | 
						|
      (S2_lsr_i_p
 | 
						|
        (A2_addp
 | 
						|
          (M2_dpmpyuu_acc_s0
 | 
						|
            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
 | 
						|
            (HiReg $Rss),
 | 
						|
            (LoReg $Rtt)),
 | 
						|
          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
 | 
						|
        32),
 | 
						|
      (HiReg $Rss),
 | 
						|
      (HiReg $Rtt)),
 | 
						|
    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
 | 
						|
 | 
						|
// Multiply 64-bit unsigned and use upper result.
 | 
						|
def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
 | 
						|
 | 
						|
// Multiply 64-bit signed and use upper result.
 | 
						|
//
 | 
						|
// For two signed 64-bit integers A and B, let A' and B' denote A and B
 | 
						|
// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
 | 
						|
// sign bit of A (and identically for B). With this notation, the signed
 | 
						|
// product A*B can be written as:
 | 
						|
//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
 | 
						|
//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
 | 
						|
//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
 | 
						|
//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
 | 
						|
 | 
						|
// Clear the sign bit in a 64-bit register.
 | 
						|
def ClearSign : OutPatFrag<(ops node:$Rss),
 | 
						|
  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
 | 
						|
 | 
						|
def : Pat <(mulhs I64:$Rss, I64:$Rtt),
 | 
						|
  (A2_subp
 | 
						|
    (MulHU $Rss, $Rtt),
 | 
						|
    (A2_addp
 | 
						|
      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
 | 
						|
      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
 | 
						|
 | 
						|
// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
 | 
						|
// will put the immediate addend into a register, while these instructions will
 | 
						|
// use it directly. Such a construct does not appear in the middle of a gep,
 | 
						|
// where M2_macsip would be preferable.
 | 
						|
let AddedComplexity = 20 in {
 | 
						|
  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
 | 
						|
           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
 | 
						|
  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
 | 
						|
           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
// Keep these instructions less preferable to M2_macsip/M2_macsin.
 | 
						|
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
 | 
						|
         (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
 | 
						|
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
 | 
						|
         (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
 | 
						|
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
 | 
						|
         (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
 | 
						|
 | 
						|
 | 
						|
let Predicates = [HasV5] in {
 | 
						|
  def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
 | 
						|
           (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
 | 
						|
  def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
 | 
						|
           (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
 | 
						|
  def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
 | 
						|
           (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
 | 
						|
         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
 | 
						|
def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
 | 
						|
         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
 | 
						|
 | 
						|
// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
 | 
						|
// we use the double add v8i8, and use only the low part of the result.
 | 
						|
def: Pat<(add V4I8:$Rs, V4I8:$Rt),
 | 
						|
         (LoReg (A2_vaddub (ToZext64 $Rs), (ToZext64 $Rt)))>;
 | 
						|
def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
 | 
						|
         (LoReg (A2_vsubub (ToZext64 $Rs), (ToZext64 $Rt)))>;
 | 
						|
 | 
						|
// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
 | 
						|
// half-words, and saturates the result to a 32-bit value, except the
 | 
						|
// saturation never happens (it can only occur with scaling).
 | 
						|
def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
 | 
						|
         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
 | 
						|
                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
 | 
						|
def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
 | 
						|
         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
 | 
						|
                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
 | 
						|
 | 
						|
// Multiplies two v4i8 vectors.
 | 
						|
def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
 | 
						|
         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>,
 | 
						|
     Requires<[HasV5]>;
 | 
						|
 | 
						|
// Multiplies two v8i8 vectors.
 | 
						|
def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
 | 
						|
         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
 | 
						|
                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>,
 | 
						|
     Requires<[HasV5]>;
 | 
						|
 | 
						|
 | 
						|
// --(10) Bit ------------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
// Count leading zeros.
 | 
						|
def: Pat<(ctlz I32:$Rs),                      (S2_cl0 I32:$Rs)>;
 | 
						|
def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;
 | 
						|
 | 
						|
// Count trailing zeros.
 | 
						|
def: Pat<(cttz I32:$Rs),                      (S2_ct0 I32:$Rs)>;
 | 
						|
def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;
 | 
						|
 | 
						|
// Count leading ones.
 | 
						|
def: Pat<(ctlz (not I32:$Rs)),                (S2_cl1 I32:$Rs)>;
 | 
						|
def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
 | 
						|
 | 
						|
// Count trailing ones.
 | 
						|
def: Pat<(cttz (not I32:$Rs)),                (S2_ct1 I32:$Rs)>;
 | 
						|
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
 | 
						|
 | 
						|
// Define leading/trailing patterns that require zero-extensions to 64 bits.
 | 
						|
def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
 | 
						|
def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
 | 
						|
def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
 | 
						|
def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;
 | 
						|
 | 
						|
def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
 | 
						|
def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;
 | 
						|
 | 
						|
def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
 | 
						|
def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;
 | 
						|
 | 
						|
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
 | 
						|
  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
 | 
						|
           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
 | 
						|
  def: Pat<(or I32:$Rs, IsPow2_32:$V),
 | 
						|
           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
 | 
						|
  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
 | 
						|
           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
 | 
						|
 | 
						|
  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
 | 
						|
           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
 | 
						|
           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
 | 
						|
           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
// Clr/set/toggle bit for 64-bit values with immediate bit index.
 | 
						|
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
 | 
						|
  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
 | 
						|
           (Combinew (i32 (HiReg $Rss)),
 | 
						|
                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
 | 
						|
  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
 | 
						|
           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
 | 
						|
                     (i32 (LoReg $Rss)))>;
 | 
						|
 | 
						|
  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
 | 
						|
           (Combinew (i32 (HiReg $Rss)),
 | 
						|
                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
 | 
						|
  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
 | 
						|
           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
 | 
						|
                     (i32 (LoReg $Rss)))>;
 | 
						|
 | 
						|
  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
 | 
						|
           (Combinew (i32 (HiReg $Rss)),
 | 
						|
                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
 | 
						|
  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
 | 
						|
           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
 | 
						|
                     (i32 (LoReg $Rss)))>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
 | 
						|
  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
 | 
						|
           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
 | 
						|
  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
 | 
						|
           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
  def: Pat<(i1 (trunc I32:$Rs)),
 | 
						|
           (S2_tstbit_i IntRegs:$Rs, 0)>;
 | 
						|
  def: Pat<(i1 (trunc I64:$Rs)),
 | 
						|
           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
 | 
						|
  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
 | 
						|
           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
 | 
						|
  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
 | 
						|
           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
 | 
						|
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
 | 
						|
         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
 | 
						|
 | 
						|
def SDTTestBit:
 | 
						|
  SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
 | 
						|
def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;
 | 
						|
 | 
						|
def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
 | 
						|
         (S2_tstbit_i I32:$Rs, imm:$u5)>;
 | 
						|
def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
 | 
						|
         (S2_tstbit_r I32:$Rs, I32:$Rt)>;
 | 
						|
 | 
						|
let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
 | 
						|
  def: Pat<(i1 (seteq (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
 | 
						|
           (S4_ntstbit_i I32:$Rs, imm:$u5)>;
 | 
						|
  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
 | 
						|
           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
// Add extra complexity to prefer these instructions over bitsset/bitsclr.
 | 
						|
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
 | 
						|
//   if ([!]tstbit(...)) jump ...
 | 
						|
let AddedComplexity = 100 in
 | 
						|
def: Pat<(i1 (setne (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
 | 
						|
         (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
 | 
						|
 | 
						|
let AddedComplexity = 100 in
 | 
						|
def: Pat<(i1 (seteq (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
 | 
						|
         (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
 | 
						|
 | 
						|
// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
 | 
						|
// represented as a compare against "value & 0xFF", which is an exact match
 | 
						|
// for cmpb (same for cmph). The patterns below do not contain any additional
 | 
						|
// complexity that would make them preferable, and if they were actually used
 | 
						|
// instead of cmpb/cmph, they would result in a compare against register that
 | 
						|
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
 | 
						|
def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
 | 
						|
         (C4_nbitsclri I32:$Rs, imm:$u6)>;
 | 
						|
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
 | 
						|
         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
 | 
						|
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
 | 
						|
         (C4_nbitsset I32:$Rs, I32:$Rt)>;
 | 
						|
 | 
						|
// Special patterns to address certain cases where the "top-down" matching
 | 
						|
// algorithm would cause suboptimal selection.
 | 
						|
 | 
						|
let AddedComplexity = 100 in {
 | 
						|
  // Avoid A4_rcmp[n]eqi in these cases:
 | 
						|
  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
 | 
						|
           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
 | 
						|
  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
 | 
						|
           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
 | 
						|
}
 | 
						|
 | 
						|
// --(11) PIC ------------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def SDT_HexagonAtGot
 | 
						|
  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
 | 
						|
def SDT_HexagonAtPcrel
 | 
						|
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
 | 
						|
 | 
						|
// AT_GOT address-of-GOT, address-of-global, offset-in-global
 | 
						|
def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
 | 
						|
// AT_PCREL address-of-global
 | 
						|
def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
 | 
						|
 | 
						|
def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
 | 
						|
         (L2_loadri_io I32:$got, imm:$addr)>;
 | 
						|
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
 | 
						|
         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
 | 
						|
def: Pat<(HexagonAtPcrel I32:$addr),
 | 
						|
         (C4_addipc imm:$addr)>;
 | 
						|
 | 
						|
// The HVX load patterns also match AT_PCREL directly. Make sure that
 | 
						|
// if the selection of this opcode changes, it's updated in all places.
 | 
						|
 | 
						|
 | 
						|
// --(12) Load -----------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
 | 
						|
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
 | 
						|
}]>;
 | 
						|
def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
 | 
						|
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
 | 
						|
}]>;
 | 
						|
 | 
						|
def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
 | 
						|
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
 | 
						|
}]>;
 | 
						|
def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
 | 
						|
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
 | 
						|
}]>;
 | 
						|
 | 
						|
def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
 | 
						|
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
 | 
						|
}]>;
 | 
						|
def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
 | 
						|
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
 | 
						|
}]>;
 | 
						|
 | 
						|
// Patterns to select load-indexed: Rs + Off.
 | 
						|
// - frameindex [+ imm],
 | 
						|
multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
 | 
						|
                       InstHexagon MI> {
 | 
						|
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
 | 
						|
           (VT (MI AddrFI:$fi, imm:$Off))>;
 | 
						|
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
 | 
						|
           (VT (MI AddrFI:$fi, imm:$Off))>;
 | 
						|
  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
 | 
						|
}
 | 
						|
 | 
						|
// Patterns to select load-indexed: Rs + Off.
 | 
						|
// - base reg [+ imm]
 | 
						|
multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
 | 
						|
                       InstHexagon MI> {
 | 
						|
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
 | 
						|
           (VT (MI IntRegs:$Rs, imm:$Off))>;
 | 
						|
  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
 | 
						|
           (VT (MI IntRegs:$Rs, imm:$Off))>;
 | 
						|
  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
 | 
						|
}
 | 
						|
 | 
						|
// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
 | 
						|
multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
 | 
						|
                      InstHexagon MI> {
 | 
						|
  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
 | 
						|
  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
 | 
						|
}
 | 
						|
 | 
						|
// Patterns to select load reg indexed: Rs + Off with a value modifier.
 | 
						|
// - frameindex [+ imm]
 | 
						|
multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
 | 
						|
                        PatLeaf ImmPred, InstHexagon MI> {
 | 
						|
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
 | 
						|
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
 | 
						|
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
 | 
						|
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
 | 
						|
  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
 | 
						|
}
 | 
						|
 | 
						|
// Patterns to select load reg indexed: Rs + Off with a value modifier.
 | 
						|
// - base reg [+ imm]
 | 
						|
multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
 | 
						|
                        PatLeaf ImmPred, InstHexagon MI> {
 | 
						|
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
 | 
						|
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
 | 
						|
  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
 | 
						|
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
 | 
						|
  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
 | 
						|
}
 | 
						|
 | 
						|
// Patterns to select load reg indexed: Rs + Off with a value modifier.
 | 
						|
// Combines Loadxfim + Loadxgim.
 | 
						|
multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
 | 
						|
                       PatLeaf ImmPred, InstHexagon MI> {
 | 
						|
  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
 | 
						|
  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
 | 
						|
}
 | 
						|
 | 
						|
// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
 | 
						|
class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
 | 
						|
  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
 | 
						|
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
 | 
						|
 | 
						|
// Pattern to select load reg reg-indexed: Rs + Rt<<0.
 | 
						|
class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
 | 
						|
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
 | 
						|
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
 | 
						|
 | 
						|
// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
 | 
						|
class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
 | 
						|
                      InstHexagon MI>
 | 
						|
  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
 | 
						|
        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
 | 
						|
 | 
						|
// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
 | 
						|
class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
 | 
						|
                      InstHexagon MI>
 | 
						|
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
 | 
						|
        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
 | 
						|
 | 
						|
// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
 | 
						|
// Don't match for u2==0, instead use reg+imm for those cases.
 | 
						|
class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
 | 
						|
  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
 | 
						|
        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
 | 
						|
 | 
						|
class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
 | 
						|
                  InstHexagon MI>
 | 
						|
  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
 | 
						|
        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
 | 
						|
 | 
						|
// Pattern to select load absolute.
 | 
						|
class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
 | 
						|
  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
 | 
						|
 | 
						|
// Pattern to select load absolute with value modifier.
 | 
						|
class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
 | 
						|
                 InstHexagon MI>
 | 
						|
  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
 | 
						|
 | 
						|
 | 
						|
let AddedComplexity = 20 in {
 | 
						|
  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
 | 
						|
  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
 | 
						|
  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
 | 
						|
  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
 | 
						|
  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
 | 
						|
  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
 | 
						|
  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
 | 
						|
  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
 | 
						|
  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
 | 
						|
  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
 | 
						|
  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxi_pat<load,            v2i16, anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxi_pat<load,            v4i8,  anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
 | 
						|
  defm: Loadxi_pat<load,            v2i32, anyimm3, L2_loadrd_io>;
 | 
						|
  defm: Loadxi_pat<load,            v4i16, anyimm3, L2_loadrd_io>;
 | 
						|
  defm: Loadxi_pat<load,            v8i8,  anyimm3, L2_loadrd_io>;
 | 
						|
  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
 | 
						|
  // No sextloadi1.
 | 
						|
 | 
						|
  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
 | 
						|
  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 30 in {
 | 
						|
  defm: Loadxim_pat<extloadi1,    i64, ToZext64, anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxim_pat<extloadi8,    i64, ToZext64, anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxim_pat<extloadi16,   i64, ToZext64, anyimm1, L2_loadruh_io>;
 | 
						|
  defm: Loadxim_pat<extloadi32,   i64, ToZext64, anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
 | 
						|
  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
 | 
						|
  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
 | 
						|
  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
 | 
						|
  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
 | 
						|
  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity  = 60 in {
 | 
						|
  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
 | 
						|
  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
 | 
						|
  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
 | 
						|
  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
 | 
						|
  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
 | 
						|
  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
 | 
						|
  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
 | 
						|
  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
 | 
						|
  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
 | 
						|
  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
 | 
						|
  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
 | 
						|
  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
 | 
						|
  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
 | 
						|
  def: Loadxu_pat<load,         v2i16, anyimm2, L4_loadri_ur>;
 | 
						|
  def: Loadxu_pat<load,         v4i8,  anyimm2, L4_loadri_ur>;
 | 
						|
  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;
 | 
						|
  def: Loadxu_pat<load,         v2i32, anyimm3, L4_loadrd_ur>;
 | 
						|
  def: Loadxu_pat<load,         v4i16, anyimm3, L4_loadrd_ur>;
 | 
						|
  def: Loadxu_pat<load,         v8i8,  anyimm3, L4_loadrd_ur>;
 | 
						|
  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
 | 
						|
  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;
 | 
						|
 | 
						|
  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
 | 
						|
  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
 | 
						|
  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToZext64, L4_loadrub_ur>;
 | 
						|
  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
 | 
						|
  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
 | 
						|
  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToZext64, L4_loadruh_ur>;
 | 
						|
  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
 | 
						|
  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
 | 
						|
  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToZext64, L4_loadri_ur>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 40 in {
 | 
						|
  def: Loadxr_shl_pat<extloadi8,     i32,   L4_loadrub_rr>;
 | 
						|
  def: Loadxr_shl_pat<zextloadi8,    i32,   L4_loadrub_rr>;
 | 
						|
  def: Loadxr_shl_pat<sextloadi8,    i32,   L4_loadrb_rr>;
 | 
						|
  def: Loadxr_shl_pat<extloadi16,    i32,   L4_loadruh_rr>;
 | 
						|
  def: Loadxr_shl_pat<zextloadi16,   i32,   L4_loadruh_rr>;
 | 
						|
  def: Loadxr_shl_pat<sextloadi16,   i32,   L4_loadrh_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          i32,   L4_loadri_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          v2i16, L4_loadri_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          v4i8,  L4_loadri_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          i64,   L4_loadrd_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          v2i32, L4_loadrd_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          v4i16, L4_loadrd_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          v8i8,  L4_loadrd_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          f32,   L4_loadri_rr>;
 | 
						|
  def: Loadxr_shl_pat<load,          f64,   L4_loadrd_rr>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 20 in {
 | 
						|
  def: Loadxr_add_pat<extloadi8,     i32,   L4_loadrub_rr>;
 | 
						|
  def: Loadxr_add_pat<zextloadi8,    i32,   L4_loadrub_rr>;
 | 
						|
  def: Loadxr_add_pat<sextloadi8,    i32,   L4_loadrb_rr>;
 | 
						|
  def: Loadxr_add_pat<extloadi16,    i32,   L4_loadruh_rr>;
 | 
						|
  def: Loadxr_add_pat<zextloadi16,   i32,   L4_loadruh_rr>;
 | 
						|
  def: Loadxr_add_pat<sextloadi16,   i32,   L4_loadrh_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          i32,   L4_loadri_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          v2i16, L4_loadri_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          v4i8,  L4_loadri_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          i64,   L4_loadrd_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          v2i32, L4_loadrd_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          v4i16, L4_loadrd_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          v8i8,  L4_loadrd_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          f32,   L4_loadri_rr>;
 | 
						|
  def: Loadxr_add_pat<load,          f64,   L4_loadrd_rr>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 40 in {
 | 
						|
  def: Loadxrm_shl_pat<extloadi8,    i64, ToZext64, L4_loadrub_rr>;
 | 
						|
  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
 | 
						|
  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
 | 
						|
  def: Loadxrm_shl_pat<extloadi16,   i64, ToZext64, L4_loadruh_rr>;
 | 
						|
  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
 | 
						|
  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
 | 
						|
  def: Loadxrm_shl_pat<extloadi32,   i64, ToZext64, L4_loadri_rr>;
 | 
						|
  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
 | 
						|
  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 20 in {
 | 
						|
  def: Loadxrm_add_pat<extloadi8,    i64, ToZext64, L4_loadrub_rr>;
 | 
						|
  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
 | 
						|
  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
 | 
						|
  def: Loadxrm_add_pat<extloadi16,   i64, ToZext64, L4_loadruh_rr>;
 | 
						|
  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
 | 
						|
  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
 | 
						|
  def: Loadxrm_add_pat<extloadi32,   i64, ToZext64, L4_loadri_rr>;
 | 
						|
  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
 | 
						|
  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
 | 
						|
}
 | 
						|
 | 
						|
// Absolute address
 | 
						|
 | 
						|
let AddedComplexity  = 60 in {
 | 
						|
  def: Loada_pat<zextloadi1,      i32,   anyimm0, PS_loadrubabs>;
 | 
						|
  def: Loada_pat<sextloadi8,      i32,   anyimm0, PS_loadrbabs>;
 | 
						|
  def: Loada_pat<extloadi8,       i32,   anyimm0, PS_loadrubabs>;
 | 
						|
  def: Loada_pat<zextloadi8,      i32,   anyimm0, PS_loadrubabs>;
 | 
						|
  def: Loada_pat<sextloadi16,     i32,   anyimm1, PS_loadrhabs>;
 | 
						|
  def: Loada_pat<extloadi16,      i32,   anyimm1, PS_loadruhabs>;
 | 
						|
  def: Loada_pat<zextloadi16,     i32,   anyimm1, PS_loadruhabs>;
 | 
						|
  def: Loada_pat<load,            i32,   anyimm2, PS_loadriabs>;
 | 
						|
  def: Loada_pat<load,            v2i16, anyimm2, PS_loadriabs>;
 | 
						|
  def: Loada_pat<load,            v4i8,  anyimm2, PS_loadriabs>;
 | 
						|
  def: Loada_pat<load,            i64,   anyimm3, PS_loadrdabs>;
 | 
						|
  def: Loada_pat<load,            v2i32, anyimm3, PS_loadrdabs>;
 | 
						|
  def: Loada_pat<load,            v4i16, anyimm3, PS_loadrdabs>;
 | 
						|
  def: Loada_pat<load,            v8i8,  anyimm3, PS_loadrdabs>;
 | 
						|
  def: Loada_pat<load,            f32,   anyimm2, PS_loadriabs>;
 | 
						|
  def: Loada_pat<load,            f64,   anyimm3, PS_loadrdabs>;
 | 
						|
 | 
						|
  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
 | 
						|
  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
 | 
						|
  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
 | 
						|
  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity  = 30 in {
 | 
						|
  def: Loadam_pat<extloadi8,      i64, anyimm0, ToZext64, PS_loadrubabs>;
 | 
						|
  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
 | 
						|
  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
 | 
						|
  def: Loadam_pat<extloadi16,     i64, anyimm1, ToZext64, PS_loadruhabs>;
 | 
						|
  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
 | 
						|
  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
 | 
						|
  def: Loadam_pat<extloadi32,     i64, anyimm2, ToZext64, PS_loadriabs>;
 | 
						|
  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
 | 
						|
  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;
 | 
						|
 | 
						|
  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
 | 
						|
  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
 | 
						|
}
 | 
						|
 | 
						|
// GP-relative address
 | 
						|
 | 
						|
let AddedComplexity  = 100 in {
 | 
						|
  def: Loada_pat<extloadi1,       i32,   addrgp,  L2_loadrubgp>;
 | 
						|
  def: Loada_pat<zextloadi1,      i32,   addrgp,  L2_loadrubgp>;
 | 
						|
  def: Loada_pat<extloadi8,       i32,   addrgp,  L2_loadrubgp>;
 | 
						|
  def: Loada_pat<sextloadi8,      i32,   addrgp,  L2_loadrbgp>;
 | 
						|
  def: Loada_pat<zextloadi8,      i32,   addrgp,  L2_loadrubgp>;
 | 
						|
  def: Loada_pat<extloadi16,      i32,   addrgp,  L2_loadruhgp>;
 | 
						|
  def: Loada_pat<sextloadi16,     i32,   addrgp,  L2_loadrhgp>;
 | 
						|
  def: Loada_pat<zextloadi16,     i32,   addrgp,  L2_loadruhgp>;
 | 
						|
  def: Loada_pat<load,            i32,   addrgp,  L2_loadrigp>;
 | 
						|
  def: Loada_pat<load,            v2i16, addrgp,  L2_loadrigp>;
 | 
						|
  def: Loada_pat<load,            v4i8,  addrgp,  L2_loadrigp>;
 | 
						|
  def: Loada_pat<load,            i64,   addrgp,  L2_loadrdgp>;
 | 
						|
  def: Loada_pat<load,            v2i32, addrgp,  L2_loadrdgp>;
 | 
						|
  def: Loada_pat<load,            v4i16, addrgp,  L2_loadrdgp>;
 | 
						|
  def: Loada_pat<load,            v8i8,  addrgp,  L2_loadrdgp>;
 | 
						|
  def: Loada_pat<load,            f32,   addrgp,  L2_loadrigp>;
 | 
						|
  def: Loada_pat<load,            f64,   addrgp,  L2_loadrdgp>;
 | 
						|
 | 
						|
  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
 | 
						|
  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
 | 
						|
  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
 | 
						|
  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity  = 70 in {
 | 
						|
  def: Loadam_pat<extloadi8,      i64, addrgp,  ToZext64, L2_loadrubgp>;
 | 
						|
  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
 | 
						|
  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
 | 
						|
  def: Loadam_pat<extloadi16,     i64, addrgp,  ToZext64, L2_loadruhgp>;
 | 
						|
  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
 | 
						|
  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
 | 
						|
  def: Loadam_pat<extloadi32,     i64, addrgp,  ToZext64, L2_loadrigp>;
 | 
						|
  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
 | 
						|
  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;
 | 
						|
 | 
						|
  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
 | 
						|
  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Sign-extending loads of i1 need to replicate the lowest bit throughout
 | 
						|
// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
 | 
						|
// do the trick.
 | 
						|
let AddedComplexity = 20 in
 | 
						|
def: Pat<(i32 (sextloadi1 I32:$Rs)),
 | 
						|
         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
 | 
						|
 | 
						|
// Patterns for loads of i1:
 | 
						|
def: Pat<(i1 (load AddrFI:$fi)),
 | 
						|
         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
 | 
						|
def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
 | 
						|
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
 | 
						|
def: Pat<(i1 (load I32:$Rs)),
 | 
						|
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
 | 
						|
 | 
						|
 | 
						|
// --(13) Store ----------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
 | 
						|
        (MI I32:$Rx, imm:$s4, Value:$Rt)>;
 | 
						|
 | 
						|
def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
 | 
						|
def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
 | 
						|
def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
 | 
						|
def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
 | 
						|
 | 
						|
// Patterns for generating stores, where the address takes different forms:
 | 
						|
// - frameindex,
 | 
						|
// - frameindex + offset,
 | 
						|
// - base + offset,
 | 
						|
// - simple (base address without offset).
 | 
						|
// These would usually be used together (via Storexi_pat defined below), but
 | 
						|
// in some cases one may want to apply different properties (such as
 | 
						|
// AddedComplexity) to the individual patterns.
 | 
						|
class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
 | 
						|
 | 
						|
multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
 | 
						|
                              InstHexagon MI> {
 | 
						|
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
 | 
						|
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
 | 
						|
                           InstHexagon MI> {
 | 
						|
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
 | 
						|
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
 | 
						|
}
 | 
						|
 | 
						|
class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Rt, I32:$Rs),
 | 
						|
        (MI IntRegs:$Rs, 0, Value:$Rt)>;
 | 
						|
 | 
						|
// Patterns for generating stores, where the address takes different forms,
 | 
						|
// and where the value being stored is transformed through the value modifier
 | 
						|
// ValueMod.  The address forms are same as above.
 | 
						|
class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
 | 
						|
                      InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Rs, AddrFI:$fi),
 | 
						|
        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
 | 
						|
 | 
						|
multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
 | 
						|
                               PatFrag ValueMod, InstHexagon MI> {
 | 
						|
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
 | 
						|
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
 | 
						|
                            PatFrag ValueMod, InstHexagon MI> {
 | 
						|
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
 | 
						|
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
 | 
						|
}
 | 
						|
 | 
						|
class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
 | 
						|
                        InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Rt, I32:$Rs),
 | 
						|
        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
 | 
						|
 | 
						|
multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
 | 
						|
                       InstHexagon MI> {
 | 
						|
  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
 | 
						|
  def:  Storexi_fi_pat     <Store, Value,          MI>;
 | 
						|
  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
 | 
						|
                        PatFrag ValueMod, InstHexagon MI> {
 | 
						|
  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
 | 
						|
  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
 | 
						|
  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg<<S + Imm
 | 
						|
class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
 | 
						|
        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
 | 
						|
 | 
						|
// Reg<<S + Reg
 | 
						|
class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
 | 
						|
        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
 | 
						|
 | 
						|
// Reg + Reg
 | 
						|
class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
 | 
						|
        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
 | 
						|
 | 
						|
class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
 | 
						|
 | 
						|
class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
 | 
						|
                  InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$val, Addr:$addr),
 | 
						|
        (MI Addr:$addr, (ValueMod Value:$val))>;
 | 
						|
 | 
						|
// Regular stores in the DAG have two operands: value and address.
 | 
						|
// Atomic stores also have two, but they are reversed: address, value.
 | 
						|
// To use atomic stores with the patterns, they need to have their operands
 | 
						|
// swapped. This relies on the knowledge that the F.Fragment uses names
 | 
						|
// "ptr" and "val".
 | 
						|
class AtomSt<PatFrag F>
 | 
						|
  : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
 | 
						|
            F.OperandTransform> {
 | 
						|
  let IsAtomic = F.IsAtomic;
 | 
						|
  let MemoryVT = F.MemoryVT;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
def IMM_BYTE : SDNodeXForm<imm, [{
 | 
						|
  // -1 can be represented as 255, etc.
 | 
						|
  // assigning to a byte restores our desired signed value.
 | 
						|
  int8_t imm = N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IMM_HALF : SDNodeXForm<imm, [{
 | 
						|
  // -1 can be represented as 65535, etc.
 | 
						|
  // assigning to a short restores our desired signed value.
 | 
						|
  int16_t imm = N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IMM_WORD : SDNodeXForm<imm, [{
 | 
						|
  // -1 can be represented as 4294967295, etc.
 | 
						|
  // Currently, it's not doing this. But some optimization
 | 
						|
  // might convert -1 to a large +ve number.
 | 
						|
  // assigning to a word restores our desired signed value.
 | 
						|
  int32_t imm = N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
 | 
						|
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
 | 
						|
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
 | 
						|
 | 
						|
// Even though the offset is not extendable in the store-immediate, we
 | 
						|
// can still generate the fi# in the base address. If the final offset
 | 
						|
// is not valid for the instruction, we will replace it with a scratch
 | 
						|
// register.
 | 
						|
class SmallStackStore<PatFrag Store>
 | 
						|
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
 | 
						|
  return isSmallStackStore(cast<StoreSDNode>(N));
 | 
						|
}]>;
 | 
						|
 | 
						|
// This is the complement of SmallStackStore.
 | 
						|
class LargeStackStore<PatFrag Store>
 | 
						|
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
 | 
						|
  return !isSmallStackStore(cast<StoreSDNode>(N));
 | 
						|
}]>;
 | 
						|
 | 
						|
// Preferred addressing modes for various combinations of stored value
 | 
						|
// and address computation.
 | 
						|
// For stores where the address and value are both immediates, prefer
 | 
						|
// store-immediate. The reason is that the constant-extender optimization
 | 
						|
// can replace store-immediate with a store-register, but there is nothing
 | 
						|
// to generate a store-immediate out of a store-register.
 | 
						|
//
 | 
						|
//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
 | 
						|
// --+-------+-----+-----+------+-----+-----+--------+--------
 | 
						|
// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
 | 
						|
// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
 | 
						|
//
 | 
						|
// (*) Absolute or GP-relative.
 | 
						|
//
 | 
						|
// Note that any expression can be matched by Reg. In particular, an immediate
 | 
						|
// can always be placed in a register, so patterns checking for Imm should
 | 
						|
// have a higher priority than the ones involving Reg that could also match.
 | 
						|
// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
 | 
						|
// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
 | 
						|
// Reg alone.
 | 
						|
//
 | 
						|
// The order in which the different combinations are tried:
 | 
						|
//
 | 
						|
//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
 | 
						|
// --+-------+-----+-----+------+-----+-----+--------+--------
 | 
						|
// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
 | 
						|
// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4
 | 
						|
 | 
						|
 | 
						|
// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
 | 
						|
// a store where the offset Imm4 is a multiple of 4, but not of 8. This
 | 
						|
// implies that Reg is also a proper multiple of 4. To still generate a
 | 
						|
// doubleword store, add 4 to Reg, and subtract 4 from the offset.
 | 
						|
 | 
						|
def s30_2ProperPred  : PatLeaf<(i32 imm), [{
 | 
						|
  int64_t v = (int64_t)N->getSExtValue();
 | 
						|
  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
 | 
						|
}]>;
 | 
						|
def RoundTo8 : SDNodeXForm<imm, [{
 | 
						|
  int32_t Imm = N->getSExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
let AddedComplexity = 150 in
 | 
						|
def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
 | 
						|
         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
 | 
						|
 | 
						|
class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$val, anyimm:$addr),
 | 
						|
        (MI (ToI32 $addr), 0, Value:$val)>;
 | 
						|
class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
 | 
						|
                       InstHexagon MI>
 | 
						|
  : Pat<(Store Value:$val, anyimm:$addr),
 | 
						|
        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
 | 
						|
 | 
						|
let AddedComplexity = 140 in {
 | 
						|
  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
 | 
						|
  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
 | 
						|
  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
 | 
						|
 | 
						|
  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
 | 
						|
  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
 | 
						|
  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
 | 
						|
}
 | 
						|
 | 
						|
// GP-relative address
 | 
						|
let AddedComplexity = 120 in {
 | 
						|
  def: Storea_pat<truncstorei8,               I32, addrgp, S2_storerbgp>;
 | 
						|
  def: Storea_pat<truncstorei16,              I32, addrgp, S2_storerhgp>;
 | 
						|
  def: Storea_pat<store,                      I32, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<store,                     V4I8, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<store,                    V2I16, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<store,                      I64, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<store,                     V8I8, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<store,                    V4I16, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<store,                    V2I32, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<store,                      F32, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<store,                      F64, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_8>,     I32, addrgp, S2_storerbgp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_16>,    I32, addrgp, S2_storerhgp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_32>,    I32, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, addrgp, S2_storerigp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,    I64, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, addrgp, S2_storerdgp>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, addrgp, S2_storerdgp>;
 | 
						|
 | 
						|
  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
 | 
						|
  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
 | 
						|
  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
 | 
						|
  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
 | 
						|
}
 | 
						|
 | 
						|
// Absolute address
 | 
						|
let AddedComplexity = 110 in {
 | 
						|
  def: Storea_pat<truncstorei8,               I32, anyimm0, PS_storerbabs>;
 | 
						|
  def: Storea_pat<truncstorei16,              I32, anyimm1, PS_storerhabs>;
 | 
						|
  def: Storea_pat<store,                      I32, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<store,                     V4I8, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<store,                    V2I16, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<store,                      I64, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<store,                     V8I8, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<store,                    V4I16, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<store,                    V2I32, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<store,                      F32, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<store,                      F64, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_8>,     I32, anyimm0, PS_storerbabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_16>,    I32, anyimm1, PS_storerhabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_32>,    I32, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, PS_storeriabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,    I64, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, PS_storerdabs>;
 | 
						|
  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, PS_storerdabs>;
 | 
						|
 | 
						|
  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
 | 
						|
  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
 | 
						|
  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
 | 
						|
  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg<<S + Imm
 | 
						|
let AddedComplexity = 100 in {
 | 
						|
  def: Storexu_shl_pat<truncstorei8,    I32, anyimm0, S4_storerb_ur>;
 | 
						|
  def: Storexu_shl_pat<truncstorei16,   I32, anyimm1, S4_storerh_ur>;
 | 
						|
  def: Storexu_shl_pat<store,           I32, anyimm2, S4_storeri_ur>;
 | 
						|
  def: Storexu_shl_pat<store,          V4I8, anyimm2, S4_storeri_ur>;
 | 
						|
  def: Storexu_shl_pat<store,         V2I16, anyimm2, S4_storeri_ur>;
 | 
						|
  def: Storexu_shl_pat<store,           I64, anyimm3, S4_storerd_ur>;
 | 
						|
  def: Storexu_shl_pat<store,          V8I8, anyimm3, S4_storerd_ur>;
 | 
						|
  def: Storexu_shl_pat<store,         V4I16, anyimm3, S4_storerd_ur>;
 | 
						|
  def: Storexu_shl_pat<store,         V2I32, anyimm3, S4_storerd_ur>;
 | 
						|
  def: Storexu_shl_pat<store,           F32, anyimm2, S4_storeri_ur>;
 | 
						|
  def: Storexu_shl_pat<store,           F64, anyimm3, S4_storerd_ur>;
 | 
						|
 | 
						|
  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
 | 
						|
           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg<<S + Reg
 | 
						|
let AddedComplexity = 90 in {
 | 
						|
  def: Storexr_shl_pat<truncstorei8,    I32, S4_storerb_rr>;
 | 
						|
  def: Storexr_shl_pat<truncstorei16,   I32, S4_storerh_rr>;
 | 
						|
  def: Storexr_shl_pat<store,           I32, S4_storeri_rr>;
 | 
						|
  def: Storexr_shl_pat<store,          V4I8, S4_storeri_rr>;
 | 
						|
  def: Storexr_shl_pat<store,         V2I16, S4_storeri_rr>;
 | 
						|
  def: Storexr_shl_pat<store,           I64, S4_storerd_rr>;
 | 
						|
  def: Storexr_shl_pat<store,          V8I8, S4_storerd_rr>;
 | 
						|
  def: Storexr_shl_pat<store,         V4I16, S4_storerd_rr>;
 | 
						|
  def: Storexr_shl_pat<store,         V2I32, S4_storerd_rr>;
 | 
						|
  def: Storexr_shl_pat<store,           F32, S4_storeri_rr>;
 | 
						|
  def: Storexr_shl_pat<store,           F64, S4_storerd_rr>;
 | 
						|
 | 
						|
  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
 | 
						|
           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
 | 
						|
}
 | 
						|
 | 
						|
class SS_<PatFrag F> : SmallStackStore<F>;
 | 
						|
class LS_<PatFrag F> : LargeStackStore<F>;
 | 
						|
 | 
						|
multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
 | 
						|
  defm: Storexim_fi_add_pat<S, V, O, M, I>;
 | 
						|
}
 | 
						|
multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
 | 
						|
  defm: Storexi_fi_add_pat<S, V, O, I>;
 | 
						|
}
 | 
						|
 | 
						|
// Fi+Imm, store-immediate
 | 
						|
let AddedComplexity = 80 in {
 | 
						|
  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
 | 
						|
  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
 | 
						|
  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
 | 
						|
 | 
						|
  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
 | 
						|
  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
 | 
						|
  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;
 | 
						|
 | 
						|
  // For large-stack stores, generate store-register (prefer explicit Fi
 | 
						|
  // in the address).
 | 
						|
  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
 | 
						|
  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
 | 
						|
  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
 | 
						|
}
 | 
						|
 | 
						|
// Fi, store-immediate
 | 
						|
let AddedComplexity = 70 in {
 | 
						|
  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
 | 
						|
  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
 | 
						|
  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;
 | 
						|
 | 
						|
  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
 | 
						|
  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
 | 
						|
  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;
 | 
						|
 | 
						|
  // For large-stack stores, generate store-register (prefer explicit Fi
 | 
						|
  // in the address).
 | 
						|
  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
 | 
						|
  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
 | 
						|
  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
 | 
						|
}
 | 
						|
 | 
						|
// Fi+Imm, Fi, store-register
 | 
						|
let AddedComplexity = 60 in {
 | 
						|
  defm: Storexi_fi_add_pat<truncstorei8,    I32, anyimm, S2_storerb_io>;
 | 
						|
  defm: Storexi_fi_add_pat<truncstorei16,   I32, anyimm, S2_storerh_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,           I32, anyimm, S2_storeri_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,          V4I8, anyimm, S2_storeri_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,         V2I16, anyimm, S2_storeri_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,           I64, anyimm, S2_storerd_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,          V8I8, anyimm, S2_storerd_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,         V4I16, anyimm, S2_storerd_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,         V2I32, anyimm, S2_storerd_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,           F32, anyimm, S2_storeri_io>;
 | 
						|
  defm: Storexi_fi_add_pat<store,           F64, anyimm, S2_storerd_io>;
 | 
						|
  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
 | 
						|
 | 
						|
  def: Storexi_fi_pat<truncstorei8,     I32, S2_storerb_io>;
 | 
						|
  def: Storexi_fi_pat<truncstorei16,    I32, S2_storerh_io>;
 | 
						|
  def: Storexi_fi_pat<store,            I32, S2_storeri_io>;
 | 
						|
  def: Storexi_fi_pat<store,           V4I8, S2_storeri_io>;
 | 
						|
  def: Storexi_fi_pat<store,          V2I16, S2_storeri_io>;
 | 
						|
  def: Storexi_fi_pat<store,            I64, S2_storerd_io>;
 | 
						|
  def: Storexi_fi_pat<store,           V8I8, S2_storerd_io>;
 | 
						|
  def: Storexi_fi_pat<store,          V4I16, S2_storerd_io>;
 | 
						|
  def: Storexi_fi_pat<store,          V2I32, S2_storerd_io>;
 | 
						|
  def: Storexi_fi_pat<store,            F32, S2_storeri_io>;
 | 
						|
  def: Storexi_fi_pat<store,            F64, S2_storerd_io>;
 | 
						|
  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
 | 
						|
  defm: Storexim_add_pat<S, V, O, M, I>;
 | 
						|
}
 | 
						|
multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
 | 
						|
  defm: Storexi_add_pat<S, V, O, I>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg+Imm, store-immediate
 | 
						|
let AddedComplexity = 50 in {
 | 
						|
  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
 | 
						|
  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
 | 
						|
  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
 | 
						|
 | 
						|
  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
 | 
						|
  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
 | 
						|
  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg+Imm, store-register
 | 
						|
let AddedComplexity = 40 in {
 | 
						|
  defm: Storexi_pat<truncstorei8,     I32, anyimm0, S2_storerb_io>;
 | 
						|
  defm: Storexi_pat<truncstorei16,    I32, anyimm1, S2_storerh_io>;
 | 
						|
  defm: Storexi_pat<store,            I32, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<store,           V4I8, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<store,          V2I16, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<store,            I64, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<store,           V8I8, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<store,          V4I16, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<store,          V2I32, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<store,            F32, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<store,            F64, anyimm3, S2_storerd_io>;
 | 
						|
 | 
						|
  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
 | 
						|
  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
 | 
						|
  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
 | 
						|
  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;
 | 
						|
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_8>,     I32, anyimm0, S2_storerb_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_16>,    I32, anyimm1, S2_storerh_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_32>,    I32, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, S2_storeri_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_64>,    I64, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, S2_storerd_io>;
 | 
						|
  defm: Storexi_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, S2_storerd_io>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg+Reg
 | 
						|
let AddedComplexity = 30 in {
 | 
						|
  def: Storexr_add_pat<truncstorei8,    I32, S4_storerb_rr>;
 | 
						|
  def: Storexr_add_pat<truncstorei16,   I32, S4_storerh_rr>;
 | 
						|
  def: Storexr_add_pat<store,           I32, S4_storeri_rr>;
 | 
						|
  def: Storexr_add_pat<store,          V4I8, S4_storeri_rr>;
 | 
						|
  def: Storexr_add_pat<store,         V2I16, S4_storeri_rr>;
 | 
						|
  def: Storexr_add_pat<store,           I64, S4_storerd_rr>;
 | 
						|
  def: Storexr_add_pat<store,          V8I8, S4_storerd_rr>;
 | 
						|
  def: Storexr_add_pat<store,         V4I16, S4_storerd_rr>;
 | 
						|
  def: Storexr_add_pat<store,         V2I32, S4_storerd_rr>;
 | 
						|
  def: Storexr_add_pat<store,           F32, S4_storeri_rr>;
 | 
						|
  def: Storexr_add_pat<store,           F64, S4_storerd_rr>;
 | 
						|
 | 
						|
  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
 | 
						|
           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg, store-immediate
 | 
						|
let AddedComplexity = 20 in {
 | 
						|
  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
 | 
						|
  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
 | 
						|
  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
 | 
						|
 | 
						|
  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
 | 
						|
  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
 | 
						|
  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
 | 
						|
}
 | 
						|
 | 
						|
// Reg, store-register
 | 
						|
let AddedComplexity = 10 in {
 | 
						|
  def: Storexi_base_pat<truncstorei8,     I32, S2_storerb_io>;
 | 
						|
  def: Storexi_base_pat<truncstorei16,    I32, S2_storerh_io>;
 | 
						|
  def: Storexi_base_pat<store,            I32, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<store,           V4I8, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<store,          V2I16, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<store,            I64, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<store,           V8I8, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<store,          V4I16, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<store,          V2I32, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<store,            F32, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<store,            F64, S2_storerd_io>;
 | 
						|
 | 
						|
  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
 | 
						|
  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
 | 
						|
  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
 | 
						|
  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;
 | 
						|
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_8>,     I32, S2_storerb_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_16>,    I32, S2_storerh_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_32>,    I32, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_32>,   V4I8, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_32>,  V2I16, S2_storeri_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_64>,    I64, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_64>,   V8I8, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V4I16, S2_storerd_io>;
 | 
						|
  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V2I32, S2_storerd_io>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// --(14) Memop ----------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
 | 
						|
  int8_t V = N->getSExtValue();
 | 
						|
  return -32 < V && V <= -1;
 | 
						|
}]>;
 | 
						|
 | 
						|
def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
 | 
						|
  int16_t V = N->getSExtValue();
 | 
						|
  return -32 < V && V <= -1;
 | 
						|
}]>;
 | 
						|
 | 
						|
def m5_0ImmPred  : PatLeaf<(i32 imm), [{
 | 
						|
  int64_t V = N->getSExtValue();
 | 
						|
  return -31 <= V && V <= -1;
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsNPow2_8 : PatLeaf<(i32 imm), [{
 | 
						|
  uint8_t NV = ~N->getZExtValue();
 | 
						|
  return isPowerOf2_32(NV);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IsNPow2_16 : PatLeaf<(i32 imm), [{
 | 
						|
  uint16_t NV = ~N->getZExtValue();
 | 
						|
  return isPowerOf2_32(NV);
 | 
						|
}]>;
 | 
						|
 | 
						|
def Log2_8 : SDNodeXForm<imm, [{
 | 
						|
  uint8_t V = N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def Log2_16 : SDNodeXForm<imm, [{
 | 
						|
  uint16_t V = N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def LogN2_8 : SDNodeXForm<imm, [{
 | 
						|
  uint8_t NV = ~N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def LogN2_16 : SDNodeXForm<imm, [{
 | 
						|
  uint16_t NV = ~N->getZExtValue();
 | 
						|
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
 | 
						|
}]>;
 | 
						|
 | 
						|
def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
 | 
						|
 | 
						|
multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
 | 
						|
                            InstHexagon MI> {
 | 
						|
  // Addr: i32
 | 
						|
  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
 | 
						|
           (MI I32:$Rs, 0, I32:$A)>;
 | 
						|
  // Addr: fi
 | 
						|
  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
 | 
						|
           (MI AddrFI:$Rs, 0, I32:$A)>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
 | 
						|
                           SDNode Oper, InstHexagon MI> {
 | 
						|
  // Addr: i32
 | 
						|
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
 | 
						|
                  (add I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI I32:$Rs, imm:$Off, I32:$A)>;
 | 
						|
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
 | 
						|
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI I32:$Rs, imm:$Off, I32:$A)>;
 | 
						|
  // Addr: fi
 | 
						|
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
 | 
						|
                  (add AddrFI:$Rs, ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
 | 
						|
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
 | 
						|
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
 | 
						|
                       SDNode Oper, InstHexagon MI> {
 | 
						|
  let Predicates = [UseMEMOPS] in {
 | 
						|
    defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
 | 
						|
    defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 200 in {
 | 
						|
  // add reg
 | 
						|
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
 | 
						|
        /*anyext*/  L4_add_memopb_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
 | 
						|
        /*sext*/    L4_add_memopb_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
 | 
						|
        /*zext*/    L4_add_memopb_io>;
 | 
						|
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
 | 
						|
        /*anyext*/  L4_add_memoph_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
 | 
						|
        /*sext*/    L4_add_memoph_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
 | 
						|
        /*zext*/    L4_add_memoph_io>;
 | 
						|
  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
 | 
						|
 | 
						|
  // sub reg
 | 
						|
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
 | 
						|
        /*anyext*/  L4_sub_memopb_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
 | 
						|
        /*sext*/    L4_sub_memopb_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
 | 
						|
        /*zext*/    L4_sub_memopb_io>;
 | 
						|
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
 | 
						|
        /*anyext*/  L4_sub_memoph_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
 | 
						|
        /*sext*/    L4_sub_memoph_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
 | 
						|
        /*zext*/    L4_sub_memoph_io>;
 | 
						|
  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
 | 
						|
 | 
						|
  // and reg
 | 
						|
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
 | 
						|
        /*anyext*/  L4_and_memopb_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
 | 
						|
        /*sext*/    L4_and_memopb_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
 | 
						|
        /*zext*/    L4_and_memopb_io>;
 | 
						|
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
 | 
						|
        /*anyext*/  L4_and_memoph_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
 | 
						|
        /*sext*/    L4_and_memoph_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
 | 
						|
        /*zext*/    L4_and_memoph_io>;
 | 
						|
  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
 | 
						|
 | 
						|
  // or reg
 | 
						|
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
 | 
						|
        /*anyext*/  L4_or_memopb_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
 | 
						|
        /*sext*/    L4_or_memopb_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
 | 
						|
        /*zext*/    L4_or_memopb_io>;
 | 
						|
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
 | 
						|
        /*anyext*/  L4_or_memoph_io>;
 | 
						|
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
 | 
						|
        /*sext*/    L4_or_memoph_io>;
 | 
						|
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
 | 
						|
        /*zext*/    L4_or_memoph_io>;
 | 
						|
  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
 | 
						|
                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
 | 
						|
  // Addr: i32
 | 
						|
  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
 | 
						|
           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
 | 
						|
  // Addr: fi
 | 
						|
  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
 | 
						|
           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
 | 
						|
                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
 | 
						|
                           InstHexagon MI> {
 | 
						|
  // Addr: i32
 | 
						|
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
 | 
						|
                  (add I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
 | 
						|
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
 | 
						|
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
 | 
						|
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
 | 
						|
  // Addr: fi
 | 
						|
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
 | 
						|
                  (add AddrFI:$Rs, ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
 | 
						|
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
 | 
						|
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
 | 
						|
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
 | 
						|
}
 | 
						|
 | 
						|
multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
 | 
						|
                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
 | 
						|
                       InstHexagon MI> {
 | 
						|
  let Predicates = [UseMEMOPS] in {
 | 
						|
    defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
 | 
						|
    defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
let AddedComplexity = 220 in {
 | 
						|
  // add imm
 | 
						|
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
 | 
						|
        /*anyext*/  IdImm, L4_iadd_memopb_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
 | 
						|
        /*sext*/    IdImm, L4_iadd_memopb_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
 | 
						|
        /*zext*/    IdImm, L4_iadd_memopb_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
 | 
						|
        /*anyext*/  IdImm, L4_iadd_memoph_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
 | 
						|
        /*sext*/    IdImm, L4_iadd_memoph_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
 | 
						|
        /*zext*/    IdImm, L4_iadd_memoph_io>;
 | 
						|
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
 | 
						|
                    L4_iadd_memopw_io>;
 | 
						|
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
 | 
						|
        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
 | 
						|
        /*sext*/    NegImm8, L4_iadd_memopb_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
 | 
						|
        /*zext*/    NegImm8, L4_iadd_memopb_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
 | 
						|
        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
 | 
						|
        /*sext*/    NegImm16, L4_iadd_memoph_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
 | 
						|
        /*zext*/    NegImm16, L4_iadd_memoph_io>;
 | 
						|
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
 | 
						|
                    L4_iadd_memopw_io>;
 | 
						|
 | 
						|
  // sub imm
 | 
						|
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
 | 
						|
        /*anyext*/  IdImm, L4_isub_memopb_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
 | 
						|
        /*sext*/    IdImm, L4_isub_memopb_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
 | 
						|
        /*zext*/    IdImm, L4_isub_memopb_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
 | 
						|
        /*anyext*/  IdImm, L4_isub_memoph_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
 | 
						|
        /*sext*/    IdImm, L4_isub_memoph_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
 | 
						|
        /*zext*/    IdImm, L4_isub_memoph_io>;
 | 
						|
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
 | 
						|
                    L4_isub_memopw_io>;
 | 
						|
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
 | 
						|
        /*anyext*/  NegImm8, L4_isub_memopb_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
 | 
						|
        /*sext*/    NegImm8, L4_isub_memopb_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
 | 
						|
        /*zext*/    NegImm8, L4_isub_memopb_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
 | 
						|
        /*anyext*/  NegImm16, L4_isub_memoph_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
 | 
						|
        /*sext*/    NegImm16, L4_isub_memoph_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
 | 
						|
        /*zext*/    NegImm16, L4_isub_memoph_io>;
 | 
						|
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
 | 
						|
                    L4_isub_memopw_io>;
 | 
						|
 | 
						|
  // clrbit imm
 | 
						|
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
 | 
						|
        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
 | 
						|
        /*sext*/    LogN2_8, L4_iand_memopb_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
 | 
						|
        /*zext*/    LogN2_8, L4_iand_memopb_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
 | 
						|
        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
 | 
						|
        /*sext*/    LogN2_16, L4_iand_memoph_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
 | 
						|
        /*zext*/    LogN2_16, L4_iand_memoph_io>;
 | 
						|
  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
 | 
						|
		    LogN2_32, L4_iand_memopw_io>;
 | 
						|
 | 
						|
  // setbit imm
 | 
						|
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
 | 
						|
        /*anyext*/  Log2_8, L4_ior_memopb_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
 | 
						|
        /*sext*/    Log2_8, L4_ior_memopb_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
 | 
						|
        /*zext*/    Log2_8, L4_ior_memopb_io>;
 | 
						|
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
 | 
						|
        /*anyext*/  Log2_16, L4_ior_memoph_io>;
 | 
						|
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
 | 
						|
        /*sext*/    Log2_16, L4_ior_memoph_io>;
 | 
						|
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
 | 
						|
        /*zext*/    Log2_16, L4_ior_memoph_io>;
 | 
						|
  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
 | 
						|
		    Log2_32, L4_ior_memopw_io>;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// --(15) Call -----------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
// Pseudo instructions.
 | 
						|
def SDT_SPCallSeqStart
 | 
						|
  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
 | 
						|
def SDT_SPCallSeqEnd
 | 
						|
  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
 | 
						|
 | 
						|
def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
 | 
						|
                          [SDNPHasChain, SDNPOutGlue]>;
 | 
						|
def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
 | 
						|
                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
 | 
						|
 | 
						|
def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
 | 
						|
 | 
						|
def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
 | 
						|
                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
 | 
						|
def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
 | 
						|
                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
 | 
						|
def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
 | 
						|
                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
 | 
						|
 | 
						|
def: Pat<(callseq_start timm:$amt, timm:$amt2),
 | 
						|
         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
 | 
						|
def: Pat<(callseq_end timm:$amt1, timm:$amt2),
 | 
						|
         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
 | 
						|
 | 
						|
def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
 | 
						|
def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
 | 
						|
def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;
 | 
						|
 | 
						|
def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
 | 
						|
def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
 | 
						|
def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
 | 
						|
def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;
 | 
						|
 | 
						|
def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
 | 
						|
def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
 | 
						|
def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;
 | 
						|
 | 
						|
def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
 | 
						|
                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
 | 
						|
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
 | 
						|
 | 
						|
def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
 | 
						|
def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
 | 
						|
 | 
						|
 | 
						|
// --(16) Branch ---------------------------------------------------------
 | 
						|
//
 | 
						|
 | 
						|
def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
 | 
						|
def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;
 | 
						|
 | 
						|
def: Pat<(brcond I1:$Pu, bb:$dst),
 | 
						|
         (J2_jumpt I1:$Pu, bb:$dst)>;
 | 
						|
def: Pat<(brcond (not I1:$Pu), bb:$dst),
 | 
						|
         (J2_jumpf I1:$Pu, bb:$dst)>;
 | 
						|
def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
 | 
						|
         (J2_jumpf I1:$Pu, bb:$dst)>;
 | 
						|
def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
 | 
						|
         (J2_jumpf I1:$Pu, bb:$dst)>;
 | 
						|
def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
 | 
						|
         (J2_jumpt I1:$Pu, bb:$dst)>;
 | 
						|
 | 
						|
 | 
						|
// --(17) Misc -----------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
 | 
						|
// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
 | 
						|
// The isdigit transformation relies on two 'clever' aspects:
 | 
						|
// 1) The data type is unsigned which allows us to eliminate a zero test after
 | 
						|
//    biasing the expression by 48. We are depending on the representation of
 | 
						|
//    the unsigned types, and semantics.
 | 
						|
// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
 | 
						|
//
 | 
						|
// For the C code:
 | 
						|
//   retval = (c >= '0' && c <= '9') ? 1 : 0;
 | 
						|
// The code is transformed upstream of llvm into
 | 
						|
//   retval = (c-48) < 10 ? 1 : 0;
 | 
						|
 | 
						|
def u7_0PosImmPred : ImmLeaf<i32, [{
 | 
						|
  // True if the immediate fits in an 7-bit unsigned field and is positive.
 | 
						|
  return Imm > 0 && isUInt<7>(Imm);
 | 
						|
}]>;
 | 
						|
 | 
						|
let AddedComplexity = 139 in
 | 
						|
def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
 | 
						|
         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
 | 
						|
 | 
						|
let AddedComplexity = 100 in
 | 
						|
def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
 | 
						|
                                     (i32 (extloadi8  (add I32:$b, 3))),
 | 
						|
                                     24, 8),
 | 
						|
                      (i32 16)),
 | 
						|
                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
 | 
						|
             (zextloadi8 I32:$b)),
 | 
						|
         (A2_swiz (L2_loadri_io I32:$b, 0))>;
 | 
						|
 | 
						|
 | 
						|
// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
 | 
						|
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
 | 
						|
// We don't really want either one here.
 | 
						|
def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
 | 
						|
def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
 | 
						|
                           [SDNPHasChain]>;
 | 
						|
 | 
						|
def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
 | 
						|
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
 | 
						|
def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
 | 
						|
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
 | 
						|
 | 
						|
def SDTHexagonALLOCA
 | 
						|
  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
 | 
						|
def HexagonALLOCA
 | 
						|
  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
 | 
						|
 | 
						|
def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
 | 
						|
         (PS_alloca IntRegs:$Rs, imm:$A)>;
 | 
						|
 | 
						|
def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
 | 
						|
def: Pat<(HexagonBARRIER), (Y2_barrier)>;
 | 
						|
 | 
						|
def: Pat<(trap), (J2_trap0 (i32 0))>;
 | 
						|
 | 
						|
// Read cycle counter.
 | 
						|
def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
 | 
						|
def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
 | 
						|
  [SDNPHasChain]>;
 | 
						|
 | 
						|
def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;
 | 
						|
 | 
						|
// The declared return value of the store-locked intrinsics is i32, but
 | 
						|
// the instructions actually define i1. To avoid register copies from
 | 
						|
// IntRegs to PredRegs and back, fold the entire pattern checking the
 | 
						|
// result against true/false.
 | 
						|
let AddedComplexity = 100 in {
 | 
						|
  def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
 | 
						|
           (S2_storew_locked I32:$Rs, I32:$Rt)>;
 | 
						|
  def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
 | 
						|
           (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
 | 
						|
  def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
 | 
						|
           (S4_stored_locked I32:$Rs, I64:$Rt)>;
 | 
						|
  def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
 | 
						|
           (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
 | 
						|
}
 |