1855 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1855 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- RDFGraph.cpp -------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Target-independent, SSA-based data flow graph for register data flow (RDF).
 | 
						|
//
 | 
						|
#include "RDFGraph.h"
 | 
						|
#include "RDFRegisters.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineDominanceFrontier.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/MC/LaneBitmask.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstring>
 | 
						|
#include <iterator>
 | 
						|
#include <set>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace rdf;
 | 
						|
 | 
						|
// Printing functions. Have them here first, so that the rest of the code
 | 
						|
// can use them.
 | 
						|
namespace llvm {
 | 
						|
namespace rdf {
 | 
						|
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
 | 
						|
  if (!P.Mask.all())
 | 
						|
    OS << ':' << PrintLaneMask(P.Mask);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
 | 
						|
  auto &TRI = P.G.getTRI();
 | 
						|
  if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
 | 
						|
    OS << TRI.getName(P.Obj.Reg);
 | 
						|
  else
 | 
						|
    OS << '#' << P.Obj.Reg;
 | 
						|
  OS << PrintLaneMaskOpt(P.Obj.Mask);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
 | 
						|
  auto NA = P.G.addr<NodeBase*>(P.Obj);
 | 
						|
  uint16_t Attrs = NA.Addr->getAttrs();
 | 
						|
  uint16_t Kind = NodeAttrs::kind(Attrs);
 | 
						|
  uint16_t Flags = NodeAttrs::flags(Attrs);
 | 
						|
  switch (NodeAttrs::type(Attrs)) {
 | 
						|
    case NodeAttrs::Code:
 | 
						|
      switch (Kind) {
 | 
						|
        case NodeAttrs::Func:   OS << 'f'; break;
 | 
						|
        case NodeAttrs::Block:  OS << 'b'; break;
 | 
						|
        case NodeAttrs::Stmt:   OS << 's'; break;
 | 
						|
        case NodeAttrs::Phi:    OS << 'p'; break;
 | 
						|
        default:                OS << "c?"; break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case NodeAttrs::Ref:
 | 
						|
      if (Flags & NodeAttrs::Undef)
 | 
						|
        OS << '/';
 | 
						|
      if (Flags & NodeAttrs::Dead)
 | 
						|
        OS << '\\';
 | 
						|
      if (Flags & NodeAttrs::Preserving)
 | 
						|
        OS << '+';
 | 
						|
      if (Flags & NodeAttrs::Clobbering)
 | 
						|
        OS << '~';
 | 
						|
      switch (Kind) {
 | 
						|
        case NodeAttrs::Use:    OS << 'u'; break;
 | 
						|
        case NodeAttrs::Def:    OS << 'd'; break;
 | 
						|
        case NodeAttrs::Block:  OS << 'b'; break;
 | 
						|
        default:                OS << "r?"; break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      OS << '?';
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  OS << P.Obj;
 | 
						|
  if (Flags & NodeAttrs::Shadow)
 | 
						|
    OS << '"';
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
 | 
						|
                const DataFlowGraph &G) {
 | 
						|
  OS << Print<NodeId>(RA.Id, G) << '<'
 | 
						|
     << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
 | 
						|
  if (RA.Addr->getFlags() & NodeAttrs::Fixed)
 | 
						|
    OS << '!';
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
 | 
						|
  printRefHeader(OS, P.Obj, P.G);
 | 
						|
  OS << '(';
 | 
						|
  if (NodeId N = P.Obj.Addr->getReachingDef())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  OS << ',';
 | 
						|
  if (NodeId N = P.Obj.Addr->getReachedDef())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  OS << ',';
 | 
						|
  if (NodeId N = P.Obj.Addr->getReachedUse())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  OS << "):";
 | 
						|
  if (NodeId N = P.Obj.Addr->getSibling())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
 | 
						|
  printRefHeader(OS, P.Obj, P.G);
 | 
						|
  OS << '(';
 | 
						|
  if (NodeId N = P.Obj.Addr->getReachingDef())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  OS << "):";
 | 
						|
  if (NodeId N = P.Obj.Addr->getSibling())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
      const Print<NodeAddr<PhiUseNode*>> &P) {
 | 
						|
  printRefHeader(OS, P.Obj, P.G);
 | 
						|
  OS << '(';
 | 
						|
  if (NodeId N = P.Obj.Addr->getReachingDef())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  OS << ',';
 | 
						|
  if (NodeId N = P.Obj.Addr->getPredecessor())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  OS << "):";
 | 
						|
  if (NodeId N = P.Obj.Addr->getSibling())
 | 
						|
    OS << Print<NodeId>(N, P.G);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
 | 
						|
  switch (P.Obj.Addr->getKind()) {
 | 
						|
    case NodeAttrs::Def:
 | 
						|
      OS << PrintNode<DefNode*>(P.Obj, P.G);
 | 
						|
      break;
 | 
						|
    case NodeAttrs::Use:
 | 
						|
      if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
 | 
						|
        OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
 | 
						|
      else
 | 
						|
        OS << PrintNode<UseNode*>(P.Obj, P.G);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
 | 
						|
  unsigned N = P.Obj.size();
 | 
						|
  for (auto I : P.Obj) {
 | 
						|
    OS << Print<NodeId>(I.Id, P.G);
 | 
						|
    if (--N)
 | 
						|
      OS << ' ';
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
 | 
						|
  unsigned N = P.Obj.size();
 | 
						|
  for (auto I : P.Obj) {
 | 
						|
    OS << Print<NodeId>(I, P.G);
 | 
						|
    if (--N)
 | 
						|
      OS << ' ';
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  struct PrintListV {
 | 
						|
    PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
 | 
						|
 | 
						|
    using Type = T;
 | 
						|
    const NodeList &List;
 | 
						|
    const DataFlowGraph &G;
 | 
						|
  };
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
 | 
						|
    unsigned N = P.List.size();
 | 
						|
    for (NodeAddr<T> A : P.List) {
 | 
						|
      OS << PrintNode<T>(A, P.G);
 | 
						|
      if (--N)
 | 
						|
        OS << ", ";
 | 
						|
    }
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
 | 
						|
  OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
 | 
						|
     << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
      const Print<NodeAddr<StmtNode*>> &P) {
 | 
						|
  const MachineInstr &MI = *P.Obj.Addr->getCode();
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
 | 
						|
  // Print the target for calls and branches (for readability).
 | 
						|
  if (MI.isCall() || MI.isBranch()) {
 | 
						|
    MachineInstr::const_mop_iterator T =
 | 
						|
          llvm::find_if(MI.operands(),
 | 
						|
                        [] (const MachineOperand &Op) -> bool {
 | 
						|
                          return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
 | 
						|
                        });
 | 
						|
    if (T != MI.operands_end()) {
 | 
						|
      OS << ' ';
 | 
						|
      if (T->isMBB())
 | 
						|
        OS << printMBBReference(*T->getMBB());
 | 
						|
      else if (T->isGlobal())
 | 
						|
        OS << T->getGlobal()->getName();
 | 
						|
      else if (T->isSymbol())
 | 
						|
        OS << T->getSymbolName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
      const Print<NodeAddr<InstrNode*>> &P) {
 | 
						|
  switch (P.Obj.Addr->getKind()) {
 | 
						|
    case NodeAttrs::Phi:
 | 
						|
      OS << PrintNode<PhiNode*>(P.Obj, P.G);
 | 
						|
      break;
 | 
						|
    case NodeAttrs::Stmt:
 | 
						|
      OS << PrintNode<StmtNode*>(P.Obj, P.G);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
      const Print<NodeAddr<BlockNode*>> &P) {
 | 
						|
  MachineBasicBlock *BB = P.Obj.Addr->getCode();
 | 
						|
  unsigned NP = BB->pred_size();
 | 
						|
  std::vector<int> Ns;
 | 
						|
  auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
 | 
						|
    unsigned N = Ns.size();
 | 
						|
    for (int I : Ns) {
 | 
						|
      OS << "%bb." << I;
 | 
						|
      if (--N)
 | 
						|
        OS << ", ";
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
 | 
						|
     << " --- preds(" << NP << "): ";
 | 
						|
  for (MachineBasicBlock *B : BB->predecessors())
 | 
						|
    Ns.push_back(B->getNumber());
 | 
						|
  PrintBBs(Ns);
 | 
						|
 | 
						|
  unsigned NS = BB->succ_size();
 | 
						|
  OS << "  succs(" << NS << "): ";
 | 
						|
  Ns.clear();
 | 
						|
  for (MachineBasicBlock *B : BB->successors())
 | 
						|
    Ns.push_back(B->getNumber());
 | 
						|
  PrintBBs(Ns);
 | 
						|
  OS << '\n';
 | 
						|
 | 
						|
  for (auto I : P.Obj.Addr->members(P.G))
 | 
						|
    OS << PrintNode<InstrNode*>(I, P.G) << '\n';
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
      const Print<NodeAddr<FuncNode*>> &P) {
 | 
						|
  OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
 | 
						|
     << P.Obj.Addr->getCode()->getName() << '\n';
 | 
						|
  for (auto I : P.Obj.Addr->members(P.G))
 | 
						|
    OS << PrintNode<BlockNode*>(I, P.G) << '\n';
 | 
						|
  OS << "]\n";
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
 | 
						|
  OS << '{';
 | 
						|
  for (auto I : P.Obj)
 | 
						|
    OS << ' ' << Print<RegisterRef>(I, P.G);
 | 
						|
  OS << " }";
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
 | 
						|
  P.Obj.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
      const Print<DataFlowGraph::DefStack> &P) {
 | 
						|
  for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
 | 
						|
    OS << Print<NodeId>(I->Id, P.G)
 | 
						|
       << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
 | 
						|
    I.down();
 | 
						|
    if (I != E)
 | 
						|
      OS << ' ';
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace rdf
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
// Node allocation functions.
 | 
						|
//
 | 
						|
// Node allocator is like a slab memory allocator: it allocates blocks of
 | 
						|
// memory in sizes that are multiples of the size of a node. Each block has
 | 
						|
// the same size. Nodes are allocated from the currently active block, and
 | 
						|
// when it becomes full, a new one is created.
 | 
						|
// There is a mapping scheme between node id and its location in a block,
 | 
						|
// and within that block is described in the header file.
 | 
						|
//
 | 
						|
void NodeAllocator::startNewBlock() {
 | 
						|
  void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
 | 
						|
  char *P = static_cast<char*>(T);
 | 
						|
  Blocks.push_back(P);
 | 
						|
  // Check if the block index is still within the allowed range, i.e. less
 | 
						|
  // than 2^N, where N is the number of bits in NodeId for the block index.
 | 
						|
  // BitsPerIndex is the number of bits per node index.
 | 
						|
  assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
 | 
						|
         "Out of bits for block index");
 | 
						|
  ActiveEnd = P;
 | 
						|
}
 | 
						|
 | 
						|
bool NodeAllocator::needNewBlock() {
 | 
						|
  if (Blocks.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  char *ActiveBegin = Blocks.back();
 | 
						|
  uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
 | 
						|
  return Index >= NodesPerBlock;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<NodeBase*> NodeAllocator::New() {
 | 
						|
  if (needNewBlock())
 | 
						|
    startNewBlock();
 | 
						|
 | 
						|
  uint32_t ActiveB = Blocks.size()-1;
 | 
						|
  uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
 | 
						|
  NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
 | 
						|
                             makeId(ActiveB, Index) };
 | 
						|
  ActiveEnd += NodeMemSize;
 | 
						|
  return NA;
 | 
						|
}
 | 
						|
 | 
						|
NodeId NodeAllocator::id(const NodeBase *P) const {
 | 
						|
  uintptr_t A = reinterpret_cast<uintptr_t>(P);
 | 
						|
  for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
 | 
						|
    uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
 | 
						|
    if (A < B || A >= B + NodesPerBlock*NodeMemSize)
 | 
						|
      continue;
 | 
						|
    uint32_t Idx = (A-B)/NodeMemSize;
 | 
						|
    return makeId(i, Idx);
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid node address");
 | 
						|
}
 | 
						|
 | 
						|
void NodeAllocator::clear() {
 | 
						|
  MemPool.Reset();
 | 
						|
  Blocks.clear();
 | 
						|
  ActiveEnd = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Insert node NA after "this" in the circular chain.
 | 
						|
void NodeBase::append(NodeAddr<NodeBase*> NA) {
 | 
						|
  NodeId Nx = Next;
 | 
						|
  // If NA is already "next", do nothing.
 | 
						|
  if (Next != NA.Id) {
 | 
						|
    Next = NA.Id;
 | 
						|
    NA.Addr->Next = Nx;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Fundamental node manipulator functions.
 | 
						|
 | 
						|
// Obtain the register reference from a reference node.
 | 
						|
RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
 | 
						|
  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
 | 
						|
  if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
 | 
						|
    return G.unpack(Ref.PR);
 | 
						|
  assert(Ref.Op != nullptr);
 | 
						|
  return G.makeRegRef(*Ref.Op);
 | 
						|
}
 | 
						|
 | 
						|
// Set the register reference in the reference node directly (for references
 | 
						|
// in phi nodes).
 | 
						|
void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
 | 
						|
  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
 | 
						|
  assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
 | 
						|
  Ref.PR = G.pack(RR);
 | 
						|
}
 | 
						|
 | 
						|
// Set the register reference in the reference node based on a machine
 | 
						|
// operand (for references in statement nodes).
 | 
						|
void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
 | 
						|
  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
 | 
						|
  assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
 | 
						|
  (void)G;
 | 
						|
  Ref.Op = Op;
 | 
						|
}
 | 
						|
 | 
						|
// Get the owner of a given reference node.
 | 
						|
NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
 | 
						|
  NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
 | 
						|
 | 
						|
  while (NA.Addr != this) {
 | 
						|
    if (NA.Addr->getType() == NodeAttrs::Code)
 | 
						|
      return NA;
 | 
						|
    NA = G.addr<NodeBase*>(NA.Addr->getNext());
 | 
						|
  }
 | 
						|
  llvm_unreachable("No owner in circular list");
 | 
						|
}
 | 
						|
 | 
						|
// Connect the def node to the reaching def node.
 | 
						|
void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
 | 
						|
  Ref.RD = DA.Id;
 | 
						|
  Ref.Sib = DA.Addr->getReachedDef();
 | 
						|
  DA.Addr->setReachedDef(Self);
 | 
						|
}
 | 
						|
 | 
						|
// Connect the use node to the reaching def node.
 | 
						|
void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
 | 
						|
  Ref.RD = DA.Id;
 | 
						|
  Ref.Sib = DA.Addr->getReachedUse();
 | 
						|
  DA.Addr->setReachedUse(Self);
 | 
						|
}
 | 
						|
 | 
						|
// Get the first member of the code node.
 | 
						|
NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
 | 
						|
  if (Code.FirstM == 0)
 | 
						|
    return NodeAddr<NodeBase*>();
 | 
						|
  return G.addr<NodeBase*>(Code.FirstM);
 | 
						|
}
 | 
						|
 | 
						|
// Get the last member of the code node.
 | 
						|
NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
 | 
						|
  if (Code.LastM == 0)
 | 
						|
    return NodeAddr<NodeBase*>();
 | 
						|
  return G.addr<NodeBase*>(Code.LastM);
 | 
						|
}
 | 
						|
 | 
						|
// Add node NA at the end of the member list of the given code node.
 | 
						|
void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
 | 
						|
  NodeAddr<NodeBase*> ML = getLastMember(G);
 | 
						|
  if (ML.Id != 0) {
 | 
						|
    ML.Addr->append(NA);
 | 
						|
  } else {
 | 
						|
    Code.FirstM = NA.Id;
 | 
						|
    NodeId Self = G.id(this);
 | 
						|
    NA.Addr->setNext(Self);
 | 
						|
  }
 | 
						|
  Code.LastM = NA.Id;
 | 
						|
}
 | 
						|
 | 
						|
// Add node NA after member node MA in the given code node.
 | 
						|
void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
 | 
						|
      const DataFlowGraph &G) {
 | 
						|
  MA.Addr->append(NA);
 | 
						|
  if (Code.LastM == MA.Id)
 | 
						|
    Code.LastM = NA.Id;
 | 
						|
}
 | 
						|
 | 
						|
// Remove member node NA from the given code node.
 | 
						|
void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
 | 
						|
  NodeAddr<NodeBase*> MA = getFirstMember(G);
 | 
						|
  assert(MA.Id != 0);
 | 
						|
 | 
						|
  // Special handling if the member to remove is the first member.
 | 
						|
  if (MA.Id == NA.Id) {
 | 
						|
    if (Code.LastM == MA.Id) {
 | 
						|
      // If it is the only member, set both first and last to 0.
 | 
						|
      Code.FirstM = Code.LastM = 0;
 | 
						|
    } else {
 | 
						|
      // Otherwise, advance the first member.
 | 
						|
      Code.FirstM = MA.Addr->getNext();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  while (MA.Addr != this) {
 | 
						|
    NodeId MX = MA.Addr->getNext();
 | 
						|
    if (MX == NA.Id) {
 | 
						|
      MA.Addr->setNext(NA.Addr->getNext());
 | 
						|
      // If the member to remove happens to be the last one, update the
 | 
						|
      // LastM indicator.
 | 
						|
      if (Code.LastM == NA.Id)
 | 
						|
        Code.LastM = MA.Id;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    MA = G.addr<NodeBase*>(MX);
 | 
						|
  }
 | 
						|
  llvm_unreachable("No such member");
 | 
						|
}
 | 
						|
 | 
						|
// Return the list of all members of the code node.
 | 
						|
NodeList CodeNode::members(const DataFlowGraph &G) const {
 | 
						|
  static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
 | 
						|
  return members_if(True, G);
 | 
						|
}
 | 
						|
 | 
						|
// Return the owner of the given instr node.
 | 
						|
NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
 | 
						|
  NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
 | 
						|
 | 
						|
  while (NA.Addr != this) {
 | 
						|
    assert(NA.Addr->getType() == NodeAttrs::Code);
 | 
						|
    if (NA.Addr->getKind() == NodeAttrs::Block)
 | 
						|
      return NA;
 | 
						|
    NA = G.addr<NodeBase*>(NA.Addr->getNext());
 | 
						|
  }
 | 
						|
  llvm_unreachable("No owner in circular list");
 | 
						|
}
 | 
						|
 | 
						|
// Add the phi node PA to the given block node.
 | 
						|
void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
 | 
						|
  NodeAddr<NodeBase*> M = getFirstMember(G);
 | 
						|
  if (M.Id == 0) {
 | 
						|
    addMember(PA, G);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(M.Addr->getType() == NodeAttrs::Code);
 | 
						|
  if (M.Addr->getKind() == NodeAttrs::Stmt) {
 | 
						|
    // If the first member of the block is a statement, insert the phi as
 | 
						|
    // the first member.
 | 
						|
    Code.FirstM = PA.Id;
 | 
						|
    PA.Addr->setNext(M.Id);
 | 
						|
  } else {
 | 
						|
    // If the first member is a phi, find the last phi, and append PA to it.
 | 
						|
    assert(M.Addr->getKind() == NodeAttrs::Phi);
 | 
						|
    NodeAddr<NodeBase*> MN = M;
 | 
						|
    do {
 | 
						|
      M = MN;
 | 
						|
      MN = G.addr<NodeBase*>(M.Addr->getNext());
 | 
						|
      assert(MN.Addr->getType() == NodeAttrs::Code);
 | 
						|
    } while (MN.Addr->getKind() == NodeAttrs::Phi);
 | 
						|
 | 
						|
    // M is the last phi.
 | 
						|
    addMemberAfter(M, PA, G);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Find the block node corresponding to the machine basic block BB in the
 | 
						|
// given func node.
 | 
						|
NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
 | 
						|
      const DataFlowGraph &G) const {
 | 
						|
  auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
 | 
						|
    return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
 | 
						|
  };
 | 
						|
  NodeList Ms = members_if(EqBB, G);
 | 
						|
  if (!Ms.empty())
 | 
						|
    return Ms[0];
 | 
						|
  return NodeAddr<BlockNode*>();
 | 
						|
}
 | 
						|
 | 
						|
// Get the block node for the entry block in the given function.
 | 
						|
NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
 | 
						|
  MachineBasicBlock *EntryB = &getCode()->front();
 | 
						|
  return findBlock(EntryB, G);
 | 
						|
}
 | 
						|
 | 
						|
// Target operand information.
 | 
						|
//
 | 
						|
 | 
						|
// For a given instruction, check if there are any bits of RR that can remain
 | 
						|
// unchanged across this def.
 | 
						|
bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
 | 
						|
      const {
 | 
						|
  return TII.isPredicated(In);
 | 
						|
}
 | 
						|
 | 
						|
// Check if the definition of RR produces an unspecified value.
 | 
						|
bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
 | 
						|
      const {
 | 
						|
  const MachineOperand &Op = In.getOperand(OpNum);
 | 
						|
  if (Op.isRegMask())
 | 
						|
    return true;
 | 
						|
  assert(Op.isReg());
 | 
						|
  if (In.isCall())
 | 
						|
    if (Op.isDef() && Op.isDead())
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Check if the given instruction specifically requires
 | 
						|
bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
 | 
						|
      const {
 | 
						|
  if (In.isCall() || In.isReturn() || In.isInlineAsm())
 | 
						|
    return true;
 | 
						|
  // Check for a tail call.
 | 
						|
  if (In.isBranch())
 | 
						|
    for (const MachineOperand &O : In.operands())
 | 
						|
      if (O.isGlobal() || O.isSymbol())
 | 
						|
        return true;
 | 
						|
 | 
						|
  const MCInstrDesc &D = In.getDesc();
 | 
						|
  if (!D.getImplicitDefs() && !D.getImplicitUses())
 | 
						|
    return false;
 | 
						|
  const MachineOperand &Op = In.getOperand(OpNum);
 | 
						|
  // If there is a sub-register, treat the operand as non-fixed. Currently,
 | 
						|
  // fixed registers are those that are listed in the descriptor as implicit
 | 
						|
  // uses or defs, and those lists do not allow sub-registers.
 | 
						|
  if (Op.getSubReg() != 0)
 | 
						|
    return false;
 | 
						|
  RegisterId Reg = Op.getReg();
 | 
						|
  const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
 | 
						|
                                     : D.getImplicitUses();
 | 
						|
  if (!ImpR)
 | 
						|
    return false;
 | 
						|
  while (*ImpR)
 | 
						|
    if (*ImpR++ == Reg)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// The data flow graph construction.
 | 
						|
//
 | 
						|
 | 
						|
DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
 | 
						|
      const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
 | 
						|
      const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
 | 
						|
    : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
 | 
						|
      LiveIns(PRI) {
 | 
						|
}
 | 
						|
 | 
						|
// The implementation of the definition stack.
 | 
						|
// Each register reference has its own definition stack. In particular,
 | 
						|
// for a register references "Reg" and "Reg:subreg" will each have their
 | 
						|
// own definition stacks.
 | 
						|
 | 
						|
// Construct a stack iterator.
 | 
						|
DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
 | 
						|
      bool Top) : DS(S) {
 | 
						|
  if (!Top) {
 | 
						|
    // Initialize to bottom.
 | 
						|
    Pos = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
 | 
						|
  Pos = DS.Stack.size();
 | 
						|
  while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
 | 
						|
    Pos--;
 | 
						|
}
 | 
						|
 | 
						|
// Return the size of the stack, including block delimiters.
 | 
						|
unsigned DataFlowGraph::DefStack::size() const {
 | 
						|
  unsigned S = 0;
 | 
						|
  for (auto I = top(), E = bottom(); I != E; I.down())
 | 
						|
    S++;
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
// Remove the top entry from the stack. Remove all intervening delimiters
 | 
						|
// so that after this, the stack is either empty, or the top of the stack
 | 
						|
// is a non-delimiter.
 | 
						|
void DataFlowGraph::DefStack::pop() {
 | 
						|
  assert(!empty());
 | 
						|
  unsigned P = nextDown(Stack.size());
 | 
						|
  Stack.resize(P);
 | 
						|
}
 | 
						|
 | 
						|
// Push a delimiter for block node N on the stack.
 | 
						|
void DataFlowGraph::DefStack::start_block(NodeId N) {
 | 
						|
  assert(N != 0);
 | 
						|
  Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
 | 
						|
}
 | 
						|
 | 
						|
// Remove all nodes from the top of the stack, until the delimited for
 | 
						|
// block node N is encountered. Remove the delimiter as well. In effect,
 | 
						|
// this will remove from the stack all definitions from block N.
 | 
						|
void DataFlowGraph::DefStack::clear_block(NodeId N) {
 | 
						|
  assert(N != 0);
 | 
						|
  unsigned P = Stack.size();
 | 
						|
  while (P > 0) {
 | 
						|
    bool Found = isDelimiter(Stack[P-1], N);
 | 
						|
    P--;
 | 
						|
    if (Found)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  // This will also remove the delimiter, if found.
 | 
						|
  Stack.resize(P);
 | 
						|
}
 | 
						|
 | 
						|
// Move the stack iterator up by one.
 | 
						|
unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
 | 
						|
  // Get the next valid position after P (skipping all delimiters).
 | 
						|
  // The input position P does not have to point to a non-delimiter.
 | 
						|
  unsigned SS = Stack.size();
 | 
						|
  bool IsDelim;
 | 
						|
  assert(P < SS);
 | 
						|
  do {
 | 
						|
    P++;
 | 
						|
    IsDelim = isDelimiter(Stack[P-1]);
 | 
						|
  } while (P < SS && IsDelim);
 | 
						|
  assert(!IsDelim);
 | 
						|
  return P;
 | 
						|
}
 | 
						|
 | 
						|
// Move the stack iterator down by one.
 | 
						|
unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
 | 
						|
  // Get the preceding valid position before P (skipping all delimiters).
 | 
						|
  // The input position P does not have to point to a non-delimiter.
 | 
						|
  assert(P > 0 && P <= Stack.size());
 | 
						|
  bool IsDelim = isDelimiter(Stack[P-1]);
 | 
						|
  do {
 | 
						|
    if (--P == 0)
 | 
						|
      break;
 | 
						|
    IsDelim = isDelimiter(Stack[P-1]);
 | 
						|
  } while (P > 0 && IsDelim);
 | 
						|
  assert(!IsDelim);
 | 
						|
  return P;
 | 
						|
}
 | 
						|
 | 
						|
// Register information.
 | 
						|
 | 
						|
RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
 | 
						|
  RegisterSet LR;
 | 
						|
  const Function &F = MF.getFunction();
 | 
						|
  const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
 | 
						|
                                            : nullptr;
 | 
						|
  const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
 | 
						|
  if (RegisterId R = TLI.getExceptionPointerRegister(PF))
 | 
						|
    LR.insert(RegisterRef(R));
 | 
						|
  if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
 | 
						|
    LR.insert(RegisterRef(R));
 | 
						|
  return LR;
 | 
						|
}
 | 
						|
 | 
						|
// Node management functions.
 | 
						|
 | 
						|
// Get the pointer to the node with the id N.
 | 
						|
NodeBase *DataFlowGraph::ptr(NodeId N) const {
 | 
						|
  if (N == 0)
 | 
						|
    return nullptr;
 | 
						|
  return Memory.ptr(N);
 | 
						|
}
 | 
						|
 | 
						|
// Get the id of the node at the address P.
 | 
						|
NodeId DataFlowGraph::id(const NodeBase *P) const {
 | 
						|
  if (P == nullptr)
 | 
						|
    return 0;
 | 
						|
  return Memory.id(P);
 | 
						|
}
 | 
						|
 | 
						|
// Allocate a new node and set the attributes to Attrs.
 | 
						|
NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
 | 
						|
  NodeAddr<NodeBase*> P = Memory.New();
 | 
						|
  P.Addr->init();
 | 
						|
  P.Addr->setAttrs(Attrs);
 | 
						|
  return P;
 | 
						|
}
 | 
						|
 | 
						|
// Make a copy of the given node B, except for the data-flow links, which
 | 
						|
// are set to 0.
 | 
						|
NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
 | 
						|
  NodeAddr<NodeBase*> NA = newNode(0);
 | 
						|
  memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
 | 
						|
  // Ref nodes need to have the data-flow links reset.
 | 
						|
  if (NA.Addr->getType() == NodeAttrs::Ref) {
 | 
						|
    NodeAddr<RefNode*> RA = NA;
 | 
						|
    RA.Addr->setReachingDef(0);
 | 
						|
    RA.Addr->setSibling(0);
 | 
						|
    if (NA.Addr->getKind() == NodeAttrs::Def) {
 | 
						|
      NodeAddr<DefNode*> DA = NA;
 | 
						|
      DA.Addr->setReachedDef(0);
 | 
						|
      DA.Addr->setReachedUse(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NA;
 | 
						|
}
 | 
						|
 | 
						|
// Allocation routines for specific node types/kinds.
 | 
						|
 | 
						|
NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
 | 
						|
      MachineOperand &Op, uint16_t Flags) {
 | 
						|
  NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
 | 
						|
  UA.Addr->setRegRef(&Op, *this);
 | 
						|
  return UA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
 | 
						|
      RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
 | 
						|
  NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
 | 
						|
  assert(Flags & NodeAttrs::PhiRef);
 | 
						|
  PUA.Addr->setRegRef(RR, *this);
 | 
						|
  PUA.Addr->setPredecessor(PredB.Id);
 | 
						|
  return PUA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
 | 
						|
      MachineOperand &Op, uint16_t Flags) {
 | 
						|
  NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
 | 
						|
  DA.Addr->setRegRef(&Op, *this);
 | 
						|
  return DA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
 | 
						|
      RegisterRef RR, uint16_t Flags) {
 | 
						|
  NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
 | 
						|
  assert(Flags & NodeAttrs::PhiRef);
 | 
						|
  DA.Addr->setRegRef(RR, *this);
 | 
						|
  return DA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
 | 
						|
  NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
 | 
						|
  Owner.Addr->addPhi(PA, *this);
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
 | 
						|
      MachineInstr *MI) {
 | 
						|
  NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
 | 
						|
  SA.Addr->setCode(MI);
 | 
						|
  Owner.Addr->addMember(SA, *this);
 | 
						|
  return SA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
 | 
						|
      MachineBasicBlock *BB) {
 | 
						|
  NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
 | 
						|
  BA.Addr->setCode(BB);
 | 
						|
  Owner.Addr->addMember(BA, *this);
 | 
						|
  return BA;
 | 
						|
}
 | 
						|
 | 
						|
NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
 | 
						|
  NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
 | 
						|
  FA.Addr->setCode(MF);
 | 
						|
  return FA;
 | 
						|
}
 | 
						|
 | 
						|
// Build the data flow graph.
 | 
						|
void DataFlowGraph::build(unsigned Options) {
 | 
						|
  reset();
 | 
						|
  Func = newFunc(&MF);
 | 
						|
 | 
						|
  if (MF.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (MachineBasicBlock &B : MF) {
 | 
						|
    NodeAddr<BlockNode*> BA = newBlock(Func, &B);
 | 
						|
    BlockNodes.insert(std::make_pair(&B, BA));
 | 
						|
    for (MachineInstr &I : B) {
 | 
						|
      if (I.isDebugInstr())
 | 
						|
        continue;
 | 
						|
      buildStmt(BA, I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
 | 
						|
  NodeList Blocks = Func.Addr->members(*this);
 | 
						|
 | 
						|
  // Collect information about block references.
 | 
						|
  RegisterSet AllRefs;
 | 
						|
  for (NodeAddr<BlockNode*> BA : Blocks)
 | 
						|
    for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
 | 
						|
      for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
 | 
						|
        AllRefs.insert(RA.Addr->getRegRef(*this));
 | 
						|
 | 
						|
  // Collect function live-ins and entry block live-ins.
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  MachineBasicBlock &EntryB = *EA.Addr->getCode();
 | 
						|
  assert(EntryB.pred_empty() && "Function entry block has predecessors");
 | 
						|
  for (std::pair<unsigned,unsigned> P : MRI.liveins())
 | 
						|
    LiveIns.insert(RegisterRef(P.first));
 | 
						|
  if (MRI.tracksLiveness()) {
 | 
						|
    for (auto I : EntryB.liveins())
 | 
						|
      LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add function-entry phi nodes for the live-in registers.
 | 
						|
  //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
 | 
						|
  for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
 | 
						|
    RegisterRef RR = *I;
 | 
						|
    NodeAddr<PhiNode*> PA = newPhi(EA);
 | 
						|
    uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
 | 
						|
    NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
 | 
						|
    PA.Addr->addMember(DA, *this);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add phis for landing pads.
 | 
						|
  // Landing pads, unlike usual backs blocks, are not entered through
 | 
						|
  // branches in the program, or fall-throughs from other blocks. They
 | 
						|
  // are entered from the exception handling runtime and target's ABI
 | 
						|
  // may define certain registers as defined on entry to such a block.
 | 
						|
  RegisterSet EHRegs = getLandingPadLiveIns();
 | 
						|
  if (!EHRegs.empty()) {
 | 
						|
    for (NodeAddr<BlockNode*> BA : Blocks) {
 | 
						|
      const MachineBasicBlock &B = *BA.Addr->getCode();
 | 
						|
      if (!B.isEHPad())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Prepare a list of NodeIds of the block's predecessors.
 | 
						|
      NodeList Preds;
 | 
						|
      for (MachineBasicBlock *PB : B.predecessors())
 | 
						|
        Preds.push_back(findBlock(PB));
 | 
						|
 | 
						|
      // Build phi nodes for each live-in.
 | 
						|
      for (RegisterRef RR : EHRegs) {
 | 
						|
        NodeAddr<PhiNode*> PA = newPhi(BA);
 | 
						|
        uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
 | 
						|
        // Add def:
 | 
						|
        NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
 | 
						|
        PA.Addr->addMember(DA, *this);
 | 
						|
        // Add uses (no reaching defs for phi uses):
 | 
						|
        for (NodeAddr<BlockNode*> PBA : Preds) {
 | 
						|
          NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
 | 
						|
          PA.Addr->addMember(PUA, *this);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a map "PhiM" which will contain, for each block, the set
 | 
						|
  // of references that will require phi definitions in that block.
 | 
						|
  BlockRefsMap PhiM;
 | 
						|
  for (NodeAddr<BlockNode*> BA : Blocks)
 | 
						|
    recordDefsForDF(PhiM, BA);
 | 
						|
  for (NodeAddr<BlockNode*> BA : Blocks)
 | 
						|
    buildPhis(PhiM, AllRefs, BA);
 | 
						|
 | 
						|
  // Link all the refs. This will recursively traverse the dominator tree.
 | 
						|
  DefStackMap DM;
 | 
						|
  linkBlockRefs(DM, EA);
 | 
						|
 | 
						|
  // Finally, remove all unused phi nodes.
 | 
						|
  if (!(Options & BuildOptions::KeepDeadPhis))
 | 
						|
    removeUnusedPhis();
 | 
						|
}
 | 
						|
 | 
						|
RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
 | 
						|
  assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
 | 
						|
         TargetRegisterInfo::isPhysicalRegister(Reg));
 | 
						|
  assert(Reg != 0);
 | 
						|
  if (Sub != 0)
 | 
						|
    Reg = TRI.getSubReg(Reg, Sub);
 | 
						|
  return RegisterRef(Reg);
 | 
						|
}
 | 
						|
 | 
						|
RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
 | 
						|
  assert(Op.isReg() || Op.isRegMask());
 | 
						|
  if (Op.isReg())
 | 
						|
    return makeRegRef(Op.getReg(), Op.getSubReg());
 | 
						|
  return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
 | 
						|
}
 | 
						|
 | 
						|
RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
 | 
						|
  if (AR.Reg == BR.Reg) {
 | 
						|
    LaneBitmask M = AR.Mask & BR.Mask;
 | 
						|
    return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
//  RegisterRef NAR = PRI.normalize(AR);
 | 
						|
//  RegisterRef NBR = PRI.normalize(BR);
 | 
						|
//  assert(NAR.Reg != NBR.Reg);
 | 
						|
#endif
 | 
						|
  // This isn't strictly correct, because the overlap may happen in the
 | 
						|
  // part masked out.
 | 
						|
  if (PRI.alias(AR, BR))
 | 
						|
    return AR;
 | 
						|
  return RegisterRef();
 | 
						|
}
 | 
						|
 | 
						|
// For each stack in the map DefM, push the delimiter for block B on it.
 | 
						|
void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
 | 
						|
  // Push block delimiters.
 | 
						|
  for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
 | 
						|
    I->second.start_block(B);
 | 
						|
}
 | 
						|
 | 
						|
// Remove all definitions coming from block B from each stack in DefM.
 | 
						|
void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
 | 
						|
  // Pop all defs from this block from the definition stack. Defs that were
 | 
						|
  // added to the map during the traversal of instructions will not have a
 | 
						|
  // delimiter, but for those, the whole stack will be emptied.
 | 
						|
  for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
 | 
						|
    I->second.clear_block(B);
 | 
						|
 | 
						|
  // Finally, remove empty stacks from the map.
 | 
						|
  for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    // This preserves the validity of iterators other than I.
 | 
						|
    if (I->second.empty())
 | 
						|
      DefM.erase(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Push all definitions from the instruction node IA to an appropriate
 | 
						|
// stack in DefM.
 | 
						|
void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
 | 
						|
  pushClobbers(IA, DefM);
 | 
						|
  pushDefs(IA, DefM);
 | 
						|
}
 | 
						|
 | 
						|
// Push all definitions from the instruction node IA to an appropriate
 | 
						|
// stack in DefM.
 | 
						|
void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
 | 
						|
  NodeSet Visited;
 | 
						|
  std::set<RegisterId> Defined;
 | 
						|
 | 
						|
  // The important objectives of this function are:
 | 
						|
  // - to be able to handle instructions both while the graph is being
 | 
						|
  //   constructed, and after the graph has been constructed, and
 | 
						|
  // - maintain proper ordering of definitions on the stack for each
 | 
						|
  //   register reference:
 | 
						|
  //   - if there are two or more related defs in IA (i.e. coming from
 | 
						|
  //     the same machine operand), then only push one def on the stack,
 | 
						|
  //   - if there are multiple unrelated defs of non-overlapping
 | 
						|
  //     subregisters of S, then the stack for S will have both (in an
 | 
						|
  //     unspecified order), but the order does not matter from the data-
 | 
						|
  //     -flow perspective.
 | 
						|
 | 
						|
  for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
 | 
						|
    if (Visited.count(DA.Id))
 | 
						|
      continue;
 | 
						|
    if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
 | 
						|
      continue;
 | 
						|
 | 
						|
    NodeList Rel = getRelatedRefs(IA, DA);
 | 
						|
    NodeAddr<DefNode*> PDA = Rel.front();
 | 
						|
    RegisterRef RR = PDA.Addr->getRegRef(*this);
 | 
						|
 | 
						|
    // Push the definition on the stack for the register and all aliases.
 | 
						|
    // The def stack traversal in linkNodeUp will check the exact aliasing.
 | 
						|
    DefM[RR.Reg].push(DA);
 | 
						|
    Defined.insert(RR.Reg);
 | 
						|
    for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
 | 
						|
      // Check that we don't push the same def twice.
 | 
						|
      assert(A != RR.Reg);
 | 
						|
      if (!Defined.count(A))
 | 
						|
        DefM[A].push(DA);
 | 
						|
    }
 | 
						|
    // Mark all the related defs as visited.
 | 
						|
    for (NodeAddr<NodeBase*> T : Rel)
 | 
						|
      Visited.insert(T.Id);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Push all definitions from the instruction node IA to an appropriate
 | 
						|
// stack in DefM.
 | 
						|
void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
 | 
						|
  NodeSet Visited;
 | 
						|
#ifndef NDEBUG
 | 
						|
  std::set<RegisterId> Defined;
 | 
						|
#endif
 | 
						|
 | 
						|
  // The important objectives of this function are:
 | 
						|
  // - to be able to handle instructions both while the graph is being
 | 
						|
  //   constructed, and after the graph has been constructed, and
 | 
						|
  // - maintain proper ordering of definitions on the stack for each
 | 
						|
  //   register reference:
 | 
						|
  //   - if there are two or more related defs in IA (i.e. coming from
 | 
						|
  //     the same machine operand), then only push one def on the stack,
 | 
						|
  //   - if there are multiple unrelated defs of non-overlapping
 | 
						|
  //     subregisters of S, then the stack for S will have both (in an
 | 
						|
  //     unspecified order), but the order does not matter from the data-
 | 
						|
  //     -flow perspective.
 | 
						|
 | 
						|
  for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
 | 
						|
    if (Visited.count(DA.Id))
 | 
						|
      continue;
 | 
						|
    if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
 | 
						|
      continue;
 | 
						|
 | 
						|
    NodeList Rel = getRelatedRefs(IA, DA);
 | 
						|
    NodeAddr<DefNode*> PDA = Rel.front();
 | 
						|
    RegisterRef RR = PDA.Addr->getRegRef(*this);
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Assert if the register is defined in two or more unrelated defs.
 | 
						|
    // This could happen if there are two or more def operands defining it.
 | 
						|
    if (!Defined.insert(RR.Reg).second) {
 | 
						|
      MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
 | 
						|
      dbgs() << "Multiple definitions of register: "
 | 
						|
             << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
 | 
						|
             << printMBBReference(*MI->getParent()) << '\n';
 | 
						|
      llvm_unreachable(nullptr);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    // Push the definition on the stack for the register and all aliases.
 | 
						|
    // The def stack traversal in linkNodeUp will check the exact aliasing.
 | 
						|
    DefM[RR.Reg].push(DA);
 | 
						|
    for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
 | 
						|
      // Check that we don't push the same def twice.
 | 
						|
      assert(A != RR.Reg);
 | 
						|
      DefM[A].push(DA);
 | 
						|
    }
 | 
						|
    // Mark all the related defs as visited.
 | 
						|
    for (NodeAddr<NodeBase*> T : Rel)
 | 
						|
      Visited.insert(T.Id);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Return the list of all reference nodes related to RA, including RA itself.
 | 
						|
// See "getNextRelated" for the meaning of a "related reference".
 | 
						|
NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
 | 
						|
      NodeAddr<RefNode*> RA) const {
 | 
						|
  assert(IA.Id != 0 && RA.Id != 0);
 | 
						|
 | 
						|
  NodeList Refs;
 | 
						|
  NodeId Start = RA.Id;
 | 
						|
  do {
 | 
						|
    Refs.push_back(RA);
 | 
						|
    RA = getNextRelated(IA, RA);
 | 
						|
  } while (RA.Id != 0 && RA.Id != Start);
 | 
						|
  return Refs;
 | 
						|
}
 | 
						|
 | 
						|
// Clear all information in the graph.
 | 
						|
void DataFlowGraph::reset() {
 | 
						|
  Memory.clear();
 | 
						|
  BlockNodes.clear();
 | 
						|
  Func = NodeAddr<FuncNode*>();
 | 
						|
}
 | 
						|
 | 
						|
// Return the next reference node in the instruction node IA that is related
 | 
						|
// to RA. Conceptually, two reference nodes are related if they refer to the
 | 
						|
// same instance of a register access, but differ in flags or other minor
 | 
						|
// characteristics. Specific examples of related nodes are shadow reference
 | 
						|
// nodes.
 | 
						|
// Return the equivalent of nullptr if there are no more related references.
 | 
						|
NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
 | 
						|
      NodeAddr<RefNode*> RA) const {
 | 
						|
  assert(IA.Id != 0 && RA.Id != 0);
 | 
						|
 | 
						|
  auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
 | 
						|
    if (TA.Addr->getKind() != RA.Addr->getKind())
 | 
						|
      return false;
 | 
						|
    if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
  auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
 | 
						|
    return Related(TA) &&
 | 
						|
           &RA.Addr->getOp() == &TA.Addr->getOp();
 | 
						|
  };
 | 
						|
  auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
 | 
						|
    if (!Related(TA))
 | 
						|
      return false;
 | 
						|
    if (TA.Addr->getKind() != NodeAttrs::Use)
 | 
						|
      return true;
 | 
						|
    // For phi uses, compare predecessor blocks.
 | 
						|
    const NodeAddr<const PhiUseNode*> TUA = TA;
 | 
						|
    const NodeAddr<const PhiUseNode*> RUA = RA;
 | 
						|
    return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterRef RR = RA.Addr->getRegRef(*this);
 | 
						|
  if (IA.Addr->getKind() == NodeAttrs::Stmt)
 | 
						|
    return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
 | 
						|
  return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
 | 
						|
}
 | 
						|
 | 
						|
// Find the next node related to RA in IA that satisfies condition P.
 | 
						|
// If such a node was found, return a pair where the second element is the
 | 
						|
// located node. If such a node does not exist, return a pair where the
 | 
						|
// first element is the element after which such a node should be inserted,
 | 
						|
// and the second element is a null-address.
 | 
						|
template <typename Predicate>
 | 
						|
std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
 | 
						|
DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
 | 
						|
      Predicate P) const {
 | 
						|
  assert(IA.Id != 0 && RA.Id != 0);
 | 
						|
 | 
						|
  NodeAddr<RefNode*> NA;
 | 
						|
  NodeId Start = RA.Id;
 | 
						|
  while (true) {
 | 
						|
    NA = getNextRelated(IA, RA);
 | 
						|
    if (NA.Id == 0 || NA.Id == Start)
 | 
						|
      break;
 | 
						|
    if (P(NA))
 | 
						|
      break;
 | 
						|
    RA = NA;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NA.Id != 0 && NA.Id != Start)
 | 
						|
    return std::make_pair(RA, NA);
 | 
						|
  return std::make_pair(RA, NodeAddr<RefNode*>());
 | 
						|
}
 | 
						|
 | 
						|
// Get the next shadow node in IA corresponding to RA, and optionally create
 | 
						|
// such a node if it does not exist.
 | 
						|
NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
 | 
						|
      NodeAddr<RefNode*> RA, bool Create) {
 | 
						|
  assert(IA.Id != 0 && RA.Id != 0);
 | 
						|
 | 
						|
  uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
 | 
						|
  auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
 | 
						|
    return TA.Addr->getFlags() == Flags;
 | 
						|
  };
 | 
						|
  auto Loc = locateNextRef(IA, RA, IsShadow);
 | 
						|
  if (Loc.second.Id != 0 || !Create)
 | 
						|
    return Loc.second;
 | 
						|
 | 
						|
  // Create a copy of RA and mark is as shadow.
 | 
						|
  NodeAddr<RefNode*> NA = cloneNode(RA);
 | 
						|
  NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
 | 
						|
  IA.Addr->addMemberAfter(Loc.first, NA, *this);
 | 
						|
  return NA;
 | 
						|
}
 | 
						|
 | 
						|
// Get the next shadow node in IA corresponding to RA. Return null-address
 | 
						|
// if such a node does not exist.
 | 
						|
NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
 | 
						|
      NodeAddr<RefNode*> RA) const {
 | 
						|
  assert(IA.Id != 0 && RA.Id != 0);
 | 
						|
  uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
 | 
						|
  auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
 | 
						|
    return TA.Addr->getFlags() == Flags;
 | 
						|
  };
 | 
						|
  return locateNextRef(IA, RA, IsShadow).second;
 | 
						|
}
 | 
						|
 | 
						|
// Create a new statement node in the block node BA that corresponds to
 | 
						|
// the machine instruction MI.
 | 
						|
void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
 | 
						|
  NodeAddr<StmtNode*> SA = newStmt(BA, &In);
 | 
						|
 | 
						|
  auto isCall = [] (const MachineInstr &In) -> bool {
 | 
						|
    if (In.isCall())
 | 
						|
      return true;
 | 
						|
    // Is tail call?
 | 
						|
    if (In.isBranch()) {
 | 
						|
      for (const MachineOperand &Op : In.operands())
 | 
						|
        if (Op.isGlobal() || Op.isSymbol())
 | 
						|
          return true;
 | 
						|
      // Assume indirect branches are calls. This is for the purpose of
 | 
						|
      // keeping implicit operands, and so it won't hurt on intra-function
 | 
						|
      // indirect branches.
 | 
						|
      if (In.isIndirectBranch())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
 | 
						|
    // This instruction defines DR. Check if there is a use operand that
 | 
						|
    // would make DR live on entry to the instruction.
 | 
						|
    for (const MachineOperand &Op : In.operands()) {
 | 
						|
      if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
 | 
						|
        continue;
 | 
						|
      RegisterRef UR = makeRegRef(Op);
 | 
						|
      if (PRI.alias(DR, UR))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  bool IsCall = isCall(In);
 | 
						|
  unsigned NumOps = In.getNumOperands();
 | 
						|
 | 
						|
  // Avoid duplicate implicit defs. This will not detect cases of implicit
 | 
						|
  // defs that define registers that overlap, but it is not clear how to
 | 
						|
  // interpret that in the absence of explicit defs. Overlapping explicit
 | 
						|
  // defs are likely illegal already.
 | 
						|
  BitVector DoneDefs(TRI.getNumRegs());
 | 
						|
  // Process explicit defs first.
 | 
						|
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | 
						|
    MachineOperand &Op = In.getOperand(OpN);
 | 
						|
    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
 | 
						|
      continue;
 | 
						|
    unsigned R = Op.getReg();
 | 
						|
    if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
 | 
						|
      continue;
 | 
						|
    uint16_t Flags = NodeAttrs::None;
 | 
						|
    if (TOI.isPreserving(In, OpN)) {
 | 
						|
      Flags |= NodeAttrs::Preserving;
 | 
						|
      // If the def is preserving, check if it is also undefined.
 | 
						|
      if (isDefUndef(In, makeRegRef(Op)))
 | 
						|
        Flags |= NodeAttrs::Undef;
 | 
						|
    }
 | 
						|
    if (TOI.isClobbering(In, OpN))
 | 
						|
      Flags |= NodeAttrs::Clobbering;
 | 
						|
    if (TOI.isFixedReg(In, OpN))
 | 
						|
      Flags |= NodeAttrs::Fixed;
 | 
						|
    if (IsCall && Op.isDead())
 | 
						|
      Flags |= NodeAttrs::Dead;
 | 
						|
    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
 | 
						|
    SA.Addr->addMember(DA, *this);
 | 
						|
    assert(!DoneDefs.test(R));
 | 
						|
    DoneDefs.set(R);
 | 
						|
  }
 | 
						|
 | 
						|
  // Process reg-masks (as clobbers).
 | 
						|
  BitVector DoneClobbers(TRI.getNumRegs());
 | 
						|
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | 
						|
    MachineOperand &Op = In.getOperand(OpN);
 | 
						|
    if (!Op.isRegMask())
 | 
						|
      continue;
 | 
						|
    uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
 | 
						|
                     NodeAttrs::Dead;
 | 
						|
    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
 | 
						|
    SA.Addr->addMember(DA, *this);
 | 
						|
    // Record all clobbered registers in DoneDefs.
 | 
						|
    const uint32_t *RM = Op.getRegMask();
 | 
						|
    for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
 | 
						|
      if (!(RM[i/32] & (1u << (i%32))))
 | 
						|
        DoneClobbers.set(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Process implicit defs, skipping those that have already been added
 | 
						|
  // as explicit.
 | 
						|
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | 
						|
    MachineOperand &Op = In.getOperand(OpN);
 | 
						|
    if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
 | 
						|
      continue;
 | 
						|
    unsigned R = Op.getReg();
 | 
						|
    if (!R || !TargetRegisterInfo::isPhysicalRegister(R) || DoneDefs.test(R))
 | 
						|
      continue;
 | 
						|
    RegisterRef RR = makeRegRef(Op);
 | 
						|
    uint16_t Flags = NodeAttrs::None;
 | 
						|
    if (TOI.isPreserving(In, OpN)) {
 | 
						|
      Flags |= NodeAttrs::Preserving;
 | 
						|
      // If the def is preserving, check if it is also undefined.
 | 
						|
      if (isDefUndef(In, RR))
 | 
						|
        Flags |= NodeAttrs::Undef;
 | 
						|
    }
 | 
						|
    if (TOI.isClobbering(In, OpN))
 | 
						|
      Flags |= NodeAttrs::Clobbering;
 | 
						|
    if (TOI.isFixedReg(In, OpN))
 | 
						|
      Flags |= NodeAttrs::Fixed;
 | 
						|
    if (IsCall && Op.isDead()) {
 | 
						|
      if (DoneClobbers.test(R))
 | 
						|
        continue;
 | 
						|
      Flags |= NodeAttrs::Dead;
 | 
						|
    }
 | 
						|
    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
 | 
						|
    SA.Addr->addMember(DA, *this);
 | 
						|
    DoneDefs.set(R);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | 
						|
    MachineOperand &Op = In.getOperand(OpN);
 | 
						|
    if (!Op.isReg() || !Op.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned R = Op.getReg();
 | 
						|
    if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
 | 
						|
      continue;
 | 
						|
    uint16_t Flags = NodeAttrs::None;
 | 
						|
    if (Op.isUndef())
 | 
						|
      Flags |= NodeAttrs::Undef;
 | 
						|
    if (TOI.isFixedReg(In, OpN))
 | 
						|
      Flags |= NodeAttrs::Fixed;
 | 
						|
    NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
 | 
						|
    SA.Addr->addMember(UA, *this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Scan all defs in the block node BA and record in PhiM the locations of
 | 
						|
// phi nodes corresponding to these defs.
 | 
						|
void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
 | 
						|
      NodeAddr<BlockNode*> BA) {
 | 
						|
  // Check all defs from block BA and record them in each block in BA's
 | 
						|
  // iterated dominance frontier. This information will later be used to
 | 
						|
  // create phi nodes.
 | 
						|
  MachineBasicBlock *BB = BA.Addr->getCode();
 | 
						|
  assert(BB);
 | 
						|
  auto DFLoc = MDF.find(BB);
 | 
						|
  if (DFLoc == MDF.end() || DFLoc->second.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Traverse all instructions in the block and collect the set of all
 | 
						|
  // defined references. For each reference there will be a phi created
 | 
						|
  // in the block's iterated dominance frontier.
 | 
						|
  // This is done to make sure that each defined reference gets only one
 | 
						|
  // phi node, even if it is defined multiple times.
 | 
						|
  RegisterSet Defs;
 | 
						|
  for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
 | 
						|
    for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
 | 
						|
      Defs.insert(RA.Addr->getRegRef(*this));
 | 
						|
 | 
						|
  // Calculate the iterated dominance frontier of BB.
 | 
						|
  const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
 | 
						|
  SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
 | 
						|
  for (unsigned i = 0; i < IDF.size(); ++i) {
 | 
						|
    auto F = MDF.find(IDF[i]);
 | 
						|
    if (F != MDF.end())
 | 
						|
      IDF.insert(F->second.begin(), F->second.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, add the set of defs to each block in the iterated dominance
 | 
						|
  // frontier.
 | 
						|
  for (auto DB : IDF) {
 | 
						|
    NodeAddr<BlockNode*> DBA = findBlock(DB);
 | 
						|
    PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Given the locations of phi nodes in the map PhiM, create the phi nodes
 | 
						|
// that are located in the block node BA.
 | 
						|
void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
 | 
						|
      NodeAddr<BlockNode*> BA) {
 | 
						|
  // Check if this blocks has any DF defs, i.e. if there are any defs
 | 
						|
  // that this block is in the iterated dominance frontier of.
 | 
						|
  auto HasDF = PhiM.find(BA.Id);
 | 
						|
  if (HasDF == PhiM.end() || HasDF->second.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // First, remove all R in Refs in such that there exists T in Refs
 | 
						|
  // such that T covers R. In other words, only leave those refs that
 | 
						|
  // are not covered by another ref (i.e. maximal with respect to covering).
 | 
						|
 | 
						|
  auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
 | 
						|
    for (RegisterRef I : RRs)
 | 
						|
      if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
 | 
						|
        RR = I;
 | 
						|
    return RR;
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterSet MaxDF;
 | 
						|
  for (RegisterRef I : HasDF->second)
 | 
						|
    MaxDF.insert(MaxCoverIn(I, HasDF->second));
 | 
						|
 | 
						|
  std::vector<RegisterRef> MaxRefs;
 | 
						|
  for (RegisterRef I : MaxDF)
 | 
						|
    MaxRefs.push_back(MaxCoverIn(I, AllRefs));
 | 
						|
 | 
						|
  // Now, for each R in MaxRefs, get the alias closure of R. If the closure
 | 
						|
  // only has R in it, create a phi a def for R. Otherwise, create a phi,
 | 
						|
  // and add a def for each S in the closure.
 | 
						|
 | 
						|
  // Sort the refs so that the phis will be created in a deterministic order.
 | 
						|
  llvm::sort(MaxRefs);
 | 
						|
  // Remove duplicates.
 | 
						|
  auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
 | 
						|
  MaxRefs.erase(NewEnd, MaxRefs.end());
 | 
						|
 | 
						|
  auto Aliased = [this,&MaxRefs](RegisterRef RR,
 | 
						|
                                 std::vector<unsigned> &Closure) -> bool {
 | 
						|
    for (unsigned I : Closure)
 | 
						|
      if (PRI.alias(RR, MaxRefs[I]))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Prepare a list of NodeIds of the block's predecessors.
 | 
						|
  NodeList Preds;
 | 
						|
  const MachineBasicBlock *MBB = BA.Addr->getCode();
 | 
						|
  for (MachineBasicBlock *PB : MBB->predecessors())
 | 
						|
    Preds.push_back(findBlock(PB));
 | 
						|
 | 
						|
  while (!MaxRefs.empty()) {
 | 
						|
    // Put the first element in the closure, and then add all subsequent
 | 
						|
    // elements from MaxRefs to it, if they alias at least one element
 | 
						|
    // already in the closure.
 | 
						|
    // ClosureIdx: vector of indices in MaxRefs of members of the closure.
 | 
						|
    std::vector<unsigned> ClosureIdx = { 0 };
 | 
						|
    for (unsigned i = 1; i != MaxRefs.size(); ++i)
 | 
						|
      if (Aliased(MaxRefs[i], ClosureIdx))
 | 
						|
        ClosureIdx.push_back(i);
 | 
						|
 | 
						|
    // Build a phi for the closure.
 | 
						|
    unsigned CS = ClosureIdx.size();
 | 
						|
    NodeAddr<PhiNode*> PA = newPhi(BA);
 | 
						|
 | 
						|
    // Add defs.
 | 
						|
    for (unsigned X = 0; X != CS; ++X) {
 | 
						|
      RegisterRef RR = MaxRefs[ClosureIdx[X]];
 | 
						|
      uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
 | 
						|
      NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
 | 
						|
      PA.Addr->addMember(DA, *this);
 | 
						|
    }
 | 
						|
    // Add phi uses.
 | 
						|
    for (NodeAddr<BlockNode*> PBA : Preds) {
 | 
						|
      for (unsigned X = 0; X != CS; ++X) {
 | 
						|
        RegisterRef RR = MaxRefs[ClosureIdx[X]];
 | 
						|
        NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
 | 
						|
        PA.Addr->addMember(PUA, *this);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Erase from MaxRefs all elements in the closure.
 | 
						|
    auto Begin = MaxRefs.begin();
 | 
						|
    for (unsigned i = ClosureIdx.size(); i != 0; --i)
 | 
						|
      MaxRefs.erase(Begin + ClosureIdx[i-1]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Remove any unneeded phi nodes that were created during the build process.
 | 
						|
void DataFlowGraph::removeUnusedPhis() {
 | 
						|
  // This will remove unused phis, i.e. phis where each def does not reach
 | 
						|
  // any uses or other defs. This will not detect or remove circular phi
 | 
						|
  // chains that are otherwise dead. Unused/dead phis are created during
 | 
						|
  // the build process and this function is intended to remove these cases
 | 
						|
  // that are easily determinable to be unnecessary.
 | 
						|
 | 
						|
  SetVector<NodeId> PhiQ;
 | 
						|
  for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
 | 
						|
    for (auto P : BA.Addr->members_if(IsPhi, *this))
 | 
						|
      PhiQ.insert(P.Id);
 | 
						|
  }
 | 
						|
 | 
						|
  static auto HasUsedDef = [](NodeList &Ms) -> bool {
 | 
						|
    for (NodeAddr<NodeBase*> M : Ms) {
 | 
						|
      if (M.Addr->getKind() != NodeAttrs::Def)
 | 
						|
        continue;
 | 
						|
      NodeAddr<DefNode*> DA = M;
 | 
						|
      if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Any phi, if it is removed, may affect other phis (make them dead).
 | 
						|
  // For each removed phi, collect the potentially affected phis and add
 | 
						|
  // them back to the queue.
 | 
						|
  while (!PhiQ.empty()) {
 | 
						|
    auto PA = addr<PhiNode*>(PhiQ[0]);
 | 
						|
    PhiQ.remove(PA.Id);
 | 
						|
    NodeList Refs = PA.Addr->members(*this);
 | 
						|
    if (HasUsedDef(Refs))
 | 
						|
      continue;
 | 
						|
    for (NodeAddr<RefNode*> RA : Refs) {
 | 
						|
      if (NodeId RD = RA.Addr->getReachingDef()) {
 | 
						|
        auto RDA = addr<DefNode*>(RD);
 | 
						|
        NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
 | 
						|
        if (IsPhi(OA))
 | 
						|
          PhiQ.insert(OA.Id);
 | 
						|
      }
 | 
						|
      if (RA.Addr->isDef())
 | 
						|
        unlinkDef(RA, true);
 | 
						|
      else
 | 
						|
        unlinkUse(RA, true);
 | 
						|
    }
 | 
						|
    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
 | 
						|
    BA.Addr->removeMember(PA, *this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For a given reference node TA in an instruction node IA, connect the
 | 
						|
// reaching def of TA to the appropriate def node. Create any shadow nodes
 | 
						|
// as appropriate.
 | 
						|
template <typename T>
 | 
						|
void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
 | 
						|
      DefStack &DS) {
 | 
						|
  if (DS.empty())
 | 
						|
    return;
 | 
						|
  RegisterRef RR = TA.Addr->getRegRef(*this);
 | 
						|
  NodeAddr<T> TAP;
 | 
						|
 | 
						|
  // References from the def stack that have been examined so far.
 | 
						|
  RegisterAggr Defs(PRI);
 | 
						|
 | 
						|
  for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
 | 
						|
    RegisterRef QR = I->Addr->getRegRef(*this);
 | 
						|
 | 
						|
    // Skip all defs that are aliased to any of the defs that we have already
 | 
						|
    // seen. If this completes a cover of RR, stop the stack traversal.
 | 
						|
    bool Alias = Defs.hasAliasOf(QR);
 | 
						|
    bool Cover = Defs.insert(QR).hasCoverOf(RR);
 | 
						|
    if (Alias) {
 | 
						|
      if (Cover)
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The reaching def.
 | 
						|
    NodeAddr<DefNode*> RDA = *I;
 | 
						|
 | 
						|
    // Pick the reached node.
 | 
						|
    if (TAP.Id == 0) {
 | 
						|
      TAP = TA;
 | 
						|
    } else {
 | 
						|
      // Mark the existing ref as "shadow" and create a new shadow.
 | 
						|
      TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
 | 
						|
      TAP = getNextShadow(IA, TAP, true);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the link.
 | 
						|
    TAP.Addr->linkToDef(TAP.Id, RDA);
 | 
						|
 | 
						|
    if (Cover)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Create data-flow links for all reference nodes in the statement node SA.
 | 
						|
template <typename Predicate>
 | 
						|
void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
 | 
						|
      Predicate P) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  RegisterSet Defs;
 | 
						|
#endif
 | 
						|
 | 
						|
  // Link all nodes (upwards in the data-flow) with their reaching defs.
 | 
						|
  for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
 | 
						|
    uint16_t Kind = RA.Addr->getKind();
 | 
						|
    assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
 | 
						|
    RegisterRef RR = RA.Addr->getRegRef(*this);
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Do not expect multiple defs of the same reference.
 | 
						|
    assert(Kind != NodeAttrs::Def || !Defs.count(RR));
 | 
						|
    Defs.insert(RR);
 | 
						|
#endif
 | 
						|
 | 
						|
    auto F = DefM.find(RR.Reg);
 | 
						|
    if (F == DefM.end())
 | 
						|
      continue;
 | 
						|
    DefStack &DS = F->second;
 | 
						|
    if (Kind == NodeAttrs::Use)
 | 
						|
      linkRefUp<UseNode*>(SA, RA, DS);
 | 
						|
    else if (Kind == NodeAttrs::Def)
 | 
						|
      linkRefUp<DefNode*>(SA, RA, DS);
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unexpected node in instruction");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Create data-flow links for all instructions in the block node BA. This
 | 
						|
// will include updating any phi nodes in BA.
 | 
						|
void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
 | 
						|
  // Push block delimiters.
 | 
						|
  markBlock(BA.Id, DefM);
 | 
						|
 | 
						|
  auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
 | 
						|
    return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
 | 
						|
  };
 | 
						|
  auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
 | 
						|
    return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
 | 
						|
  };
 | 
						|
 | 
						|
  assert(BA.Addr && "block node address is needed to create a data-flow link");
 | 
						|
  // For each non-phi instruction in the block, link all the defs and uses
 | 
						|
  // to their reaching defs. For any member of the block (including phis),
 | 
						|
  // push the defs on the corresponding stacks.
 | 
						|
  for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
 | 
						|
    // Ignore phi nodes here. They will be linked part by part from the
 | 
						|
    // predecessors.
 | 
						|
    if (IA.Addr->getKind() == NodeAttrs::Stmt) {
 | 
						|
      linkStmtRefs(DefM, IA, IsUse);
 | 
						|
      linkStmtRefs(DefM, IA, IsClobber);
 | 
						|
    }
 | 
						|
 | 
						|
    // Push the definitions on the stack.
 | 
						|
    pushClobbers(IA, DefM);
 | 
						|
 | 
						|
    if (IA.Addr->getKind() == NodeAttrs::Stmt)
 | 
						|
      linkStmtRefs(DefM, IA, IsNoClobber);
 | 
						|
 | 
						|
    pushDefs(IA, DefM);
 | 
						|
  }
 | 
						|
 | 
						|
  // Recursively process all children in the dominator tree.
 | 
						|
  MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
 | 
						|
  for (auto I : *N) {
 | 
						|
    MachineBasicBlock *SB = I->getBlock();
 | 
						|
    NodeAddr<BlockNode*> SBA = findBlock(SB);
 | 
						|
    linkBlockRefs(DefM, SBA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Link the phi uses from the successor blocks.
 | 
						|
  auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
 | 
						|
    if (NA.Addr->getKind() != NodeAttrs::Use)
 | 
						|
      return false;
 | 
						|
    assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
 | 
						|
    NodeAddr<PhiUseNode*> PUA = NA;
 | 
						|
    return PUA.Addr->getPredecessor() == BA.Id;
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterSet EHLiveIns = getLandingPadLiveIns();
 | 
						|
  MachineBasicBlock *MBB = BA.Addr->getCode();
 | 
						|
 | 
						|
  for (MachineBasicBlock *SB : MBB->successors()) {
 | 
						|
    bool IsEHPad = SB->isEHPad();
 | 
						|
    NodeAddr<BlockNode*> SBA = findBlock(SB);
 | 
						|
    for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
 | 
						|
      // Do not link phi uses for landing pad live-ins.
 | 
						|
      if (IsEHPad) {
 | 
						|
        // Find what register this phi is for.
 | 
						|
        NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
 | 
						|
        assert(RA.Id != 0);
 | 
						|
        if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      // Go over each phi use associated with MBB, and link it.
 | 
						|
      for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
 | 
						|
        NodeAddr<PhiUseNode*> PUA = U;
 | 
						|
        RegisterRef RR = PUA.Addr->getRegRef(*this);
 | 
						|
        linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Pop all defs from this block from the definition stacks.
 | 
						|
  releaseBlock(BA.Id, DefM);
 | 
						|
}
 | 
						|
 | 
						|
// Remove the use node UA from any data-flow and structural links.
 | 
						|
void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
 | 
						|
  NodeId RD = UA.Addr->getReachingDef();
 | 
						|
  NodeId Sib = UA.Addr->getSibling();
 | 
						|
 | 
						|
  if (RD == 0) {
 | 
						|
    assert(Sib == 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto RDA = addr<DefNode*>(RD);
 | 
						|
  auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
 | 
						|
  if (TA.Id == UA.Id) {
 | 
						|
    RDA.Addr->setReachedUse(Sib);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  while (TA.Id != 0) {
 | 
						|
    NodeId S = TA.Addr->getSibling();
 | 
						|
    if (S == UA.Id) {
 | 
						|
      TA.Addr->setSibling(UA.Addr->getSibling());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    TA = addr<UseNode*>(S);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Remove the def node DA from any data-flow and structural links.
 | 
						|
void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
 | 
						|
  //
 | 
						|
  //         RD
 | 
						|
  //         | reached
 | 
						|
  //         | def
 | 
						|
  //         :
 | 
						|
  //         .
 | 
						|
  //        +----+
 | 
						|
  // ... -- | DA | -- ... -- 0  : sibling chain of DA
 | 
						|
  //        +----+
 | 
						|
  //         |  | reached
 | 
						|
  //         |  : def
 | 
						|
  //         |  .
 | 
						|
  //         | ...  : Siblings (defs)
 | 
						|
  //         |
 | 
						|
  //         : reached
 | 
						|
  //         . use
 | 
						|
  //        ... : sibling chain of reached uses
 | 
						|
 | 
						|
  NodeId RD = DA.Addr->getReachingDef();
 | 
						|
 | 
						|
  // Visit all siblings of the reached def and reset their reaching defs.
 | 
						|
  // Also, defs reached by DA are now "promoted" to being reached by RD,
 | 
						|
  // so all of them will need to be spliced into the sibling chain where
 | 
						|
  // DA belongs.
 | 
						|
  auto getAllNodes = [this] (NodeId N) -> NodeList {
 | 
						|
    NodeList Res;
 | 
						|
    while (N) {
 | 
						|
      auto RA = addr<RefNode*>(N);
 | 
						|
      // Keep the nodes in the exact sibling order.
 | 
						|
      Res.push_back(RA);
 | 
						|
      N = RA.Addr->getSibling();
 | 
						|
    }
 | 
						|
    return Res;
 | 
						|
  };
 | 
						|
  NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
 | 
						|
  NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
 | 
						|
 | 
						|
  if (RD == 0) {
 | 
						|
    for (NodeAddr<RefNode*> I : ReachedDefs)
 | 
						|
      I.Addr->setSibling(0);
 | 
						|
    for (NodeAddr<RefNode*> I : ReachedUses)
 | 
						|
      I.Addr->setSibling(0);
 | 
						|
  }
 | 
						|
  for (NodeAddr<DefNode*> I : ReachedDefs)
 | 
						|
    I.Addr->setReachingDef(RD);
 | 
						|
  for (NodeAddr<UseNode*> I : ReachedUses)
 | 
						|
    I.Addr->setReachingDef(RD);
 | 
						|
 | 
						|
  NodeId Sib = DA.Addr->getSibling();
 | 
						|
  if (RD == 0) {
 | 
						|
    assert(Sib == 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the reaching def node and remove DA from the sibling list.
 | 
						|
  auto RDA = addr<DefNode*>(RD);
 | 
						|
  auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
 | 
						|
  if (TA.Id == DA.Id) {
 | 
						|
    // If DA is the first reached def, just update the RD's reached def
 | 
						|
    // to the DA's sibling.
 | 
						|
    RDA.Addr->setReachedDef(Sib);
 | 
						|
  } else {
 | 
						|
    // Otherwise, traverse the sibling list of the reached defs and remove
 | 
						|
    // DA from it.
 | 
						|
    while (TA.Id != 0) {
 | 
						|
      NodeId S = TA.Addr->getSibling();
 | 
						|
      if (S == DA.Id) {
 | 
						|
        TA.Addr->setSibling(Sib);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      TA = addr<DefNode*>(S);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Splice the DA's reached defs into the RDA's reached def chain.
 | 
						|
  if (!ReachedDefs.empty()) {
 | 
						|
    auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
 | 
						|
    Last.Addr->setSibling(RDA.Addr->getReachedDef());
 | 
						|
    RDA.Addr->setReachedDef(ReachedDefs.front().Id);
 | 
						|
  }
 | 
						|
  // Splice the DA's reached uses into the RDA's reached use chain.
 | 
						|
  if (!ReachedUses.empty()) {
 | 
						|
    auto Last = NodeAddr<UseNode*>(ReachedUses.back());
 | 
						|
    Last.Addr->setSibling(RDA.Addr->getReachedUse());
 | 
						|
    RDA.Addr->setReachedUse(ReachedUses.front().Id);
 | 
						|
  }
 | 
						|
}
 |