1379 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Subclass of MipsDAGToDAGISel specialized for mips32/64.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MipsSEISelDAGToDAG.h"
 | |
| #include "MCTargetDesc/MipsBaseInfo.h"
 | |
| #include "Mips.h"
 | |
| #include "MipsAnalyzeImmediate.h"
 | |
| #include "MipsMachineFunction.h"
 | |
| #include "MipsRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "mips-isel"
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
 | |
|   Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
 | |
|   if (Subtarget->inMips16Mode())
 | |
|     return false;
 | |
|   return MipsDAGToDAGISel::runOnMachineFunction(MF);
 | |
| }
 | |
| 
 | |
| void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   SelectionDAGISel::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
 | |
|                                                MachineFunction &MF) {
 | |
|   MachineInstrBuilder MIB(MF, &MI);
 | |
|   unsigned Mask = MI.getOperand(1).getImm();
 | |
|   unsigned Flag =
 | |
|       IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
 | |
| 
 | |
|   if (Mask & 1)
 | |
|     MIB.addReg(Mips::DSPPos, Flag);
 | |
| 
 | |
|   if (Mask & 2)
 | |
|     MIB.addReg(Mips::DSPSCount, Flag);
 | |
| 
 | |
|   if (Mask & 4)
 | |
|     MIB.addReg(Mips::DSPCarry, Flag);
 | |
| 
 | |
|   if (Mask & 8)
 | |
|     MIB.addReg(Mips::DSPOutFlag, Flag);
 | |
| 
 | |
|   if (Mask & 16)
 | |
|     MIB.addReg(Mips::DSPCCond, Flag);
 | |
| 
 | |
|   if (Mask & 32)
 | |
|     MIB.addReg(Mips::DSPEFI, Flag);
 | |
| }
 | |
| 
 | |
| unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
 | |
|   switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
 | |
|   default:
 | |
|     llvm_unreachable("Could not map int to register");
 | |
|   case 0: return Mips::MSAIR;
 | |
|   case 1: return Mips::MSACSR;
 | |
|   case 2: return Mips::MSAAccess;
 | |
|   case 3: return Mips::MSASave;
 | |
|   case 4: return Mips::MSAModify;
 | |
|   case 5: return Mips::MSARequest;
 | |
|   case 6: return Mips::MSAMap;
 | |
|   case 7: return Mips::MSAUnmap;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
 | |
|                                                 const MachineInstr& MI) {
 | |
|   unsigned DstReg = 0, ZeroReg = 0;
 | |
| 
 | |
|   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
 | |
|   if ((MI.getOpcode() == Mips::ADDiu) &&
 | |
|       (MI.getOperand(1).getReg() == Mips::ZERO) &&
 | |
|       (MI.getOperand(2).isImm()) &&
 | |
|       (MI.getOperand(2).getImm() == 0)) {
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     ZeroReg = Mips::ZERO;
 | |
|   } else if ((MI.getOpcode() == Mips::DADDiu) &&
 | |
|              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
 | |
|              (MI.getOperand(2).isImm()) &&
 | |
|              (MI.getOperand(2).getImm() == 0)) {
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     ZeroReg = Mips::ZERO_64;
 | |
|   }
 | |
| 
 | |
|   if (!DstReg)
 | |
|     return false;
 | |
| 
 | |
|   // Replace uses with ZeroReg.
 | |
|   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
 | |
|        E = MRI->use_end(); U != E;) {
 | |
|     MachineOperand &MO = *U;
 | |
|     unsigned OpNo = U.getOperandNo();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     ++U;
 | |
| 
 | |
|     // Do not replace if it is a phi's operand or is tied to def operand.
 | |
|     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
 | |
|       continue;
 | |
| 
 | |
|     // Also, we have to check that the register class of the operand
 | |
|     // contains the zero register.
 | |
|     if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
 | |
|       continue;
 | |
| 
 | |
|     MO.setReg(ZeroReg);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
 | |
|   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
 | |
| 
 | |
|   if (!MipsFI->globalBaseRegSet())
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock &MBB = MF.front();
 | |
|   MachineBasicBlock::iterator I = MBB.begin();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
 | |
|   DebugLoc DL;
 | |
|   unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
 | |
|   const TargetRegisterClass *RC;
 | |
|   const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
 | |
|   RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
 | |
| 
 | |
|   V0 = RegInfo.createVirtualRegister(RC);
 | |
|   V1 = RegInfo.createVirtualRegister(RC);
 | |
| 
 | |
|   if (ABI.IsN64()) {
 | |
|     MF.getRegInfo().addLiveIn(Mips::T9_64);
 | |
|     MBB.addLiveIn(Mips::T9_64);
 | |
| 
 | |
|     // lui $v0, %hi(%neg(%gp_rel(fname)))
 | |
|     // daddu $v1, $v0, $t9
 | |
|     // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
 | |
|     const GlobalValue *FName = &MF.getFunction();
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
 | |
|       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
 | |
|       .addReg(Mips::T9_64);
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
 | |
|       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!MF.getTarget().isPositionIndependent()) {
 | |
|     // Set global register to __gnu_local_gp.
 | |
|     //
 | |
|     // lui   $v0, %hi(__gnu_local_gp)
 | |
|     // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
 | |
|       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
 | |
|       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MF.getRegInfo().addLiveIn(Mips::T9);
 | |
|   MBB.addLiveIn(Mips::T9);
 | |
| 
 | |
|   if (ABI.IsN32()) {
 | |
|     // lui $v0, %hi(%neg(%gp_rel(fname)))
 | |
|     // addu $v1, $v0, $t9
 | |
|     // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
 | |
|     const GlobalValue *FName = &MF.getFunction();
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
 | |
|       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
 | |
|     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
 | |
|       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(ABI.IsO32());
 | |
| 
 | |
|   // For O32 ABI, the following instruction sequence is emitted to initialize
 | |
|   // the global base register:
 | |
|   //
 | |
|   //  0. lui   $2, %hi(_gp_disp)
 | |
|   //  1. addiu $2, $2, %lo(_gp_disp)
 | |
|   //  2. addu  $globalbasereg, $2, $t9
 | |
|   //
 | |
|   // We emit only the last instruction here.
 | |
|   //
 | |
|   // GNU linker requires that the first two instructions appear at the beginning
 | |
|   // of a function and no instructions be inserted before or between them.
 | |
|   // The two instructions are emitted during lowering to MC layer in order to
 | |
|   // avoid any reordering.
 | |
|   //
 | |
|   // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
 | |
|   // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
 | |
|   // reads it.
 | |
|   MF.getRegInfo().addLiveIn(Mips::V0);
 | |
|   MBB.addLiveIn(Mips::V0);
 | |
|   BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
 | |
|     .addReg(Mips::V0).addReg(Mips::T9);
 | |
| }
 | |
| 
 | |
| void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
 | |
|   initGlobalBaseReg(MF);
 | |
| 
 | |
|   MachineRegisterInfo *MRI = &MF.getRegInfo();
 | |
| 
 | |
|   for (auto &MBB: MF) {
 | |
|     for (auto &MI: MBB) {
 | |
|       switch (MI.getOpcode()) {
 | |
|       case Mips::RDDSP:
 | |
|         addDSPCtrlRegOperands(false, MI, MF);
 | |
|         break;
 | |
|       case Mips::WRDSP:
 | |
|         addDSPCtrlRegOperands(true, MI, MF);
 | |
|         break;
 | |
|       case Mips::BuildPairF64_64:
 | |
|       case Mips::ExtractElementF64_64:
 | |
|         if (!Subtarget->useOddSPReg()) {
 | |
|           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
 | |
|           break;
 | |
|         }
 | |
|       // fallthrough
 | |
|       case Mips::BuildPairF64:
 | |
|       case Mips::ExtractElementF64:
 | |
|         if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
 | |
|           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
 | |
|         break;
 | |
|       default:
 | |
|         replaceUsesWithZeroReg(MRI, MI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
 | |
|   SDValue InFlag = Node->getOperand(2);
 | |
|   unsigned Opc = InFlag.getOpcode();
 | |
|   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
 | |
|   EVT VT = LHS.getValueType();
 | |
| 
 | |
|   // In the base case, we can rely on the carry bit from the addsc
 | |
|   // instruction.
 | |
|   if (Opc == ISD::ADDC) {
 | |
|     SDValue Ops[3] = {LHS, RHS, InFlag};
 | |
|     CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
 | |
| 
 | |
|   // The more complex case is when there is a chain of ISD::ADDE nodes like:
 | |
|   // (adde (adde (adde (addc a b) c) d) e).
 | |
|   //
 | |
|   // The addwc instruction does not write to the carry bit, instead it writes
 | |
|   // to bit 20 of the dsp control register. To match this series of nodes, each
 | |
|   // intermediate adde node must be expanded to write the carry bit before the
 | |
|   // addition.
 | |
| 
 | |
|   // Start by reading the overflow field for addsc and moving the value to the
 | |
|   // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
 | |
|   // corresponds to reading/writing the entire control register to/from a GPR.
 | |
| 
 | |
|   SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
 | |
| 
 | |
|   SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
 | |
| 
 | |
|   SDNode *DSPCtrlField =
 | |
|       CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
 | |
| 
 | |
|   SDNode *Carry = CurDAG->getMachineNode(
 | |
|       Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
 | |
| 
 | |
|   SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
 | |
|                     CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
 | |
|                     SDValue(Carry, 0)};
 | |
|   SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
 | |
| 
 | |
|   // My reading of the MIPS DSP 3.01 specification isn't as clear as I
 | |
|   // would like about whether bit 20 always gets overwritten by addwc.
 | |
|   // Hence take an extremely conservative view and presume it's sticky. We
 | |
|   // therefore need to clear it.
 | |
| 
 | |
|   SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
 | |
| 
 | |
|   SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
 | |
|   SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
 | |
| 
 | |
|   SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
 | |
|                                          SDValue(DSPCtrlFinal, 0), CstOne);
 | |
| 
 | |
|   SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
 | |
|   CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
 | |
| }
 | |
| 
 | |
| /// Match frameindex
 | |
| bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
 | |
|                                               SDValue &Offset) const {
 | |
|   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
 | |
|     EVT ValTy = Addr.getValueType();
 | |
| 
 | |
|     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
 | |
|     Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Match frameindex+offset and frameindex|offset
 | |
| bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
 | |
|     SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
 | |
|     unsigned ShiftAmount = 0) const {
 | |
|   if (CurDAG->isBaseWithConstantOffset(Addr)) {
 | |
|     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
 | |
|     if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
 | |
|       EVT ValTy = Addr.getValueType();
 | |
| 
 | |
|       // If the first operand is a FI, get the TargetFI Node
 | |
|       if (FrameIndexSDNode *FIN =
 | |
|               dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
 | |
|         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
 | |
|       else {
 | |
|         Base = Addr.getOperand(0);
 | |
|         // If base is a FI, additional offset calculation is done in
 | |
|         // eliminateFrameIndex, otherwise we need to check the alignment
 | |
|         if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0)
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
 | |
|                                          ValTy);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ComplexPattern used on MipsInstrInfo
 | |
| /// Used on Mips Load/Store instructions
 | |
| bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
 | |
|                                           SDValue &Offset) const {
 | |
|   // if Address is FI, get the TargetFrameIndex.
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   // on PIC code Load GA
 | |
|   if (Addr.getOpcode() == MipsISD::Wrapper) {
 | |
|     Base   = Addr.getOperand(0);
 | |
|     Offset = Addr.getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!TM.isPositionIndependent()) {
 | |
|     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
 | |
|         Addr.getOpcode() == ISD::TargetGlobalAddress))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Addresses of the form FI+const or FI|const
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
 | |
|     return true;
 | |
| 
 | |
|   // Operand is a result from an ADD.
 | |
|   if (Addr.getOpcode() == ISD::ADD) {
 | |
|     // When loading from constant pools, load the lower address part in
 | |
|     // the instruction itself. Example, instead of:
 | |
|     //  lui $2, %hi($CPI1_0)
 | |
|     //  addiu $2, $2, %lo($CPI1_0)
 | |
|     //  lwc1 $f0, 0($2)
 | |
|     // Generate:
 | |
|     //  lui $2, %hi($CPI1_0)
 | |
|     //  lwc1 $f0, %lo($CPI1_0)($2)
 | |
|     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
 | |
|         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
 | |
|       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
 | |
|       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
 | |
|           isa<JumpTableSDNode>(Opnd0)) {
 | |
|         Base = Addr.getOperand(0);
 | |
|         Offset = Opnd0;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ComplexPattern used on MipsInstrInfo
 | |
| /// Used on Mips Load/Store instructions
 | |
| bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
 | |
|                                            SDValue &Offset) const {
 | |
|   Base = Addr;
 | |
|   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
 | |
|                                        SDValue &Offset) const {
 | |
|   return selectAddrRegImm(Addr, Base, Offset) ||
 | |
|     selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
 | |
|                                            SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
 | |
| bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
 | |
|                                             SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
 | |
| bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
 | |
|                                             SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
 | |
|                                             SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
 | |
|                                          SDValue &Offset) const {
 | |
|   return selectAddrRegImm11(Addr, Base, Offset) ||
 | |
|     selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
 | |
|                                          SDValue &Offset) const {
 | |
|   return selectAddrRegImm12(Addr, Base, Offset) ||
 | |
|     selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
 | |
|                                          SDValue &Offset) const {
 | |
|   return selectAddrRegImm16(Addr, Base, Offset) ||
 | |
|     selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
 | |
|                                              SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
 | |
|     if (isa<FrameIndexSDNode>(Base))
 | |
|       return false;
 | |
| 
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
 | |
|       unsigned CnstOff = CN->getZExtValue();
 | |
|       return (CnstOff == (CnstOff & 0x3c));
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For all other cases where "lw" would be selected, don't select "lw16"
 | |
|   // because it would result in additional instructions to prepare operands.
 | |
|   if (selectAddrRegImm(Addr, Base, Offset))
 | |
|     return false;
 | |
| 
 | |
|   return selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
 | |
|                                              SDValue &Offset) const {
 | |
| 
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
 | |
|     return true;
 | |
| 
 | |
|   return selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
 | |
|                                                  SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
 | |
|     return true;
 | |
| 
 | |
|   return selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
 | |
|                                                  SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
 | |
|     return true;
 | |
| 
 | |
|   return selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
 | |
|                                                  SDValue &Offset) const {
 | |
|   if (selectAddrFrameIndex(Addr, Base, Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
 | |
|     return true;
 | |
| 
 | |
|   return selectAddrDefault(Addr, Base, Offset);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| //
 | |
| // Returns true and sets Imm if:
 | |
| // * MSA is enabled
 | |
| // * N is a ISD::BUILD_VECTOR representing a constant splat
 | |
| bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
 | |
|                                       unsigned MinSizeInBits) const {
 | |
|   if (!Subtarget->hasMSA())
 | |
|     return false;
 | |
| 
 | |
|   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
 | |
| 
 | |
|   if (!Node)
 | |
|     return false;
 | |
| 
 | |
|   APInt SplatValue, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
| 
 | |
|   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
 | |
|                              MinSizeInBits, !Subtarget->isLittle()))
 | |
|     return false;
 | |
| 
 | |
|   Imm = SplatValue;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| //
 | |
| // In addition to the requirements of selectVSplat(), this function returns
 | |
| // true and sets Imm if:
 | |
| // * The splat value is the same width as the elements of the vector
 | |
| // * The splat value fits in an integer with the specified signed-ness and
 | |
| //   width.
 | |
| //
 | |
| // This function looks through ISD::BITCAST nodes.
 | |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | |
| //       sometimes a shuffle in big-endian mode.
 | |
| //
 | |
| // It's worth noting that this function is not used as part of the selection
 | |
| // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
 | |
| // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
 | |
| // MipsSEDAGToDAGISel::selectNode.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
 | |
|                    unsigned ImmBitSize) const {
 | |
|   APInt ImmValue;
 | |
|   EVT EltTy = N->getValueType(0).getVectorElementType();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0);
 | |
| 
 | |
|   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | |
|       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | |
| 
 | |
|     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
 | |
|         (!Signed && ImmValue.isIntN(ImmBitSize))) {
 | |
|       Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm1(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 1);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm2(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 2);
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm3(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 3);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm4(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 4);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm5(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 5);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm6(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 6);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatUimm8(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, false, 8);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats.
 | |
| bool MipsSEDAGToDAGISel::
 | |
| selectVSplatSimm5(SDValue N, SDValue &Imm) const {
 | |
|   return selectVSplatCommon(N, Imm, true, 5);
 | |
| }
 | |
| 
 | |
| // Select constant vector splats whose value is a power of 2.
 | |
| //
 | |
| // In addition to the requirements of selectVSplat(), this function returns
 | |
| // true and sets Imm if:
 | |
| // * The splat value is the same width as the elements of the vector
 | |
| // * The splat value is a power of two.
 | |
| //
 | |
| // This function looks through ISD::BITCAST nodes.
 | |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | |
| //       sometimes a shuffle in big-endian mode.
 | |
| bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
 | |
|   APInt ImmValue;
 | |
|   EVT EltTy = N->getValueType(0).getVectorElementType();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0);
 | |
| 
 | |
|   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | |
|       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | |
|     int32_t Log2 = ImmValue.exactLogBase2();
 | |
| 
 | |
|     if (Log2 != -1) {
 | |
|       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Select constant vector splats whose value only has a consecutive sequence
 | |
| // of left-most bits set (e.g. 0b11...1100...00).
 | |
| //
 | |
| // In addition to the requirements of selectVSplat(), this function returns
 | |
| // true and sets Imm if:
 | |
| // * The splat value is the same width as the elements of the vector
 | |
| // * The splat value is a consecutive sequence of left-most bits.
 | |
| //
 | |
| // This function looks through ISD::BITCAST nodes.
 | |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | |
| //       sometimes a shuffle in big-endian mode.
 | |
| bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
 | |
|   APInt ImmValue;
 | |
|   EVT EltTy = N->getValueType(0).getVectorElementType();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0);
 | |
| 
 | |
|   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | |
|       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | |
|     // Extract the run of set bits starting with bit zero from the bitwise
 | |
|     // inverse of ImmValue, and test that the inverse of this is the same
 | |
|     // as the original value.
 | |
|     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
 | |
| 
 | |
|       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
 | |
|                                       EltTy);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Select constant vector splats whose value only has a consecutive sequence
 | |
| // of right-most bits set (e.g. 0b00...0011...11).
 | |
| //
 | |
| // In addition to the requirements of selectVSplat(), this function returns
 | |
| // true and sets Imm if:
 | |
| // * The splat value is the same width as the elements of the vector
 | |
| // * The splat value is a consecutive sequence of right-most bits.
 | |
| //
 | |
| // This function looks through ISD::BITCAST nodes.
 | |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | |
| //       sometimes a shuffle in big-endian mode.
 | |
| bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
 | |
|   APInt ImmValue;
 | |
|   EVT EltTy = N->getValueType(0).getVectorElementType();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0);
 | |
| 
 | |
|   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | |
|       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | |
|     // Extract the run of set bits starting with bit zero, and test that the
 | |
|     // result is the same as the original value
 | |
|     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
 | |
|       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
 | |
|                                       EltTy);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
 | |
|                                                  SDValue &Imm) const {
 | |
|   APInt ImmValue;
 | |
|   EVT EltTy = N->getValueType(0).getVectorElementType();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0);
 | |
| 
 | |
|   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | |
|       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | |
|     int32_t Log2 = (~ImmValue).exactLogBase2();
 | |
| 
 | |
|     if (Log2 != -1) {
 | |
|       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
 | |
|   unsigned Opcode = Node->getOpcode();
 | |
|   SDLoc DL(Node);
 | |
| 
 | |
|   ///
 | |
|   // Instruction Selection not handled by the auto-generated
 | |
|   // tablegen selection should be handled here.
 | |
|   ///
 | |
|   switch(Opcode) {
 | |
|   default: break;
 | |
| 
 | |
|   case ISD::ADDE: {
 | |
|     selectAddE(Node, DL);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::ConstantFP: {
 | |
|     ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
 | |
|     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
 | |
|       if (Subtarget->isGP64bit()) {
 | |
|         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
 | |
|                                               Mips::ZERO_64, MVT::i64);
 | |
|         ReplaceNode(Node,
 | |
|                     CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
 | |
|       } else if (Subtarget->isFP64bit()) {
 | |
|         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
 | |
|                                               Mips::ZERO, MVT::i32);
 | |
|         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
 | |
|                                                  MVT::f64, Zero, Zero));
 | |
|       } else {
 | |
|         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
 | |
|                                               Mips::ZERO, MVT::i32);
 | |
|         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
 | |
|                                                  MVT::f64, Zero, Zero));
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
 | |
|     int64_t Imm = CN->getSExtValue();
 | |
|     unsigned Size = CN->getValueSizeInBits(0);
 | |
| 
 | |
|     if (isInt<32>(Imm))
 | |
|       break;
 | |
| 
 | |
|     MipsAnalyzeImmediate AnalyzeImm;
 | |
| 
 | |
|     const MipsAnalyzeImmediate::InstSeq &Seq =
 | |
|       AnalyzeImm.Analyze(Imm, Size, false);
 | |
| 
 | |
|     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
 | |
|     SDLoc DL(CN);
 | |
|     SDNode *RegOpnd;
 | |
|     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
 | |
|                                                 DL, MVT::i64);
 | |
| 
 | |
|     // The first instruction can be a LUi which is different from other
 | |
|     // instructions (ADDiu, ORI and SLL) in that it does not have a register
 | |
|     // operand.
 | |
|     if (Inst->Opc == Mips::LUi64)
 | |
|       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
 | |
|     else
 | |
|       RegOpnd =
 | |
|         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
 | |
|                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
 | |
|                                ImmOpnd);
 | |
| 
 | |
|     // The remaining instructions in the sequence are handled here.
 | |
|     for (++Inst; Inst != Seq.end(); ++Inst) {
 | |
|       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
 | |
|                                           MVT::i64);
 | |
|       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
 | |
|                                        SDValue(RegOpnd, 0), ImmOpnd);
 | |
|     }
 | |
| 
 | |
|     ReplaceNode(Node, RegOpnd);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::mips_cfcmsa: {
 | |
|       SDValue ChainIn = Node->getOperand(0);
 | |
|       SDValue RegIdx = Node->getOperand(2);
 | |
|       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
 | |
|                                            getMSACtrlReg(RegIdx), MVT::i32);
 | |
|       ReplaceNode(Node, Reg.getNode());
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::mips_move_v:
 | |
|       // Like an assignment but will always produce a move.v even if
 | |
|       // unnecessary.
 | |
|       ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
 | |
|                                                Node->getValueType(0),
 | |
|                                                Node->getOperand(1)));
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::INTRINSIC_VOID: {
 | |
|     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::mips_ctcmsa: {
 | |
|       SDValue ChainIn = Node->getOperand(0);
 | |
|       SDValue RegIdx  = Node->getOperand(2);
 | |
|       SDValue Value   = Node->getOperand(3);
 | |
|       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
 | |
|                                               getMSACtrlReg(RegIdx), Value);
 | |
|       ReplaceNode(Node, ChainOut.getNode());
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Manually match MipsISD::Ins nodes to get the correct instruction. It has
 | |
|   // to be done in this fashion so that we respect the differences between
 | |
|   // dins and dinsm, as the difference is that the size operand has the range
 | |
|   // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
 | |
|   // means SelectionDAGISel would have to test all the operands at once to
 | |
|   // match the instruction.
 | |
|   case MipsISD::Ins: {
 | |
| 
 | |
|     // Sanity checking for the node operands.
 | |
|     if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
 | |
|       return false;
 | |
| 
 | |
|     if (Node->getNumOperands() != 4)
 | |
|       return false;
 | |
| 
 | |
|     if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
 | |
|         Node->getOperand(2)->getOpcode() != ISD::Constant)
 | |
|       return false;
 | |
| 
 | |
|     MVT ResTy = Node->getSimpleValueType(0);
 | |
|     uint64_t Pos = Node->getConstantOperandVal(1);
 | |
|     uint64_t Size = Node->getConstantOperandVal(2);
 | |
| 
 | |
|     // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
 | |
|     if (!Size)
 | |
|       return false;
 | |
| 
 | |
|     if (Pos + Size > 64)
 | |
|       return false;
 | |
| 
 | |
|     if (ResTy != MVT::i32 && ResTy != MVT::i64)
 | |
|       return false;
 | |
| 
 | |
|     unsigned Opcode = 0;
 | |
|     if (ResTy == MVT::i32) {
 | |
|       if (Pos + Size <= 32)
 | |
|         Opcode = Mips::INS;
 | |
|     } else {
 | |
|       if (Pos + Size <= 32)
 | |
|         Opcode = Mips::DINS;
 | |
|       else if (Pos < 32 && 1 < Size)
 | |
|         Opcode = Mips::DINSM;
 | |
|       else
 | |
|         Opcode = Mips::DINSU;
 | |
|     }
 | |
| 
 | |
|     if (Opcode) {
 | |
|       SDValue Ops[4] = {
 | |
|           Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
 | |
|           CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
 | |
| 
 | |
|       ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case MipsISD::ThreadPointer: {
 | |
|     EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
 | |
|     unsigned RdhwrOpc, DestReg;
 | |
| 
 | |
|     if (PtrVT == MVT::i32) {
 | |
|       RdhwrOpc = Mips::RDHWR;
 | |
|       DestReg = Mips::V1;
 | |
|     } else {
 | |
|       RdhwrOpc = Mips::RDHWR64;
 | |
|       DestReg = Mips::V1_64;
 | |
|     }
 | |
| 
 | |
|     SDNode *Rdhwr =
 | |
|         CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
 | |
|                                CurDAG->getRegister(Mips::HWR29, MVT::i32),
 | |
|                                CurDAG->getTargetConstant(0, DL, MVT::i32));
 | |
|     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
 | |
|                                          SDValue(Rdhwr, 0));
 | |
|     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
 | |
|     ReplaceNode(Node, ResNode.getNode());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::BUILD_VECTOR: {
 | |
|     // Select appropriate ldi.[bhwd] instructions for constant splats of
 | |
|     // 128-bit when MSA is enabled. Fixup any register class mismatches that
 | |
|     // occur as a result.
 | |
|     //
 | |
|     // This allows the compiler to use a wider range of immediates than would
 | |
|     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
 | |
|     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
 | |
|     // 0x01010101 } without using a constant pool. This would be sub-optimal
 | |
|     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
 | |
|     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
 | |
|     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
 | |
| 
 | |
|     const MipsABIInfo &ABI =
 | |
|         static_cast<const MipsTargetMachine &>(TM).getABI();
 | |
| 
 | |
|     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
 | |
|     APInt SplatValue, SplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
|     unsigned LdiOp;
 | |
|     EVT ResVecTy = BVN->getValueType(0);
 | |
|     EVT ViaVecTy;
 | |
| 
 | |
|     if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
 | |
|       return false;
 | |
| 
 | |
|     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
 | |
|                               HasAnyUndefs, 8,
 | |
|                               !Subtarget->isLittle()))
 | |
|       return false;
 | |
| 
 | |
|     switch (SplatBitSize) {
 | |
|     default:
 | |
|       return false;
 | |
|     case 8:
 | |
|       LdiOp = Mips::LDI_B;
 | |
|       ViaVecTy = MVT::v16i8;
 | |
|       break;
 | |
|     case 16:
 | |
|       LdiOp = Mips::LDI_H;
 | |
|       ViaVecTy = MVT::v8i16;
 | |
|       break;
 | |
|     case 32:
 | |
|       LdiOp = Mips::LDI_W;
 | |
|       ViaVecTy = MVT::v4i32;
 | |
|       break;
 | |
|     case 64:
 | |
|       LdiOp = Mips::LDI_D;
 | |
|       ViaVecTy = MVT::v2i64;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDNode *Res;
 | |
| 
 | |
|     // If we have a signed 10 bit integer, we can splat it directly.
 | |
|     //
 | |
|     // If we have something bigger we can synthesize the value into a GPR and
 | |
|     // splat from there.
 | |
|     if (SplatValue.isSignedIntN(10)) {
 | |
|       SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
 | |
|                                               ViaVecTy.getVectorElementType());
 | |
| 
 | |
|       Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
 | |
|     } else if (SplatValue.isSignedIntN(16) &&
 | |
|                ((ABI.IsO32() && SplatBitSize < 64) ||
 | |
|                 (ABI.IsN32() || ABI.IsN64()))) {
 | |
|       // Only handle signed 16 bit values when the element size is GPR width.
 | |
|       // MIPS64 can handle all the cases but MIPS32 would need to handle
 | |
|       // negative cases specifically here. Instead, handle those cases as
 | |
|       // 64bit values.
 | |
| 
 | |
|       bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
 | |
|       const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
 | |
|       const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
 | |
|       SDValue ZeroVal = CurDAG->getRegister(
 | |
|           Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
 | |
| 
 | |
|       const unsigned FILLOp =
 | |
|           SplatBitSize == 16
 | |
|               ? Mips::FILL_H
 | |
|               : (SplatBitSize == 32 ? Mips::FILL_W
 | |
|                                     : (SplatBitSize == 64 ? Mips::FILL_D : 0));
 | |
| 
 | |
|       assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
 | |
|       assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
 | |
|              "Attempting to use fill.d on MIPS32!");
 | |
| 
 | |
|       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
 | |
|       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
 | |
| 
 | |
|       Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
 | |
|       Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
 | |
| 
 | |
|     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
 | |
|       // Only handle the cases where the splat size agrees with the size
 | |
|       // of the SplatValue here.
 | |
|       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
 | |
|       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
 | |
|       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
 | |
| 
 | |
|       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
 | |
|       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
 | |
| 
 | |
|       if (Hi)
 | |
|         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
 | |
| 
 | |
|       if (Lo)
 | |
|         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
 | |
|                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
 | |
| 
 | |
|       assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
 | |
|       Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
 | |
| 
 | |
|     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
 | |
|                (ABI.IsN32() || ABI.IsN64())) {
 | |
|       // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
 | |
|       // integers due to having 64bit registers. lui will cause the necessary
 | |
|       // zero/sign extension.
 | |
|       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
 | |
|       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
 | |
|       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
 | |
| 
 | |
|       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
 | |
|       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
 | |
| 
 | |
|       if (Hi)
 | |
|         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
 | |
| 
 | |
|       if (Lo)
 | |
|         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
 | |
|                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
 | |
| 
 | |
|       Res = CurDAG->getMachineNode(
 | |
|               Mips::SUBREG_TO_REG, DL, MVT::i64,
 | |
|               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
 | |
|               SDValue(Res, 0),
 | |
|               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
 | |
| 
 | |
|       Res =
 | |
|           CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
 | |
| 
 | |
|     } else if (SplatValue.isSignedIntN(64)) {
 | |
|       // If we have a 64 bit Splat value, we perform a similar sequence to the
 | |
|       // above:
 | |
|       //
 | |
|       // MIPS32:                            MIPS64:
 | |
|       //   lui $res, %highest(val)            lui $res, %highest(val)
 | |
|       //   ori $res, $res, %higher(val)       ori $res, $res, %higher(val)
 | |
|       //   lui $res2, %hi(val)                lui $res2, %hi(val)
 | |
|       //   ori $res2, %res2, %lo(val)         ori $res2, %res2, %lo(val)
 | |
|       //   $res3 = fill $res2                 dinsu $res, $res2, 0, 32
 | |
|       //   $res4 = insert.w $res3[1], $res    fill.d $res
 | |
|       //   splat.d $res4, 0
 | |
|       //
 | |
|       // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
 | |
|       // having to materialize the value by shifts and ors.
 | |
|       //
 | |
|       // FIXME: Implement the preferred sequence for MIPS64R6:
 | |
|       //
 | |
|       // MIPS64R6:
 | |
|       //   ori $res, $zero, %lo(val)
 | |
|       //   daui $res, $res, %hi(val)
 | |
|       //   dahi $res, $res, %higher(val)
 | |
|       //   dati $res, $res, %highest(cal)
 | |
|       //   fill.d $res
 | |
|       //
 | |
| 
 | |
|       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
 | |
|       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
 | |
|       const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
 | |
|       const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
 | |
| 
 | |
|       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
 | |
|       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
 | |
|       SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
 | |
|       SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
 | |
|       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
 | |
| 
 | |
|       // Independent of whether we're targeting MIPS64 or not, the basic
 | |
|       // operations are the same. Also, directly use the $zero register if
 | |
|       // the 16 bit chunk is zero.
 | |
|       //
 | |
|       // For optimization purposes we always synthesize the splat value as
 | |
|       // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
 | |
|       // just before combining the values with dinsu to produce an i64. This
 | |
|       // enables SelectionDAG to aggressively share components of splat values
 | |
|       // where possible.
 | |
|       //
 | |
|       // FIXME: This is the general constant synthesis problem. This code
 | |
|       //        should be factored out into a class shared between all the
 | |
|       //        classes that need it. Specifically, for a splat size of 64
 | |
|       //        bits that's a negative number we can do better than LUi/ORi
 | |
|       //        for the upper 32bits.
 | |
| 
 | |
|       if (Hi)
 | |
|         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
 | |
| 
 | |
|       if (Lo)
 | |
|         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
 | |
|                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
 | |
| 
 | |
|       SDNode *HiRes;
 | |
|       if (Highest)
 | |
|         HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
 | |
| 
 | |
|       if (Higher)
 | |
|         HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
 | |
|                                        Highest ? SDValue(HiRes, 0) : ZeroVal,
 | |
|                                        HigherVal);
 | |
| 
 | |
| 
 | |
|       if (ABI.IsO32()) {
 | |
|         Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
 | |
|                                      (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
 | |
| 
 | |
|         Res = CurDAG->getMachineNode(
 | |
|             Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
 | |
|             (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
 | |
|             CurDAG->getTargetConstant(1, DL, MVT::i32));
 | |
| 
 | |
|         const TargetLowering *TLI = getTargetLowering();
 | |
|         const TargetRegisterClass *RC =
 | |
|             TLI->getRegClassFor(ViaVecTy.getSimpleVT());
 | |
| 
 | |
|         Res = CurDAG->getMachineNode(
 | |
|             Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
 | |
|             CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
 | |
| 
 | |
|         Res = CurDAG->getMachineNode(
 | |
|             Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
 | |
|             CurDAG->getTargetConstant(0, DL, MVT::i32));
 | |
|       } else if (ABI.IsN64() || ABI.IsN32()) {
 | |
| 
 | |
|         SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
 | |
|         const bool HiResNonZero = Highest || Higher;
 | |
|         const bool ResNonZero = Hi || Lo;
 | |
| 
 | |
|         if (HiResNonZero)
 | |
|           HiRes = CurDAG->getMachineNode(
 | |
|               Mips::SUBREG_TO_REG, DL, MVT::i64,
 | |
|               CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
 | |
|               SDValue(HiRes, 0),
 | |
|               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
 | |
| 
 | |
|         if (ResNonZero)
 | |
|           Res = CurDAG->getMachineNode(
 | |
|               Mips::SUBREG_TO_REG, DL, MVT::i64,
 | |
|               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
 | |
|               SDValue(Res, 0),
 | |
|               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
 | |
| 
 | |
|         // We have 3 cases:
 | |
|         //   The HiRes is nonzero but Res is $zero  => dsll32 HiRes, 0
 | |
|         //   The Res is nonzero but HiRes is $zero  => dinsu Res, $zero, 32, 32
 | |
|         //   Both are non zero                      => dinsu Res, HiRes, 32, 32
 | |
|         //
 | |
|         // The obvious "missing" case is when both are zero, but that case is
 | |
|         // handled by the ldi case.
 | |
|         if (ResNonZero) {
 | |
|           IntegerType *Int32Ty =
 | |
|               IntegerType::get(MF->getFunction().getContext(), 32);
 | |
|           const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
 | |
|           SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
 | |
|                             CurDAG->getConstant(*Const32, DL, MVT::i32),
 | |
|                             CurDAG->getConstant(*Const32, DL, MVT::i32),
 | |
|                             SDValue(Res, 0)};
 | |
| 
 | |
|           Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
 | |
|         } else if (HiResNonZero) {
 | |
|           Res = CurDAG->getMachineNode(
 | |
|               Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
 | |
|               CurDAG->getTargetConstant(0, DL, MVT::i32));
 | |
|         } else
 | |
|           llvm_unreachable(
 | |
|               "Zero splat value handled by non-zero 64bit splat synthesis!");
 | |
| 
 | |
|         Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
 | |
|       } else
 | |
|         llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
 | |
| 
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     if (ResVecTy != ViaVecTy) {
 | |
|       // If LdiOp is writing to a different register class to ResVecTy, then
 | |
|       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
 | |
|       // since the source and destination register sets contain the same
 | |
|       // registers.
 | |
|       const TargetLowering *TLI = getTargetLowering();
 | |
|       MVT ResVecTySimple = ResVecTy.getSimpleVT();
 | |
|       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
 | |
|       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
 | |
|                                    ResVecTy, SDValue(Res, 0),
 | |
|                                    CurDAG->getTargetConstant(RC->getID(), DL,
 | |
|                                                              MVT::i32));
 | |
|     }
 | |
| 
 | |
|     ReplaceNode(Node, Res);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MipsSEDAGToDAGISel::
 | |
| SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | |
|                              std::vector<SDValue> &OutOps) {
 | |
|   SDValue Base, Offset;
 | |
| 
 | |
|   switch(ConstraintID) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected asm memory constraint");
 | |
|   // All memory constraints can at least accept raw pointers.
 | |
|   case InlineAsm::Constraint_i:
 | |
|     OutOps.push_back(Op);
 | |
|     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | |
|     return false;
 | |
|   case InlineAsm::Constraint_m:
 | |
|     if (selectAddrRegImm16(Op, Base, Offset)) {
 | |
|       OutOps.push_back(Base);
 | |
|       OutOps.push_back(Offset);
 | |
|       return false;
 | |
|     }
 | |
|     OutOps.push_back(Op);
 | |
|     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | |
|     return false;
 | |
|   case InlineAsm::Constraint_R:
 | |
|     // The 'R' constraint is supposed to be much more complicated than this.
 | |
|     // However, it's becoming less useful due to architectural changes and
 | |
|     // ought to be replaced by other constraints such as 'ZC'.
 | |
|     // For now, support 9-bit signed offsets which is supportable by all
 | |
|     // subtargets for all instructions.
 | |
|     if (selectAddrRegImm9(Op, Base, Offset)) {
 | |
|       OutOps.push_back(Base);
 | |
|       OutOps.push_back(Offset);
 | |
|       return false;
 | |
|     }
 | |
|     OutOps.push_back(Op);
 | |
|     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | |
|     return false;
 | |
|   case InlineAsm::Constraint_ZC:
 | |
|     // ZC matches whatever the pref, ll, and sc instructions can handle for the
 | |
|     // given subtarget.
 | |
|     if (Subtarget->inMicroMipsMode()) {
 | |
|       // On microMIPS, they can handle 12-bit offsets.
 | |
|       if (selectAddrRegImm12(Op, Base, Offset)) {
 | |
|         OutOps.push_back(Base);
 | |
|         OutOps.push_back(Offset);
 | |
|         return false;
 | |
|       }
 | |
|     } else if (Subtarget->hasMips32r6()) {
 | |
|       // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
 | |
|       if (selectAddrRegImm9(Op, Base, Offset)) {
 | |
|         OutOps.push_back(Base);
 | |
|         OutOps.push_back(Offset);
 | |
|         return false;
 | |
|       }
 | |
|     } else if (selectAddrRegImm16(Op, Base, Offset)) {
 | |
|       // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
 | |
|       OutOps.push_back(Base);
 | |
|       OutOps.push_back(Offset);
 | |
|       return false;
 | |
|     }
 | |
|     // In all cases, 0-bit offsets are acceptable.
 | |
|     OutOps.push_back(Op);
 | |
|     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
 | |
|                                         CodeGenOpt::Level OptLevel) {
 | |
|   return new MipsSEDAGToDAGISel(TM, OptLevel);
 | |
| }
 |