3845 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3845 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Subclass of MipsTargetLowering specialized for mips32/64.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MipsSEISelLowering.h"
 | |
| #include "MipsMachineFunction.h"
 | |
| #include "MipsRegisterInfo.h"
 | |
| #include "MipsSubtarget.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "mips-isel"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseMipsTailCalls("mips-tail-calls", cl::Hidden,
 | |
|                     cl::desc("MIPS: permit tail calls."), cl::init(false));
 | |
| 
 | |
| static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
 | |
|                                    cl::desc("Expand double precision loads and "
 | |
|                                             "stores to their single precision "
 | |
|                                             "counterparts"));
 | |
| 
 | |
| MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
 | |
|                                            const MipsSubtarget &STI)
 | |
|     : MipsTargetLowering(TM, STI) {
 | |
|   // Set up the register classes
 | |
|   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
 | |
| 
 | |
|   if (Subtarget.isGP64bit())
 | |
|     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
 | |
| 
 | |
|   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
 | |
|     // Expand all truncating stores and extending loads.
 | |
|     for (MVT VT0 : MVT::vector_valuetypes()) {
 | |
|       for (MVT VT1 : MVT::vector_valuetypes()) {
 | |
|         setTruncStoreAction(VT0, VT1, Expand);
 | |
|         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
 | |
|         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
 | |
|         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasDSP()) {
 | |
|     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
 | |
| 
 | |
|     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
 | |
|       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
 | |
| 
 | |
|       // Expand all builtin opcodes.
 | |
|       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
 | |
|         setOperationAction(Opc, VecTys[i], Expand);
 | |
| 
 | |
|       setOperationAction(ISD::ADD, VecTys[i], Legal);
 | |
|       setOperationAction(ISD::SUB, VecTys[i], Legal);
 | |
|       setOperationAction(ISD::LOAD, VecTys[i], Legal);
 | |
|       setOperationAction(ISD::STORE, VecTys[i], Legal);
 | |
|       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
 | |
|     }
 | |
| 
 | |
|     setTargetDAGCombine(ISD::SHL);
 | |
|     setTargetDAGCombine(ISD::SRA);
 | |
|     setTargetDAGCombine(ISD::SRL);
 | |
|     setTargetDAGCombine(ISD::SETCC);
 | |
|     setTargetDAGCombine(ISD::VSELECT);
 | |
| 
 | |
|     if (Subtarget.hasMips32r2()) {
 | |
|       setOperationAction(ISD::ADDC, MVT::i32, Legal);
 | |
|       setOperationAction(ISD::ADDE, MVT::i32, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasDSPR2())
 | |
|     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
 | |
| 
 | |
|   if (Subtarget.hasMSA()) {
 | |
|     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
 | |
|     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
 | |
|     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
 | |
|     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
 | |
|     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
 | |
|     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
 | |
|     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
 | |
| 
 | |
|     // f16 is a storage-only type, always promote it to f32.
 | |
|     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
 | |
|     setOperationAction(ISD::SETCC, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::SELECT, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FADD, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FSUB, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FMUL, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FDIV, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FREM, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FMA, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FNEG, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FABS, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FCOS, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FPOW, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FRINT, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FSIN, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FEXP, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FLOG, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FROUND, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
 | |
|     setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
 | |
| 
 | |
|     setTargetDAGCombine(ISD::AND);
 | |
|     setTargetDAGCombine(ISD::OR);
 | |
|     setTargetDAGCombine(ISD::SRA);
 | |
|     setTargetDAGCombine(ISD::VSELECT);
 | |
|     setTargetDAGCombine(ISD::XOR);
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget.useSoftFloat()) {
 | |
|     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
 | |
| 
 | |
|     // When dealing with single precision only, use libcalls
 | |
|     if (!Subtarget.isSingleFloat()) {
 | |
|       if (Subtarget.isFP64bit())
 | |
|         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
 | |
|       else
 | |
|         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
 | |
|   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
 | |
|   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
 | |
| 
 | |
|   if (Subtarget.hasCnMips())
 | |
|     setOperationAction(ISD::MUL,              MVT::i64, Legal);
 | |
|   else if (Subtarget.isGP64bit())
 | |
|     setOperationAction(ISD::MUL,              MVT::i64, Custom);
 | |
| 
 | |
|   if (Subtarget.isGP64bit()) {
 | |
|     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
 | |
|     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
 | |
|     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
 | |
|   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
 | |
|   setOperationAction(ISD::STORE,              MVT::i32, Custom);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::MUL);
 | |
| 
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | |
| 
 | |
|   if (NoDPLoadStore) {
 | |
|     setOperationAction(ISD::LOAD, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::STORE, MVT::f64, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasMips32r6()) {
 | |
|     // MIPS32r6 replaces the accumulator-based multiplies with a three register
 | |
|     // instruction
 | |
|     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::MUL, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::MULHS, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::MULHU, MVT::i32, Legal);
 | |
| 
 | |
|     // MIPS32r6 replaces the accumulator-based division/remainder with separate
 | |
|     // three register division and remainder instructions.
 | |
|     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SDIV, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::UDIV, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::SREM, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::UREM, MVT::i32, Legal);
 | |
| 
 | |
|     // MIPS32r6 replaces conditional moves with an equivalent that removes the
 | |
|     // need for three GPR read ports.
 | |
|     setOperationAction(ISD::SETCC, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::SETCC, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
 | |
| 
 | |
|     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
 | |
|     setOperationAction(ISD::SETCC, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
 | |
| 
 | |
|     // Floating point > and >= are supported via < and <=
 | |
|     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | |
|     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | |
| 
 | |
|     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | |
|     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
 | |
|     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
 | |
|     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasMips64r6()) {
 | |
|     // MIPS64r6 replaces the accumulator-based multiplies with a three register
 | |
|     // instruction
 | |
|     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::MUL, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::MULHS, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::MULHU, MVT::i64, Legal);
 | |
| 
 | |
|     // MIPS32r6 replaces the accumulator-based division/remainder with separate
 | |
|     // three register division and remainder instructions.
 | |
|     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::SDIV, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::UDIV, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::SREM, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::UREM, MVT::i64, Legal);
 | |
| 
 | |
|     // MIPS64r6 replaces conditional moves with an equivalent that removes the
 | |
|     // need for three GPR read ports.
 | |
|     setOperationAction(ISD::SETCC, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | |
|   }
 | |
| 
 | |
|   computeRegisterProperties(Subtarget.getRegisterInfo());
 | |
| }
 | |
| 
 | |
| const MipsTargetLowering *
 | |
| llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
 | |
|                                  const MipsSubtarget &STI) {
 | |
|   return new MipsSETargetLowering(TM, STI);
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *
 | |
| MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
 | |
|   if (VT == MVT::Untyped)
 | |
|     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
 | |
| 
 | |
|   return TargetLowering::getRepRegClassFor(VT);
 | |
| }
 | |
| 
 | |
| // Enable MSA support for the given integer type and Register class.
 | |
| void MipsSETargetLowering::
 | |
| addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
 | |
|   addRegisterClass(Ty, RC);
 | |
| 
 | |
|   // Expand all builtin opcodes.
 | |
|   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
 | |
|     setOperationAction(Opc, Ty, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BITCAST, Ty, Legal);
 | |
|   setOperationAction(ISD::LOAD, Ty, Legal);
 | |
|   setOperationAction(ISD::STORE, Ty, Legal);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
 | |
|   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::ADD, Ty, Legal);
 | |
|   setOperationAction(ISD::AND, Ty, Legal);
 | |
|   setOperationAction(ISD::CTLZ, Ty, Legal);
 | |
|   setOperationAction(ISD::CTPOP, Ty, Legal);
 | |
|   setOperationAction(ISD::MUL, Ty, Legal);
 | |
|   setOperationAction(ISD::OR, Ty, Legal);
 | |
|   setOperationAction(ISD::SDIV, Ty, Legal);
 | |
|   setOperationAction(ISD::SREM, Ty, Legal);
 | |
|   setOperationAction(ISD::SHL, Ty, Legal);
 | |
|   setOperationAction(ISD::SRA, Ty, Legal);
 | |
|   setOperationAction(ISD::SRL, Ty, Legal);
 | |
|   setOperationAction(ISD::SUB, Ty, Legal);
 | |
|   setOperationAction(ISD::SMAX, Ty, Legal);
 | |
|   setOperationAction(ISD::SMIN, Ty, Legal);
 | |
|   setOperationAction(ISD::UDIV, Ty, Legal);
 | |
|   setOperationAction(ISD::UREM, Ty, Legal);
 | |
|   setOperationAction(ISD::UMAX, Ty, Legal);
 | |
|   setOperationAction(ISD::UMIN, Ty, Legal);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
 | |
|   setOperationAction(ISD::VSELECT, Ty, Legal);
 | |
|   setOperationAction(ISD::XOR, Ty, Legal);
 | |
| 
 | |
|   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
 | |
|     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
 | |
|     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SETCC, Ty, Legal);
 | |
|   setCondCodeAction(ISD::SETNE, Ty, Expand);
 | |
|   setCondCodeAction(ISD::SETGE, Ty, Expand);
 | |
|   setCondCodeAction(ISD::SETGT, Ty, Expand);
 | |
|   setCondCodeAction(ISD::SETUGE, Ty, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, Ty, Expand);
 | |
| }
 | |
| 
 | |
| // Enable MSA support for the given floating-point type and Register class.
 | |
| void MipsSETargetLowering::
 | |
| addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
 | |
|   addRegisterClass(Ty, RC);
 | |
| 
 | |
|   // Expand all builtin opcodes.
 | |
|   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
 | |
|     setOperationAction(Opc, Ty, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::LOAD, Ty, Legal);
 | |
|   setOperationAction(ISD::STORE, Ty, Legal);
 | |
|   setOperationAction(ISD::BITCAST, Ty, Legal);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
 | |
|   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
 | |
| 
 | |
|   if (Ty != MVT::v8f16) {
 | |
|     setOperationAction(ISD::FABS,  Ty, Legal);
 | |
|     setOperationAction(ISD::FADD,  Ty, Legal);
 | |
|     setOperationAction(ISD::FDIV,  Ty, Legal);
 | |
|     setOperationAction(ISD::FEXP2, Ty, Legal);
 | |
|     setOperationAction(ISD::FLOG2, Ty, Legal);
 | |
|     setOperationAction(ISD::FMA,   Ty, Legal);
 | |
|     setOperationAction(ISD::FMUL,  Ty, Legal);
 | |
|     setOperationAction(ISD::FRINT, Ty, Legal);
 | |
|     setOperationAction(ISD::FSQRT, Ty, Legal);
 | |
|     setOperationAction(ISD::FSUB,  Ty, Legal);
 | |
|     setOperationAction(ISD::VSELECT, Ty, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::SETCC, Ty, Legal);
 | |
|     setCondCodeAction(ISD::SETOGE, Ty, Expand);
 | |
|     setCondCodeAction(ISD::SETOGT, Ty, Expand);
 | |
|     setCondCodeAction(ISD::SETUGE, Ty, Expand);
 | |
|     setCondCodeAction(ISD::SETUGT, Ty, Expand);
 | |
|     setCondCodeAction(ISD::SETGE,  Ty, Expand);
 | |
|     setCondCodeAction(ISD::SETGT,  Ty, Expand);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if(!Subtarget.hasMips32r6())
 | |
|     return MipsTargetLowering::LowerOperation(Op, DAG);
 | |
| 
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
 | |
|   // floating point register are undefined. Not really an issue as sel.d, which
 | |
|   // is produced from an FSELECT node, only looks at bit 0.
 | |
|   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
 | |
|   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
 | |
|                      Op->getOperand(2));
 | |
| }
 | |
| 
 | |
| bool
 | |
| MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | |
|                                                      unsigned,
 | |
|                                                      unsigned,
 | |
|                                                      bool *Fast) const {
 | |
|   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
 | |
| 
 | |
|   if (Subtarget.systemSupportsUnalignedAccess()) {
 | |
|     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
 | |
|     // implementation defined whether this is handled by hardware, software, or
 | |
|     // a hybrid of the two but it's expected that most implementations will
 | |
|     // handle the majority of cases in hardware.
 | |
|     if (Fast)
 | |
|       *Fast = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (SVT) {
 | |
|   case MVT::i64:
 | |
|   case MVT::i32:
 | |
|     if (Fast)
 | |
|       *Fast = true;
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   switch(Op.getOpcode()) {
 | |
|   case ISD::LOAD:  return lowerLOAD(Op, DAG);
 | |
|   case ISD::STORE: return lowerSTORE(Op, DAG);
 | |
|   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
 | |
|   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
 | |
|   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
 | |
|   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
 | |
|   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
 | |
|   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
 | |
|   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
 | |
|                                           DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
 | |
|   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::SELECT:             return lowerSELECT(Op, DAG);
 | |
|   }
 | |
| 
 | |
|   return MipsTargetLowering::LowerOperation(Op, DAG);
 | |
| }
 | |
| 
 | |
| // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
 | |
| //
 | |
| // Performs the following transformations:
 | |
| // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
 | |
| //   sign/zero-extension is completely overwritten by the new one performed by
 | |
| //   the ISD::AND.
 | |
| // - Removes redundant zero extensions performed by an ISD::AND.
 | |
| static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   if (!Subtarget.hasMSA())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   unsigned Op0Opcode = Op0->getOpcode();
 | |
| 
 | |
|   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
 | |
|   // where $d + 1 == 2^n and n == 32
 | |
|   // or    $d + 1 == 2^n and n <= 32 and ZExt
 | |
|   // -> (MipsVExtractZExt $a, $b, $c)
 | |
|   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
 | |
|       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
 | |
|     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
 | |
| 
 | |
|     if (!Mask)
 | |
|       return SDValue();
 | |
| 
 | |
|     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
 | |
| 
 | |
|     if (Log2IfPositive <= 0)
 | |
|       return SDValue(); // Mask+1 is not a power of 2
 | |
| 
 | |
|     SDValue Op0Op2 = Op0->getOperand(2);
 | |
|     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
 | |
|     unsigned ExtendTySize = ExtendTy.getSizeInBits();
 | |
|     unsigned Log2 = Log2IfPositive;
 | |
| 
 | |
|     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
 | |
|         Log2 == ExtendTySize) {
 | |
|       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
 | |
|       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
 | |
|                          Op0->getVTList(),
 | |
|                          makeArrayRef(Ops, Op0->getNumOperands()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Determine if the specified node is a constant vector splat.
 | |
| //
 | |
| // Returns true and sets Imm if:
 | |
| // * N is a ISD::BUILD_VECTOR representing a constant splat
 | |
| //
 | |
| // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
 | |
| // differences are that it assumes the MSA has already been checked and the
 | |
| // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
 | |
| // must not be in order for binsri.d to be selectable).
 | |
| static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
 | |
|   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
 | |
| 
 | |
|   if (!Node)
 | |
|     return false;
 | |
| 
 | |
|   APInt SplatValue, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
| 
 | |
|   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
 | |
|                              8, !IsLittleEndian))
 | |
|     return false;
 | |
| 
 | |
|   Imm = SplatValue;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Test whether the given node is an all-ones build_vector.
 | |
| static bool isVectorAllOnes(SDValue N) {
 | |
|   // Look through bitcasts. Endianness doesn't matter because we are looking
 | |
|   // for an all-ones value.
 | |
|   if (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0);
 | |
| 
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
 | |
| 
 | |
|   if (!BVN)
 | |
|     return false;
 | |
| 
 | |
|   APInt SplatValue, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
| 
 | |
|   // Endianness doesn't matter in this context because we are looking for
 | |
|   // an all-ones value.
 | |
|   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
 | |
|     return SplatValue.isAllOnesValue();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Test whether N is the bitwise inverse of OfNode.
 | |
| static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
 | |
|   if (N->getOpcode() != ISD::XOR)
 | |
|     return false;
 | |
| 
 | |
|   if (isVectorAllOnes(N->getOperand(0)))
 | |
|     return N->getOperand(1) == OfNode;
 | |
| 
 | |
|   if (isVectorAllOnes(N->getOperand(1)))
 | |
|     return N->getOperand(0) == OfNode;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Perform combines where ISD::OR is the root node.
 | |
| //
 | |
| // Performs the following transformations:
 | |
| // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
 | |
| //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
 | |
| //   vector type.
 | |
| static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                 const MipsSubtarget &Subtarget) {
 | |
|   if (!Subtarget.hasMSA())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if (!Ty.is128BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
| 
 | |
|   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
 | |
|     SDValue Op0Op0 = Op0->getOperand(0);
 | |
|     SDValue Op0Op1 = Op0->getOperand(1);
 | |
|     SDValue Op1Op0 = Op1->getOperand(0);
 | |
|     SDValue Op1Op1 = Op1->getOperand(1);
 | |
|     bool IsLittleEndian = !Subtarget.isLittle();
 | |
| 
 | |
|     SDValue IfSet, IfClr, Cond;
 | |
|     bool IsConstantMask = false;
 | |
|     APInt Mask, InvMask;
 | |
| 
 | |
|     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
 | |
|     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
 | |
|     // looking.
 | |
|     // IfClr will be set if we find a valid match.
 | |
|     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
 | |
|       Cond = Op0Op0;
 | |
|       IfSet = Op0Op1;
 | |
| 
 | |
|       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
 | |
|           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
 | |
|         IfClr = Op1Op1;
 | |
|       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
 | |
|                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
 | |
|         IfClr = Op1Op0;
 | |
| 
 | |
|       IsConstantMask = true;
 | |
|     }
 | |
| 
 | |
|     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
 | |
|     // thing again using this mask.
 | |
|     // IfClr will be set if we find a valid match.
 | |
|     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
 | |
|       Cond = Op0Op1;
 | |
|       IfSet = Op0Op0;
 | |
| 
 | |
|       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
 | |
|           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
 | |
|         IfClr = Op1Op1;
 | |
|       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
 | |
|                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
 | |
|         IfClr = Op1Op0;
 | |
| 
 | |
|       IsConstantMask = true;
 | |
|     }
 | |
| 
 | |
|     // If IfClr is not yet set, try looking for a non-constant match.
 | |
|     // IfClr will be set if we find a valid match amongst the eight
 | |
|     // possibilities.
 | |
|     if (!IfClr.getNode()) {
 | |
|       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
 | |
|         Cond = Op1Op0;
 | |
|         IfSet = Op1Op1;
 | |
|         IfClr = Op0Op1;
 | |
|       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
 | |
|         Cond = Op1Op0;
 | |
|         IfSet = Op1Op1;
 | |
|         IfClr = Op0Op0;
 | |
|       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
 | |
|         Cond = Op1Op1;
 | |
|         IfSet = Op1Op0;
 | |
|         IfClr = Op0Op1;
 | |
|       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
 | |
|         Cond = Op1Op1;
 | |
|         IfSet = Op1Op0;
 | |
|         IfClr = Op0Op0;
 | |
|       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
 | |
|         Cond = Op0Op0;
 | |
|         IfSet = Op0Op1;
 | |
|         IfClr = Op1Op1;
 | |
|       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
 | |
|         Cond = Op0Op0;
 | |
|         IfSet = Op0Op1;
 | |
|         IfClr = Op1Op0;
 | |
|       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
 | |
|         Cond = Op0Op1;
 | |
|         IfSet = Op0Op0;
 | |
|         IfClr = Op1Op1;
 | |
|       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
 | |
|         Cond = Op0Op1;
 | |
|         IfSet = Op0Op0;
 | |
|         IfClr = Op1Op0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // At this point, IfClr will be set if we have a valid match.
 | |
|     if (!IfClr.getNode())
 | |
|       return SDValue();
 | |
| 
 | |
|     assert(Cond.getNode() && IfSet.getNode());
 | |
| 
 | |
|     // Fold degenerate cases.
 | |
|     if (IsConstantMask) {
 | |
|       if (Mask.isAllOnesValue())
 | |
|         return IfSet;
 | |
|       else if (Mask == 0)
 | |
|         return IfClr;
 | |
|     }
 | |
| 
 | |
|     // Transform the DAG into an equivalent VSELECT.
 | |
|     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
 | |
|                                                SelectionDAG &DAG,
 | |
|                                                const MipsSubtarget &Subtarget) {
 | |
|   // Estimate the number of operations the below transform will turn a
 | |
|   // constant multiply into. The number is approximately how many powers
 | |
|   // of two summed together that the constant can be broken down into.
 | |
| 
 | |
|   SmallVector<APInt, 16> WorkStack(1, C);
 | |
|   unsigned Steps = 0;
 | |
|   unsigned BitWidth = C.getBitWidth();
 | |
| 
 | |
|   while (!WorkStack.empty()) {
 | |
|     APInt Val = WorkStack.pop_back_val();
 | |
| 
 | |
|     if (Val == 0 || Val == 1)
 | |
|       continue;
 | |
| 
 | |
|     if (Val.isPowerOf2()) {
 | |
|       ++Steps;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
 | |
|     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
 | |
|                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
 | |
| 
 | |
|     if ((Val - Floor).ule(Ceil - Val)) {
 | |
|       WorkStack.push_back(Floor);
 | |
|       WorkStack.push_back(Val - Floor);
 | |
|       ++Steps;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     WorkStack.push_back(Ceil);
 | |
|     WorkStack.push_back(Ceil - Val);
 | |
|     ++Steps;
 | |
| 
 | |
|     // If we have taken more than 12[1] / 8[2] steps to attempt the
 | |
|     // optimization for a native sized value, it is more than likely that this
 | |
|     // optimization will make things worse.
 | |
|     //
 | |
|     // [1] MIPS64 requires 6 instructions at most to materialize any constant,
 | |
|     //     multiplication requires at least 4 cycles, but another cycle (or two)
 | |
|     //     to retrieve the result from the HI/LO registers.
 | |
|     //
 | |
|     // [2] For MIPS32, more than 8 steps is expensive as the constant could be
 | |
|     //     materialized in 2 instructions, multiplication requires at least 4
 | |
|     //     cycles, but another cycle (or two) to retrieve the result from the
 | |
|     //     HI/LO registers.
 | |
| 
 | |
|     if (Steps > 12 && (Subtarget.isABI_N32() || Subtarget.isABI_N64()))
 | |
|       return false;
 | |
| 
 | |
|     if (Steps > 8 && Subtarget.isABI_O32())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If the value being multiplied is not supported natively, we have to pay
 | |
|   // an additional legalization cost, conservatively assume an increase in the
 | |
|   // cost of 3 instructions per step. This values for this heuristic were
 | |
|   // determined experimentally.
 | |
|   unsigned RegisterSize = DAG.getTargetLoweringInfo()
 | |
|                               .getRegisterType(*DAG.getContext(), VT)
 | |
|                               .getSizeInBits();
 | |
|   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
 | |
|   if (Steps > 27)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
 | |
|                             EVT ShiftTy, SelectionDAG &DAG) {
 | |
|   // Return 0.
 | |
|   if (C == 0)
 | |
|     return DAG.getConstant(0, DL, VT);
 | |
| 
 | |
|   // Return x.
 | |
|   if (C == 1)
 | |
|     return X;
 | |
| 
 | |
|   // If c is power of 2, return (shl x, log2(c)).
 | |
|   if (C.isPowerOf2())
 | |
|     return DAG.getNode(ISD::SHL, DL, VT, X,
 | |
|                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
 | |
| 
 | |
|   unsigned BitWidth = C.getBitWidth();
 | |
|   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
 | |
|   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
 | |
|                                 APInt(BitWidth, 1) << C.ceilLogBase2();
 | |
| 
 | |
|   // If |c - floor_c| <= |c - ceil_c|,
 | |
|   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
 | |
|   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
 | |
|   if ((C - Floor).ule(Ceil - C)) {
 | |
|     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
 | |
|     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
 | |
|     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // If |c - floor_c| > |c - ceil_c|,
 | |
|   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
 | |
|   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
 | |
|   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
 | |
|   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
 | |
| }
 | |
| 
 | |
| static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  const TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const MipsSETargetLowering *TL,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | |
|     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
 | |
|                               C->getAPIntValue(), VT, DAG, Subtarget))
 | |
|       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
 | |
|                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
 | |
|                           DAG);
 | |
| 
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
 | |
|                                       SelectionDAG &DAG,
 | |
|                                       const MipsSubtarget &Subtarget) {
 | |
|   // See if this is a vector splat immediate node.
 | |
|   APInt SplatValue, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   unsigned EltSize = Ty.getScalarSizeInBits();
 | |
|   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | |
| 
 | |
|   if (!Subtarget.hasDSP())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (!BV ||
 | |
|       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
 | |
|                            EltSize, !Subtarget.isLittle()) ||
 | |
|       (SplatBitSize != EltSize) ||
 | |
|       (SplatValue.getZExtValue() >= EltSize))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(N);
 | |
|   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
 | |
|                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
 | |
| }
 | |
| 
 | |
| static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
 | |
|     return SDValue();
 | |
| 
 | |
|   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
 | |
| }
 | |
| 
 | |
| // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
 | |
| // constant splats into MipsISD::SHRA_DSP for DSPr2.
 | |
| //
 | |
| // Performs the following transformations:
 | |
| // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
 | |
| //   sign/zero-extension is completely overwritten by the new one performed by
 | |
| //   the ISD::SRA and ISD::SHL nodes.
 | |
| // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
 | |
| //   sequence.
 | |
| //
 | |
| // See performDSPShiftCombine for more information about the transformation
 | |
| // used for DSPr2.
 | |
| static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if (Subtarget.hasMSA()) {
 | |
|     SDValue Op0 = N->getOperand(0);
 | |
|     SDValue Op1 = N->getOperand(1);
 | |
| 
 | |
|     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
 | |
|     // where $d + sizeof($c) == 32
 | |
|     // or    $d + sizeof($c) <= 32 and SExt
 | |
|     // -> (MipsVExtractSExt $a, $b, $c)
 | |
|     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
 | |
|       SDValue Op0Op0 = Op0->getOperand(0);
 | |
|       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
 | |
| 
 | |
|       if (!ShAmount)
 | |
|         return SDValue();
 | |
| 
 | |
|       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
 | |
|           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
 | |
|         return SDValue();
 | |
| 
 | |
|       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
 | |
|       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
 | |
| 
 | |
|       if (TotalBits == 32 ||
 | |
|           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
 | |
|            TotalBits <= 32)) {
 | |
|         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
 | |
|                           Op0Op0->getOperand(2) };
 | |
|         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
 | |
|                            Op0Op0->getVTList(),
 | |
|                            makeArrayRef(Ops, Op0Op0->getNumOperands()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
 | |
|     return SDValue();
 | |
| 
 | |
|   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
 | |
| }
 | |
| 
 | |
| 
 | |
| static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
 | |
|     return SDValue();
 | |
| 
 | |
|   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
 | |
| }
 | |
| 
 | |
| static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
 | |
|   bool IsV216 = (Ty == MVT::v2i16);
 | |
| 
 | |
|   switch (CC) {
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETNE:  return true;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE:  return IsV216;
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE: return !IsV216;
 | |
|   default:          return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
 | |
|                      N->getOperand(1), N->getOperand(2));
 | |
| }
 | |
| 
 | |
| static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
 | |
|     SDValue SetCC = N->getOperand(0);
 | |
| 
 | |
|     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
 | |
|       return SDValue();
 | |
| 
 | |
|     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
 | |
|                        SetCC.getOperand(0), SetCC.getOperand(1),
 | |
|                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   EVT Ty = N->getValueType(0);
 | |
| 
 | |
|   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
 | |
|     // Try the following combines:
 | |
|     //   (xor (or $a, $b), (build_vector allones))
 | |
|     //   (xor (or $a, $b), (bitcast (build_vector allones)))
 | |
|     SDValue Op0 = N->getOperand(0);
 | |
|     SDValue Op1 = N->getOperand(1);
 | |
|     SDValue NotOp;
 | |
| 
 | |
|     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
 | |
|       NotOp = Op1;
 | |
|     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
 | |
|       NotOp = Op0;
 | |
|     else
 | |
|       return SDValue();
 | |
| 
 | |
|     if (NotOp->getOpcode() == ISD::OR)
 | |
|       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
 | |
|                          NotOp->getOperand(1));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Val;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::AND:
 | |
|     Val = performANDCombine(N, DAG, DCI, Subtarget);
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     Val = performORCombine(N, DAG, DCI, Subtarget);
 | |
|     break;
 | |
|   case ISD::MUL:
 | |
|     return performMULCombine(N, DAG, DCI, this, Subtarget);
 | |
|   case ISD::SHL:
 | |
|     Val = performSHLCombine(N, DAG, DCI, Subtarget);
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     return performSRACombine(N, DAG, DCI, Subtarget);
 | |
|   case ISD::SRL:
 | |
|     return performSRLCombine(N, DAG, DCI, Subtarget);
 | |
|   case ISD::VSELECT:
 | |
|     return performVSELECTCombine(N, DAG);
 | |
|   case ISD::XOR:
 | |
|     Val = performXORCombine(N, DAG, Subtarget);
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     Val = performSETCCCombine(N, DAG);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Val.getNode()) {
 | |
|     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
 | |
|                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
 | |
|                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   return MipsTargetLowering::PerformDAGCombine(N, DCI);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                                   MachineBasicBlock *BB) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
 | |
|   case Mips::BPOSGE32_PSEUDO:
 | |
|     return emitBPOSGE32(MI, BB);
 | |
|   case Mips::SNZ_B_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
 | |
|   case Mips::SNZ_H_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
 | |
|   case Mips::SNZ_W_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
 | |
|   case Mips::SNZ_D_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
 | |
|   case Mips::SNZ_V_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
 | |
|   case Mips::SZ_B_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
 | |
|   case Mips::SZ_H_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
 | |
|   case Mips::SZ_W_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
 | |
|   case Mips::SZ_D_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
 | |
|   case Mips::SZ_V_PSEUDO:
 | |
|     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
 | |
|   case Mips::COPY_FW_PSEUDO:
 | |
|     return emitCOPY_FW(MI, BB);
 | |
|   case Mips::COPY_FD_PSEUDO:
 | |
|     return emitCOPY_FD(MI, BB);
 | |
|   case Mips::INSERT_FW_PSEUDO:
 | |
|     return emitINSERT_FW(MI, BB);
 | |
|   case Mips::INSERT_FD_PSEUDO:
 | |
|     return emitINSERT_FD(MI, BB);
 | |
|   case Mips::INSERT_B_VIDX_PSEUDO:
 | |
|   case Mips::INSERT_B_VIDX64_PSEUDO:
 | |
|     return emitINSERT_DF_VIDX(MI, BB, 1, false);
 | |
|   case Mips::INSERT_H_VIDX_PSEUDO:
 | |
|   case Mips::INSERT_H_VIDX64_PSEUDO:
 | |
|     return emitINSERT_DF_VIDX(MI, BB, 2, false);
 | |
|   case Mips::INSERT_W_VIDX_PSEUDO:
 | |
|   case Mips::INSERT_W_VIDX64_PSEUDO:
 | |
|     return emitINSERT_DF_VIDX(MI, BB, 4, false);
 | |
|   case Mips::INSERT_D_VIDX_PSEUDO:
 | |
|   case Mips::INSERT_D_VIDX64_PSEUDO:
 | |
|     return emitINSERT_DF_VIDX(MI, BB, 8, false);
 | |
|   case Mips::INSERT_FW_VIDX_PSEUDO:
 | |
|   case Mips::INSERT_FW_VIDX64_PSEUDO:
 | |
|     return emitINSERT_DF_VIDX(MI, BB, 4, true);
 | |
|   case Mips::INSERT_FD_VIDX_PSEUDO:
 | |
|   case Mips::INSERT_FD_VIDX64_PSEUDO:
 | |
|     return emitINSERT_DF_VIDX(MI, BB, 8, true);
 | |
|   case Mips::FILL_FW_PSEUDO:
 | |
|     return emitFILL_FW(MI, BB);
 | |
|   case Mips::FILL_FD_PSEUDO:
 | |
|     return emitFILL_FD(MI, BB);
 | |
|   case Mips::FEXP2_W_1_PSEUDO:
 | |
|     return emitFEXP2_W_1(MI, BB);
 | |
|   case Mips::FEXP2_D_1_PSEUDO:
 | |
|     return emitFEXP2_D_1(MI, BB);
 | |
|   case Mips::ST_F16:
 | |
|     return emitST_F16_PSEUDO(MI, BB);
 | |
|   case Mips::LD_F16:
 | |
|     return emitLD_F16_PSEUDO(MI, BB);
 | |
|   case Mips::MSA_FP_EXTEND_W_PSEUDO:
 | |
|     return emitFPEXTEND_PSEUDO(MI, BB, false);
 | |
|   case Mips::MSA_FP_ROUND_W_PSEUDO:
 | |
|     return emitFPROUND_PSEUDO(MI, BB, false);
 | |
|   case Mips::MSA_FP_EXTEND_D_PSEUDO:
 | |
|     return emitFPEXTEND_PSEUDO(MI, BB, true);
 | |
|   case Mips::MSA_FP_ROUND_D_PSEUDO:
 | |
|     return emitFPROUND_PSEUDO(MI, BB, true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MipsSETargetLowering::isEligibleForTailCallOptimization(
 | |
|     const CCState &CCInfo, unsigned NextStackOffset,
 | |
|     const MipsFunctionInfo &FI) const {
 | |
|   if (!UseMipsTailCalls)
 | |
|     return false;
 | |
| 
 | |
|   // Exception has to be cleared with eret.
 | |
|   if (FI.isISR())
 | |
|     return false;
 | |
| 
 | |
|   // Return false if either the callee or caller has a byval argument.
 | |
|   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
 | |
|     return false;
 | |
| 
 | |
|   // Return true if the callee's argument area is no larger than the
 | |
|   // caller's.
 | |
|   return NextStackOffset <= FI.getIncomingArgSize();
 | |
| }
 | |
| 
 | |
| void MipsSETargetLowering::
 | |
| getOpndList(SmallVectorImpl<SDValue> &Ops,
 | |
|             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
 | |
|             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
 | |
|             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
 | |
|             SDValue Chain) const {
 | |
|   Ops.push_back(Callee);
 | |
|   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
 | |
|                                   InternalLinkage, IsCallReloc, CLI, Callee,
 | |
|                                   Chain);
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | |
|   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
 | |
| 
 | |
|   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
 | |
|     return MipsTargetLowering::lowerLOAD(Op, DAG);
 | |
| 
 | |
|   // Replace a double precision load with two i32 loads and a buildpair64.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
| 
 | |
|   // i32 load from lower address.
 | |
|   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
 | |
|                            Nd.getAlignment(), Nd.getMemOperand()->getFlags());
 | |
| 
 | |
|   // i32 load from higher address.
 | |
|   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
 | |
|   SDValue Hi = DAG.getLoad(
 | |
|       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
 | |
|       std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags());
 | |
| 
 | |
|   if (!Subtarget.isLittle())
 | |
|     std::swap(Lo, Hi);
 | |
| 
 | |
|   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
 | |
|   SDValue Ops[2] = {BP, Hi.getValue(1)};
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
 | |
| 
 | |
|   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
 | |
|     return MipsTargetLowering::lowerSTORE(Op, DAG);
 | |
| 
 | |
|   // Replace a double precision store with two extractelement64s and i32 stores.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
|   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
 | |
|                            Val, DAG.getConstant(0, DL, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
 | |
|                            Val, DAG.getConstant(1, DL, MVT::i32));
 | |
| 
 | |
|   if (!Subtarget.isLittle())
 | |
|     std::swap(Lo, Hi);
 | |
| 
 | |
|   // i32 store to lower address.
 | |
|   Chain =
 | |
|       DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(),
 | |
|                    Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
 | |
| 
 | |
|   // i32 store to higher address.
 | |
|   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
 | |
|   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
 | |
|                       std::min(Nd.getAlignment(), 4U),
 | |
|                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
 | |
|                                           bool HasLo, bool HasHi,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
 | |
|   assert(!Subtarget.hasMips32r6());
 | |
| 
 | |
|   EVT Ty = Op.getOperand(0).getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
 | |
|                              Op.getOperand(0), Op.getOperand(1));
 | |
|   SDValue Lo, Hi;
 | |
| 
 | |
|   if (HasLo)
 | |
|     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
 | |
|   if (HasHi)
 | |
|     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
 | |
| 
 | |
|   if (!HasLo || !HasHi)
 | |
|     return HasLo ? Lo : Hi;
 | |
| 
 | |
|   SDValue Vals[] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Vals, DL);
 | |
| }
 | |
| 
 | |
| static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
 | |
|   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
 | |
|                              DAG.getConstant(0, DL, MVT::i32));
 | |
|   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
 | |
|                              DAG.getConstant(1, DL, MVT::i32));
 | |
|   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
 | |
| }
 | |
| 
 | |
| static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
 | |
|   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
 | |
|   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
 | |
|   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| // This function expands mips intrinsic nodes which have 64-bit input operands
 | |
| // or output values.
 | |
| //
 | |
| // out64 = intrinsic-node in64
 | |
| // =>
 | |
| // lo = copy (extract-element (in64, 0))
 | |
| // hi = copy (extract-element (in64, 1))
 | |
| // mips-specific-node
 | |
| // v0 = copy lo
 | |
| // v1 = copy hi
 | |
| // out64 = merge-values (v0, v1)
 | |
| //
 | |
| static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
 | |
|   SDLoc DL(Op);
 | |
|   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
 | |
|   SmallVector<SDValue, 3> Ops;
 | |
|   unsigned OpNo = 0;
 | |
| 
 | |
|   // See if Op has a chain input.
 | |
|   if (HasChainIn)
 | |
|     Ops.push_back(Op->getOperand(OpNo++));
 | |
| 
 | |
|   // The next operand is the intrinsic opcode.
 | |
|   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
 | |
| 
 | |
|   // See if the next operand has type i64.
 | |
|   SDValue Opnd = Op->getOperand(++OpNo), In64;
 | |
| 
 | |
|   if (Opnd.getValueType() == MVT::i64)
 | |
|     In64 = initAccumulator(Opnd, DL, DAG);
 | |
|   else
 | |
|     Ops.push_back(Opnd);
 | |
| 
 | |
|   // Push the remaining operands.
 | |
|   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
 | |
|     Ops.push_back(Op->getOperand(OpNo));
 | |
| 
 | |
|   // Add In64 to the end of the list.
 | |
|   if (In64.getNode())
 | |
|     Ops.push_back(In64);
 | |
| 
 | |
|   // Scan output.
 | |
|   SmallVector<EVT, 2> ResTys;
 | |
| 
 | |
|   for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
 | |
|        I != E; ++I)
 | |
|     ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
 | |
| 
 | |
|   // Create node.
 | |
|   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
 | |
|   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
 | |
| 
 | |
|   if (!HasChainIn)
 | |
|     return Out;
 | |
| 
 | |
|   assert(Val->getValueType(1) == MVT::Other);
 | |
|   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
 | |
|   return DAG.getMergeValues(Vals, DL);
 | |
| }
 | |
| 
 | |
| // Lower an MSA copy intrinsic into the specified SelectionDAG node
 | |
| static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Vec = Op->getOperand(1);
 | |
|   SDValue Idx = Op->getOperand(2);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   EVT EltTy = Vec->getValueType(0).getVectorElementType();
 | |
| 
 | |
|   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
 | |
|                                DAG.getValueType(EltTy));
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
 | |
|   EVT ResVecTy = Op->getValueType(0);
 | |
|   EVT ViaVecTy = ResVecTy;
 | |
|   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
 | |
|   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
 | |
|   // lanes.
 | |
|   SDValue LaneA = Op->getOperand(OpNr);
 | |
|   SDValue LaneB;
 | |
| 
 | |
|   if (ResVecTy == MVT::v2i64) {
 | |
|     // In case of the index being passed as an immediate value, set the upper
 | |
|     // lane to 0 so that the splati.d instruction can be matched.
 | |
|     if (isa<ConstantSDNode>(LaneA))
 | |
|       LaneB = DAG.getConstant(0, DL, MVT::i32);
 | |
|     // Having the index passed in a register, set the upper lane to the same
 | |
|     // value as the lower - this results in the BUILD_VECTOR node not being
 | |
|     // expanded through stack. This way we are able to pattern match the set of
 | |
|     // nodes created here to splat.d.
 | |
|     else
 | |
|       LaneB = LaneA;
 | |
|     ViaVecTy = MVT::v4i32;
 | |
|     if(BigEndian)
 | |
|       std::swap(LaneA, LaneB);
 | |
|   } else
 | |
|     LaneB = LaneA;
 | |
| 
 | |
|   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
 | |
|                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
 | |
| 
 | |
|   SDValue Result = DAG.getBuildVector(
 | |
|       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
 | |
| 
 | |
|   if (ViaVecTy != ResVecTy) {
 | |
|     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
 | |
|     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
 | |
|                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
 | |
|                                 bool IsSigned = false) {
 | |
|   return DAG.getConstant(
 | |
|       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
 | |
|             Op->getConstantOperandVal(ImmOp), IsSigned),
 | |
|       SDLoc(Op), Op->getValueType(0));
 | |
| }
 | |
| 
 | |
| static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
 | |
|                                    bool BigEndian, SelectionDAG &DAG) {
 | |
|   EVT ViaVecTy = VecTy;
 | |
|   SDValue SplatValueA = SplatValue;
 | |
|   SDValue SplatValueB = SplatValue;
 | |
|   SDLoc DL(SplatValue);
 | |
| 
 | |
|   if (VecTy == MVT::v2i64) {
 | |
|     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
 | |
|     ViaVecTy = MVT::v4i32;
 | |
| 
 | |
|     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
 | |
|     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
 | |
|                               DAG.getConstant(32, DL, MVT::i32));
 | |
|     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
 | |
|   }
 | |
| 
 | |
|   // We currently hold the parts in little endian order. Swap them if
 | |
|   // necessary.
 | |
|   if (BigEndian)
 | |
|     std::swap(SplatValueA, SplatValueB);
 | |
| 
 | |
|   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
 | |
|                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
 | |
|                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
 | |
|                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
 | |
| 
 | |
|   SDValue Result = DAG.getBuildVector(
 | |
|       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
 | |
| 
 | |
|   if (VecTy != ViaVecTy)
 | |
|     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
 | |
|                                         unsigned Opc, SDValue Imm,
 | |
|                                         bool BigEndian) {
 | |
|   EVT VecTy = Op->getValueType(0);
 | |
|   SDValue Exp2Imm;
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
 | |
|   // here for now.
 | |
|   if (VecTy == MVT::v2i64) {
 | |
|     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
 | |
|       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
 | |
| 
 | |
|       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
 | |
|                                            MVT::i32);
 | |
|       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
 | |
| 
 | |
|       if (BigEndian)
 | |
|         std::swap(BitImmLoOp, BitImmHiOp);
 | |
| 
 | |
|       Exp2Imm = DAG.getNode(
 | |
|           ISD::BITCAST, DL, MVT::v2i64,
 | |
|           DAG.getBuildVector(MVT::v4i32, DL,
 | |
|                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Exp2Imm.getNode()) {
 | |
|     // We couldnt constant fold, do a vector shift instead
 | |
| 
 | |
|     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
 | |
|     // only values 0-63 are valid.
 | |
|     if (VecTy == MVT::v2i64)
 | |
|       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
 | |
| 
 | |
|     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
 | |
| 
 | |
|     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
 | |
|                           Exp2Imm);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
 | |
| }
 | |
| 
 | |
| static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDLoc DL(Op);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   SDValue Vec = Op->getOperand(2);
 | |
|   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
 | |
|   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
 | |
|   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
 | |
|                                        DL, ResEltTy);
 | |
|   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
 | |
| 
 | |
|   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   SDLoc DL(Op);
 | |
|   SDValue One = DAG.getConstant(1, DL, ResTy);
 | |
|   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
 | |
| 
 | |
|   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
 | |
|                      DAG.getNOT(DL, Bit, ResTy));
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDLoc DL(Op);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
 | |
|                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
 | |
|   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
 | |
| 
 | |
|   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     return SDValue();
 | |
|   case Intrinsic::mips_shilo:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
 | |
|   case Intrinsic::mips_dpau_h_qbl:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
 | |
|   case Intrinsic::mips_dpau_h_qbr:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
 | |
|   case Intrinsic::mips_dpsu_h_qbl:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
 | |
|   case Intrinsic::mips_dpsu_h_qbr:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
 | |
|   case Intrinsic::mips_dpa_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
 | |
|   case Intrinsic::mips_dps_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
 | |
|   case Intrinsic::mips_dpax_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
 | |
|   case Intrinsic::mips_dpsx_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
 | |
|   case Intrinsic::mips_mulsa_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
 | |
|   case Intrinsic::mips_mult:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
 | |
|   case Intrinsic::mips_multu:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
 | |
|   case Intrinsic::mips_madd:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
 | |
|   case Intrinsic::mips_maddu:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
 | |
|   case Intrinsic::mips_msub:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
 | |
|   case Intrinsic::mips_msubu:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
 | |
|   case Intrinsic::mips_addv_b:
 | |
|   case Intrinsic::mips_addv_h:
 | |
|   case Intrinsic::mips_addv_w:
 | |
|   case Intrinsic::mips_addv_d:
 | |
|     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_addvi_b:
 | |
|   case Intrinsic::mips_addvi_h:
 | |
|   case Intrinsic::mips_addvi_w:
 | |
|   case Intrinsic::mips_addvi_d:
 | |
|     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_and_v:
 | |
|     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_andi_b:
 | |
|     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_bclr_b:
 | |
|   case Intrinsic::mips_bclr_h:
 | |
|   case Intrinsic::mips_bclr_w:
 | |
|   case Intrinsic::mips_bclr_d:
 | |
|     return lowerMSABitClear(Op, DAG);
 | |
|   case Intrinsic::mips_bclri_b:
 | |
|   case Intrinsic::mips_bclri_h:
 | |
|   case Intrinsic::mips_bclri_w:
 | |
|   case Intrinsic::mips_bclri_d:
 | |
|     return lowerMSABitClearImm(Op, DAG);
 | |
|   case Intrinsic::mips_binsli_b:
 | |
|   case Intrinsic::mips_binsli_h:
 | |
|   case Intrinsic::mips_binsli_w:
 | |
|   case Intrinsic::mips_binsli_d: {
 | |
|     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
 | |
|     EVT VecTy = Op->getValueType(0);
 | |
|     EVT EltTy = VecTy.getVectorElementType();
 | |
|     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
 | |
|                                        Op->getConstantOperandVal(3) + 1);
 | |
|     return DAG.getNode(ISD::VSELECT, DL, VecTy,
 | |
|                        DAG.getConstant(Mask, DL, VecTy, true),
 | |
|                        Op->getOperand(2), Op->getOperand(1));
 | |
|   }
 | |
|   case Intrinsic::mips_binsri_b:
 | |
|   case Intrinsic::mips_binsri_h:
 | |
|   case Intrinsic::mips_binsri_w:
 | |
|   case Intrinsic::mips_binsri_d: {
 | |
|     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
 | |
|     EVT VecTy = Op->getValueType(0);
 | |
|     EVT EltTy = VecTy.getVectorElementType();
 | |
|     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
 | |
|                                       Op->getConstantOperandVal(3) + 1);
 | |
|     return DAG.getNode(ISD::VSELECT, DL, VecTy,
 | |
|                        DAG.getConstant(Mask, DL, VecTy, true),
 | |
|                        Op->getOperand(2), Op->getOperand(1));
 | |
|   }
 | |
|   case Intrinsic::mips_bmnz_v:
 | |
|     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
 | |
|                        Op->getOperand(2), Op->getOperand(1));
 | |
|   case Intrinsic::mips_bmnzi_b:
 | |
|     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
 | |
|                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_bmz_v:
 | |
|     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_bmzi_b:
 | |
|     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
 | |
|                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_bneg_b:
 | |
|   case Intrinsic::mips_bneg_h:
 | |
|   case Intrinsic::mips_bneg_w:
 | |
|   case Intrinsic::mips_bneg_d: {
 | |
|     EVT VecTy = Op->getValueType(0);
 | |
|     SDValue One = DAG.getConstant(1, DL, VecTy);
 | |
| 
 | |
|     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
 | |
|                        DAG.getNode(ISD::SHL, DL, VecTy, One,
 | |
|                                    truncateVecElts(Op, DAG)));
 | |
|   }
 | |
|   case Intrinsic::mips_bnegi_b:
 | |
|   case Intrinsic::mips_bnegi_h:
 | |
|   case Intrinsic::mips_bnegi_w:
 | |
|   case Intrinsic::mips_bnegi_d:
 | |
|     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
 | |
|                                     !Subtarget.isLittle());
 | |
|   case Intrinsic::mips_bnz_b:
 | |
|   case Intrinsic::mips_bnz_h:
 | |
|   case Intrinsic::mips_bnz_w:
 | |
|   case Intrinsic::mips_bnz_d:
 | |
|     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_bnz_v:
 | |
|     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_bsel_v:
 | |
|     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
 | |
|     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(3),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_bseli_b:
 | |
|     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
 | |
|     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_bset_b:
 | |
|   case Intrinsic::mips_bset_h:
 | |
|   case Intrinsic::mips_bset_w:
 | |
|   case Intrinsic::mips_bset_d: {
 | |
|     EVT VecTy = Op->getValueType(0);
 | |
|     SDValue One = DAG.getConstant(1, DL, VecTy);
 | |
| 
 | |
|     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
 | |
|                        DAG.getNode(ISD::SHL, DL, VecTy, One,
 | |
|                                    truncateVecElts(Op, DAG)));
 | |
|   }
 | |
|   case Intrinsic::mips_bseti_b:
 | |
|   case Intrinsic::mips_bseti_h:
 | |
|   case Intrinsic::mips_bseti_w:
 | |
|   case Intrinsic::mips_bseti_d:
 | |
|     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
 | |
|                                     !Subtarget.isLittle());
 | |
|   case Intrinsic::mips_bz_b:
 | |
|   case Intrinsic::mips_bz_h:
 | |
|   case Intrinsic::mips_bz_w:
 | |
|   case Intrinsic::mips_bz_d:
 | |
|     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_bz_v:
 | |
|     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_ceq_b:
 | |
|   case Intrinsic::mips_ceq_h:
 | |
|   case Intrinsic::mips_ceq_w:
 | |
|   case Intrinsic::mips_ceq_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETEQ);
 | |
|   case Intrinsic::mips_ceqi_b:
 | |
|   case Intrinsic::mips_ceqi_h:
 | |
|   case Intrinsic::mips_ceqi_w:
 | |
|   case Intrinsic::mips_ceqi_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
 | |
|   case Intrinsic::mips_cle_s_b:
 | |
|   case Intrinsic::mips_cle_s_h:
 | |
|   case Intrinsic::mips_cle_s_w:
 | |
|   case Intrinsic::mips_cle_s_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETLE);
 | |
|   case Intrinsic::mips_clei_s_b:
 | |
|   case Intrinsic::mips_clei_s_h:
 | |
|   case Intrinsic::mips_clei_s_w:
 | |
|   case Intrinsic::mips_clei_s_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
 | |
|   case Intrinsic::mips_cle_u_b:
 | |
|   case Intrinsic::mips_cle_u_h:
 | |
|   case Intrinsic::mips_cle_u_w:
 | |
|   case Intrinsic::mips_cle_u_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETULE);
 | |
|   case Intrinsic::mips_clei_u_b:
 | |
|   case Intrinsic::mips_clei_u_h:
 | |
|   case Intrinsic::mips_clei_u_w:
 | |
|   case Intrinsic::mips_clei_u_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
 | |
|   case Intrinsic::mips_clt_s_b:
 | |
|   case Intrinsic::mips_clt_s_h:
 | |
|   case Intrinsic::mips_clt_s_w:
 | |
|   case Intrinsic::mips_clt_s_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETLT);
 | |
|   case Intrinsic::mips_clti_s_b:
 | |
|   case Intrinsic::mips_clti_s_h:
 | |
|   case Intrinsic::mips_clti_s_w:
 | |
|   case Intrinsic::mips_clti_s_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
 | |
|   case Intrinsic::mips_clt_u_b:
 | |
|   case Intrinsic::mips_clt_u_h:
 | |
|   case Intrinsic::mips_clt_u_w:
 | |
|   case Intrinsic::mips_clt_u_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETULT);
 | |
|   case Intrinsic::mips_clti_u_b:
 | |
|   case Intrinsic::mips_clti_u_h:
 | |
|   case Intrinsic::mips_clti_u_w:
 | |
|   case Intrinsic::mips_clti_u_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
 | |
|   case Intrinsic::mips_copy_s_b:
 | |
|   case Intrinsic::mips_copy_s_h:
 | |
|   case Intrinsic::mips_copy_s_w:
 | |
|     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
 | |
|   case Intrinsic::mips_copy_s_d:
 | |
|     if (Subtarget.hasMips64())
 | |
|       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
 | |
|       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
 | |
|     else {
 | |
|       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
 | |
|       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
 | |
|       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
 | |
|                          Op->getValueType(0), Op->getOperand(1),
 | |
|                          Op->getOperand(2));
 | |
|     }
 | |
|   case Intrinsic::mips_copy_u_b:
 | |
|   case Intrinsic::mips_copy_u_h:
 | |
|   case Intrinsic::mips_copy_u_w:
 | |
|     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
 | |
|   case Intrinsic::mips_copy_u_d:
 | |
|     if (Subtarget.hasMips64())
 | |
|       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
 | |
|       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
 | |
|     else {
 | |
|       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
 | |
|       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
 | |
|       // Note: When i64 is illegal, this results in copy_s.w instructions
 | |
|       // instead of copy_u.w instructions. This makes no difference to the
 | |
|       // behaviour since i64 is only illegal when the register file is 32-bit.
 | |
|       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
 | |
|                          Op->getValueType(0), Op->getOperand(1),
 | |
|                          Op->getOperand(2));
 | |
|     }
 | |
|   case Intrinsic::mips_div_s_b:
 | |
|   case Intrinsic::mips_div_s_h:
 | |
|   case Intrinsic::mips_div_s_w:
 | |
|   case Intrinsic::mips_div_s_d:
 | |
|     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_div_u_b:
 | |
|   case Intrinsic::mips_div_u_h:
 | |
|   case Intrinsic::mips_div_u_w:
 | |
|   case Intrinsic::mips_div_u_d:
 | |
|     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_fadd_w:
 | |
|   case Intrinsic::mips_fadd_d:
 | |
|     // TODO: If intrinsics have fast-math-flags, propagate them.
 | |
|     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
 | |
|   case Intrinsic::mips_fceq_w:
 | |
|   case Intrinsic::mips_fceq_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETOEQ);
 | |
|   case Intrinsic::mips_fcle_w:
 | |
|   case Intrinsic::mips_fcle_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETOLE);
 | |
|   case Intrinsic::mips_fclt_w:
 | |
|   case Intrinsic::mips_fclt_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETOLT);
 | |
|   case Intrinsic::mips_fcne_w:
 | |
|   case Intrinsic::mips_fcne_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETONE);
 | |
|   case Intrinsic::mips_fcor_w:
 | |
|   case Intrinsic::mips_fcor_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETO);
 | |
|   case Intrinsic::mips_fcueq_w:
 | |
|   case Intrinsic::mips_fcueq_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETUEQ);
 | |
|   case Intrinsic::mips_fcule_w:
 | |
|   case Intrinsic::mips_fcule_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETULE);
 | |
|   case Intrinsic::mips_fcult_w:
 | |
|   case Intrinsic::mips_fcult_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETULT);
 | |
|   case Intrinsic::mips_fcun_w:
 | |
|   case Intrinsic::mips_fcun_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETUO);
 | |
|   case Intrinsic::mips_fcune_w:
 | |
|   case Intrinsic::mips_fcune_d:
 | |
|     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                         Op->getOperand(2), ISD::SETUNE);
 | |
|   case Intrinsic::mips_fdiv_w:
 | |
|   case Intrinsic::mips_fdiv_d:
 | |
|     // TODO: If intrinsics have fast-math-flags, propagate them.
 | |
|     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_ffint_u_w:
 | |
|   case Intrinsic::mips_ffint_u_d:
 | |
|     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_ffint_s_w:
 | |
|   case Intrinsic::mips_ffint_s_d:
 | |
|     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_fill_b:
 | |
|   case Intrinsic::mips_fill_h:
 | |
|   case Intrinsic::mips_fill_w:
 | |
|   case Intrinsic::mips_fill_d: {
 | |
|     EVT ResTy = Op->getValueType(0);
 | |
|     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
 | |
|                                  Op->getOperand(1));
 | |
| 
 | |
|     // If ResTy is v2i64 then the type legalizer will break this node down into
 | |
|     // an equivalent v4i32.
 | |
|     return DAG.getBuildVector(ResTy, DL, Ops);
 | |
|   }
 | |
|   case Intrinsic::mips_fexp2_w:
 | |
|   case Intrinsic::mips_fexp2_d: {
 | |
|     // TODO: If intrinsics have fast-math-flags, propagate them.
 | |
|     EVT ResTy = Op->getValueType(0);
 | |
|     return DAG.getNode(
 | |
|         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
 | |
|         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
 | |
|   }
 | |
|   case Intrinsic::mips_flog2_w:
 | |
|   case Intrinsic::mips_flog2_d:
 | |
|     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
 | |
|   case Intrinsic::mips_fmadd_w:
 | |
|   case Intrinsic::mips_fmadd_d:
 | |
|     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
 | |
|   case Intrinsic::mips_fmul_w:
 | |
|   case Intrinsic::mips_fmul_d:
 | |
|     // TODO: If intrinsics have fast-math-flags, propagate them.
 | |
|     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_fmsub_w:
 | |
|   case Intrinsic::mips_fmsub_d: {
 | |
|     // TODO: If intrinsics have fast-math-flags, propagate them.
 | |
|     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
 | |
|   }
 | |
|   case Intrinsic::mips_frint_w:
 | |
|   case Intrinsic::mips_frint_d:
 | |
|     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
 | |
|   case Intrinsic::mips_fsqrt_w:
 | |
|   case Intrinsic::mips_fsqrt_d:
 | |
|     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
 | |
|   case Intrinsic::mips_fsub_w:
 | |
|   case Intrinsic::mips_fsub_d:
 | |
|     // TODO: If intrinsics have fast-math-flags, propagate them.
 | |
|     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_ftrunc_u_w:
 | |
|   case Intrinsic::mips_ftrunc_u_d:
 | |
|     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_ftrunc_s_w:
 | |
|   case Intrinsic::mips_ftrunc_s_d:
 | |
|     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_ilvev_b:
 | |
|   case Intrinsic::mips_ilvev_h:
 | |
|   case Intrinsic::mips_ilvev_w:
 | |
|   case Intrinsic::mips_ilvev_d:
 | |
|     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_ilvl_b:
 | |
|   case Intrinsic::mips_ilvl_h:
 | |
|   case Intrinsic::mips_ilvl_w:
 | |
|   case Intrinsic::mips_ilvl_d:
 | |
|     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_ilvod_b:
 | |
|   case Intrinsic::mips_ilvod_h:
 | |
|   case Intrinsic::mips_ilvod_w:
 | |
|   case Intrinsic::mips_ilvod_d:
 | |
|     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_ilvr_b:
 | |
|   case Intrinsic::mips_ilvr_h:
 | |
|   case Intrinsic::mips_ilvr_w:
 | |
|   case Intrinsic::mips_ilvr_d:
 | |
|     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_insert_b:
 | |
|   case Intrinsic::mips_insert_h:
 | |
|   case Intrinsic::mips_insert_w:
 | |
|   case Intrinsic::mips_insert_d:
 | |
|     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
 | |
|   case Intrinsic::mips_insve_b:
 | |
|   case Intrinsic::mips_insve_h:
 | |
|   case Intrinsic::mips_insve_w:
 | |
|   case Intrinsic::mips_insve_d: {
 | |
|     // Report an error for out of range values.
 | |
|     int64_t Max;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::mips_insve_b: Max = 15; break;
 | |
|     case Intrinsic::mips_insve_h: Max = 7; break;
 | |
|     case Intrinsic::mips_insve_w: Max = 3; break;
 | |
|     case Intrinsic::mips_insve_d: Max = 1; break;
 | |
|     default: llvm_unreachable("Unmatched intrinsic");
 | |
|     }
 | |
|     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
 | |
|     if (Value < 0 || Value > Max)
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
 | |
|                        DAG.getConstant(0, DL, MVT::i32));
 | |
|     }
 | |
|   case Intrinsic::mips_ldi_b:
 | |
|   case Intrinsic::mips_ldi_h:
 | |
|   case Intrinsic::mips_ldi_w:
 | |
|   case Intrinsic::mips_ldi_d:
 | |
|     return lowerMSASplatImm(Op, 1, DAG, true);
 | |
|   case Intrinsic::mips_lsa:
 | |
|   case Intrinsic::mips_dlsa: {
 | |
|     EVT ResTy = Op->getValueType(0);
 | |
|     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
 | |
|                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
 | |
|                                    Op->getOperand(2), Op->getOperand(3)));
 | |
|   }
 | |
|   case Intrinsic::mips_maddv_b:
 | |
|   case Intrinsic::mips_maddv_h:
 | |
|   case Intrinsic::mips_maddv_w:
 | |
|   case Intrinsic::mips_maddv_d: {
 | |
|     EVT ResTy = Op->getValueType(0);
 | |
|     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
 | |
|                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
 | |
|                                    Op->getOperand(2), Op->getOperand(3)));
 | |
|   }
 | |
|   case Intrinsic::mips_max_s_b:
 | |
|   case Intrinsic::mips_max_s_h:
 | |
|   case Intrinsic::mips_max_s_w:
 | |
|   case Intrinsic::mips_max_s_d:
 | |
|     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_max_u_b:
 | |
|   case Intrinsic::mips_max_u_h:
 | |
|   case Intrinsic::mips_max_u_w:
 | |
|   case Intrinsic::mips_max_u_d:
 | |
|     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_maxi_s_b:
 | |
|   case Intrinsic::mips_maxi_s_h:
 | |
|   case Intrinsic::mips_maxi_s_w:
 | |
|   case Intrinsic::mips_maxi_s_d:
 | |
|     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
 | |
|   case Intrinsic::mips_maxi_u_b:
 | |
|   case Intrinsic::mips_maxi_u_h:
 | |
|   case Intrinsic::mips_maxi_u_w:
 | |
|   case Intrinsic::mips_maxi_u_d:
 | |
|     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_min_s_b:
 | |
|   case Intrinsic::mips_min_s_h:
 | |
|   case Intrinsic::mips_min_s_w:
 | |
|   case Intrinsic::mips_min_s_d:
 | |
|     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_min_u_b:
 | |
|   case Intrinsic::mips_min_u_h:
 | |
|   case Intrinsic::mips_min_u_w:
 | |
|   case Intrinsic::mips_min_u_d:
 | |
|     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_mini_s_b:
 | |
|   case Intrinsic::mips_mini_s_h:
 | |
|   case Intrinsic::mips_mini_s_w:
 | |
|   case Intrinsic::mips_mini_s_d:
 | |
|     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
 | |
|   case Intrinsic::mips_mini_u_b:
 | |
|   case Intrinsic::mips_mini_u_h:
 | |
|   case Intrinsic::mips_mini_u_w:
 | |
|   case Intrinsic::mips_mini_u_d:
 | |
|     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_mod_s_b:
 | |
|   case Intrinsic::mips_mod_s_h:
 | |
|   case Intrinsic::mips_mod_s_w:
 | |
|   case Intrinsic::mips_mod_s_d:
 | |
|     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_mod_u_b:
 | |
|   case Intrinsic::mips_mod_u_h:
 | |
|   case Intrinsic::mips_mod_u_w:
 | |
|   case Intrinsic::mips_mod_u_d:
 | |
|     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_mulv_b:
 | |
|   case Intrinsic::mips_mulv_h:
 | |
|   case Intrinsic::mips_mulv_w:
 | |
|   case Intrinsic::mips_mulv_d:
 | |
|     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_msubv_b:
 | |
|   case Intrinsic::mips_msubv_h:
 | |
|   case Intrinsic::mips_msubv_w:
 | |
|   case Intrinsic::mips_msubv_d: {
 | |
|     EVT ResTy = Op->getValueType(0);
 | |
|     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
 | |
|                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
 | |
|                                    Op->getOperand(2), Op->getOperand(3)));
 | |
|   }
 | |
|   case Intrinsic::mips_nlzc_b:
 | |
|   case Intrinsic::mips_nlzc_h:
 | |
|   case Intrinsic::mips_nlzc_w:
 | |
|   case Intrinsic::mips_nlzc_d:
 | |
|     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
 | |
|   case Intrinsic::mips_nor_v: {
 | |
|     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
 | |
|                               Op->getOperand(1), Op->getOperand(2));
 | |
|     return DAG.getNOT(DL, Res, Res->getValueType(0));
 | |
|   }
 | |
|   case Intrinsic::mips_nori_b: {
 | |
|     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
 | |
|                                Op->getOperand(1),
 | |
|                                lowerMSASplatImm(Op, 2, DAG));
 | |
|     return DAG.getNOT(DL, Res, Res->getValueType(0));
 | |
|   }
 | |
|   case Intrinsic::mips_or_v:
 | |
|     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_ori_b:
 | |
|     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_pckev_b:
 | |
|   case Intrinsic::mips_pckev_h:
 | |
|   case Intrinsic::mips_pckev_w:
 | |
|   case Intrinsic::mips_pckev_d:
 | |
|     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_pckod_b:
 | |
|   case Intrinsic::mips_pckod_h:
 | |
|   case Intrinsic::mips_pckod_w:
 | |
|   case Intrinsic::mips_pckod_d:
 | |
|     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2));
 | |
|   case Intrinsic::mips_pcnt_b:
 | |
|   case Intrinsic::mips_pcnt_h:
 | |
|   case Intrinsic::mips_pcnt_w:
 | |
|   case Intrinsic::mips_pcnt_d:
 | |
|     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
 | |
|   case Intrinsic::mips_sat_s_b:
 | |
|   case Intrinsic::mips_sat_s_h:
 | |
|   case Intrinsic::mips_sat_s_w:
 | |
|   case Intrinsic::mips_sat_s_d:
 | |
|   case Intrinsic::mips_sat_u_b:
 | |
|   case Intrinsic::mips_sat_u_h:
 | |
|   case Intrinsic::mips_sat_u_w:
 | |
|   case Intrinsic::mips_sat_u_d: {
 | |
|     // Report an error for out of range values.
 | |
|     int64_t Max;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::mips_sat_s_b:
 | |
|     case Intrinsic::mips_sat_u_b: Max = 7;  break;
 | |
|     case Intrinsic::mips_sat_s_h:
 | |
|     case Intrinsic::mips_sat_u_h: Max = 15; break;
 | |
|     case Intrinsic::mips_sat_s_w:
 | |
|     case Intrinsic::mips_sat_u_w: Max = 31; break;
 | |
|     case Intrinsic::mips_sat_s_d:
 | |
|     case Intrinsic::mips_sat_u_d: Max = 63; break;
 | |
|     default: llvm_unreachable("Unmatched intrinsic");
 | |
|     }
 | |
|     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
 | |
|     if (Value < 0 || Value > Max)
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     return SDValue();
 | |
|   }
 | |
|   case Intrinsic::mips_shf_b:
 | |
|   case Intrinsic::mips_shf_h:
 | |
|   case Intrinsic::mips_shf_w: {
 | |
|     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
 | |
|     if (Value < 0 || Value > 255)
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(2), Op->getOperand(1));
 | |
|   }
 | |
|   case Intrinsic::mips_sldi_b:
 | |
|   case Intrinsic::mips_sldi_h:
 | |
|   case Intrinsic::mips_sldi_w:
 | |
|   case Intrinsic::mips_sldi_d: {
 | |
|     // Report an error for out of range values.
 | |
|     int64_t Max;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::mips_sldi_b: Max = 15; break;
 | |
|     case Intrinsic::mips_sldi_h: Max = 7; break;
 | |
|     case Intrinsic::mips_sldi_w: Max = 3; break;
 | |
|     case Intrinsic::mips_sldi_d: Max = 1; break;
 | |
|     default: llvm_unreachable("Unmatched intrinsic");
 | |
|     }
 | |
|     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
 | |
|     if (Value < 0 || Value > Max)
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     return SDValue();
 | |
|   }
 | |
|   case Intrinsic::mips_sll_b:
 | |
|   case Intrinsic::mips_sll_h:
 | |
|   case Intrinsic::mips_sll_w:
 | |
|   case Intrinsic::mips_sll_d:
 | |
|     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        truncateVecElts(Op, DAG));
 | |
|   case Intrinsic::mips_slli_b:
 | |
|   case Intrinsic::mips_slli_h:
 | |
|   case Intrinsic::mips_slli_w:
 | |
|   case Intrinsic::mips_slli_d:
 | |
|     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_splat_b:
 | |
|   case Intrinsic::mips_splat_h:
 | |
|   case Intrinsic::mips_splat_w:
 | |
|   case Intrinsic::mips_splat_d:
 | |
|     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
 | |
|     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
 | |
|     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
 | |
|     // Instead we lower to MipsISD::VSHF and match from there.
 | |
|     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
 | |
|                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_splati_b:
 | |
|   case Intrinsic::mips_splati_h:
 | |
|   case Intrinsic::mips_splati_w:
 | |
|   case Intrinsic::mips_splati_d:
 | |
|     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
 | |
|                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
 | |
|                        Op->getOperand(1));
 | |
|   case Intrinsic::mips_sra_b:
 | |
|   case Intrinsic::mips_sra_h:
 | |
|   case Intrinsic::mips_sra_w:
 | |
|   case Intrinsic::mips_sra_d:
 | |
|     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        truncateVecElts(Op, DAG));
 | |
|   case Intrinsic::mips_srai_b:
 | |
|   case Intrinsic::mips_srai_h:
 | |
|   case Intrinsic::mips_srai_w:
 | |
|   case Intrinsic::mips_srai_d:
 | |
|     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_srari_b:
 | |
|   case Intrinsic::mips_srari_h:
 | |
|   case Intrinsic::mips_srari_w:
 | |
|   case Intrinsic::mips_srari_d: {
 | |
|     // Report an error for out of range values.
 | |
|     int64_t Max;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::mips_srari_b: Max = 7; break;
 | |
|     case Intrinsic::mips_srari_h: Max = 15; break;
 | |
|     case Intrinsic::mips_srari_w: Max = 31; break;
 | |
|     case Intrinsic::mips_srari_d: Max = 63; break;
 | |
|     default: llvm_unreachable("Unmatched intrinsic");
 | |
|     }
 | |
|     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
 | |
|     if (Value < 0 || Value > Max)
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     return SDValue();
 | |
|   }
 | |
|   case Intrinsic::mips_srl_b:
 | |
|   case Intrinsic::mips_srl_h:
 | |
|   case Intrinsic::mips_srl_w:
 | |
|   case Intrinsic::mips_srl_d:
 | |
|     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        truncateVecElts(Op, DAG));
 | |
|   case Intrinsic::mips_srli_b:
 | |
|   case Intrinsic::mips_srli_h:
 | |
|   case Intrinsic::mips_srli_w:
 | |
|   case Intrinsic::mips_srli_d:
 | |
|     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_srlri_b:
 | |
|   case Intrinsic::mips_srlri_h:
 | |
|   case Intrinsic::mips_srlri_w:
 | |
|   case Intrinsic::mips_srlri_d: {
 | |
|     // Report an error for out of range values.
 | |
|     int64_t Max;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::mips_srlri_b: Max = 7; break;
 | |
|     case Intrinsic::mips_srlri_h: Max = 15; break;
 | |
|     case Intrinsic::mips_srlri_w: Max = 31; break;
 | |
|     case Intrinsic::mips_srlri_d: Max = 63; break;
 | |
|     default: llvm_unreachable("Unmatched intrinsic");
 | |
|     }
 | |
|     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
 | |
|     if (Value < 0 || Value > Max)
 | |
|       report_fatal_error("Immediate out of range");
 | |
|     return SDValue();
 | |
|   }
 | |
|   case Intrinsic::mips_subv_b:
 | |
|   case Intrinsic::mips_subv_h:
 | |
|   case Intrinsic::mips_subv_w:
 | |
|   case Intrinsic::mips_subv_d:
 | |
|     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_subvi_b:
 | |
|   case Intrinsic::mips_subvi_h:
 | |
|   case Intrinsic::mips_subvi_w:
 | |
|   case Intrinsic::mips_subvi_d:
 | |
|     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::mips_vshf_b:
 | |
|   case Intrinsic::mips_vshf_h:
 | |
|   case Intrinsic::mips_vshf_w:
 | |
|   case Intrinsic::mips_vshf_d:
 | |
|     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
 | |
|   case Intrinsic::mips_xor_v:
 | |
|     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
 | |
|                        Op->getOperand(2));
 | |
|   case Intrinsic::mips_xori_b:
 | |
|     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
 | |
|                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
 | |
|   case Intrinsic::thread_pointer: {
 | |
|     EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
 | |
|                                 const MipsSubtarget &Subtarget) {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue ChainIn = Op->getOperand(0);
 | |
|   SDValue Address = Op->getOperand(2);
 | |
|   SDValue Offset  = Op->getOperand(3);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   EVT PtrTy = Address->getValueType(0);
 | |
| 
 | |
|   // For N64 addresses have the underlying type MVT::i64. This intrinsic
 | |
|   // however takes an i32 signed constant offset. The actual type of the
 | |
|   // intrinsic is a scaled signed i10.
 | |
|   if (Subtarget.isABI_N64())
 | |
|     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
 | |
| 
 | |
|   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
 | |
|   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
 | |
|                      /* Alignment = */ 16);
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
 | |
|   switch (Intr) {
 | |
|   default:
 | |
|     return SDValue();
 | |
|   case Intrinsic::mips_extp:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
 | |
|   case Intrinsic::mips_extpdp:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
 | |
|   case Intrinsic::mips_extr_w:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
 | |
|   case Intrinsic::mips_extr_r_w:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
 | |
|   case Intrinsic::mips_extr_rs_w:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
 | |
|   case Intrinsic::mips_extr_s_h:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
 | |
|   case Intrinsic::mips_mthlip:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
 | |
|   case Intrinsic::mips_mulsaq_s_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
 | |
|   case Intrinsic::mips_maq_s_w_phl:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
 | |
|   case Intrinsic::mips_maq_s_w_phr:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
 | |
|   case Intrinsic::mips_maq_sa_w_phl:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
 | |
|   case Intrinsic::mips_maq_sa_w_phr:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
 | |
|   case Intrinsic::mips_dpaq_s_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
 | |
|   case Intrinsic::mips_dpsq_s_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
 | |
|   case Intrinsic::mips_dpaq_sa_l_w:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
 | |
|   case Intrinsic::mips_dpsq_sa_l_w:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
 | |
|   case Intrinsic::mips_dpaqx_s_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
 | |
|   case Intrinsic::mips_dpaqx_sa_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
 | |
|   case Intrinsic::mips_dpsqx_s_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
 | |
|   case Intrinsic::mips_dpsqx_sa_w_ph:
 | |
|     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
 | |
|   case Intrinsic::mips_ld_b:
 | |
|   case Intrinsic::mips_ld_h:
 | |
|   case Intrinsic::mips_ld_w:
 | |
|   case Intrinsic::mips_ld_d:
 | |
|    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
 | |
|                                  const MipsSubtarget &Subtarget) {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue ChainIn = Op->getOperand(0);
 | |
|   SDValue Value   = Op->getOperand(2);
 | |
|   SDValue Address = Op->getOperand(3);
 | |
|   SDValue Offset  = Op->getOperand(4);
 | |
|   EVT PtrTy = Address->getValueType(0);
 | |
| 
 | |
|   // For N64 addresses have the underlying type MVT::i64. This intrinsic
 | |
|   // however takes an i32 signed constant offset. The actual type of the
 | |
|   // intrinsic is a scaled signed i10.
 | |
|   if (Subtarget.isABI_N64())
 | |
|     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
 | |
| 
 | |
|   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
 | |
| 
 | |
|   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
 | |
|                       /* Alignment = */ 16);
 | |
| }
 | |
| 
 | |
| SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
 | |
|   switch (Intr) {
 | |
|   default:
 | |
|     return SDValue();
 | |
|   case Intrinsic::mips_st_b:
 | |
|   case Intrinsic::mips_st_h:
 | |
|   case Intrinsic::mips_st_w:
 | |
|   case Intrinsic::mips_st_d:
 | |
|     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check if the given BuildVectorSDNode is a splat.
 | |
| /// This method currently relies on DAG nodes being reused when equivalent,
 | |
| /// so it's possible for this to return false even when isConstantSplat returns
 | |
| /// true.
 | |
| static bool isSplatVector(const BuildVectorSDNode *N) {
 | |
|   unsigned int nOps = N->getNumOperands();
 | |
|   assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
 | |
| 
 | |
|   SDValue Operand0 = N->getOperand(0);
 | |
| 
 | |
|   for (unsigned int i = 1; i < nOps; ++i) {
 | |
|     if (N->getOperand(i) != Operand0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
 | |
| //
 | |
| // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
 | |
| // choose to sign-extend but we could have equally chosen zero-extend. The
 | |
| // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
 | |
| // result into this node later (possibly changing it to a zero-extend in the
 | |
| // process).
 | |
| SDValue MipsSETargetLowering::
 | |
| lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   SDValue Op0 = Op->getOperand(0);
 | |
|   EVT VecTy = Op0->getValueType(0);
 | |
| 
 | |
|   if (!VecTy.is128BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (ResTy.isInteger()) {
 | |
|     SDValue Op1 = Op->getOperand(1);
 | |
|     EVT EltTy = VecTy.getVectorElementType();
 | |
|     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
 | |
|                        DAG.getValueType(EltTy));
 | |
|   }
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| static bool isConstantOrUndef(const SDValue Op) {
 | |
|   if (Op->isUndef())
 | |
|     return true;
 | |
|   if (isa<ConstantSDNode>(Op))
 | |
|     return true;
 | |
|   if (isa<ConstantFPSDNode>(Op))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
 | |
|   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
 | |
|     if (isConstantOrUndef(Op->getOperand(i)))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
 | |
| // backend.
 | |
| //
 | |
| // Lowers according to the following rules:
 | |
| // - Constant splats are legal as-is as long as the SplatBitSize is a power of
 | |
| //   2 less than or equal to 64 and the value fits into a signed 10-bit
 | |
| //   immediate
 | |
| // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
 | |
| //   is a power of 2 less than or equal to 64 and the value does not fit into a
 | |
| //   signed 10-bit immediate
 | |
| // - Non-constant splats are legal as-is.
 | |
| // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
 | |
| // - All others are illegal and must be expanded.
 | |
| SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
|   SDLoc DL(Op);
 | |
|   APInt SplatValue, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
| 
 | |
|   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
 | |
|                             HasAnyUndefs, 8,
 | |
|                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
 | |
|     // We can only cope with 8, 16, 32, or 64-bit elements
 | |
|     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
 | |
|         SplatBitSize != 64)
 | |
|       return SDValue();
 | |
| 
 | |
|     // If the value isn't an integer type we will have to bitcast
 | |
|     // from an integer type first. Also, if there are any undefs, we must
 | |
|     // lower them to defined values first.
 | |
|     if (ResTy.isInteger() && !HasAnyUndefs)
 | |
|       return Op;
 | |
| 
 | |
|     EVT ViaVecTy;
 | |
| 
 | |
|     switch (SplatBitSize) {
 | |
|     default:
 | |
|       return SDValue();
 | |
|     case 8:
 | |
|       ViaVecTy = MVT::v16i8;
 | |
|       break;
 | |
|     case 16:
 | |
|       ViaVecTy = MVT::v8i16;
 | |
|       break;
 | |
|     case 32:
 | |
|       ViaVecTy = MVT::v4i32;
 | |
|       break;
 | |
|     case 64:
 | |
|       // There's no fill.d to fall back on for 64-bit values
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // SelectionDAG::getConstant will promote SplatValue appropriately.
 | |
|     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
 | |
| 
 | |
|     // Bitcast to the type we originally wanted
 | |
|     if (ViaVecTy != ResTy)
 | |
|       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
 | |
| 
 | |
|     return Result;
 | |
|   } else if (isSplatVector(Node))
 | |
|     return Op;
 | |
|   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
 | |
|     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
 | |
|     // The resulting code is the same length as the expansion, but it doesn't
 | |
|     // use memory operations
 | |
|     EVT ResTy = Node->getValueType(0);
 | |
| 
 | |
|     assert(ResTy.isVector());
 | |
| 
 | |
|     unsigned NumElts = ResTy.getVectorNumElements();
 | |
|     SDValue Vector = DAG.getUNDEF(ResTy);
 | |
|     for (unsigned i = 0; i < NumElts; ++i) {
 | |
|       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
 | |
|                            Node->getOperand(i),
 | |
|                            DAG.getConstant(i, DL, MVT::i32));
 | |
|     }
 | |
|     return Vector;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into SHF (if possible).
 | |
| //
 | |
| // SHF splits the vector into blocks of four elements, then shuffles these
 | |
| // elements according to a <4 x i2> constant (encoded as an integer immediate).
 | |
| //
 | |
| // It is therefore possible to lower into SHF when the mask takes the form:
 | |
| //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
 | |
| // When undef's appear they are treated as if they were whatever value is
 | |
| // necessary in order to fit the above forms.
 | |
| //
 | |
| // For example:
 | |
| //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
 | |
| //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
 | |
| //                                 i32 7, i32 6, i32 5, i32 4>
 | |
| // is lowered to:
 | |
| //   (SHF_H $w0, $w1, 27)
 | |
| // where the 27 comes from:
 | |
| //   3 + (2 << 2) + (1 << 4) + (0 << 6)
 | |
| static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
 | |
|                                        SmallVector<int, 16> Indices,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   int SHFIndices[4] = { -1, -1, -1, -1 };
 | |
| 
 | |
|   if (Indices.size() < 4)
 | |
|     return SDValue();
 | |
| 
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     for (unsigned j = i; j < Indices.size(); j += 4) {
 | |
|       int Idx = Indices[j];
 | |
| 
 | |
|       // Convert from vector index to 4-element subvector index
 | |
|       // If an index refers to an element outside of the subvector then give up
 | |
|       if (Idx != -1) {
 | |
|         Idx -= 4 * (j / 4);
 | |
|         if (Idx < 0 || Idx >= 4)
 | |
|           return SDValue();
 | |
|       }
 | |
| 
 | |
|       // If the mask has an undef, replace it with the current index.
 | |
|       // Note that it might still be undef if the current index is also undef
 | |
|       if (SHFIndices[i] == -1)
 | |
|         SHFIndices[i] = Idx;
 | |
| 
 | |
|       // Check that non-undef values are the same as in the mask. If they
 | |
|       // aren't then give up
 | |
|       if (!(Idx == -1 || Idx == SHFIndices[i]))
 | |
|         return SDValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Calculate the immediate. Replace any remaining undefs with zero
 | |
|   APInt Imm(32, 0);
 | |
|   for (int i = 3; i >= 0; --i) {
 | |
|     int Idx = SHFIndices[i];
 | |
| 
 | |
|     if (Idx == -1)
 | |
|       Idx = 0;
 | |
| 
 | |
|     Imm <<= 2;
 | |
|     Imm |= Idx & 0x3;
 | |
|   }
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(MipsISD::SHF, DL, ResTy,
 | |
|                      DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
 | |
| }
 | |
| 
 | |
| /// Determine whether a range fits a regular pattern of values.
 | |
| /// This function accounts for the possibility of jumping over the End iterator.
 | |
| template <typename ValType>
 | |
| static bool
 | |
| fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
 | |
|                    unsigned CheckStride,
 | |
|                    typename SmallVectorImpl<ValType>::const_iterator End,
 | |
|                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
 | |
|   auto &I = Begin;
 | |
| 
 | |
|   while (I != End) {
 | |
|     if (*I != -1 && *I != ExpectedIndex)
 | |
|       return false;
 | |
|     ExpectedIndex += ExpectedIndexStride;
 | |
| 
 | |
|     // Incrementing past End is undefined behaviour so we must increment one
 | |
|     // step at a time and check for End at each step.
 | |
|     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
 | |
|       ; // Empty loop body.
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Determine whether VECTOR_SHUFFLE is a SPLATI.
 | |
| //
 | |
| // It is a SPLATI when the mask is:
 | |
| //   <x, x, x, ...>
 | |
| // where x is any valid index.
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above form.
 | |
| static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
 | |
|                                     SmallVector<int, 16> Indices,
 | |
|                                     SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   int SplatIndex = -1;
 | |
|   for (const auto &V : Indices) {
 | |
|     if (V != -1) {
 | |
|       SplatIndex = V;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
 | |
|                                  0);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into ILVEV (if possible).
 | |
| //
 | |
| // ILVEV interleaves the even elements from each vector.
 | |
| //
 | |
| // It is possible to lower into ILVEV when the mask consists of two of the
 | |
| // following forms interleaved:
 | |
| //   <0, 2, 4, ...>
 | |
| //   <n, n+2, n+4, ...>
 | |
| // where n is the number of elements in the vector.
 | |
| // For example:
 | |
| //   <0, 0, 2, 2, 4, 4, ...>
 | |
| //   <0, n, 2, n+2, 4, n+4, ...>
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above forms.
 | |
| static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
 | |
|                                          SmallVector<int, 16> Indices,
 | |
|                                          SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   SDValue Wt;
 | |
|   SDValue Ws;
 | |
|   const auto &Begin = Indices.begin();
 | |
|   const auto &End = Indices.end();
 | |
| 
 | |
|   // Check even elements are taken from the even elements of one half or the
 | |
|   // other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
 | |
|     Wt = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
 | |
|     Wt = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check odd elements are taken from the even elements of one half or the
 | |
|   // other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
 | |
|     Ws = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
 | |
|     Ws = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into ILVOD (if possible).
 | |
| //
 | |
| // ILVOD interleaves the odd elements from each vector.
 | |
| //
 | |
| // It is possible to lower into ILVOD when the mask consists of two of the
 | |
| // following forms interleaved:
 | |
| //   <1, 3, 5, ...>
 | |
| //   <n+1, n+3, n+5, ...>
 | |
| // where n is the number of elements in the vector.
 | |
| // For example:
 | |
| //   <1, 1, 3, 3, 5, 5, ...>
 | |
| //   <1, n+1, 3, n+3, 5, n+5, ...>
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above forms.
 | |
| static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
 | |
|                                          SmallVector<int, 16> Indices,
 | |
|                                          SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   SDValue Wt;
 | |
|   SDValue Ws;
 | |
|   const auto &Begin = Indices.begin();
 | |
|   const auto &End = Indices.end();
 | |
| 
 | |
|   // Check even elements are taken from the odd elements of one half or the
 | |
|   // other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
 | |
|     Wt = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
 | |
|     Wt = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check odd elements are taken from the odd elements of one half or the
 | |
|   // other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
 | |
|     Ws = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
 | |
|     Ws = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into ILVR (if possible).
 | |
| //
 | |
| // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
 | |
| // each vector.
 | |
| //
 | |
| // It is possible to lower into ILVR when the mask consists of two of the
 | |
| // following forms interleaved:
 | |
| //   <0, 1, 2, ...>
 | |
| //   <n, n+1, n+2, ...>
 | |
| // where n is the number of elements in the vector.
 | |
| // For example:
 | |
| //   <0, 0, 1, 1, 2, 2, ...>
 | |
| //   <0, n, 1, n+1, 2, n+2, ...>
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above forms.
 | |
| static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
 | |
|                                         SmallVector<int, 16> Indices,
 | |
|                                         SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   SDValue Wt;
 | |
|   SDValue Ws;
 | |
|   const auto &Begin = Indices.begin();
 | |
|   const auto &End = Indices.end();
 | |
| 
 | |
|   // Check even elements are taken from the right (lowest-indexed) elements of
 | |
|   // one half or the other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
 | |
|     Wt = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
 | |
|     Wt = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check odd elements are taken from the right (lowest-indexed) elements of
 | |
|   // one half or the other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
 | |
|     Ws = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
 | |
|     Ws = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into ILVL (if possible).
 | |
| //
 | |
| // ILVL interleaves consecutive elements from the left (highest-indexed) half
 | |
| // of each vector.
 | |
| //
 | |
| // It is possible to lower into ILVL when the mask consists of two of the
 | |
| // following forms interleaved:
 | |
| //   <x, x+1, x+2, ...>
 | |
| //   <n+x, n+x+1, n+x+2, ...>
 | |
| // where n is the number of elements in the vector and x is half n.
 | |
| // For example:
 | |
| //   <x, x, x+1, x+1, x+2, x+2, ...>
 | |
| //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above forms.
 | |
| static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
 | |
|                                         SmallVector<int, 16> Indices,
 | |
|                                         SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   unsigned HalfSize = Indices.size() / 2;
 | |
|   SDValue Wt;
 | |
|   SDValue Ws;
 | |
|   const auto &Begin = Indices.begin();
 | |
|   const auto &End = Indices.end();
 | |
| 
 | |
|   // Check even elements are taken from the left (highest-indexed) elements of
 | |
|   // one half or the other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
 | |
|     Wt = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
 | |
|     Wt = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check odd elements are taken from the left (highest-indexed) elements of
 | |
|   // one half or the other and pick an operand accordingly.
 | |
|   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
 | |
|     Ws = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
 | |
|                                    1))
 | |
|     Ws = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into PCKEV (if possible).
 | |
| //
 | |
| // PCKEV copies the even elements of each vector into the result vector.
 | |
| //
 | |
| // It is possible to lower into PCKEV when the mask consists of two of the
 | |
| // following forms concatenated:
 | |
| //   <0, 2, 4, ...>
 | |
| //   <n, n+2, n+4, ...>
 | |
| // where n is the number of elements in the vector.
 | |
| // For example:
 | |
| //   <0, 2, 4, ..., 0, 2, 4, ...>
 | |
| //   <0, 2, 4, ..., n, n+2, n+4, ...>
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above forms.
 | |
| static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
 | |
|                                          SmallVector<int, 16> Indices,
 | |
|                                          SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   SDValue Wt;
 | |
|   SDValue Ws;
 | |
|   const auto &Begin = Indices.begin();
 | |
|   const auto &Mid = Indices.begin() + Indices.size() / 2;
 | |
|   const auto &End = Indices.end();
 | |
| 
 | |
|   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
 | |
|     Wt = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
 | |
|     Wt = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
 | |
|     Ws = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
 | |
|     Ws = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into PCKOD (if possible).
 | |
| //
 | |
| // PCKOD copies the odd elements of each vector into the result vector.
 | |
| //
 | |
| // It is possible to lower into PCKOD when the mask consists of two of the
 | |
| // following forms concatenated:
 | |
| //   <1, 3, 5, ...>
 | |
| //   <n+1, n+3, n+5, ...>
 | |
| // where n is the number of elements in the vector.
 | |
| // For example:
 | |
| //   <1, 3, 5, ..., 1, 3, 5, ...>
 | |
| //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
 | |
| //
 | |
| // When undef's appear in the mask they are treated as if they were whatever
 | |
| // value is necessary in order to fit the above forms.
 | |
| static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
 | |
|                                          SmallVector<int, 16> Indices,
 | |
|                                          SelectionDAG &DAG) {
 | |
|   assert((Indices.size() % 2) == 0);
 | |
| 
 | |
|   SDValue Wt;
 | |
|   SDValue Ws;
 | |
|   const auto &Begin = Indices.begin();
 | |
|   const auto &Mid = Indices.begin() + Indices.size() / 2;
 | |
|   const auto &End = Indices.end();
 | |
| 
 | |
|   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
 | |
|     Wt = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
 | |
|     Wt = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
 | |
|     Ws = Op->getOperand(0);
 | |
|   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
 | |
|     Ws = Op->getOperand(1);
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into VSHF.
 | |
| //
 | |
| // This mostly consists of converting the shuffle indices in Indices into a
 | |
| // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
 | |
| // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
 | |
| // if the type is v8i16 and all the indices are less than 8 then the second
 | |
| // operand is unused and can be replaced with anything. We choose to replace it
 | |
| // with the used operand since this reduces the number of instructions overall.
 | |
| static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
 | |
|                                         SmallVector<int, 16> Indices,
 | |
|                                         SelectionDAG &DAG) {
 | |
|   SmallVector<SDValue, 16> Ops;
 | |
|   SDValue Op0;
 | |
|   SDValue Op1;
 | |
|   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
 | |
|   EVT MaskEltTy = MaskVecTy.getVectorElementType();
 | |
|   bool Using1stVec = false;
 | |
|   bool Using2ndVec = false;
 | |
|   SDLoc DL(Op);
 | |
|   int ResTyNumElts = ResTy.getVectorNumElements();
 | |
| 
 | |
|   for (int i = 0; i < ResTyNumElts; ++i) {
 | |
|     // Idx == -1 means UNDEF
 | |
|     int Idx = Indices[i];
 | |
| 
 | |
|     if (0 <= Idx && Idx < ResTyNumElts)
 | |
|       Using1stVec = true;
 | |
|     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
 | |
|       Using2ndVec = true;
 | |
|   }
 | |
| 
 | |
|   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
 | |
|        ++I)
 | |
|     Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
 | |
| 
 | |
|   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
 | |
| 
 | |
|   if (Using1stVec && Using2ndVec) {
 | |
|     Op0 = Op->getOperand(0);
 | |
|     Op1 = Op->getOperand(1);
 | |
|   } else if (Using1stVec)
 | |
|     Op0 = Op1 = Op->getOperand(0);
 | |
|   else if (Using2ndVec)
 | |
|     Op0 = Op1 = Op->getOperand(1);
 | |
|   else
 | |
|     llvm_unreachable("shuffle vector mask references neither vector operand?");
 | |
| 
 | |
|   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
 | |
|   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
 | |
|   // VSHF concatenates the vectors in a bitwise fashion:
 | |
|   // <0b00, 0b01> + <0b10, 0b11> ->
 | |
|   // 0b0100       + 0b1110       -> 0b01001110
 | |
|   //                                <0b10, 0b11, 0b00, 0b01>
 | |
|   // We must therefore swap the operands to get the correct result.
 | |
|   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
 | |
| }
 | |
| 
 | |
| // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
 | |
| // indices in the shuffle.
 | |
| SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
 | |
|   EVT ResTy = Op->getValueType(0);
 | |
| 
 | |
|   if (!ResTy.is128BitVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   int ResTyNumElts = ResTy.getVectorNumElements();
 | |
|   SmallVector<int, 16> Indices;
 | |
| 
 | |
|   for (int i = 0; i < ResTyNumElts; ++i)
 | |
|     Indices.push_back(Node->getMaskElt(i));
 | |
| 
 | |
|   // splati.[bhwd] is preferable to the others but is matched from
 | |
|   // MipsISD::VSHF.
 | |
|   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
 | |
|     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
 | |
|   SDValue Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
 | |
|     return Result;
 | |
|   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
 | |
|                                    MachineBasicBlock *BB) const {
 | |
|   // $bb:
 | |
|   //  bposge32_pseudo $vr0
 | |
|   //  =>
 | |
|   // $bb:
 | |
|   //  bposge32 $tbb
 | |
|   // $fbb:
 | |
|   //  li $vr2, 0
 | |
|   //  b $sink
 | |
|   // $tbb:
 | |
|   //  li $vr1, 1
 | |
|   // $sink:
 | |
|   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, FBB);
 | |
|   F->insert(It, TBB);
 | |
|   F->insert(It, Sink);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to Sink.
 | |
|   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
 | |
|                BB->end());
 | |
|   Sink->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   // Add successors.
 | |
|   BB->addSuccessor(FBB);
 | |
|   BB->addSuccessor(TBB);
 | |
|   FBB->addSuccessor(Sink);
 | |
|   TBB->addSuccessor(Sink);
 | |
| 
 | |
|   // Insert the real bposge32 instruction to $BB.
 | |
|   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
 | |
|   // Insert the real bposge32c instruction to $BB.
 | |
|   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
 | |
| 
 | |
|   // Fill $FBB.
 | |
|   unsigned VR2 = RegInfo.createVirtualRegister(RC);
 | |
|   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
 | |
|     .addReg(Mips::ZERO).addImm(0);
 | |
|   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
 | |
| 
 | |
|   // Fill $TBB.
 | |
|   unsigned VR1 = RegInfo.createVirtualRegister(RC);
 | |
|   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
 | |
|     .addReg(Mips::ZERO).addImm(1);
 | |
| 
 | |
|   // Insert phi function to $Sink.
 | |
|   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
 | |
|           MI.getOperand(0).getReg())
 | |
|       .addReg(VR2)
 | |
|       .addMBB(FBB)
 | |
|       .addReg(VR1)
 | |
|       .addMBB(TBB);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return Sink;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
 | |
|     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
 | |
|   // $bb:
 | |
|   //  vany_nonzero $rd, $ws
 | |
|   //  =>
 | |
|   // $bb:
 | |
|   //  bnz.b $ws, $tbb
 | |
|   //  b $fbb
 | |
|   // $fbb:
 | |
|   //  li $rd1, 0
 | |
|   //  b $sink
 | |
|   // $tbb:
 | |
|   //  li $rd2, 1
 | |
|   // $sink:
 | |
|   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, FBB);
 | |
|   F->insert(It, TBB);
 | |
|   F->insert(It, Sink);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to Sink.
 | |
|   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
 | |
|                BB->end());
 | |
|   Sink->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   // Add successors.
 | |
|   BB->addSuccessor(FBB);
 | |
|   BB->addSuccessor(TBB);
 | |
|   FBB->addSuccessor(Sink);
 | |
|   TBB->addSuccessor(Sink);
 | |
| 
 | |
|   // Insert the real bnz.b instruction to $BB.
 | |
|   BuildMI(BB, DL, TII->get(BranchOp))
 | |
|       .addReg(MI.getOperand(1).getReg())
 | |
|       .addMBB(TBB);
 | |
| 
 | |
|   // Fill $FBB.
 | |
|   unsigned RD1 = RegInfo.createVirtualRegister(RC);
 | |
|   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
 | |
|     .addReg(Mips::ZERO).addImm(0);
 | |
|   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
 | |
| 
 | |
|   // Fill $TBB.
 | |
|   unsigned RD2 = RegInfo.createVirtualRegister(RC);
 | |
|   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
 | |
|     .addReg(Mips::ZERO).addImm(1);
 | |
| 
 | |
|   // Insert phi function to $Sink.
 | |
|   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
 | |
|           MI.getOperand(0).getReg())
 | |
|       .addReg(RD1)
 | |
|       .addMBB(FBB)
 | |
|       .addReg(RD2)
 | |
|       .addMBB(TBB);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return Sink;
 | |
| }
 | |
| 
 | |
| // Emit the COPY_FW pseudo instruction.
 | |
| //
 | |
| // copy_fw_pseudo $fd, $ws, n
 | |
| // =>
 | |
| // copy_u_w $rt, $ws, $n
 | |
| // mtc1     $rt, $fd
 | |
| //
 | |
| // When n is zero, the equivalent operation can be performed with (potentially)
 | |
| // zero instructions due to register overlaps. This optimization is never valid
 | |
| // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
 | |
|                                   MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Fd = MI.getOperand(0).getReg();
 | |
|   unsigned Ws = MI.getOperand(1).getReg();
 | |
|   unsigned Lane = MI.getOperand(2).getImm();
 | |
| 
 | |
|   if (Lane == 0) {
 | |
|     unsigned Wt = Ws;
 | |
|     if (!Subtarget.useOddSPReg()) {
 | |
|       // We must copy to an even-numbered MSA register so that the
 | |
|       // single-precision sub-register is also guaranteed to be even-numbered.
 | |
|       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
 | |
| 
 | |
|       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
 | |
|     }
 | |
| 
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
 | |
|   } else {
 | |
|     unsigned Wt = RegInfo.createVirtualRegister(
 | |
|         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
 | |
|                                   &Mips::MSA128WEvensRegClass);
 | |
| 
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the COPY_FD pseudo instruction.
 | |
| //
 | |
| // copy_fd_pseudo $fd, $ws, n
 | |
| // =>
 | |
| // splati.d $wt, $ws, $n
 | |
| // copy $fd, $wt:sub_64
 | |
| //
 | |
| // When n is zero, the equivalent operation can be performed with (potentially)
 | |
| // zero instructions due to register overlaps. This optimization is always
 | |
| // valid because FR=1 mode which is the only supported mode in MSA.
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
 | |
|                                   MachineBasicBlock *BB) const {
 | |
|   assert(Subtarget.isFP64bit());
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   unsigned Fd = MI.getOperand(0).getReg();
 | |
|   unsigned Ws = MI.getOperand(1).getReg();
 | |
|   unsigned Lane = MI.getOperand(2).getImm() * 2;
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   if (Lane == 0)
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
 | |
|   else {
 | |
|     unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
 | |
| 
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the INSERT_FW pseudo instruction.
 | |
| //
 | |
| // insert_fw_pseudo $wd, $wd_in, $n, $fs
 | |
| // =>
 | |
| // subreg_to_reg $wt:sub_lo, $fs
 | |
| // insve_w $wd[$n], $wd_in, $wt[0]
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
 | |
|                                     MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
|   unsigned Wd_in = MI.getOperand(1).getReg();
 | |
|   unsigned Lane = MI.getOperand(2).getImm();
 | |
|   unsigned Fs = MI.getOperand(3).getReg();
 | |
|   unsigned Wt = RegInfo.createVirtualRegister(
 | |
|       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
 | |
|                                 &Mips::MSA128WEvensRegClass);
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
 | |
|       .addImm(0)
 | |
|       .addReg(Fs)
 | |
|       .addImm(Mips::sub_lo);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
 | |
|       .addReg(Wd_in)
 | |
|       .addImm(Lane)
 | |
|       .addReg(Wt)
 | |
|       .addImm(0);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the INSERT_FD pseudo instruction.
 | |
| //
 | |
| // insert_fd_pseudo $wd, $fs, n
 | |
| // =>
 | |
| // subreg_to_reg $wt:sub_64, $fs
 | |
| // insve_d $wd[$n], $wd_in, $wt[0]
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
 | |
|                                     MachineBasicBlock *BB) const {
 | |
|   assert(Subtarget.isFP64bit());
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
|   unsigned Wd_in = MI.getOperand(1).getReg();
 | |
|   unsigned Lane = MI.getOperand(2).getImm();
 | |
|   unsigned Fs = MI.getOperand(3).getReg();
 | |
|   unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
 | |
|       .addImm(0)
 | |
|       .addReg(Fs)
 | |
|       .addImm(Mips::sub_64);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
 | |
|       .addReg(Wd_in)
 | |
|       .addImm(Lane)
 | |
|       .addReg(Wt)
 | |
|       .addImm(0);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
 | |
| //
 | |
| // For integer:
 | |
| // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
 | |
| // =>
 | |
| // (SLL $lanetmp1, $lane, <log2size)
 | |
| // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
 | |
| // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
 | |
| // (NEG $lanetmp2, $lanetmp1)
 | |
| // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
 | |
| //
 | |
| // For floating point:
 | |
| // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
 | |
| // =>
 | |
| // (SUBREG_TO_REG $wt, $fs, <subreg>)
 | |
| // (SLL $lanetmp1, $lane, <log2size)
 | |
| // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
 | |
| // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
 | |
| // (NEG $lanetmp2, $lanetmp1)
 | |
| // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
 | |
| MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
 | |
|     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
 | |
|     bool IsFP) const {
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
|   unsigned SrcVecReg = MI.getOperand(1).getReg();
 | |
|   unsigned LaneReg = MI.getOperand(2).getReg();
 | |
|   unsigned SrcValReg = MI.getOperand(3).getReg();
 | |
| 
 | |
|   const TargetRegisterClass *VecRC = nullptr;
 | |
|   // FIXME: This should be true for N32 too.
 | |
|   const TargetRegisterClass *GPRRC =
 | |
|       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
 | |
|   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
 | |
|   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
 | |
|   unsigned EltLog2Size;
 | |
|   unsigned InsertOp = 0;
 | |
|   unsigned InsveOp = 0;
 | |
|   switch (EltSizeInBytes) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected size");
 | |
|   case 1:
 | |
|     EltLog2Size = 0;
 | |
|     InsertOp = Mips::INSERT_B;
 | |
|     InsveOp = Mips::INSVE_B;
 | |
|     VecRC = &Mips::MSA128BRegClass;
 | |
|     break;
 | |
|   case 2:
 | |
|     EltLog2Size = 1;
 | |
|     InsertOp = Mips::INSERT_H;
 | |
|     InsveOp = Mips::INSVE_H;
 | |
|     VecRC = &Mips::MSA128HRegClass;
 | |
|     break;
 | |
|   case 4:
 | |
|     EltLog2Size = 2;
 | |
|     InsertOp = Mips::INSERT_W;
 | |
|     InsveOp = Mips::INSVE_W;
 | |
|     VecRC = &Mips::MSA128WRegClass;
 | |
|     break;
 | |
|   case 8:
 | |
|     EltLog2Size = 3;
 | |
|     InsertOp = Mips::INSERT_D;
 | |
|     InsveOp = Mips::INSVE_D;
 | |
|     VecRC = &Mips::MSA128DRegClass;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (IsFP) {
 | |
|     unsigned Wt = RegInfo.createVirtualRegister(VecRC);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
 | |
|         .addImm(0)
 | |
|         .addReg(SrcValReg)
 | |
|         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
 | |
|     SrcValReg = Wt;
 | |
|   }
 | |
| 
 | |
|   // Convert the lane index into a byte index
 | |
|   if (EltSizeInBytes != 1) {
 | |
|     unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
 | |
|     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
 | |
|         .addReg(LaneReg)
 | |
|         .addImm(EltLog2Size);
 | |
|     LaneReg = LaneTmp1;
 | |
|   }
 | |
| 
 | |
|   // Rotate bytes around so that the desired lane is element zero
 | |
|   unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
 | |
|       .addReg(SrcVecReg)
 | |
|       .addReg(SrcVecReg)
 | |
|       .addReg(LaneReg, 0, SubRegIdx);
 | |
| 
 | |
|   unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
 | |
|   if (IsFP) {
 | |
|     // Use insve.df to insert to element zero
 | |
|     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
 | |
|         .addReg(WdTmp1)
 | |
|         .addImm(0)
 | |
|         .addReg(SrcValReg)
 | |
|         .addImm(0);
 | |
|   } else {
 | |
|     // Use insert.df to insert to element zero
 | |
|     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
 | |
|         .addReg(WdTmp1)
 | |
|         .addReg(SrcValReg)
 | |
|         .addImm(0);
 | |
|   }
 | |
| 
 | |
|   // Rotate elements the rest of the way for a full rotation.
 | |
|   // sld.df inteprets $rt modulo the number of columns so we only need to negate
 | |
|   // the lane index to do this.
 | |
|   unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
 | |
|           LaneTmp2)
 | |
|       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
 | |
|       .addReg(LaneReg);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
 | |
|       .addReg(WdTmp2)
 | |
|       .addReg(WdTmp2)
 | |
|       .addReg(LaneTmp2, 0, SubRegIdx);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the FILL_FW pseudo instruction.
 | |
| //
 | |
| // fill_fw_pseudo $wd, $fs
 | |
| // =>
 | |
| // implicit_def $wt1
 | |
| // insert_subreg $wt2:subreg_lo, $wt1, $fs
 | |
| // splati.w $wd, $wt2[0]
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
 | |
|                                   MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
|   unsigned Fs = MI.getOperand(1).getReg();
 | |
|   unsigned Wt1 = RegInfo.createVirtualRegister(
 | |
|       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
 | |
|                               : &Mips::MSA128WEvensRegClass);
 | |
|   unsigned Wt2 = RegInfo.createVirtualRegister(
 | |
|       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
 | |
|                               : &Mips::MSA128WEvensRegClass);
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
 | |
|       .addReg(Wt1)
 | |
|       .addReg(Fs)
 | |
|       .addImm(Mips::sub_lo);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the FILL_FD pseudo instruction.
 | |
| //
 | |
| // fill_fd_pseudo $wd, $fs
 | |
| // =>
 | |
| // implicit_def $wt1
 | |
| // insert_subreg $wt2:subreg_64, $wt1, $fs
 | |
| // splati.d $wd, $wt2[0]
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
 | |
|                                   MachineBasicBlock *BB) const {
 | |
|   assert(Subtarget.isFP64bit());
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
|   unsigned Fs = MI.getOperand(1).getReg();
 | |
|   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
 | |
|   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
 | |
|       .addReg(Wt1)
 | |
|       .addReg(Fs)
 | |
|       .addImm(Mips::sub_64);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
 | |
| // register.
 | |
| //
 | |
| // STF16 MSA128F16:$wd, mem_simm10:$addr
 | |
| // =>
 | |
| //  copy_u.h $rtemp,$wd[0]
 | |
| //  sh $rtemp, $addr
 | |
| //
 | |
| // Safety: We can't use st.h & co as they would over write the memory after
 | |
| // the destination. It would require half floats be allocated 16 bytes(!) of
 | |
| // space.
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
 | |
|                                        MachineBasicBlock *BB) const {
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Ws = MI.getOperand(0).getReg();
 | |
|   unsigned Rt = MI.getOperand(1).getReg();
 | |
|   const MachineMemOperand &MMO = **MI.memoperands_begin();
 | |
|   unsigned Imm = MMO.getOffset();
 | |
| 
 | |
|   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
 | |
|   //          spill and reload can expand as a GPR64 operand. Examine the
 | |
|   //          operand in detail and default to ABI.
 | |
|   const TargetRegisterClass *RC =
 | |
|       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
 | |
|                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
 | |
|                                                         : &Mips::GPR64RegClass);
 | |
|   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
 | |
|   unsigned Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
 | |
|   if(!UsingMips32) {
 | |
|     unsigned Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
 | |
|         .addImm(0)
 | |
|         .addReg(Rs)
 | |
|         .addImm(Mips::sub_32);
 | |
|     Rs = Tmp;
 | |
|   }
 | |
|   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
 | |
|       .addReg(Rs)
 | |
|       .addReg(Rt)
 | |
|       .addImm(Imm)
 | |
|       .addMemOperand(BB->getParent()->getMachineMemOperand(
 | |
|           &MMO, MMO.getOffset(), MMO.getSize()));
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
 | |
| //
 | |
| // LD_F16 MSA128F16:$wd, mem_simm10:$addr
 | |
| // =>
 | |
| //  lh $rtemp, $addr
 | |
| //  fill.h $wd, $rtemp
 | |
| //
 | |
| // Safety: We can't use ld.h & co as they over-read from the source.
 | |
| // Additionally, if the address is not modulo 16, 2 cases can occur:
 | |
| //  a) Segmentation fault as the load instruction reads from a memory page
 | |
| //     memory it's not supposed to.
 | |
| //  b) The load crosses an implementation specific boundary, requiring OS
 | |
| //     intervention.
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
 | |
|                                        MachineBasicBlock *BB) const {
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
| 
 | |
|   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
 | |
|   //          spill and reload can expand as a GPR64 operand. Examine the
 | |
|   //          operand in detail and default to ABI.
 | |
|   const TargetRegisterClass *RC =
 | |
|       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
 | |
|                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
 | |
|                                                         : &Mips::GPR64RegClass);
 | |
| 
 | |
|   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
 | |
|   unsigned Rt = RegInfo.createVirtualRegister(RC);
 | |
| 
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
 | |
|   for (unsigned i = 1; i < MI.getNumOperands(); i++)
 | |
|     MIB.add(MI.getOperand(i));
 | |
| 
 | |
|   if(!UsingMips32) {
 | |
|     unsigned Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
 | |
|     Rt = Tmp;
 | |
|   }
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the FPROUND_PSEUDO instruction.
 | |
| //
 | |
| // Round an FGR64Opnd, FGR32Opnd to an f16.
 | |
| //
 | |
| // Safety: Cycle the operand through the GPRs so the result always ends up
 | |
| //         the correct MSA register.
 | |
| //
 | |
| // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
 | |
| //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
 | |
| //        (which they can be, as the MSA registers are defined to alias the
 | |
| //        FPU's 64 bit and 32 bit registers) the result can be accessed using
 | |
| //        the correct register class. That requires operands be tie-able across
 | |
| //        register classes which have a sub/super register class relationship.
 | |
| //
 | |
| // For FPG32Opnd:
 | |
| //
 | |
| // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
 | |
| // =>
 | |
| //  mfc1 $rtemp, $fs
 | |
| //  fill.w $rtemp, $wtemp
 | |
| //  fexdo.w $wd, $wtemp, $wtemp
 | |
| //
 | |
| // For FPG64Opnd on mips32r2+:
 | |
| //
 | |
| // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
 | |
| // =>
 | |
| //  mfc1 $rtemp, $fs
 | |
| //  fill.w $rtemp, $wtemp
 | |
| //  mfhc1 $rtemp2, $fs
 | |
| //  insert.w $wtemp[1], $rtemp2
 | |
| //  insert.w $wtemp[3], $rtemp2
 | |
| //  fexdo.w $wtemp2, $wtemp, $wtemp
 | |
| //  fexdo.h $wd, $temp2, $temp2
 | |
| //
 | |
| // For FGR64Opnd on mips64r2+:
 | |
| //
 | |
| // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
 | |
| // =>
 | |
| //  dmfc1 $rtemp, $fs
 | |
| //  fill.d $rtemp, $wtemp
 | |
| //  fexdo.w $wtemp2, $wtemp, $wtemp
 | |
| //  fexdo.h $wd, $wtemp2, $wtemp2
 | |
| //
 | |
| // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
 | |
| //              undef bits are "just right" and the exception enable bits are
 | |
| //              set. By using fill.w to replicate $fs into all elements over
 | |
| //              insert.w for one element, we avoid that potiential case. If
 | |
| //              fexdo.[hw] causes an exception in, the exception is valid and it
 | |
| //              occurs for all elements.
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
 | |
|                                          MachineBasicBlock *BB,
 | |
|                                          bool IsFGR64) const {
 | |
| 
 | |
|   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
 | |
|   // here. It's technically doable to support MIPS32 here, but the ISA forbids
 | |
|   // it.
 | |
|   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
 | |
| 
 | |
|   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
 | |
|   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Wd = MI.getOperand(0).getReg();
 | |
|   unsigned Fs = MI.getOperand(1).getReg();
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
 | |
|   const TargetRegisterClass *GPRRC =
 | |
|       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
 | |
|   unsigned MFC1Opc = IsFGR64onMips64
 | |
|                          ? Mips::DMFC1
 | |
|                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
 | |
|   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
 | |
| 
 | |
|   // Perform the register class copy as mentioned above.
 | |
|   unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
 | |
|   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
 | |
|   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
 | |
|   unsigned WPHI = Wtemp;
 | |
| 
 | |
|   if (IsFGR64onMips32) {
 | |
|     unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
 | |
|     unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
 | |
|     unsigned Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
 | |
|         .addReg(Wtemp)
 | |
|         .addReg(Rtemp2)
 | |
|         .addImm(1);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
 | |
|         .addReg(Wtemp2)
 | |
|         .addReg(Rtemp2)
 | |
|         .addImm(3);
 | |
|     WPHI = Wtemp3;
 | |
|   }
 | |
| 
 | |
|   if (IsFGR64) {
 | |
|     unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
 | |
|         .addReg(WPHI)
 | |
|         .addReg(WPHI);
 | |
|     WPHI = Wtemp2;
 | |
|   }
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the FPEXTEND_PSEUDO instruction.
 | |
| //
 | |
| // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
 | |
| //
 | |
| // Safety: Cycle the result through the GPRs so the result always ends up
 | |
| //         the correct floating point register.
 | |
| //
 | |
| // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
 | |
| //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
 | |
| //        (which they can be, as the MSA registers are defined to alias the
 | |
| //        FPU's 64 bit and 32 bit registers) the result can be accessed using
 | |
| //        the correct register class. That requires operands be tie-able across
 | |
| //        register classes which have a sub/super register class relationship. I
 | |
| //        haven't checked.
 | |
| //
 | |
| // For FGR32Opnd:
 | |
| //
 | |
| // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
 | |
| // =>
 | |
| //  fexupr.w $wtemp, $ws
 | |
| //  copy_s.w $rtemp, $ws[0]
 | |
| //  mtc1 $rtemp, $fd
 | |
| //
 | |
| // For FGR64Opnd on Mips64:
 | |
| //
 | |
| // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
 | |
| // =>
 | |
| //  fexupr.w $wtemp, $ws
 | |
| //  fexupr.d $wtemp2, $wtemp
 | |
| //  copy_s.d $rtemp, $wtemp2s[0]
 | |
| //  dmtc1 $rtemp, $fd
 | |
| //
 | |
| // For FGR64Opnd on Mips32:
 | |
| //
 | |
| // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
 | |
| // =>
 | |
| //  fexupr.w $wtemp, $ws
 | |
| //  fexupr.d $wtemp2, $wtemp
 | |
| //  copy_s.w $rtemp, $wtemp2[0]
 | |
| //  mtc1 $rtemp, $ftemp
 | |
| //  copy_s.w $rtemp2, $wtemp2[1]
 | |
| //  $fd = mthc1 $rtemp2, $ftemp
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
 | |
|                                           MachineBasicBlock *BB,
 | |
|                                           bool IsFGR64) const {
 | |
| 
 | |
|   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
 | |
|   // here. It's technically doable to support MIPS32 here, but the ISA forbids
 | |
|   // it.
 | |
|   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
 | |
| 
 | |
|   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
 | |
|   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
 | |
| 
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   unsigned Fd = MI.getOperand(0).getReg();
 | |
|   unsigned Ws = MI.getOperand(1).getReg();
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *GPRRC =
 | |
|       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
 | |
|   unsigned MTC1Opc = IsFGR64onMips64
 | |
|                          ? Mips::DMTC1
 | |
|                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
 | |
|   unsigned COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
 | |
| 
 | |
|   unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
 | |
|   unsigned WPHI = Wtemp;
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
 | |
|   if (IsFGR64) {
 | |
|     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
 | |
|   }
 | |
| 
 | |
|   // Perform the safety regclass copy mentioned above.
 | |
|   unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
 | |
|   unsigned FPRPHI = IsFGR64onMips32
 | |
|                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
 | |
|                         : Fd;
 | |
|   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
 | |
|   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
 | |
| 
 | |
|   if (IsFGR64onMips32) {
 | |
|     unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
 | |
|         .addReg(WPHI)
 | |
|         .addImm(1);
 | |
|     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
 | |
|         .addReg(FPRPHI)
 | |
|         .addReg(Rtemp2);
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the FEXP2_W_1 pseudo instructions.
 | |
| //
 | |
| // fexp2_w_1_pseudo $wd, $wt
 | |
| // =>
 | |
| // ldi.w $ws, 1
 | |
| // fexp2.w $wd, $ws, $wt
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
 | |
|                                     MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
 | |
|   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   // Splat 1.0 into a vector
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
 | |
| 
 | |
|   // Emit 1.0 * fexp2(Wt)
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
 | |
|       .addReg(Ws2)
 | |
|       .addReg(MI.getOperand(1).getReg());
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // Emit the FEXP2_D_1 pseudo instructions.
 | |
| //
 | |
| // fexp2_d_1_pseudo $wd, $wt
 | |
| // =>
 | |
| // ldi.d $ws, 1
 | |
| // fexp2.d $wd, $ws, $wt
 | |
| MachineBasicBlock *
 | |
| MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
 | |
|                                     MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | |
|   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
 | |
|   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   // Splat 1.0 into a vector
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
 | |
| 
 | |
|   // Emit 1.0 * fexp2(Wt)
 | |
|   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
 | |
|       .addReg(Ws2)
 | |
|       .addReg(MI.getOperand(1).getReg());
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 |