2273 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2273 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a printer that converts from our internal representation
 | |
| // of machine-dependent LLVM code to NVPTX assembly language.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "NVPTXAsmPrinter.h"
 | |
| #include "InstPrinter/NVPTXInstPrinter.h"
 | |
| #include "MCTargetDesc/NVPTXBaseInfo.h"
 | |
| #include "MCTargetDesc/NVPTXMCAsmInfo.h"
 | |
| #include "NVPTX.h"
 | |
| #include "NVPTXMCExpr.h"
 | |
| #include "NVPTXMachineFunctionInfo.h"
 | |
| #include "NVPTXRegisterInfo.h"
 | |
| #include "NVPTXSubtarget.h"
 | |
| #include "NVPTXTargetMachine.h"
 | |
| #include "NVPTXUtilities.h"
 | |
| #include "cl_common_defines.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/Path.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <new>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEPOTNAME "__local_depot"
 | |
| 
 | |
| /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
 | |
| /// depends.
 | |
| static void
 | |
| DiscoverDependentGlobals(const Value *V,
 | |
|                          DenseSet<const GlobalVariable *> &Globals) {
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     Globals.insert(GV);
 | |
|   else {
 | |
|     if (const User *U = dyn_cast<User>(V)) {
 | |
|       for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
 | |
|         DiscoverDependentGlobals(U->getOperand(i), Globals);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
 | |
| /// instances to be emitted, but only after any dependents have been added
 | |
| /// first.s
 | |
| static void
 | |
| VisitGlobalVariableForEmission(const GlobalVariable *GV,
 | |
|                                SmallVectorImpl<const GlobalVariable *> &Order,
 | |
|                                DenseSet<const GlobalVariable *> &Visited,
 | |
|                                DenseSet<const GlobalVariable *> &Visiting) {
 | |
|   // Have we already visited this one?
 | |
|   if (Visited.count(GV))
 | |
|     return;
 | |
| 
 | |
|   // Do we have a circular dependency?
 | |
|   if (!Visiting.insert(GV).second)
 | |
|     report_fatal_error("Circular dependency found in global variable set");
 | |
| 
 | |
|   // Make sure we visit all dependents first
 | |
|   DenseSet<const GlobalVariable *> Others;
 | |
|   for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
 | |
|     DiscoverDependentGlobals(GV->getOperand(i), Others);
 | |
| 
 | |
|   for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
 | |
|                                                   E = Others.end();
 | |
|        I != E; ++I)
 | |
|     VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
 | |
| 
 | |
|   // Now we can visit ourself
 | |
|   Order.push_back(GV);
 | |
|   Visited.insert(GV);
 | |
|   Visiting.erase(GV);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
 | |
|   MCInst Inst;
 | |
|   lowerToMCInst(MI, Inst);
 | |
|   EmitToStreamer(*OutStreamer, Inst);
 | |
| }
 | |
| 
 | |
| // Handle symbol backtracking for targets that do not support image handles
 | |
| bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
 | |
|                                            unsigned OpNo, MCOperand &MCOp) {
 | |
|   const MachineOperand &MO = MI->getOperand(OpNo);
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
| 
 | |
|   if (MCID.TSFlags & NVPTXII::IsTexFlag) {
 | |
|     // This is a texture fetch, so operand 4 is a texref and operand 5 is
 | |
|     // a samplerref
 | |
|     if (OpNo == 4 && MO.isImm()) {
 | |
|       lowerImageHandleSymbol(MO.getImm(), MCOp);
 | |
|       return true;
 | |
|     }
 | |
|     if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
 | |
|       lowerImageHandleSymbol(MO.getImm(), MCOp);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
 | |
|     unsigned VecSize =
 | |
|       1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
 | |
| 
 | |
|     // For a surface load of vector size N, the Nth operand will be the surfref
 | |
|     if (OpNo == VecSize && MO.isImm()) {
 | |
|       lowerImageHandleSymbol(MO.getImm(), MCOp);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
 | |
|     // This is a surface store, so operand 0 is a surfref
 | |
|     if (OpNo == 0 && MO.isImm()) {
 | |
|       lowerImageHandleSymbol(MO.getImm(), MCOp);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
 | |
|     // This is a query, so operand 1 is a surfref/texref
 | |
|     if (OpNo == 1 && MO.isImm()) {
 | |
|       lowerImageHandleSymbol(MO.getImm(), MCOp);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
 | |
|   // Ewwww
 | |
|   TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
 | |
|   NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
 | |
|   const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
 | |
|   const char *Sym = MFI->getImageHandleSymbol(Index);
 | |
|   std::string *SymNamePtr =
 | |
|     nvTM.getManagedStrPool()->getManagedString(Sym);
 | |
|   MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(StringRef(*SymNamePtr)));
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
 | |
|   OutMI.setOpcode(MI->getOpcode());
 | |
|   // Special: Do not mangle symbol operand of CALL_PROTOTYPE
 | |
|   if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
 | |
|     const MachineOperand &MO = MI->getOperand(0);
 | |
|     OutMI.addOperand(GetSymbolRef(
 | |
|       OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|     MCOperand MCOp;
 | |
|     if (!nvptxSubtarget->hasImageHandles()) {
 | |
|       if (lowerImageHandleOperand(MI, i, MCOp)) {
 | |
|         OutMI.addOperand(MCOp);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (lowerOperand(MO, MCOp))
 | |
|       OutMI.addOperand(MCOp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
 | |
|                                    MCOperand &MCOp) {
 | |
|   switch (MO.getType()) {
 | |
|   default: llvm_unreachable("unknown operand type");
 | |
|   case MachineOperand::MO_Register:
 | |
|     MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
 | |
|     break;
 | |
|   case MachineOperand::MO_Immediate:
 | |
|     MCOp = MCOperand::createImm(MO.getImm());
 | |
|     break;
 | |
|   case MachineOperand::MO_MachineBasicBlock:
 | |
|     MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
 | |
|         MO.getMBB()->getSymbol(), OutContext));
 | |
|     break;
 | |
|   case MachineOperand::MO_ExternalSymbol:
 | |
|     MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
 | |
|     break;
 | |
|   case MachineOperand::MO_GlobalAddress:
 | |
|     MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
 | |
|     break;
 | |
|   case MachineOperand::MO_FPImmediate: {
 | |
|     const ConstantFP *Cnt = MO.getFPImm();
 | |
|     const APFloat &Val = Cnt->getValueAPF();
 | |
| 
 | |
|     switch (Cnt->getType()->getTypeID()) {
 | |
|     default: report_fatal_error("Unsupported FP type"); break;
 | |
|     case Type::HalfTyID:
 | |
|       MCOp = MCOperand::createExpr(
 | |
|         NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
 | |
|       break;
 | |
|     case Type::FloatTyID:
 | |
|       MCOp = MCOperand::createExpr(
 | |
|         NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
 | |
|       break;
 | |
|     case Type::DoubleTyID:
 | |
|       MCOp = MCOperand::createExpr(
 | |
|         NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | |
| 
 | |
|     DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
 | |
|     unsigned RegNum = RegMap[Reg];
 | |
| 
 | |
|     // Encode the register class in the upper 4 bits
 | |
|     // Must be kept in sync with NVPTXInstPrinter::printRegName
 | |
|     unsigned Ret = 0;
 | |
|     if (RC == &NVPTX::Int1RegsRegClass) {
 | |
|       Ret = (1 << 28);
 | |
|     } else if (RC == &NVPTX::Int16RegsRegClass) {
 | |
|       Ret = (2 << 28);
 | |
|     } else if (RC == &NVPTX::Int32RegsRegClass) {
 | |
|       Ret = (3 << 28);
 | |
|     } else if (RC == &NVPTX::Int64RegsRegClass) {
 | |
|       Ret = (4 << 28);
 | |
|     } else if (RC == &NVPTX::Float32RegsRegClass) {
 | |
|       Ret = (5 << 28);
 | |
|     } else if (RC == &NVPTX::Float64RegsRegClass) {
 | |
|       Ret = (6 << 28);
 | |
|     } else if (RC == &NVPTX::Float16RegsRegClass) {
 | |
|       Ret = (7 << 28);
 | |
|     } else if (RC == &NVPTX::Float16x2RegsRegClass) {
 | |
|       Ret = (8 << 28);
 | |
|     } else {
 | |
|       report_fatal_error("Bad register class");
 | |
|     }
 | |
| 
 | |
|     // Insert the vreg number
 | |
|     Ret |= (RegNum & 0x0FFFFFFF);
 | |
|     return Ret;
 | |
|   } else {
 | |
|     // Some special-use registers are actually physical registers.
 | |
|     // Encode this as the register class ID of 0 and the real register ID.
 | |
|     return Reg & 0x0FFFFFFF;
 | |
|   }
 | |
| }
 | |
| 
 | |
| MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
 | |
|   const MCExpr *Expr;
 | |
|   Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
 | |
|                                  OutContext);
 | |
|   return MCOperand::createExpr(Expr);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
 | |
|   const DataLayout &DL = getDataLayout();
 | |
|   const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
 | |
| 
 | |
|   Type *Ty = F->getReturnType();
 | |
| 
 | |
|   bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
 | |
| 
 | |
|   if (Ty->getTypeID() == Type::VoidTyID)
 | |
|     return;
 | |
| 
 | |
|   O << " (";
 | |
| 
 | |
|   if (isABI) {
 | |
|     if (Ty->isFloatingPointTy() || (Ty->isIntegerTy() && !Ty->isIntegerTy(128))) {
 | |
|       unsigned size = 0;
 | |
|       if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
 | |
|         size = ITy->getBitWidth();
 | |
|       } else {
 | |
|         assert(Ty->isFloatingPointTy() && "Floating point type expected here");
 | |
|         size = Ty->getPrimitiveSizeInBits();
 | |
|       }
 | |
|       // PTX ABI requires all scalar return values to be at least 32
 | |
|       // bits in size.  fp16 normally uses .b16 as its storage type in
 | |
|       // PTX, so its size must be adjusted here, too.
 | |
|       if (size < 32)
 | |
|         size = 32;
 | |
| 
 | |
|       O << ".param .b" << size << " func_retval0";
 | |
|     } else if (isa<PointerType>(Ty)) {
 | |
|       O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
 | |
|         << " func_retval0";
 | |
|     } else if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
 | |
|       unsigned totalsz = DL.getTypeAllocSize(Ty);
 | |
|       unsigned retAlignment = 0;
 | |
|       if (!getAlign(*F, 0, retAlignment))
 | |
|         retAlignment = DL.getABITypeAlignment(Ty);
 | |
|       O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
 | |
|         << "]";
 | |
|     } else
 | |
|       llvm_unreachable("Unknown return type");
 | |
|   } else {
 | |
|     SmallVector<EVT, 16> vtparts;
 | |
|     ComputeValueVTs(*TLI, DL, Ty, vtparts);
 | |
|     unsigned idx = 0;
 | |
|     for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
 | |
|       unsigned elems = 1;
 | |
|       EVT elemtype = vtparts[i];
 | |
|       if (vtparts[i].isVector()) {
 | |
|         elems = vtparts[i].getVectorNumElements();
 | |
|         elemtype = vtparts[i].getVectorElementType();
 | |
|       }
 | |
| 
 | |
|       for (unsigned j = 0, je = elems; j != je; ++j) {
 | |
|         unsigned sz = elemtype.getSizeInBits();
 | |
|         if (elemtype.isInteger() && (sz < 32))
 | |
|           sz = 32;
 | |
|         O << ".reg .b" << sz << " func_retval" << idx;
 | |
|         if (j < je - 1)
 | |
|           O << ", ";
 | |
|         ++idx;
 | |
|       }
 | |
|       if (i < e - 1)
 | |
|         O << ", ";
 | |
|     }
 | |
|   }
 | |
|   O << ") ";
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
 | |
|                                         raw_ostream &O) {
 | |
|   const Function &F = MF.getFunction();
 | |
|   printReturnValStr(&F, O);
 | |
| }
 | |
| 
 | |
| // Return true if MBB is the header of a loop marked with
 | |
| // llvm.loop.unroll.disable.
 | |
| // TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
 | |
| bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
 | |
|     const MachineBasicBlock &MBB) const {
 | |
|   MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
 | |
|   // We insert .pragma "nounroll" only to the loop header.
 | |
|   if (!LI.isLoopHeader(&MBB))
 | |
|     return false;
 | |
| 
 | |
|   // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
 | |
|   // we iterate through each back edge of the loop with header MBB, and check
 | |
|   // whether its metadata contains llvm.loop.unroll.disable.
 | |
|   for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
 | |
|     const MachineBasicBlock *PMBB = *I;
 | |
|     if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
 | |
|       // Edges from other loops to MBB are not back edges.
 | |
|       continue;
 | |
|     }
 | |
|     if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
 | |
|       if (MDNode *LoopID =
 | |
|               PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
 | |
|         if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
 | |
|   AsmPrinter::EmitBasicBlockStart(MBB);
 | |
|   if (isLoopHeaderOfNoUnroll(MBB))
 | |
|     OutStreamer->EmitRawText(StringRef("\t.pragma \"nounroll\";\n"));
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
 | |
|   SmallString<128> Str;
 | |
|   raw_svector_ostream O(Str);
 | |
| 
 | |
|   if (!GlobalsEmitted) {
 | |
|     emitGlobals(*MF->getFunction().getParent());
 | |
|     GlobalsEmitted = true;
 | |
|   }
 | |
| 
 | |
|   // Set up
 | |
|   MRI = &MF->getRegInfo();
 | |
|   F = &MF->getFunction();
 | |
|   emitLinkageDirective(F, O);
 | |
|   if (isKernelFunction(*F))
 | |
|     O << ".entry ";
 | |
|   else {
 | |
|     O << ".func ";
 | |
|     printReturnValStr(*MF, O);
 | |
|   }
 | |
| 
 | |
|   CurrentFnSym->print(O, MAI);
 | |
| 
 | |
|   emitFunctionParamList(*MF, O);
 | |
| 
 | |
|   if (isKernelFunction(*F))
 | |
|     emitKernelFunctionDirectives(*F, O);
 | |
| 
 | |
|   OutStreamer->EmitRawText(O.str());
 | |
| 
 | |
|   VRegMapping.clear();
 | |
|   // Emit open brace for function body.
 | |
|   OutStreamer->EmitRawText(StringRef("{\n"));
 | |
|   setAndEmitFunctionVirtualRegisters(*MF);
 | |
| }
 | |
| 
 | |
| bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) {
 | |
|   nvptxSubtarget = &F.getSubtarget<NVPTXSubtarget>();
 | |
|   bool Result = AsmPrinter::runOnMachineFunction(F);
 | |
|   // Emit closing brace for the body of function F.
 | |
|   // The closing brace must be emitted here because we need to emit additional
 | |
|   // debug labels/data after the last basic block.
 | |
|   // We need to emit the closing brace here because we don't have function that
 | |
|   // finished emission of the function body.
 | |
|   OutStreamer->EmitRawText(StringRef("}\n"));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::EmitFunctionBodyStart() {
 | |
|   SmallString<128> Str;
 | |
|   raw_svector_ostream O(Str);
 | |
|   emitDemotedVars(&MF->getFunction(), O);
 | |
|   OutStreamer->EmitRawText(O.str());
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
 | |
|   VRegMapping.clear();
 | |
| }
 | |
| 
 | |
| const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const {
 | |
|     SmallString<128> Str;
 | |
|     raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber();
 | |
|     return OutContext.getOrCreateSymbol(Str);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
 | |
|   unsigned RegNo = MI->getOperand(0).getReg();
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RegNo)) {
 | |
|     OutStreamer->AddComment(Twine("implicit-def: ") +
 | |
|                             getVirtualRegisterName(RegNo));
 | |
|   } else {
 | |
|     OutStreamer->AddComment(Twine("implicit-def: ") +
 | |
|                             nvptxSubtarget->getRegisterInfo()->getName(RegNo));
 | |
|   }
 | |
|   OutStreamer->AddBlankLine();
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
 | |
|                                                    raw_ostream &O) const {
 | |
|   // If the NVVM IR has some of reqntid* specified, then output
 | |
|   // the reqntid directive, and set the unspecified ones to 1.
 | |
|   // If none of reqntid* is specified, don't output reqntid directive.
 | |
|   unsigned reqntidx, reqntidy, reqntidz;
 | |
|   bool specified = false;
 | |
|   if (!getReqNTIDx(F, reqntidx))
 | |
|     reqntidx = 1;
 | |
|   else
 | |
|     specified = true;
 | |
|   if (!getReqNTIDy(F, reqntidy))
 | |
|     reqntidy = 1;
 | |
|   else
 | |
|     specified = true;
 | |
|   if (!getReqNTIDz(F, reqntidz))
 | |
|     reqntidz = 1;
 | |
|   else
 | |
|     specified = true;
 | |
| 
 | |
|   if (specified)
 | |
|     O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
 | |
|       << "\n";
 | |
| 
 | |
|   // If the NVVM IR has some of maxntid* specified, then output
 | |
|   // the maxntid directive, and set the unspecified ones to 1.
 | |
|   // If none of maxntid* is specified, don't output maxntid directive.
 | |
|   unsigned maxntidx, maxntidy, maxntidz;
 | |
|   specified = false;
 | |
|   if (!getMaxNTIDx(F, maxntidx))
 | |
|     maxntidx = 1;
 | |
|   else
 | |
|     specified = true;
 | |
|   if (!getMaxNTIDy(F, maxntidy))
 | |
|     maxntidy = 1;
 | |
|   else
 | |
|     specified = true;
 | |
|   if (!getMaxNTIDz(F, maxntidz))
 | |
|     maxntidz = 1;
 | |
|   else
 | |
|     specified = true;
 | |
| 
 | |
|   if (specified)
 | |
|     O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
 | |
|       << "\n";
 | |
| 
 | |
|   unsigned mincta;
 | |
|   if (getMinCTASm(F, mincta))
 | |
|     O << ".minnctapersm " << mincta << "\n";
 | |
| 
 | |
|   unsigned maxnreg;
 | |
|   if (getMaxNReg(F, maxnreg))
 | |
|     O << ".maxnreg " << maxnreg << "\n";
 | |
| }
 | |
| 
 | |
| std::string
 | |
| NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
 | |
|   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | |
| 
 | |
|   std::string Name;
 | |
|   raw_string_ostream NameStr(Name);
 | |
| 
 | |
|   VRegRCMap::const_iterator I = VRegMapping.find(RC);
 | |
|   assert(I != VRegMapping.end() && "Bad register class");
 | |
|   const DenseMap<unsigned, unsigned> &RegMap = I->second;
 | |
| 
 | |
|   VRegMap::const_iterator VI = RegMap.find(Reg);
 | |
|   assert(VI != RegMap.end() && "Bad virtual register");
 | |
|   unsigned MappedVR = VI->second;
 | |
| 
 | |
|   NameStr << getNVPTXRegClassStr(RC) << MappedVR;
 | |
| 
 | |
|   NameStr.flush();
 | |
|   return Name;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
 | |
|                                           raw_ostream &O) {
 | |
|   O << getVirtualRegisterName(vr);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printVecModifiedImmediate(
 | |
|     const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
 | |
|   static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
 | |
|   int Imm = (int) MO.getImm();
 | |
|   if (0 == strcmp(Modifier, "vecelem"))
 | |
|     O << "_" << vecelem[Imm];
 | |
|   else if (0 == strcmp(Modifier, "vecv4comm1")) {
 | |
|     if ((Imm < 0) || (Imm > 3))
 | |
|       O << "//";
 | |
|   } else if (0 == strcmp(Modifier, "vecv4comm2")) {
 | |
|     if ((Imm < 4) || (Imm > 7))
 | |
|       O << "//";
 | |
|   } else if (0 == strcmp(Modifier, "vecv4pos")) {
 | |
|     if (Imm < 0)
 | |
|       Imm = 0;
 | |
|     O << "_" << vecelem[Imm % 4];
 | |
|   } else if (0 == strcmp(Modifier, "vecv2comm1")) {
 | |
|     if ((Imm < 0) || (Imm > 1))
 | |
|       O << "//";
 | |
|   } else if (0 == strcmp(Modifier, "vecv2comm2")) {
 | |
|     if ((Imm < 2) || (Imm > 3))
 | |
|       O << "//";
 | |
|   } else if (0 == strcmp(Modifier, "vecv2pos")) {
 | |
|     if (Imm < 0)
 | |
|       Imm = 0;
 | |
|     O << "_" << vecelem[Imm % 2];
 | |
|   } else
 | |
|     llvm_unreachable("Unknown Modifier on immediate operand");
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
 | |
|   emitLinkageDirective(F, O);
 | |
|   if (isKernelFunction(*F))
 | |
|     O << ".entry ";
 | |
|   else
 | |
|     O << ".func ";
 | |
|   printReturnValStr(F, O);
 | |
|   getSymbol(F)->print(O, MAI);
 | |
|   O << "\n";
 | |
|   emitFunctionParamList(F, O);
 | |
|   O << ";\n";
 | |
| }
 | |
| 
 | |
| static bool usedInGlobalVarDef(const Constant *C) {
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
 | |
|     return GV->getName() != "llvm.used";
 | |
|   }
 | |
| 
 | |
|   for (const User *U : C->users())
 | |
|     if (const Constant *C = dyn_cast<Constant>(U))
 | |
|       if (usedInGlobalVarDef(C))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
 | |
|   if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
 | |
|     if (othergv->getName() == "llvm.used")
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (const Instruction *instr = dyn_cast<Instruction>(U)) {
 | |
|     if (instr->getParent() && instr->getParent()->getParent()) {
 | |
|       const Function *curFunc = instr->getParent()->getParent();
 | |
|       if (oneFunc && (curFunc != oneFunc))
 | |
|         return false;
 | |
|       oneFunc = curFunc;
 | |
|       return true;
 | |
|     } else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   for (const User *UU : U->users())
 | |
|     if (!usedInOneFunc(UU, oneFunc))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /* Find out if a global variable can be demoted to local scope.
 | |
|  * Currently, this is valid for CUDA shared variables, which have local
 | |
|  * scope and global lifetime. So the conditions to check are :
 | |
|  * 1. Is the global variable in shared address space?
 | |
|  * 2. Does it have internal linkage?
 | |
|  * 3. Is the global variable referenced only in one function?
 | |
|  */
 | |
| static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
 | |
|   if (!gv->hasInternalLinkage())
 | |
|     return false;
 | |
|   PointerType *Pty = gv->getType();
 | |
|   if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED)
 | |
|     return false;
 | |
| 
 | |
|   const Function *oneFunc = nullptr;
 | |
| 
 | |
|   bool flag = usedInOneFunc(gv, oneFunc);
 | |
|   if (!flag)
 | |
|     return false;
 | |
|   if (!oneFunc)
 | |
|     return false;
 | |
|   f = oneFunc;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool useFuncSeen(const Constant *C,
 | |
|                         DenseMap<const Function *, bool> &seenMap) {
 | |
|   for (const User *U : C->users()) {
 | |
|     if (const Constant *cu = dyn_cast<Constant>(U)) {
 | |
|       if (useFuncSeen(cu, seenMap))
 | |
|         return true;
 | |
|     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
 | |
|       const BasicBlock *bb = I->getParent();
 | |
|       if (!bb)
 | |
|         continue;
 | |
|       const Function *caller = bb->getParent();
 | |
|       if (!caller)
 | |
|         continue;
 | |
|       if (seenMap.find(caller) != seenMap.end())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
 | |
|   DenseMap<const Function *, bool> seenMap;
 | |
|   for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
 | |
|     const Function *F = &*FI;
 | |
| 
 | |
|     if (F->isDeclaration()) {
 | |
|       if (F->use_empty())
 | |
|         continue;
 | |
|       if (F->getIntrinsicID())
 | |
|         continue;
 | |
|       emitDeclaration(F, O);
 | |
|       continue;
 | |
|     }
 | |
|     for (const User *U : F->users()) {
 | |
|       if (const Constant *C = dyn_cast<Constant>(U)) {
 | |
|         if (usedInGlobalVarDef(C)) {
 | |
|           // The use is in the initialization of a global variable
 | |
|           // that is a function pointer, so print a declaration
 | |
|           // for the original function
 | |
|           emitDeclaration(F, O);
 | |
|           break;
 | |
|         }
 | |
|         // Emit a declaration of this function if the function that
 | |
|         // uses this constant expr has already been seen.
 | |
|         if (useFuncSeen(C, seenMap)) {
 | |
|           emitDeclaration(F, O);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!isa<Instruction>(U))
 | |
|         continue;
 | |
|       const Instruction *instr = cast<Instruction>(U);
 | |
|       const BasicBlock *bb = instr->getParent();
 | |
|       if (!bb)
 | |
|         continue;
 | |
|       const Function *caller = bb->getParent();
 | |
|       if (!caller)
 | |
|         continue;
 | |
| 
 | |
|       // If a caller has already been seen, then the caller is
 | |
|       // appearing in the module before the callee. so print out
 | |
|       // a declaration for the callee.
 | |
|       if (seenMap.find(caller) != seenMap.end()) {
 | |
|         emitDeclaration(F, O);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     seenMap[F] = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isEmptyXXStructor(GlobalVariable *GV) {
 | |
|   if (!GV) return true;
 | |
|   const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|   if (!InitList) return true;  // Not an array; we don't know how to parse.
 | |
|   return InitList->getNumOperands() == 0;
 | |
| }
 | |
| 
 | |
| bool NVPTXAsmPrinter::doInitialization(Module &M) {
 | |
|   // Construct a default subtarget off of the TargetMachine defaults. The
 | |
|   // rest of NVPTX isn't friendly to change subtargets per function and
 | |
|   // so the default TargetMachine will have all of the options.
 | |
|   const Triple &TT = TM.getTargetTriple();
 | |
|   StringRef CPU = TM.getTargetCPU();
 | |
|   StringRef FS = TM.getTargetFeatureString();
 | |
|   const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
 | |
|   const NVPTXSubtarget STI(TT, CPU, FS, NTM);
 | |
| 
 | |
|   if (M.alias_size()) {
 | |
|     report_fatal_error("Module has aliases, which NVPTX does not support.");
 | |
|     return true; // error
 | |
|   }
 | |
|   if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors"))) {
 | |
|     report_fatal_error(
 | |
|         "Module has a nontrivial global ctor, which NVPTX does not support.");
 | |
|     return true;  // error
 | |
|   }
 | |
|   if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors"))) {
 | |
|     report_fatal_error(
 | |
|         "Module has a nontrivial global dtor, which NVPTX does not support.");
 | |
|     return true;  // error
 | |
|   }
 | |
| 
 | |
|   SmallString<128> Str1;
 | |
|   raw_svector_ostream OS1(Str1);
 | |
| 
 | |
|   // We need to call the parent's one explicitly.
 | |
|   bool Result = AsmPrinter::doInitialization(M);
 | |
| 
 | |
|   // Emit header before any dwarf directives are emitted below.
 | |
|   emitHeader(M, OS1, STI);
 | |
|   OutStreamer->EmitRawText(OS1.str());
 | |
| 
 | |
|   // Emit module-level inline asm if it exists.
 | |
|   if (!M.getModuleInlineAsm().empty()) {
 | |
|     OutStreamer->AddComment("Start of file scope inline assembly");
 | |
|     OutStreamer->AddBlankLine();
 | |
|     OutStreamer->EmitRawText(StringRef(M.getModuleInlineAsm()));
 | |
|     OutStreamer->AddBlankLine();
 | |
|     OutStreamer->AddComment("End of file scope inline assembly");
 | |
|     OutStreamer->AddBlankLine();
 | |
|   }
 | |
| 
 | |
|   GlobalsEmitted = false;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitGlobals(const Module &M) {
 | |
|   SmallString<128> Str2;
 | |
|   raw_svector_ostream OS2(Str2);
 | |
| 
 | |
|   emitDeclarations(M, OS2);
 | |
| 
 | |
|   // As ptxas does not support forward references of globals, we need to first
 | |
|   // sort the list of module-level globals in def-use order. We visit each
 | |
|   // global variable in order, and ensure that we emit it *after* its dependent
 | |
|   // globals. We use a little extra memory maintaining both a set and a list to
 | |
|   // have fast searches while maintaining a strict ordering.
 | |
|   SmallVector<const GlobalVariable *, 8> Globals;
 | |
|   DenseSet<const GlobalVariable *> GVVisited;
 | |
|   DenseSet<const GlobalVariable *> GVVisiting;
 | |
| 
 | |
|   // Visit each global variable, in order
 | |
|   for (const GlobalVariable &I : M.globals())
 | |
|     VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
 | |
| 
 | |
|   assert(GVVisited.size() == M.getGlobalList().size() &&
 | |
|          "Missed a global variable");
 | |
|   assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
 | |
| 
 | |
|   // Print out module-level global variables in proper order
 | |
|   for (unsigned i = 0, e = Globals.size(); i != e; ++i)
 | |
|     printModuleLevelGV(Globals[i], OS2);
 | |
| 
 | |
|   OS2 << '\n';
 | |
| 
 | |
|   OutStreamer->EmitRawText(OS2.str());
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
 | |
|                                  const NVPTXSubtarget &STI) {
 | |
|   O << "//\n";
 | |
|   O << "// Generated by LLVM NVPTX Back-End\n";
 | |
|   O << "//\n";
 | |
|   O << "\n";
 | |
| 
 | |
|   unsigned PTXVersion = STI.getPTXVersion();
 | |
|   O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
 | |
| 
 | |
|   O << ".target ";
 | |
|   O << STI.getTargetName();
 | |
| 
 | |
|   const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
 | |
|   if (NTM.getDrvInterface() == NVPTX::NVCL)
 | |
|     O << ", texmode_independent";
 | |
| 
 | |
|   // FIXME: remove comment once debug info is properly supported.
 | |
|   if (MMI && MMI->hasDebugInfo())
 | |
|     O << "//, debug";
 | |
| 
 | |
|   O << "\n";
 | |
| 
 | |
|   O << ".address_size ";
 | |
|   if (NTM.is64Bit())
 | |
|     O << "64";
 | |
|   else
 | |
|     O << "32";
 | |
|   O << "\n";
 | |
| 
 | |
|   O << "\n";
 | |
| }
 | |
| 
 | |
| bool NVPTXAsmPrinter::doFinalization(Module &M) {
 | |
|   bool HasDebugInfo = MMI && MMI->hasDebugInfo();
 | |
| 
 | |
|   // If we did not emit any functions, then the global declarations have not
 | |
|   // yet been emitted.
 | |
|   if (!GlobalsEmitted) {
 | |
|     emitGlobals(M);
 | |
|     GlobalsEmitted = true;
 | |
|   }
 | |
| 
 | |
|   // XXX Temproarily remove global variables so that doFinalization() will not
 | |
|   // emit them again (global variables are emitted at beginning).
 | |
| 
 | |
|   Module::GlobalListType &global_list = M.getGlobalList();
 | |
|   int i, n = global_list.size();
 | |
|   GlobalVariable **gv_array = new GlobalVariable *[n];
 | |
| 
 | |
|   // first, back-up GlobalVariable in gv_array
 | |
|   i = 0;
 | |
|   for (Module::global_iterator I = global_list.begin(), E = global_list.end();
 | |
|        I != E; ++I)
 | |
|     gv_array[i++] = &*I;
 | |
| 
 | |
|   // second, empty global_list
 | |
|   while (!global_list.empty())
 | |
|     global_list.remove(global_list.begin());
 | |
| 
 | |
|   // call doFinalization
 | |
|   bool ret = AsmPrinter::doFinalization(M);
 | |
| 
 | |
|   // now we restore global variables
 | |
|   for (i = 0; i < n; i++)
 | |
|     global_list.insert(global_list.end(), gv_array[i]);
 | |
| 
 | |
|   clearAnnotationCache(&M);
 | |
| 
 | |
|   delete[] gv_array;
 | |
|   // FIXME: remove comment once debug info is properly supported.
 | |
|   // Close the last emitted section
 | |
|   if (HasDebugInfo)
 | |
|     OutStreamer->EmitRawText("//\t}");
 | |
| 
 | |
|   return ret;
 | |
| 
 | |
|   //bool Result = AsmPrinter::doFinalization(M);
 | |
|   // Instead of calling the parents doFinalization, we may
 | |
|   // clone parents doFinalization and customize here.
 | |
|   // Currently, we if NVISA out the EmitGlobals() in
 | |
|   // parent's doFinalization, which is too intrusive.
 | |
|   //
 | |
|   // Same for the doInitialization.
 | |
|   //return Result;
 | |
| }
 | |
| 
 | |
| // This function emits appropriate linkage directives for
 | |
| // functions and global variables.
 | |
| //
 | |
| // extern function declaration            -> .extern
 | |
| // extern function definition             -> .visible
 | |
| // external global variable with init     -> .visible
 | |
| // external without init                  -> .extern
 | |
| // appending                              -> not allowed, assert.
 | |
| // for any linkage other than
 | |
| // internal, private, linker_private,
 | |
| // linker_private_weak, linker_private_weak_def_auto,
 | |
| // we emit                                -> .weak.
 | |
| 
 | |
| void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
 | |
|                                            raw_ostream &O) {
 | |
|   if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
 | |
|     if (V->hasExternalLinkage()) {
 | |
|       if (isa<GlobalVariable>(V)) {
 | |
|         const GlobalVariable *GVar = cast<GlobalVariable>(V);
 | |
|         if (GVar) {
 | |
|           if (GVar->hasInitializer())
 | |
|             O << ".visible ";
 | |
|           else
 | |
|             O << ".extern ";
 | |
|         }
 | |
|       } else if (V->isDeclaration())
 | |
|         O << ".extern ";
 | |
|       else
 | |
|         O << ".visible ";
 | |
|     } else if (V->hasAppendingLinkage()) {
 | |
|       std::string msg;
 | |
|       msg.append("Error: ");
 | |
|       msg.append("Symbol ");
 | |
|       if (V->hasName())
 | |
|         msg.append(V->getName());
 | |
|       msg.append("has unsupported appending linkage type");
 | |
|       llvm_unreachable(msg.c_str());
 | |
|     } else if (!V->hasInternalLinkage() &&
 | |
|                !V->hasPrivateLinkage()) {
 | |
|       O << ".weak ";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
 | |
|                                          raw_ostream &O,
 | |
|                                          bool processDemoted) {
 | |
|   // Skip meta data
 | |
|   if (GVar->hasSection()) {
 | |
|     if (GVar->getSection() == "llvm.metadata")
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Skip LLVM intrinsic global variables
 | |
|   if (GVar->getName().startswith("llvm.") ||
 | |
|       GVar->getName().startswith("nvvm."))
 | |
|     return;
 | |
| 
 | |
|   const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|   // GlobalVariables are always constant pointers themselves.
 | |
|   PointerType *PTy = GVar->getType();
 | |
|   Type *ETy = GVar->getValueType();
 | |
| 
 | |
|   if (GVar->hasExternalLinkage()) {
 | |
|     if (GVar->hasInitializer())
 | |
|       O << ".visible ";
 | |
|     else
 | |
|       O << ".extern ";
 | |
|   } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
 | |
|              GVar->hasAvailableExternallyLinkage() ||
 | |
|              GVar->hasCommonLinkage()) {
 | |
|     O << ".weak ";
 | |
|   }
 | |
| 
 | |
|   if (isTexture(*GVar)) {
 | |
|     O << ".global .texref " << getTextureName(*GVar) << ";\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isSurface(*GVar)) {
 | |
|     O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (GVar->isDeclaration()) {
 | |
|     // (extern) declarations, no definition or initializer
 | |
|     // Currently the only known declaration is for an automatic __local
 | |
|     // (.shared) promoted to global.
 | |
|     emitPTXGlobalVariable(GVar, O);
 | |
|     O << ";\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isSampler(*GVar)) {
 | |
|     O << ".global .samplerref " << getSamplerName(*GVar);
 | |
| 
 | |
|     const Constant *Initializer = nullptr;
 | |
|     if (GVar->hasInitializer())
 | |
|       Initializer = GVar->getInitializer();
 | |
|     const ConstantInt *CI = nullptr;
 | |
|     if (Initializer)
 | |
|       CI = dyn_cast<ConstantInt>(Initializer);
 | |
|     if (CI) {
 | |
|       unsigned sample = CI->getZExtValue();
 | |
| 
 | |
|       O << " = { ";
 | |
| 
 | |
|       for (int i = 0,
 | |
|                addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
 | |
|            i < 3; i++) {
 | |
|         O << "addr_mode_" << i << " = ";
 | |
|         switch (addr) {
 | |
|         case 0:
 | |
|           O << "wrap";
 | |
|           break;
 | |
|         case 1:
 | |
|           O << "clamp_to_border";
 | |
|           break;
 | |
|         case 2:
 | |
|           O << "clamp_to_edge";
 | |
|           break;
 | |
|         case 3:
 | |
|           O << "wrap";
 | |
|           break;
 | |
|         case 4:
 | |
|           O << "mirror";
 | |
|           break;
 | |
|         }
 | |
|         O << ", ";
 | |
|       }
 | |
|       O << "filter_mode = ";
 | |
|       switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
 | |
|       case 0:
 | |
|         O << "nearest";
 | |
|         break;
 | |
|       case 1:
 | |
|         O << "linear";
 | |
|         break;
 | |
|       case 2:
 | |
|         llvm_unreachable("Anisotropic filtering is not supported");
 | |
|       default:
 | |
|         O << "nearest";
 | |
|         break;
 | |
|       }
 | |
|       if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
 | |
|         O << ", force_unnormalized_coords = 1";
 | |
|       }
 | |
|       O << " }";
 | |
|     }
 | |
| 
 | |
|     O << ";\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (GVar->hasPrivateLinkage()) {
 | |
|     if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
 | |
|       return;
 | |
| 
 | |
|     // FIXME - need better way (e.g. Metadata) to avoid generating this global
 | |
|     if (strncmp(GVar->getName().data(), "filename", 8) == 0)
 | |
|       return;
 | |
|     if (GVar->use_empty())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   const Function *demotedFunc = nullptr;
 | |
|   if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
 | |
|     O << "// " << GVar->getName() << " has been demoted\n";
 | |
|     if (localDecls.find(demotedFunc) != localDecls.end())
 | |
|       localDecls[demotedFunc].push_back(GVar);
 | |
|     else {
 | |
|       std::vector<const GlobalVariable *> temp;
 | |
|       temp.push_back(GVar);
 | |
|       localDecls[demotedFunc] = temp;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   O << ".";
 | |
|   emitPTXAddressSpace(PTy->getAddressSpace(), O);
 | |
| 
 | |
|   if (isManaged(*GVar)) {
 | |
|     O << " .attribute(.managed)";
 | |
|   }
 | |
| 
 | |
|   if (GVar->getAlignment() == 0)
 | |
|     O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
 | |
|   else
 | |
|     O << " .align " << GVar->getAlignment();
 | |
| 
 | |
|   if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
 | |
|       (ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
 | |
|     O << " .";
 | |
|     // Special case: ABI requires that we use .u8 for predicates
 | |
|     if (ETy->isIntegerTy(1))
 | |
|       O << "u8";
 | |
|     else
 | |
|       O << getPTXFundamentalTypeStr(ETy, false);
 | |
|     O << " ";
 | |
|     getSymbol(GVar)->print(O, MAI);
 | |
| 
 | |
|     // Ptx allows variable initilization only for constant and global state
 | |
|     // spaces.
 | |
|     if (GVar->hasInitializer()) {
 | |
|       if ((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
 | |
|           (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) {
 | |
|         const Constant *Initializer = GVar->getInitializer();
 | |
|         // 'undef' is treated as there is no value specified.
 | |
|         if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
 | |
|           O << " = ";
 | |
|           printScalarConstant(Initializer, O);
 | |
|         }
 | |
|       } else {
 | |
|         // The frontend adds zero-initializer to device and constant variables
 | |
|         // that don't have an initial value, and UndefValue to shared
 | |
|         // variables, so skip warning for this case.
 | |
|         if (!GVar->getInitializer()->isNullValue() &&
 | |
|             !isa<UndefValue>(GVar->getInitializer())) {
 | |
|           report_fatal_error("initial value of '" + GVar->getName() +
 | |
|                              "' is not allowed in addrspace(" +
 | |
|                              Twine(PTy->getAddressSpace()) + ")");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     unsigned int ElementSize = 0;
 | |
| 
 | |
|     // Although PTX has direct support for struct type and array type and
 | |
|     // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
 | |
|     // targets that support these high level field accesses. Structs, arrays
 | |
|     // and vectors are lowered into arrays of bytes.
 | |
|     switch (ETy->getTypeID()) {
 | |
|     case Type::IntegerTyID: // Integers larger than 64 bits
 | |
|     case Type::StructTyID:
 | |
|     case Type::ArrayTyID:
 | |
|     case Type::VectorTyID:
 | |
|       ElementSize = DL.getTypeStoreSize(ETy);
 | |
|       // Ptx allows variable initilization only for constant and
 | |
|       // global state spaces.
 | |
|       if (((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
 | |
|            (PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
 | |
|           GVar->hasInitializer()) {
 | |
|         const Constant *Initializer = GVar->getInitializer();
 | |
|         if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
 | |
|           AggBuffer aggBuffer(ElementSize, O, *this);
 | |
|           bufferAggregateConstant(Initializer, &aggBuffer);
 | |
|           if (aggBuffer.numSymbols) {
 | |
|             if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
 | |
|               O << " .u64 ";
 | |
|               getSymbol(GVar)->print(O, MAI);
 | |
|               O << "[";
 | |
|               O << ElementSize / 8;
 | |
|             } else {
 | |
|               O << " .u32 ";
 | |
|               getSymbol(GVar)->print(O, MAI);
 | |
|               O << "[";
 | |
|               O << ElementSize / 4;
 | |
|             }
 | |
|             O << "]";
 | |
|           } else {
 | |
|             O << " .b8 ";
 | |
|             getSymbol(GVar)->print(O, MAI);
 | |
|             O << "[";
 | |
|             O << ElementSize;
 | |
|             O << "]";
 | |
|           }
 | |
|           O << " = {";
 | |
|           aggBuffer.print();
 | |
|           O << "}";
 | |
|         } else {
 | |
|           O << " .b8 ";
 | |
|           getSymbol(GVar)->print(O, MAI);
 | |
|           if (ElementSize) {
 | |
|             O << "[";
 | |
|             O << ElementSize;
 | |
|             O << "]";
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         O << " .b8 ";
 | |
|         getSymbol(GVar)->print(O, MAI);
 | |
|         if (ElementSize) {
 | |
|           O << "[";
 | |
|           O << ElementSize;
 | |
|           O << "]";
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("type not supported yet");
 | |
|     }
 | |
|   }
 | |
|   O << ";\n";
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
 | |
|   if (localDecls.find(f) == localDecls.end())
 | |
|     return;
 | |
| 
 | |
|   std::vector<const GlobalVariable *> &gvars = localDecls[f];
 | |
| 
 | |
|   for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
 | |
|     O << "\t// demoted variable\n\t";
 | |
|     printModuleLevelGV(gvars[i], O, true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
 | |
|                                           raw_ostream &O) const {
 | |
|   switch (AddressSpace) {
 | |
|   case ADDRESS_SPACE_LOCAL:
 | |
|     O << "local";
 | |
|     break;
 | |
|   case ADDRESS_SPACE_GLOBAL:
 | |
|     O << "global";
 | |
|     break;
 | |
|   case ADDRESS_SPACE_CONST:
 | |
|     O << "const";
 | |
|     break;
 | |
|   case ADDRESS_SPACE_SHARED:
 | |
|     O << "shared";
 | |
|     break;
 | |
|   default:
 | |
|     report_fatal_error("Bad address space found while emitting PTX: " +
 | |
|                        llvm::Twine(AddressSpace));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string
 | |
| NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("unexpected type");
 | |
|     break;
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | |
|     if (NumBits == 1)
 | |
|       return "pred";
 | |
|     else if (NumBits <= 64) {
 | |
|       std::string name = "u";
 | |
|       return name + utostr(NumBits);
 | |
|     } else {
 | |
|       llvm_unreachable("Integer too large");
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::HalfTyID:
 | |
|     // fp16 is stored as .b16 for compatibility with pre-sm_53 PTX assembly.
 | |
|     return "b16";
 | |
|   case Type::FloatTyID:
 | |
|     return "f32";
 | |
|   case Type::DoubleTyID:
 | |
|     return "f64";
 | |
|   case Type::PointerTyID:
 | |
|     if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
 | |
|       if (useB4PTR)
 | |
|         return "b64";
 | |
|       else
 | |
|         return "u64";
 | |
|     else if (useB4PTR)
 | |
|       return "b32";
 | |
|     else
 | |
|       return "u32";
 | |
|   }
 | |
|   llvm_unreachable("unexpected type");
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
 | |
|                                             raw_ostream &O) {
 | |
|   const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|   // GlobalVariables are always constant pointers themselves.
 | |
|   Type *ETy = GVar->getValueType();
 | |
| 
 | |
|   O << ".";
 | |
|   emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
 | |
|   if (GVar->getAlignment() == 0)
 | |
|     O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
 | |
|   else
 | |
|     O << " .align " << GVar->getAlignment();
 | |
| 
 | |
|   // Special case for i128
 | |
|   if (ETy->isIntegerTy(128)) {
 | |
|     O << " .b8 ";
 | |
|     getSymbol(GVar)->print(O, MAI);
 | |
|     O << "[16]";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
 | |
|     O << " .";
 | |
|     O << getPTXFundamentalTypeStr(ETy);
 | |
|     O << " ";
 | |
|     getSymbol(GVar)->print(O, MAI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   int64_t ElementSize = 0;
 | |
| 
 | |
|   // Although PTX has direct support for struct type and array type and LLVM IR
 | |
|   // is very similar to PTX, the LLVM CodeGen does not support for targets that
 | |
|   // support these high level field accesses. Structs and arrays are lowered
 | |
|   // into arrays of bytes.
 | |
|   switch (ETy->getTypeID()) {
 | |
|   case Type::StructTyID:
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::VectorTyID:
 | |
|     ElementSize = DL.getTypeStoreSize(ETy);
 | |
|     O << " .b8 ";
 | |
|     getSymbol(GVar)->print(O, MAI);
 | |
|     O << "[";
 | |
|     if (ElementSize) {
 | |
|       O << ElementSize;
 | |
|     }
 | |
|     O << "]";
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("type not supported yet");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
 | |
|   if (Ty->isSingleValueType())
 | |
|     return DL.getPrefTypeAlignment(Ty);
 | |
| 
 | |
|   auto *ATy = dyn_cast<ArrayType>(Ty);
 | |
|   if (ATy)
 | |
|     return getOpenCLAlignment(DL, ATy->getElementType());
 | |
| 
 | |
|   auto *STy = dyn_cast<StructType>(Ty);
 | |
|   if (STy) {
 | |
|     unsigned int alignStruct = 1;
 | |
|     // Go through each element of the struct and find the
 | |
|     // largest alignment.
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
 | |
|       Type *ETy = STy->getElementType(i);
 | |
|       unsigned int align = getOpenCLAlignment(DL, ETy);
 | |
|       if (align > alignStruct)
 | |
|         alignStruct = align;
 | |
|     }
 | |
|     return alignStruct;
 | |
|   }
 | |
| 
 | |
|   auto *FTy = dyn_cast<FunctionType>(Ty);
 | |
|   if (FTy)
 | |
|     return DL.getPointerPrefAlignment();
 | |
|   return DL.getPrefTypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
 | |
|                                      int paramIndex, raw_ostream &O) {
 | |
|   getSymbol(I->getParent())->print(O, MAI);
 | |
|   O << "_param_" << paramIndex;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
 | |
|   const DataLayout &DL = getDataLayout();
 | |
|   const AttributeList &PAL = F->getAttributes();
 | |
|   const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
 | |
|   Function::const_arg_iterator I, E;
 | |
|   unsigned paramIndex = 0;
 | |
|   bool first = true;
 | |
|   bool isKernelFunc = isKernelFunction(*F);
 | |
|   bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
 | |
|   MVT thePointerTy = TLI->getPointerTy(DL);
 | |
| 
 | |
|   if (F->arg_empty()) {
 | |
|     O << "()\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   O << "(\n";
 | |
| 
 | |
|   for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
 | |
|     Type *Ty = I->getType();
 | |
| 
 | |
|     if (!first)
 | |
|       O << ",\n";
 | |
| 
 | |
|     first = false;
 | |
| 
 | |
|     // Handle image/sampler parameters
 | |
|     if (isKernelFunction(*F)) {
 | |
|       if (isSampler(*I) || isImage(*I)) {
 | |
|         if (isImage(*I)) {
 | |
|           std::string sname = I->getName();
 | |
|           if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
 | |
|             if (nvptxSubtarget->hasImageHandles())
 | |
|               O << "\t.param .u64 .ptr .surfref ";
 | |
|             else
 | |
|               O << "\t.param .surfref ";
 | |
|             CurrentFnSym->print(O, MAI);
 | |
|             O << "_param_" << paramIndex;
 | |
|           }
 | |
|           else { // Default image is read_only
 | |
|             if (nvptxSubtarget->hasImageHandles())
 | |
|               O << "\t.param .u64 .ptr .texref ";
 | |
|             else
 | |
|               O << "\t.param .texref ";
 | |
|             CurrentFnSym->print(O, MAI);
 | |
|             O << "_param_" << paramIndex;
 | |
|           }
 | |
|         } else {
 | |
|           if (nvptxSubtarget->hasImageHandles())
 | |
|             O << "\t.param .u64 .ptr .samplerref ";
 | |
|           else
 | |
|             O << "\t.param .samplerref ";
 | |
|           CurrentFnSym->print(O, MAI);
 | |
|           O << "_param_" << paramIndex;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PAL.hasParamAttribute(paramIndex, Attribute::ByVal)) {
 | |
|       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
 | |
|         // Just print .param .align <a> .b8 .param[size];
 | |
|         // <a> = PAL.getparamalignment
 | |
|         // size = typeallocsize of element type
 | |
|         unsigned align = PAL.getParamAlignment(paramIndex);
 | |
|         if (align == 0)
 | |
|           align = DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|         unsigned sz = DL.getTypeAllocSize(Ty);
 | |
|         O << "\t.param .align " << align << " .b8 ";
 | |
|         printParamName(I, paramIndex, O);
 | |
|         O << "[" << sz << "]";
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
|       // Just a scalar
 | |
|       auto *PTy = dyn_cast<PointerType>(Ty);
 | |
|       if (isKernelFunc) {
 | |
|         if (PTy) {
 | |
|           // Special handling for pointer arguments to kernel
 | |
|           O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
 | |
| 
 | |
|           if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
 | |
|               NVPTX::CUDA) {
 | |
|             Type *ETy = PTy->getElementType();
 | |
|             int addrSpace = PTy->getAddressSpace();
 | |
|             switch (addrSpace) {
 | |
|             default:
 | |
|               O << ".ptr ";
 | |
|               break;
 | |
|             case ADDRESS_SPACE_CONST:
 | |
|               O << ".ptr .const ";
 | |
|               break;
 | |
|             case ADDRESS_SPACE_SHARED:
 | |
|               O << ".ptr .shared ";
 | |
|               break;
 | |
|             case ADDRESS_SPACE_GLOBAL:
 | |
|               O << ".ptr .global ";
 | |
|               break;
 | |
|             }
 | |
|             O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
 | |
|           }
 | |
|           printParamName(I, paramIndex, O);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // non-pointer scalar to kernel func
 | |
|         O << "\t.param .";
 | |
|         // Special case: predicate operands become .u8 types
 | |
|         if (Ty->isIntegerTy(1))
 | |
|           O << "u8";
 | |
|         else
 | |
|           O << getPTXFundamentalTypeStr(Ty);
 | |
|         O << " ";
 | |
|         printParamName(I, paramIndex, O);
 | |
|         continue;
 | |
|       }
 | |
|       // Non-kernel function, just print .param .b<size> for ABI
 | |
|       // and .reg .b<size> for non-ABI
 | |
|       unsigned sz = 0;
 | |
|       if (isa<IntegerType>(Ty)) {
 | |
|         sz = cast<IntegerType>(Ty)->getBitWidth();
 | |
|         if (sz < 32)
 | |
|           sz = 32;
 | |
|       } else if (isa<PointerType>(Ty))
 | |
|         sz = thePointerTy.getSizeInBits();
 | |
|       else if (Ty->isHalfTy())
 | |
|         // PTX ABI requires all scalar parameters to be at least 32
 | |
|         // bits in size.  fp16 normally uses .b16 as its storage type
 | |
|         // in PTX, so its size must be adjusted here, too.
 | |
|         sz = 32;
 | |
|       else
 | |
|         sz = Ty->getPrimitiveSizeInBits();
 | |
|       if (isABI)
 | |
|         O << "\t.param .b" << sz << " ";
 | |
|       else
 | |
|         O << "\t.reg .b" << sz << " ";
 | |
|       printParamName(I, paramIndex, O);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // param has byVal attribute. So should be a pointer
 | |
|     auto *PTy = dyn_cast<PointerType>(Ty);
 | |
|     assert(PTy && "Param with byval attribute should be a pointer type");
 | |
|     Type *ETy = PTy->getElementType();
 | |
| 
 | |
|     if (isABI || isKernelFunc) {
 | |
|       // Just print .param .align <a> .b8 .param[size];
 | |
|       // <a> = PAL.getparamalignment
 | |
|       // size = typeallocsize of element type
 | |
|       unsigned align = PAL.getParamAlignment(paramIndex);
 | |
|       if (align == 0)
 | |
|         align = DL.getABITypeAlignment(ETy);
 | |
|       // Work around a bug in ptxas. When PTX code takes address of
 | |
|       // byval parameter with alignment < 4, ptxas generates code to
 | |
|       // spill argument into memory. Alas on sm_50+ ptxas generates
 | |
|       // SASS code that fails with misaligned access. To work around
 | |
|       // the problem, make sure that we align byval parameters by at
 | |
|       // least 4. Matching change must be made in LowerCall() where we
 | |
|       // prepare parameters for the call.
 | |
|       //
 | |
|       // TODO: this will need to be undone when we get to support multi-TU
 | |
|       // device-side compilation as it breaks ABI compatibility with nvcc.
 | |
|       // Hopefully ptxas bug is fixed by then.
 | |
|       if (!isKernelFunc && align < 4)
 | |
|         align = 4;
 | |
|       unsigned sz = DL.getTypeAllocSize(ETy);
 | |
|       O << "\t.param .align " << align << " .b8 ";
 | |
|       printParamName(I, paramIndex, O);
 | |
|       O << "[" << sz << "]";
 | |
|       continue;
 | |
|     } else {
 | |
|       // Split the ETy into constituent parts and
 | |
|       // print .param .b<size> <name> for each part.
 | |
|       // Further, if a part is vector, print the above for
 | |
|       // each vector element.
 | |
|       SmallVector<EVT, 16> vtparts;
 | |
|       ComputeValueVTs(*TLI, DL, ETy, vtparts);
 | |
|       for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
 | |
|         unsigned elems = 1;
 | |
|         EVT elemtype = vtparts[i];
 | |
|         if (vtparts[i].isVector()) {
 | |
|           elems = vtparts[i].getVectorNumElements();
 | |
|           elemtype = vtparts[i].getVectorElementType();
 | |
|         }
 | |
| 
 | |
|         for (unsigned j = 0, je = elems; j != je; ++j) {
 | |
|           unsigned sz = elemtype.getSizeInBits();
 | |
|           if (elemtype.isInteger() && (sz < 32))
 | |
|             sz = 32;
 | |
|           O << "\t.reg .b" << sz << " ";
 | |
|           printParamName(I, paramIndex, O);
 | |
|           if (j < je - 1)
 | |
|             O << ",\n";
 | |
|           ++paramIndex;
 | |
|         }
 | |
|         if (i < e - 1)
 | |
|           O << ",\n";
 | |
|       }
 | |
|       --paramIndex;
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   O << "\n)\n";
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
 | |
|                                             raw_ostream &O) {
 | |
|   const Function &F = MF.getFunction();
 | |
|   emitFunctionParamList(&F, O);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
 | |
|     const MachineFunction &MF) {
 | |
|   SmallString<128> Str;
 | |
|   raw_svector_ostream O(Str);
 | |
| 
 | |
|   // Map the global virtual register number to a register class specific
 | |
|   // virtual register number starting from 1 with that class.
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   //unsigned numRegClasses = TRI->getNumRegClasses();
 | |
| 
 | |
|   // Emit the Fake Stack Object
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   int NumBytes = (int) MFI.getStackSize();
 | |
|   if (NumBytes) {
 | |
|     O << "\t.local .align " << MFI.getMaxAlignment() << " .b8 \t" << DEPOTNAME
 | |
|       << getFunctionNumber() << "[" << NumBytes << "];\n";
 | |
|     if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
 | |
|       O << "\t.reg .b64 \t%SP;\n";
 | |
|       O << "\t.reg .b64 \t%SPL;\n";
 | |
|     } else {
 | |
|       O << "\t.reg .b32 \t%SP;\n";
 | |
|       O << "\t.reg .b32 \t%SPL;\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Go through all virtual registers to establish the mapping between the
 | |
|   // global virtual
 | |
|   // register number and the per class virtual register number.
 | |
|   // We use the per class virtual register number in the ptx output.
 | |
|   unsigned int numVRs = MRI->getNumVirtRegs();
 | |
|   for (unsigned i = 0; i < numVRs; i++) {
 | |
|     unsigned int vr = TRI->index2VirtReg(i);
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(vr);
 | |
|     DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
 | |
|     int n = regmap.size();
 | |
|     regmap.insert(std::make_pair(vr, n + 1));
 | |
|   }
 | |
| 
 | |
|   // Emit register declarations
 | |
|   // @TODO: Extract out the real register usage
 | |
|   // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
 | |
|   // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
 | |
|   // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
 | |
|   // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
 | |
|   // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
 | |
|   // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
 | |
|   // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
 | |
| 
 | |
|   // Emit declaration of the virtual registers or 'physical' registers for
 | |
|   // each register class
 | |
|   for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
 | |
|     const TargetRegisterClass *RC = TRI->getRegClass(i);
 | |
|     DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
 | |
|     std::string rcname = getNVPTXRegClassName(RC);
 | |
|     std::string rcStr = getNVPTXRegClassStr(RC);
 | |
|     int n = regmap.size();
 | |
| 
 | |
|     // Only declare those registers that may be used.
 | |
|     if (n) {
 | |
|        O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
 | |
|          << ">;\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OutStreamer->EmitRawText(O.str());
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
 | |
|   APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
 | |
|   bool ignored;
 | |
|   unsigned int numHex;
 | |
|   const char *lead;
 | |
| 
 | |
|   if (Fp->getType()->getTypeID() == Type::FloatTyID) {
 | |
|     numHex = 8;
 | |
|     lead = "0f";
 | |
|     APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
 | |
|   } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
 | |
|     numHex = 16;
 | |
|     lead = "0d";
 | |
|     APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
 | |
|   } else
 | |
|     llvm_unreachable("unsupported fp type");
 | |
| 
 | |
|   APInt API = APF.bitcastToAPInt();
 | |
|   O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
 | |
|     O << CI->getValue();
 | |
|     return;
 | |
|   }
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
 | |
|     printFPConstant(CFP, O);
 | |
|     return;
 | |
|   }
 | |
|   if (isa<ConstantPointerNull>(CPV)) {
 | |
|     O << "0";
 | |
|     return;
 | |
|   }
 | |
|   if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
 | |
|     bool IsNonGenericPointer = false;
 | |
|     if (GVar->getType()->getAddressSpace() != 0) {
 | |
|       IsNonGenericPointer = true;
 | |
|     }
 | |
|     if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
 | |
|       O << "generic(";
 | |
|       getSymbol(GVar)->print(O, MAI);
 | |
|       O << ")";
 | |
|     } else {
 | |
|       getSymbol(GVar)->print(O, MAI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
 | |
|     const Value *v = Cexpr->stripPointerCasts();
 | |
|     PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
 | |
|     bool IsNonGenericPointer = false;
 | |
|     if (PTy && PTy->getAddressSpace() != 0) {
 | |
|       IsNonGenericPointer = true;
 | |
|     }
 | |
|     if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
 | |
|       if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
 | |
|         O << "generic(";
 | |
|         getSymbol(GVar)->print(O, MAI);
 | |
|         O << ")";
 | |
|       } else {
 | |
|         getSymbol(GVar)->print(O, MAI);
 | |
|       }
 | |
|       return;
 | |
|     } else {
 | |
|       lowerConstant(CPV)->print(O, MAI);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Not scalar type found in printScalarConstant()");
 | |
| }
 | |
| 
 | |
| // These utility functions assure we get the right sequence of bytes for a given
 | |
| // type even for big-endian machines
 | |
| template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
 | |
|   int64_t vp = (int64_t)val;
 | |
|   for (unsigned i = 0; i < sizeof(T); ++i) {
 | |
|     p[i] = (unsigned char)vp;
 | |
|     vp >>= 8;
 | |
|   }
 | |
| }
 | |
| static void ConvertFloatToBytes(unsigned char *p, float val) {
 | |
|   int32_t *vp = (int32_t *)&val;
 | |
|   for (unsigned i = 0; i < sizeof(int32_t); ++i) {
 | |
|     p[i] = (unsigned char)*vp;
 | |
|     *vp >>= 8;
 | |
|   }
 | |
| }
 | |
| static void ConvertDoubleToBytes(unsigned char *p, double val) {
 | |
|   int64_t *vp = (int64_t *)&val;
 | |
|   for (unsigned i = 0; i < sizeof(int64_t); ++i) {
 | |
|     p[i] = (unsigned char)*vp;
 | |
|     *vp >>= 8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
 | |
|                                    AggBuffer *aggBuffer) {
 | |
|   const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|   if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
 | |
|     int s = DL.getTypeAllocSize(CPV->getType());
 | |
|     if (s < Bytes)
 | |
|       s = Bytes;
 | |
|     aggBuffer->addZeros(s);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned char ptr[8];
 | |
|   switch (CPV->getType()->getTypeID()) {
 | |
| 
 | |
|   case Type::IntegerTyID: {
 | |
|     Type *ETy = CPV->getType();
 | |
|     if (ETy == Type::getInt8Ty(CPV->getContext())) {
 | |
|       unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
 | |
|       ConvertIntToBytes<>(ptr, c);
 | |
|       aggBuffer->addBytes(ptr, 1, Bytes);
 | |
|     } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
 | |
|       short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
 | |
|       ConvertIntToBytes<>(ptr, int16);
 | |
|       aggBuffer->addBytes(ptr, 2, Bytes);
 | |
|     } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
 | |
|       if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
 | |
|         int int32 = (int)(constInt->getZExtValue());
 | |
|         ConvertIntToBytes<>(ptr, int32);
 | |
|         aggBuffer->addBytes(ptr, 4, Bytes);
 | |
|         break;
 | |
|       } else if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
 | |
|         if (const auto *constInt = dyn_cast_or_null<ConstantInt>(
 | |
|                 ConstantFoldConstant(Cexpr, DL))) {
 | |
|           int int32 = (int)(constInt->getZExtValue());
 | |
|           ConvertIntToBytes<>(ptr, int32);
 | |
|           aggBuffer->addBytes(ptr, 4, Bytes);
 | |
|           break;
 | |
|         }
 | |
|         if (Cexpr->getOpcode() == Instruction::PtrToInt) {
 | |
|           Value *v = Cexpr->getOperand(0)->stripPointerCasts();
 | |
|           aggBuffer->addSymbol(v, Cexpr->getOperand(0));
 | |
|           aggBuffer->addZeros(4);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       llvm_unreachable("unsupported integer const type");
 | |
|     } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
 | |
|       if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
 | |
|         long long int64 = (long long)(constInt->getZExtValue());
 | |
|         ConvertIntToBytes<>(ptr, int64);
 | |
|         aggBuffer->addBytes(ptr, 8, Bytes);
 | |
|         break;
 | |
|       } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
 | |
|         if (const auto *constInt = dyn_cast_or_null<ConstantInt>(
 | |
|                 ConstantFoldConstant(Cexpr, DL))) {
 | |
|           long long int64 = (long long)(constInt->getZExtValue());
 | |
|           ConvertIntToBytes<>(ptr, int64);
 | |
|           aggBuffer->addBytes(ptr, 8, Bytes);
 | |
|           break;
 | |
|         }
 | |
|         if (Cexpr->getOpcode() == Instruction::PtrToInt) {
 | |
|           Value *v = Cexpr->getOperand(0)->stripPointerCasts();
 | |
|           aggBuffer->addSymbol(v, Cexpr->getOperand(0));
 | |
|           aggBuffer->addZeros(8);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       llvm_unreachable("unsupported integer const type");
 | |
|     } else
 | |
|       llvm_unreachable("unsupported integer const type");
 | |
|     break;
 | |
|   }
 | |
|   case Type::HalfTyID:
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID: {
 | |
|     const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
 | |
|     Type *Ty = CFP->getType();
 | |
|     if (Ty == Type::getHalfTy(CPV->getContext())) {
 | |
|       APInt API = CFP->getValueAPF().bitcastToAPInt();
 | |
|       uint16_t float16 = API.getLoBits(16).getZExtValue();
 | |
|       ConvertIntToBytes<>(ptr, float16);
 | |
|       aggBuffer->addBytes(ptr, 2, Bytes);
 | |
|     } else if (Ty == Type::getFloatTy(CPV->getContext())) {
 | |
|       float float32 = (float) CFP->getValueAPF().convertToFloat();
 | |
|       ConvertFloatToBytes(ptr, float32);
 | |
|       aggBuffer->addBytes(ptr, 4, Bytes);
 | |
|     } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
 | |
|       double float64 = CFP->getValueAPF().convertToDouble();
 | |
|       ConvertDoubleToBytes(ptr, float64);
 | |
|       aggBuffer->addBytes(ptr, 8, Bytes);
 | |
|     } else {
 | |
|       llvm_unreachable("unsupported fp const type");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
 | |
|       aggBuffer->addSymbol(GVar, GVar);
 | |
|     } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
 | |
|       const Value *v = Cexpr->stripPointerCasts();
 | |
|       aggBuffer->addSymbol(v, Cexpr);
 | |
|     }
 | |
|     unsigned int s = DL.getTypeAllocSize(CPV->getType());
 | |
|     aggBuffer->addZeros(s);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::VectorTyID:
 | |
|   case Type::StructTyID: {
 | |
|     if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
 | |
|       int ElementSize = DL.getTypeAllocSize(CPV->getType());
 | |
|       bufferAggregateConstant(CPV, aggBuffer);
 | |
|       if (Bytes > ElementSize)
 | |
|         aggBuffer->addZeros(Bytes - ElementSize);
 | |
|     } else if (isa<ConstantAggregateZero>(CPV))
 | |
|       aggBuffer->addZeros(Bytes);
 | |
|     else
 | |
|       llvm_unreachable("Unexpected Constant type");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("unsupported type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
 | |
|                                               AggBuffer *aggBuffer) {
 | |
|   const DataLayout &DL = getDataLayout();
 | |
|   int Bytes;
 | |
| 
 | |
|   // Integers of arbitrary width
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
 | |
|     APInt Val = CI->getValue();
 | |
|     for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) {
 | |
|       uint8_t Byte = Val.getLoBits(8).getZExtValue();
 | |
|       aggBuffer->addBytes(&Byte, 1, 1);
 | |
|       Val.lshrInPlace(8);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Old constants
 | |
|   if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
 | |
|     if (CPV->getNumOperands())
 | |
|       for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
 | |
|         bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantDataSequential *CDS =
 | |
|           dyn_cast<ConstantDataSequential>(CPV)) {
 | |
|     if (CDS->getNumElements())
 | |
|       for (unsigned i = 0; i < CDS->getNumElements(); ++i)
 | |
|         bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
 | |
|                      aggBuffer);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantStruct>(CPV)) {
 | |
|     if (CPV->getNumOperands()) {
 | |
|       StructType *ST = cast<StructType>(CPV->getType());
 | |
|       for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
 | |
|         if (i == (e - 1))
 | |
|           Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
 | |
|                   DL.getTypeAllocSize(ST) -
 | |
|                   DL.getStructLayout(ST)->getElementOffset(i);
 | |
|         else
 | |
|           Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
 | |
|                   DL.getStructLayout(ST)->getElementOffset(i);
 | |
|         bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   llvm_unreachable("unsupported constant type in printAggregateConstant()");
 | |
| }
 | |
| 
 | |
| /// lowerConstantForGV - Return an MCExpr for the given Constant.  This is mostly
 | |
| /// a copy from AsmPrinter::lowerConstant, except customized to only handle
 | |
| /// expressions that are representable in PTX and create
 | |
| /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
 | |
| const MCExpr *
 | |
| NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
 | |
|   MCContext &Ctx = OutContext;
 | |
| 
 | |
|   if (CV->isNullValue() || isa<UndefValue>(CV))
 | |
|     return MCConstantExpr::create(0, Ctx);
 | |
| 
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
 | |
|     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
 | |
| 
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
 | |
|     const MCSymbolRefExpr *Expr =
 | |
|       MCSymbolRefExpr::create(getSymbol(GV), Ctx);
 | |
|     if (ProcessingGeneric) {
 | |
|       return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
 | |
|     } else {
 | |
|       return Expr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
 | |
|   if (!CE) {
 | |
|     llvm_unreachable("Unknown constant value to lower!");
 | |
|   }
 | |
| 
 | |
|   switch (CE->getOpcode()) {
 | |
|   default:
 | |
|     // If the code isn't optimized, there may be outstanding folding
 | |
|     // opportunities. Attempt to fold the expression using DataLayout as a
 | |
|     // last resort before giving up.
 | |
|     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
 | |
|       if (C && C != CE)
 | |
|         return lowerConstantForGV(C, ProcessingGeneric);
 | |
| 
 | |
|     // Otherwise report the problem to the user.
 | |
|     {
 | |
|       std::string S;
 | |
|       raw_string_ostream OS(S);
 | |
|       OS << "Unsupported expression in static initializer: ";
 | |
|       CE->printAsOperand(OS, /*PrintType=*/false,
 | |
|                      !MF ? nullptr : MF->getFunction().getParent());
 | |
|       report_fatal_error(OS.str());
 | |
|     }
 | |
| 
 | |
|   case Instruction::AddrSpaceCast: {
 | |
|     // Strip the addrspacecast and pass along the operand
 | |
|     PointerType *DstTy = cast<PointerType>(CE->getType());
 | |
|     if (DstTy->getAddressSpace() == 0) {
 | |
|       return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
 | |
|     }
 | |
|     std::string S;
 | |
|     raw_string_ostream OS(S);
 | |
|     OS << "Unsupported expression in static initializer: ";
 | |
|     CE->printAsOperand(OS, /*PrintType=*/ false,
 | |
|                        !MF ? nullptr : MF->getFunction().getParent());
 | |
|     report_fatal_error(OS.str());
 | |
|   }
 | |
| 
 | |
|   case Instruction::GetElementPtr: {
 | |
|     const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|     // Generate a symbolic expression for the byte address
 | |
|     APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
 | |
|     cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
 | |
| 
 | |
|     const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
 | |
|                                             ProcessingGeneric);
 | |
|     if (!OffsetAI)
 | |
|       return Base;
 | |
| 
 | |
|     int64_t Offset = OffsetAI.getSExtValue();
 | |
|     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
 | |
|                                    Ctx);
 | |
|   }
 | |
| 
 | |
|   case Instruction::Trunc:
 | |
|     // We emit the value and depend on the assembler to truncate the generated
 | |
|     // expression properly.  This is important for differences between
 | |
|     // blockaddress labels.  Since the two labels are in the same function, it
 | |
|     // is reasonable to treat their delta as a 32-bit value.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Instruction::BitCast:
 | |
|     return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
 | |
| 
 | |
|   case Instruction::IntToPtr: {
 | |
|     const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|     // Handle casts to pointers by changing them into casts to the appropriate
 | |
|     // integer type.  This promotes constant folding and simplifies this code.
 | |
|     Constant *Op = CE->getOperand(0);
 | |
|     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
 | |
|                                       false/*ZExt*/);
 | |
|     return lowerConstantForGV(Op, ProcessingGeneric);
 | |
|   }
 | |
| 
 | |
|   case Instruction::PtrToInt: {
 | |
|     const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|     // Support only foldable casts to/from pointers that can be eliminated by
 | |
|     // changing the pointer to the appropriately sized integer type.
 | |
|     Constant *Op = CE->getOperand(0);
 | |
|     Type *Ty = CE->getType();
 | |
| 
 | |
|     const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
 | |
| 
 | |
|     // We can emit the pointer value into this slot if the slot is an
 | |
|     // integer slot equal to the size of the pointer.
 | |
|     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
 | |
|       return OpExpr;
 | |
| 
 | |
|     // Otherwise the pointer is smaller than the resultant integer, mask off
 | |
|     // the high bits so we are sure to get a proper truncation if the input is
 | |
|     // a constant expr.
 | |
|     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
 | |
|     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
 | |
|     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
 | |
|   }
 | |
| 
 | |
|   // The MC library also has a right-shift operator, but it isn't consistently
 | |
|   // signed or unsigned between different targets.
 | |
|   case Instruction::Add: {
 | |
|     const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
 | |
|     const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
 | |
|     switch (CE->getOpcode()) {
 | |
|     default: llvm_unreachable("Unknown binary operator constant cast expr");
 | |
|     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Copy of MCExpr::print customized for NVPTX
 | |
| void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
 | |
|   switch (Expr.getKind()) {
 | |
|   case MCExpr::Target:
 | |
|     return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
 | |
|   case MCExpr::Constant:
 | |
|     OS << cast<MCConstantExpr>(Expr).getValue();
 | |
|     return;
 | |
| 
 | |
|   case MCExpr::SymbolRef: {
 | |
|     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
 | |
|     const MCSymbol &Sym = SRE.getSymbol();
 | |
|     Sym.print(OS, MAI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case MCExpr::Unary: {
 | |
|     const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
 | |
|     switch (UE.getOpcode()) {
 | |
|     case MCUnaryExpr::LNot:  OS << '!'; break;
 | |
|     case MCUnaryExpr::Minus: OS << '-'; break;
 | |
|     case MCUnaryExpr::Not:   OS << '~'; break;
 | |
|     case MCUnaryExpr::Plus:  OS << '+'; break;
 | |
|     }
 | |
|     printMCExpr(*UE.getSubExpr(), OS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case MCExpr::Binary: {
 | |
|     const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
 | |
| 
 | |
|     // Only print parens around the LHS if it is non-trivial.
 | |
|     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
 | |
|         isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
 | |
|       printMCExpr(*BE.getLHS(), OS);
 | |
|     } else {
 | |
|       OS << '(';
 | |
|       printMCExpr(*BE.getLHS(), OS);
 | |
|       OS<< ')';
 | |
|     }
 | |
| 
 | |
|     switch (BE.getOpcode()) {
 | |
|     case MCBinaryExpr::Add:
 | |
|       // Print "X-42" instead of "X+-42".
 | |
|       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
 | |
|         if (RHSC->getValue() < 0) {
 | |
|           OS << RHSC->getValue();
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       OS <<  '+';
 | |
|       break;
 | |
|     default: llvm_unreachable("Unhandled binary operator");
 | |
|     }
 | |
| 
 | |
|     // Only print parens around the LHS if it is non-trivial.
 | |
|     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
 | |
|       printMCExpr(*BE.getRHS(), OS);
 | |
|     } else {
 | |
|       OS << '(';
 | |
|       printMCExpr(*BE.getRHS(), OS);
 | |
|       OS << ')';
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid expression kind!");
 | |
| }
 | |
| 
 | |
| /// PrintAsmOperand - Print out an operand for an inline asm expression.
 | |
| ///
 | |
| bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
 | |
|                                       unsigned AsmVariant,
 | |
|                                       const char *ExtraCode, raw_ostream &O) {
 | |
|   if (ExtraCode && ExtraCode[0]) {
 | |
|     if (ExtraCode[1] != 0)
 | |
|       return true; // Unknown modifier.
 | |
| 
 | |
|     switch (ExtraCode[0]) {
 | |
|     default:
 | |
|       // See if this is a generic print operand
 | |
|       return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
 | |
|     case 'r':
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   printOperand(MI, OpNo, O);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
 | |
|     const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
 | |
|     const char *ExtraCode, raw_ostream &O) {
 | |
|   if (ExtraCode && ExtraCode[0])
 | |
|     return true; // Unknown modifier
 | |
| 
 | |
|   O << '[';
 | |
|   printMemOperand(MI, OpNo, O);
 | |
|   O << ']';
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
 | |
|                                    raw_ostream &O, const char *Modifier) {
 | |
|   const MachineOperand &MO = MI->getOperand(opNum);
 | |
|   switch (MO.getType()) {
 | |
|   case MachineOperand::MO_Register:
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | |
|       if (MO.getReg() == NVPTX::VRDepot)
 | |
|         O << DEPOTNAME << getFunctionNumber();
 | |
|       else
 | |
|         O << NVPTXInstPrinter::getRegisterName(MO.getReg());
 | |
|     } else {
 | |
|       emitVirtualRegister(MO.getReg(), O);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
|   case MachineOperand::MO_Immediate:
 | |
|     if (!Modifier)
 | |
|       O << MO.getImm();
 | |
|     else if (strstr(Modifier, "vec") == Modifier)
 | |
|       printVecModifiedImmediate(MO, Modifier, O);
 | |
|     else
 | |
|       llvm_unreachable(
 | |
|           "Don't know how to handle modifier on immediate operand");
 | |
|     return;
 | |
| 
 | |
|   case MachineOperand::MO_FPImmediate:
 | |
|     printFPConstant(MO.getFPImm(), O);
 | |
|     break;
 | |
| 
 | |
|   case MachineOperand::MO_GlobalAddress:
 | |
|     getSymbol(MO.getGlobal())->print(O, MAI);
 | |
|     break;
 | |
| 
 | |
|   case MachineOperand::MO_MachineBasicBlock:
 | |
|     MO.getMBB()->getSymbol()->print(O, MAI);
 | |
|     return;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Operand type not supported.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
 | |
|                                       raw_ostream &O, const char *Modifier) {
 | |
|   printOperand(MI, opNum, O);
 | |
| 
 | |
|   if (Modifier && strcmp(Modifier, "add") == 0) {
 | |
|     O << ", ";
 | |
|     printOperand(MI, opNum + 1, O);
 | |
|   } else {
 | |
|     if (MI->getOperand(opNum + 1).isImm() &&
 | |
|         MI->getOperand(opNum + 1).getImm() == 0)
 | |
|       return; // don't print ',0' or '+0'
 | |
|     O << "+";
 | |
|     printOperand(MI, opNum + 1, O);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Force static initialization.
 | |
| extern "C" void LLVMInitializeNVPTXAsmPrinter() {
 | |
|   RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
 | |
|   RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());
 | |
| }
 |