313 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			313 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Convert generic global variables into either .global or .const access based
 | |
| // on the variable's "constant" qualifier.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/NVPTXBaseInfo.h"
 | |
| #include "NVPTX.h"
 | |
| #include "NVPTXUtilities.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/ValueMap.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| void initializeGenericToNVVMPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class GenericToNVVM : public ModulePass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   GenericToNVVM() : ModulePass(ID) {}
 | |
| 
 | |
|   bool runOnModule(Module &M) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {}
 | |
| 
 | |
| private:
 | |
|   Value *remapConstant(Module *M, Function *F, Constant *C,
 | |
|                        IRBuilder<> &Builder);
 | |
|   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
 | |
|                                                 Constant *C,
 | |
|                                                 IRBuilder<> &Builder);
 | |
|   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
 | |
|                            IRBuilder<> &Builder);
 | |
| 
 | |
|   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
 | |
|   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
 | |
|   GVMapTy GVMap;
 | |
|   ConstantToValueMapTy ConstantToValueMap;
 | |
| };
 | |
| } // end namespace
 | |
| 
 | |
| char GenericToNVVM::ID = 0;
 | |
| 
 | |
| ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
 | |
| 
 | |
| INITIALIZE_PASS(
 | |
|     GenericToNVVM, "generic-to-nvvm",
 | |
|     "Ensure that the global variables are in the global address space", false,
 | |
|     false)
 | |
| 
 | |
| bool GenericToNVVM::runOnModule(Module &M) {
 | |
|   // Create a clone of each global variable that has the default address space.
 | |
|   // The clone is created with the global address space  specifier, and the pair
 | |
|   // of original global variable and its clone is placed in the GVMap for later
 | |
|   // use.
 | |
| 
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E;) {
 | |
|     GlobalVariable *GV = &*I++;
 | |
|     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
 | |
|         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
 | |
|         !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
 | |
|       GlobalVariable *NewGV = new GlobalVariable(
 | |
|           M, GV->getValueType(), GV->isConstant(),
 | |
|           GV->getLinkage(),
 | |
|           GV->hasInitializer() ? GV->getInitializer() : nullptr,
 | |
|           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
 | |
|       NewGV->copyAttributesFrom(GV);
 | |
|       GVMap[GV] = NewGV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return immediately, if every global variable has a specific address space
 | |
|   // specifier.
 | |
|   if (GVMap.empty()) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Walk through the instructions in function defitinions, and replace any use
 | |
|   // of original global variables in GVMap with a use of the corresponding
 | |
|   // copies in GVMap.  If necessary, promote constants to instructions.
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|     if (I->isDeclaration()) {
 | |
|       continue;
 | |
|     }
 | |
|     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
 | |
|     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
 | |
|          ++BBI) {
 | |
|       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
 | |
|            ++II) {
 | |
|         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
 | |
|           Value *Operand = II->getOperand(i);
 | |
|           if (isa<Constant>(Operand)) {
 | |
|             II->setOperand(
 | |
|                 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     ConstantToValueMap.clear();
 | |
|   }
 | |
| 
 | |
|   // Copy GVMap over to a standard value map.
 | |
|   ValueToValueMapTy VM;
 | |
|   for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
 | |
|     VM[I->first] = I->second;
 | |
| 
 | |
|   // Walk through the global variable  initializers, and replace any use of
 | |
|   // original global variables in GVMap with a use of the corresponding copies
 | |
|   // in GVMap.  The copies need to be bitcast to the original global variable
 | |
|   // types, as we cannot use cvta in global variable initializers.
 | |
|   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
 | |
|     GlobalVariable *GV = I->first;
 | |
|     GlobalVariable *NewGV = I->second;
 | |
| 
 | |
|     // Remove GV from the map so that it can be RAUWed.  Note that
 | |
|     // DenseMap::erase() won't invalidate any iterators but this one.
 | |
|     auto Next = std::next(I);
 | |
|     GVMap.erase(I);
 | |
|     I = Next;
 | |
| 
 | |
|     Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
 | |
|     // At this point, the remaining uses of GV should be found only in global
 | |
|     // variable initializers, as other uses have been already been removed
 | |
|     // while walking through the instructions in function definitions.
 | |
|     GV->replaceAllUsesWith(BitCastNewGV);
 | |
|     std::string Name = GV->getName();
 | |
|     GV->eraseFromParent();
 | |
|     NewGV->setName(Name);
 | |
|   }
 | |
|   assert(GVMap.empty() && "Expected it to be empty by now");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
 | |
|                                     IRBuilder<> &Builder) {
 | |
|   // If the constant C has been converted already in the given function  F, just
 | |
|   // return the converted value.
 | |
|   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
 | |
|   if (CTII != ConstantToValueMap.end()) {
 | |
|     return CTII->second;
 | |
|   }
 | |
| 
 | |
|   Value *NewValue = C;
 | |
|   if (isa<GlobalVariable>(C)) {
 | |
|     // If the constant C is a global variable and is found in GVMap, substitute
 | |
|     //
 | |
|     //   addrspacecast GVMap[C] to addrspace(0)
 | |
|     //
 | |
|     // for our use of C.
 | |
|     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
 | |
|     if (I != GVMap.end()) {
 | |
|       GlobalVariable *GV = I->second;
 | |
|       NewValue = Builder.CreateAddrSpaceCast(
 | |
|           GV,
 | |
|           PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC));
 | |
|     }
 | |
|   } else if (isa<ConstantAggregate>(C)) {
 | |
|     // If any element in the constant vector or aggregate C is or uses a global
 | |
|     // variable in GVMap, the constant C needs to be reconstructed, using a set
 | |
|     // of instructions.
 | |
|     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
 | |
|   } else if (isa<ConstantExpr>(C)) {
 | |
|     // If any operand in the constant expression C is or uses a global variable
 | |
|     // in GVMap, the constant expression C needs to be reconstructed, using a
 | |
|     // set of instructions.
 | |
|     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
 | |
|   }
 | |
| 
 | |
|   ConstantToValueMap[C] = NewValue;
 | |
|   return NewValue;
 | |
| }
 | |
| 
 | |
| Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
 | |
|     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
 | |
|   bool OperandChanged = false;
 | |
|   SmallVector<Value *, 4> NewOperands;
 | |
|   unsigned NumOperands = C->getNumOperands();
 | |
| 
 | |
|   // Check if any element is or uses a global variable in  GVMap, and thus
 | |
|   // converted to another value.
 | |
|   for (unsigned i = 0; i < NumOperands; ++i) {
 | |
|     Value *Operand = C->getOperand(i);
 | |
|     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
 | |
|     OperandChanged |= Operand != NewOperand;
 | |
|     NewOperands.push_back(NewOperand);
 | |
|   }
 | |
| 
 | |
|   // If none of the elements has been modified, return C as it is.
 | |
|   if (!OperandChanged) {
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   // If any of the elements has been  modified, construct the equivalent
 | |
|   // vector or aggregate value with a set instructions and the converted
 | |
|   // elements.
 | |
|   Value *NewValue = UndefValue::get(C->getType());
 | |
|   if (isa<ConstantVector>(C)) {
 | |
|     for (unsigned i = 0; i < NumOperands; ++i) {
 | |
|       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
 | |
|       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
 | |
|     }
 | |
|   } else {
 | |
|     for (unsigned i = 0; i < NumOperands; ++i) {
 | |
|       NewValue =
 | |
|           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewValue;
 | |
| }
 | |
| 
 | |
| Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
 | |
|                                         IRBuilder<> &Builder) {
 | |
|   bool OperandChanged = false;
 | |
|   SmallVector<Value *, 4> NewOperands;
 | |
|   unsigned NumOperands = C->getNumOperands();
 | |
| 
 | |
|   // Check if any operand is or uses a global variable in  GVMap, and thus
 | |
|   // converted to another value.
 | |
|   for (unsigned i = 0; i < NumOperands; ++i) {
 | |
|     Value *Operand = C->getOperand(i);
 | |
|     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
 | |
|     OperandChanged |= Operand != NewOperand;
 | |
|     NewOperands.push_back(NewOperand);
 | |
|   }
 | |
| 
 | |
|   // If none of the operands has been modified, return C as it is.
 | |
|   if (!OperandChanged) {
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   // If any of the operands has been modified, construct the instruction with
 | |
|   // the converted operands.
 | |
|   unsigned Opcode = C->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case Instruction::ICmp:
 | |
|     // CompareConstantExpr (icmp)
 | |
|     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
 | |
|                               NewOperands[0], NewOperands[1]);
 | |
|   case Instruction::FCmp:
 | |
|     // CompareConstantExpr (fcmp)
 | |
|     llvm_unreachable("Address space conversion should have no effect "
 | |
|                      "on float point CompareConstantExpr (fcmp)!");
 | |
|   case Instruction::ExtractElement:
 | |
|     // ExtractElementConstantExpr
 | |
|     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
 | |
|   case Instruction::InsertElement:
 | |
|     // InsertElementConstantExpr
 | |
|     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
 | |
|                                        NewOperands[2]);
 | |
|   case Instruction::ShuffleVector:
 | |
|     // ShuffleVector
 | |
|     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
 | |
|                                        NewOperands[2]);
 | |
|   case Instruction::ExtractValue:
 | |
|     // ExtractValueConstantExpr
 | |
|     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
 | |
|   case Instruction::InsertValue:
 | |
|     // InsertValueConstantExpr
 | |
|     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
 | |
|                                      C->getIndices());
 | |
|   case Instruction::GetElementPtr:
 | |
|     // GetElementPtrConstantExpr
 | |
|     return cast<GEPOperator>(C)->isInBounds()
 | |
|                ? Builder.CreateGEP(
 | |
|                      cast<GEPOperator>(C)->getSourceElementType(),
 | |
|                      NewOperands[0],
 | |
|                      makeArrayRef(&NewOperands[1], NumOperands - 1))
 | |
|                : Builder.CreateInBoundsGEP(
 | |
|                      cast<GEPOperator>(C)->getSourceElementType(),
 | |
|                      NewOperands[0],
 | |
|                      makeArrayRef(&NewOperands[1], NumOperands - 1));
 | |
|   case Instruction::Select:
 | |
|     // SelectConstantExpr
 | |
|     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
 | |
|   default:
 | |
|     // BinaryConstantExpr
 | |
|     if (Instruction::isBinaryOp(Opcode)) {
 | |
|       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
 | |
|                                  NewOperands[0], NewOperands[1]);
 | |
|     }
 | |
|     // UnaryConstantExpr
 | |
|     if (Instruction::isCast(Opcode)) {
 | |
|       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
 | |
|                                 NewOperands[0], C->getType());
 | |
|     }
 | |
|     llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
 | |
|   }
 | |
| }
 |