1702 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1702 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that RISCV uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "RISCVISelLowering.h"
 | |
| #include "RISCV.h"
 | |
| #include "RISCVMachineFunctionInfo.h"
 | |
| #include "RISCVRegisterInfo.h"
 | |
| #include "RISCVSubtarget.h"
 | |
| #include "RISCVTargetMachine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/DiagnosticPrinter.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "riscv-lower"
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| 
 | |
| RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
 | |
|                                          const RISCVSubtarget &STI)
 | |
|     : TargetLowering(TM), Subtarget(STI) {
 | |
| 
 | |
|   MVT XLenVT = Subtarget.getXLenVT();
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
 | |
| 
 | |
|   if (Subtarget.hasStdExtF())
 | |
|     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
 | |
|   if (Subtarget.hasStdExtD())
 | |
|     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
 | |
| 
 | |
|   // Compute derived properties from the register classes.
 | |
|   computeRegisterProperties(STI.getRegisterInfo());
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(RISCV::X2);
 | |
| 
 | |
|   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
 | |
|     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
 | |
| 
 | |
|   // TODO: add all necessary setOperationAction calls.
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BR_CC, XLenVT, Expand);
 | |
|   setOperationAction(ISD::SELECT, XLenVT, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | |
| 
 | |
|   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | |
| 
 | |
|   if (!Subtarget.hasStdExtM()) {
 | |
|     setOperationAction(ISD::MUL, XLenVT, Expand);
 | |
|     setOperationAction(ISD::MULHS, XLenVT, Expand);
 | |
|     setOperationAction(ISD::MULHU, XLenVT, Expand);
 | |
|     setOperationAction(ISD::SDIV, XLenVT, Expand);
 | |
|     setOperationAction(ISD::UDIV, XLenVT, Expand);
 | |
|     setOperationAction(ISD::SREM, XLenVT, Expand);
 | |
|     setOperationAction(ISD::UREM, XLenVT, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
 | |
|   setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
 | |
|   setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::ROTL, XLenVT, Expand);
 | |
|   setOperationAction(ISD::ROTR, XLenVT, Expand);
 | |
|   setOperationAction(ISD::BSWAP, XLenVT, Expand);
 | |
|   setOperationAction(ISD::CTTZ, XLenVT, Expand);
 | |
|   setOperationAction(ISD::CTLZ, XLenVT, Expand);
 | |
|   setOperationAction(ISD::CTPOP, XLenVT, Expand);
 | |
| 
 | |
|   ISD::CondCode FPCCToExtend[] = {
 | |
|       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO,   ISD::SETUEQ,
 | |
|       ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE,
 | |
|       ISD::SETGT,  ISD::SETGE,  ISD::SETNE};
 | |
| 
 | |
|   if (Subtarget.hasStdExtF()) {
 | |
|     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
 | |
|     for (auto CC : FPCCToExtend)
 | |
|       setCondCodeAction(CC, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f32, Custom);
 | |
|     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasStdExtD()) {
 | |
|     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
 | |
|     for (auto CC : FPCCToExtend)
 | |
|       setCondCodeAction(CC, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
 | |
|     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
 | |
|   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
 | |
| 
 | |
|   if (Subtarget.hasStdExtA()) {
 | |
|     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
 | |
|     setMinCmpXchgSizeInBits(32);
 | |
|   } else {
 | |
|     setMaxAtomicSizeInBitsSupported(0);
 | |
|   }
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
| 
 | |
|   // Function alignments (log2).
 | |
|   unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
 | |
|   setMinFunctionAlignment(FunctionAlignment);
 | |
|   setPrefFunctionAlignment(FunctionAlignment);
 | |
| 
 | |
|   // Effectively disable jump table generation.
 | |
|   setMinimumJumpTableEntries(INT_MAX);
 | |
| }
 | |
| 
 | |
| EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
 | |
|                                             EVT VT) const {
 | |
|   if (!VT.isVector())
 | |
|     return getPointerTy(DL);
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                              const CallInst &I,
 | |
|                                              MachineFunction &MF,
 | |
|                                              unsigned Intrinsic) const {
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_add_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_max_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_min_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
 | |
|   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
 | |
|     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::getVT(PtrTy->getElementType());
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 4;
 | |
|     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
 | |
|                  MachineMemOperand::MOVolatile;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                                 const AddrMode &AM, Type *Ty,
 | |
|                                                 unsigned AS,
 | |
|                                                 Instruction *I) const {
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // Require a 12-bit signed offset.
 | |
|   if (!isInt<12>(AM.BaseOffs))
 | |
|     return false;
 | |
| 
 | |
|   switch (AM.Scale) {
 | |
|   case 0: // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (!AM.HasBaseReg) // allow "r+i".
 | |
|       break;
 | |
|     return false; // disallow "r+r" or "r+r+i".
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   return isInt<12>(Imm);
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | |
|   return isInt<12>(Imm);
 | |
| }
 | |
| 
 | |
| // On RV32, 64-bit integers are split into their high and low parts and held
 | |
| // in two different registers, so the trunc is free since the low register can
 | |
| // just be used.
 | |
| bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
 | |
|   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
 | |
|   return (SrcBits == 64 && DestBits == 32);
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
 | |
|   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
 | |
|       !SrcVT.isInteger() || !DstVT.isInteger())
 | |
|     return false;
 | |
|   unsigned SrcBits = SrcVT.getSizeInBits();
 | |
|   unsigned DestBits = DstVT.getSizeInBits();
 | |
|   return (SrcBits == 64 && DestBits == 32);
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | |
|   // Zexts are free if they can be combined with a load.
 | |
|   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
 | |
|     EVT MemVT = LD->getMemoryVT();
 | |
|     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
 | |
|          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
 | |
|         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
 | |
|          LD->getExtensionType() == ISD::ZEXTLOAD))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::isZExtFree(Val, VT2);
 | |
| }
 | |
| 
 | |
| // Changes the condition code and swaps operands if necessary, so the SetCC
 | |
| // operation matches one of the comparisons supported directly in the RISC-V
 | |
| // ISA.
 | |
| static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETULE:
 | |
|     CC = ISD::getSetCCSwappedOperands(CC);
 | |
|     std::swap(LHS, RHS);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the RISC-V branch opcode that matches the given DAG integer
 | |
| // condition code. The CondCode must be one of those supported by the RISC-V
 | |
| // ISA (see normaliseSetCC).
 | |
| static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported CondCode");
 | |
|   case ISD::SETEQ:
 | |
|     return RISCV::BEQ;
 | |
|   case ISD::SETNE:
 | |
|     return RISCV::BNE;
 | |
|   case ISD::SETLT:
 | |
|     return RISCV::BLT;
 | |
|   case ISD::SETGE:
 | |
|     return RISCV::BGE;
 | |
|   case ISD::SETULT:
 | |
|     return RISCV::BLTU;
 | |
|   case ISD::SETUGE:
 | |
|     return RISCV::BGEU;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     report_fatal_error("unimplemented operand");
 | |
|   case ISD::GlobalAddress:
 | |
|     return lowerGlobalAddress(Op, DAG);
 | |
|   case ISD::BlockAddress:
 | |
|     return lowerBlockAddress(Op, DAG);
 | |
|   case ISD::ConstantPool:
 | |
|     return lowerConstantPool(Op, DAG);
 | |
|   case ISD::SELECT:
 | |
|     return lowerSELECT(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return lowerVASTART(Op, DAG);
 | |
|   case ISD::FRAMEADDR:
 | |
|     return lowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::RETURNADDR:
 | |
|     return lowerRETURNADDR(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT Ty = Op.getValueType();
 | |
|   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
 | |
|   const GlobalValue *GV = N->getGlobal();
 | |
|   int64_t Offset = N->getOffset();
 | |
|   MVT XLenVT = Subtarget.getXLenVT();
 | |
| 
 | |
|   if (isPositionIndependent())
 | |
|     report_fatal_error("Unable to lowerGlobalAddress");
 | |
|   // In order to maximise the opportunity for common subexpression elimination,
 | |
|   // emit a separate ADD node for the global address offset instead of folding
 | |
|   // it in the global address node. Later peephole optimisations may choose to
 | |
|   // fold it back in when profitable.
 | |
|   SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI);
 | |
|   SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO);
 | |
|   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
 | |
|   SDValue MNLo =
 | |
|     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
 | |
|   if (Offset != 0)
 | |
|     return DAG.getNode(ISD::ADD, DL, Ty, MNLo,
 | |
|                        DAG.getConstant(Offset, DL, XLenVT));
 | |
|   return MNLo;
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT Ty = Op.getValueType();
 | |
|   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
 | |
|   const BlockAddress *BA = N->getBlockAddress();
 | |
|   int64_t Offset = N->getOffset();
 | |
| 
 | |
|   if (isPositionIndependent())
 | |
|     report_fatal_error("Unable to lowerBlockAddress");
 | |
| 
 | |
|   SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
 | |
|   SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
 | |
|   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
 | |
|   SDValue MNLo =
 | |
|     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
 | |
|   return MNLo;
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT Ty = Op.getValueType();
 | |
|   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
 | |
|   const Constant *CPA = N->getConstVal();
 | |
|   int64_t Offset = N->getOffset();
 | |
|   unsigned Alignment = N->getAlignment();
 | |
| 
 | |
|   if (!isPositionIndependent()) {
 | |
|     SDValue CPAHi =
 | |
|         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI);
 | |
|     SDValue CPALo =
 | |
|         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO);
 | |
|     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0);
 | |
|     SDValue MNLo =
 | |
|         SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0);
 | |
|     return MNLo;
 | |
|   } else {
 | |
|     report_fatal_error("Unable to lowerConstantPool");
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue CondV = Op.getOperand(0);
 | |
|   SDValue TrueV = Op.getOperand(1);
 | |
|   SDValue FalseV = Op.getOperand(2);
 | |
|   SDLoc DL(Op);
 | |
|   MVT XLenVT = Subtarget.getXLenVT();
 | |
| 
 | |
|   // If the result type is XLenVT and CondV is the output of a SETCC node
 | |
|   // which also operated on XLenVT inputs, then merge the SETCC node into the
 | |
|   // lowered RISCVISD::SELECT_CC to take advantage of the integer
 | |
|   // compare+branch instructions. i.e.:
 | |
|   // (select (setcc lhs, rhs, cc), truev, falsev)
 | |
|   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
 | |
|   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
 | |
|       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
 | |
|     SDValue LHS = CondV.getOperand(0);
 | |
|     SDValue RHS = CondV.getOperand(1);
 | |
|     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
 | |
|     ISD::CondCode CCVal = CC->get();
 | |
| 
 | |
|     normaliseSetCC(LHS, RHS, CCVal);
 | |
| 
 | |
|     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
 | |
|     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | |
|     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
 | |
|     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
 | |
|   }
 | |
| 
 | |
|   // Otherwise:
 | |
|   // (select condv, truev, falsev)
 | |
|   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
 | |
|   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
 | |
|   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | |
|   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
 | |
| 
 | |
|   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | |
|                                  getPointerTy(MF.getDataLayout()));
 | |
| 
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
 | |
|                       MachinePointerInfo(SV));
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setFrameAddressIsTaken(true);
 | |
|   unsigned FrameReg = RI.getFrameRegister(MF);
 | |
|   int XLenInBytes = Subtarget.getXLen() / 8;
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   while (Depth--) {
 | |
|     int Offset = -(XLenInBytes * 2);
 | |
|     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
 | |
|                               DAG.getIntPtrConstant(Offset, DL));
 | |
|     FrameAddr =
 | |
|         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
 | |
|   }
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setReturnAddressIsTaken(true);
 | |
|   MVT XLenVT = Subtarget.getXLenVT();
 | |
|   int XLenInBytes = Subtarget.getXLen() / 8;
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     int Off = -XLenInBytes;
 | |
|     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(Off, DL, VT);
 | |
|     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo());
 | |
|   }
 | |
| 
 | |
|   // Return the value of the return address register, marking it an implicit
 | |
|   // live-in.
 | |
|   unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
 | |
| }
 | |
| 
 | |
| SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case RISCVISD::SplitF64: {
 | |
|     // If the input to SplitF64 is just BuildPairF64 then the operation is
 | |
|     // redundant. Instead, use BuildPairF64's operands directly.
 | |
|     SDValue Op0 = N->getOperand(0);
 | |
|     if (Op0->getOpcode() != RISCVISD::BuildPairF64)
 | |
|       break;
 | |
|     return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
 | |
|                                              MachineBasicBlock *BB) {
 | |
|   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
 | |
| 
 | |
|   MachineFunction &MF = *BB->getParent();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
 | |
|   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
 | |
|   unsigned LoReg = MI.getOperand(0).getReg();
 | |
|   unsigned HiReg = MI.getOperand(1).getReg();
 | |
|   unsigned SrcReg = MI.getOperand(2).getReg();
 | |
|   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
 | |
|   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
 | |
| 
 | |
|   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
 | |
|                           RI);
 | |
|   MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
 | |
|                               MachineMemOperand::MOLoad, 8, 8);
 | |
|   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
 | |
|       .addFrameIndex(FI)
 | |
|       .addImm(0)
 | |
|       .addMemOperand(MMO);
 | |
|   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
 | |
|       .addFrameIndex(FI)
 | |
|       .addImm(4)
 | |
|       .addMemOperand(MMO);
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
 | |
|                                                  MachineBasicBlock *BB) {
 | |
|   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
 | |
|          "Unexpected instruction");
 | |
| 
 | |
|   MachineFunction &MF = *BB->getParent();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
 | |
|   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
 | |
|   unsigned DstReg = MI.getOperand(0).getReg();
 | |
|   unsigned LoReg = MI.getOperand(1).getReg();
 | |
|   unsigned HiReg = MI.getOperand(2).getReg();
 | |
|   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
 | |
|   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
 | |
|                               MachineMemOperand::MOStore, 8, 8);
 | |
|   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
 | |
|       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
 | |
|       .addFrameIndex(FI)
 | |
|       .addImm(0)
 | |
|       .addMemOperand(MMO);
 | |
|   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
 | |
|       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
 | |
|       .addFrameIndex(FI)
 | |
|       .addImm(4)
 | |
|       .addMemOperand(MMO);
 | |
|   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                                  MachineBasicBlock *BB) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   case RISCV::Select_GPR_Using_CC_GPR:
 | |
|   case RISCV::Select_FPR32_Using_CC_GPR:
 | |
|   case RISCV::Select_FPR64_Using_CC_GPR:
 | |
|     break;
 | |
|   case RISCV::BuildPairF64Pseudo:
 | |
|     return emitBuildPairF64Pseudo(MI, BB);
 | |
|   case RISCV::SplitF64Pseudo:
 | |
|     return emitSplitF64Pseudo(MI, BB);
 | |
|   }
 | |
| 
 | |
|   // To "insert" a SELECT instruction, we actually have to insert the triangle
 | |
|   // control-flow pattern.  The incoming instruction knows the destination vreg
 | |
|   // to set, the condition code register to branch on, the true/false values to
 | |
|   // select between, and the condcode to use to select the appropriate branch.
 | |
|   //
 | |
|   // We produce the following control flow:
 | |
|   //     HeadMBB
 | |
|   //     |  \
 | |
|   //     |  IfFalseMBB
 | |
|   //     | /
 | |
|   //    TailMBB
 | |
|   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   MachineFunction::iterator I = ++BB->getIterator();
 | |
| 
 | |
|   MachineBasicBlock *HeadMBB = BB;
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
| 
 | |
|   F->insert(I, IfFalseMBB);
 | |
|   F->insert(I, TailMBB);
 | |
|   // Move all remaining instructions to TailMBB.
 | |
|   TailMBB->splice(TailMBB->begin(), HeadMBB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
 | |
|   // Update machine-CFG edges by transferring all successors of the current
 | |
|   // block to the new block which will contain the Phi node for the select.
 | |
|   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
 | |
|   // Set the successors for HeadMBB.
 | |
|   HeadMBB->addSuccessor(IfFalseMBB);
 | |
|   HeadMBB->addSuccessor(TailMBB);
 | |
| 
 | |
|   // Insert appropriate branch.
 | |
|   unsigned LHS = MI.getOperand(1).getReg();
 | |
|   unsigned RHS = MI.getOperand(2).getReg();
 | |
|   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
 | |
|   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
 | |
| 
 | |
|   BuildMI(HeadMBB, DL, TII.get(Opcode))
 | |
|     .addReg(LHS)
 | |
|     .addReg(RHS)
 | |
|     .addMBB(TailMBB);
 | |
| 
 | |
|   // IfFalseMBB just falls through to TailMBB.
 | |
|   IfFalseMBB->addSuccessor(TailMBB);
 | |
| 
 | |
|   // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
 | |
|   BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
 | |
|           MI.getOperand(0).getReg())
 | |
|       .addReg(MI.getOperand(4).getReg())
 | |
|       .addMBB(HeadMBB)
 | |
|       .addReg(MI.getOperand(5).getReg())
 | |
|       .addMBB(IfFalseMBB);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return TailMBB;
 | |
| }
 | |
| 
 | |
| // Calling Convention Implementation.
 | |
| // The expectations for frontend ABI lowering vary from target to target.
 | |
| // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
 | |
| // details, but this is a longer term goal. For now, we simply try to keep the
 | |
| // role of the frontend as simple and well-defined as possible. The rules can
 | |
| // be summarised as:
 | |
| // * Never split up large scalar arguments. We handle them here.
 | |
| // * If a hardfloat calling convention is being used, and the struct may be
 | |
| // passed in a pair of registers (fp+fp, int+fp), and both registers are
 | |
| // available, then pass as two separate arguments. If either the GPRs or FPRs
 | |
| // are exhausted, then pass according to the rule below.
 | |
| // * If a struct could never be passed in registers or directly in a stack
 | |
| // slot (as it is larger than 2*XLEN and the floating point rules don't
 | |
| // apply), then pass it using a pointer with the byval attribute.
 | |
| // * If a struct is less than 2*XLEN, then coerce to either a two-element
 | |
| // word-sized array or a 2*XLEN scalar (depending on alignment).
 | |
| // * The frontend can determine whether a struct is returned by reference or
 | |
| // not based on its size and fields. If it will be returned by reference, the
 | |
| // frontend must modify the prototype so a pointer with the sret annotation is
 | |
| // passed as the first argument. This is not necessary for large scalar
 | |
| // returns.
 | |
| // * Struct return values and varargs should be coerced to structs containing
 | |
| // register-size fields in the same situations they would be for fixed
 | |
| // arguments.
 | |
| 
 | |
| static const MCPhysReg ArgGPRs[] = {
 | |
|   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
 | |
|   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
 | |
| };
 | |
| 
 | |
| // Pass a 2*XLEN argument that has been split into two XLEN values through
 | |
| // registers or the stack as necessary.
 | |
| static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
 | |
|                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
 | |
|                                 MVT ValVT2, MVT LocVT2,
 | |
|                                 ISD::ArgFlagsTy ArgFlags2) {
 | |
|   unsigned XLenInBytes = XLen / 8;
 | |
|   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
 | |
|     // At least one half can be passed via register.
 | |
|     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
 | |
|                                      VA1.getLocVT(), CCValAssign::Full));
 | |
|   } else {
 | |
|     // Both halves must be passed on the stack, with proper alignment.
 | |
|     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
 | |
|     State.addLoc(
 | |
|         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
 | |
|                             State.AllocateStack(XLenInBytes, StackAlign),
 | |
|                             VA1.getLocVT(), CCValAssign::Full));
 | |
|     State.addLoc(CCValAssign::getMem(
 | |
|         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
 | |
|         CCValAssign::Full));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
 | |
|     // The second half can also be passed via register.
 | |
|     State.addLoc(
 | |
|         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
 | |
|   } else {
 | |
|     // The second half is passed via the stack, without additional alignment.
 | |
|     State.addLoc(CCValAssign::getMem(
 | |
|         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
 | |
|         CCValAssign::Full));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Implements the RISC-V calling convention. Returns true upon failure.
 | |
| static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
 | |
|                      CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
 | |
|                      CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
 | |
|   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
 | |
|   assert(XLen == 32 || XLen == 64);
 | |
|   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
 | |
|   if (ValVT == MVT::f32) {
 | |
|     LocVT = MVT::i32;
 | |
|     LocInfo = CCValAssign::BCvt;
 | |
|   }
 | |
| 
 | |
|   // Any return value split in to more than two values can't be returned
 | |
|   // directly.
 | |
|   if (IsRet && ValNo > 1)
 | |
|     return true;
 | |
| 
 | |
|   // If this is a variadic argument, the RISC-V calling convention requires
 | |
|   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
 | |
|   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
 | |
|   // be used regardless of whether the original argument was split during
 | |
|   // legalisation or not. The argument will not be passed by registers if the
 | |
|   // original type is larger than 2*XLEN, so the register alignment rule does
 | |
|   // not apply.
 | |
|   unsigned TwoXLenInBytes = (2 * XLen) / 8;
 | |
|   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
 | |
|       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
 | |
|     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
 | |
|     // Skip 'odd' register if necessary.
 | |
|     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
 | |
|       State.AllocateReg(ArgGPRs);
 | |
|   }
 | |
| 
 | |
|   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
 | |
|   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
 | |
|       State.getPendingArgFlags();
 | |
| 
 | |
|   assert(PendingLocs.size() == PendingArgFlags.size() &&
 | |
|          "PendingLocs and PendingArgFlags out of sync");
 | |
| 
 | |
|   // Handle passing f64 on RV32D with a soft float ABI.
 | |
|   if (XLen == 32 && ValVT == MVT::f64) {
 | |
|     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
 | |
|            "Can't lower f64 if it is split");
 | |
|     // Depending on available argument GPRS, f64 may be passed in a pair of
 | |
|     // GPRs, split between a GPR and the stack, or passed completely on the
 | |
|     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
 | |
|     // cases.
 | |
|     unsigned Reg = State.AllocateReg(ArgGPRs);
 | |
|     LocVT = MVT::i32;
 | |
|     if (!Reg) {
 | |
|       unsigned StackOffset = State.AllocateStack(8, 8);
 | |
|       State.addLoc(
 | |
|           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
 | |
|       return false;
 | |
|     }
 | |
|     if (!State.AllocateReg(ArgGPRs))
 | |
|       State.AllocateStack(4, 4);
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Split arguments might be passed indirectly, so keep track of the pending
 | |
|   // values.
 | |
|   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
 | |
|     LocVT = XLenVT;
 | |
|     LocInfo = CCValAssign::Indirect;
 | |
|     PendingLocs.push_back(
 | |
|         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
 | |
|     PendingArgFlags.push_back(ArgFlags);
 | |
|     if (!ArgFlags.isSplitEnd()) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the split argument only had two elements, it should be passed directly
 | |
|   // in registers or on the stack.
 | |
|   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
 | |
|     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
 | |
|     // Apply the normal calling convention rules to the first half of the
 | |
|     // split argument.
 | |
|     CCValAssign VA = PendingLocs[0];
 | |
|     ISD::ArgFlagsTy AF = PendingArgFlags[0];
 | |
|     PendingLocs.clear();
 | |
|     PendingArgFlags.clear();
 | |
|     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
 | |
|                                ArgFlags);
 | |
|   }
 | |
| 
 | |
|   // Allocate to a register if possible, or else a stack slot.
 | |
|   unsigned Reg = State.AllocateReg(ArgGPRs);
 | |
|   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
 | |
| 
 | |
|   // If we reach this point and PendingLocs is non-empty, we must be at the
 | |
|   // end of a split argument that must be passed indirectly.
 | |
|   if (!PendingLocs.empty()) {
 | |
|     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
 | |
|     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
 | |
| 
 | |
|     for (auto &It : PendingLocs) {
 | |
|       if (Reg)
 | |
|         It.convertToReg(Reg);
 | |
|       else
 | |
|         It.convertToMem(StackOffset);
 | |
|       State.addLoc(It);
 | |
|     }
 | |
|     PendingLocs.clear();
 | |
|     PendingArgFlags.clear();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
 | |
| 
 | |
|   if (Reg) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (ValVT == MVT::f32) {
 | |
|     LocVT = MVT::f32;
 | |
|     LocInfo = CCValAssign::Full;
 | |
|   }
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void RISCVTargetLowering::analyzeInputArgs(
 | |
|     MachineFunction &MF, CCState &CCInfo,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
 | |
|   unsigned NumArgs = Ins.size();
 | |
|   FunctionType *FType = MF.getFunction().getFunctionType();
 | |
| 
 | |
|   for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|     MVT ArgVT = Ins[i].VT;
 | |
|     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
 | |
| 
 | |
|     Type *ArgTy = nullptr;
 | |
|     if (IsRet)
 | |
|       ArgTy = FType->getReturnType();
 | |
|     else if (Ins[i].isOrigArg())
 | |
|       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
 | |
| 
 | |
|     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
 | |
|                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
 | |
|       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
 | |
|                         << EVT(ArgVT).getEVTString() << '\n');
 | |
|       llvm_unreachable(nullptr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RISCVTargetLowering::analyzeOutputArgs(
 | |
|     MachineFunction &MF, CCState &CCInfo,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
 | |
|     CallLoweringInfo *CLI) const {
 | |
|   unsigned NumArgs = Outs.size();
 | |
| 
 | |
|   for (unsigned i = 0; i != NumArgs; i++) {
 | |
|     MVT ArgVT = Outs[i].VT;
 | |
|     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
 | |
| 
 | |
|     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
 | |
|                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
 | |
|       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
 | |
|                         << EVT(ArgVT).getEVTString() << "\n");
 | |
|       llvm_unreachable(nullptr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
 | |
| // values.
 | |
| static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
 | |
|                                    const CCValAssign &VA, const SDLoc &DL) {
 | |
|   switch (VA.getLocInfo()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected CCValAssign::LocInfo");
 | |
|   case CCValAssign::Full:
 | |
|     break;
 | |
|   case CCValAssign::BCvt:
 | |
|     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
 | |
|     break;
 | |
|   }
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| // The caller is responsible for loading the full value if the argument is
 | |
| // passed with CCValAssign::Indirect.
 | |
| static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
 | |
|                                 const CCValAssign &VA, const SDLoc &DL) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|   EVT LocVT = VA.getLocVT();
 | |
|   SDValue Val;
 | |
| 
 | |
|   unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
 | |
|   RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | |
|   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
 | |
| 
 | |
|   if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|     return Val;
 | |
| 
 | |
|   return convertLocVTToValVT(DAG, Val, VA, DL);
 | |
| }
 | |
| 
 | |
| static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
 | |
|                                    const CCValAssign &VA, const SDLoc &DL) {
 | |
|   EVT LocVT = VA.getLocVT();
 | |
| 
 | |
|   switch (VA.getLocInfo()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected CCValAssign::LocInfo");
 | |
|   case CCValAssign::Full:
 | |
|     break;
 | |
|   case CCValAssign::BCvt:
 | |
|     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
 | |
|     break;
 | |
|   }
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| // The caller is responsible for loading the full value if the argument is
 | |
| // passed with CCValAssign::Indirect.
 | |
| static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
 | |
|                                 const CCValAssign &VA, const SDLoc &DL) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   EVT LocVT = VA.getLocVT();
 | |
|   EVT ValVT = VA.getValVT();
 | |
|   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
 | |
|   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
 | |
|                                  VA.getLocMemOffset(), /*Immutable=*/true);
 | |
|   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|   SDValue Val;
 | |
| 
 | |
|   ISD::LoadExtType ExtType;
 | |
|   switch (VA.getLocInfo()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected CCValAssign::LocInfo");
 | |
|   case CCValAssign::Full:
 | |
|   case CCValAssign::Indirect:
 | |
|     ExtType = ISD::NON_EXTLOAD;
 | |
|     break;
 | |
|   }
 | |
|   Val = DAG.getExtLoad(
 | |
|       ExtType, DL, LocVT, Chain, FIN,
 | |
|       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
 | |
|                                        const CCValAssign &VA, const SDLoc &DL) {
 | |
|   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
 | |
|          "Unexpected VA");
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
| 
 | |
|   if (VA.isMemLoc()) {
 | |
|     // f64 is passed on the stack.
 | |
|     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
|     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
 | |
|                        MachinePointerInfo::getFixedStack(MF, FI));
 | |
|   }
 | |
| 
 | |
|   assert(VA.isRegLoc() && "Expected register VA assignment");
 | |
| 
 | |
|   unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
 | |
|   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
 | |
|   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
 | |
|   SDValue Hi;
 | |
|   if (VA.getLocReg() == RISCV::X17) {
 | |
|     // Second half of f64 is passed on the stack.
 | |
|     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
|     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
 | |
|                      MachinePointerInfo::getFixedStack(MF, FI));
 | |
|   } else {
 | |
|     // Second half of f64 is passed in another GPR.
 | |
|     unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
 | |
|     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
 | |
|     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
 | |
|   }
 | |
|   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| // Transform physical registers into virtual registers.
 | |
| SDValue RISCVTargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   switch (CallConv) {
 | |
|   default:
 | |
|     report_fatal_error("Unsupported calling convention");
 | |
|   case CallingConv::C:
 | |
|   case CallingConv::Fast:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   const Function &Func = MF.getFunction();
 | |
|   if (Func.hasFnAttribute("interrupt")) {
 | |
|     if (!Func.arg_empty())
 | |
|       report_fatal_error(
 | |
|         "Functions with the interrupt attribute cannot have arguments!");
 | |
| 
 | |
|     StringRef Kind =
 | |
|       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
 | |
| 
 | |
|     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
 | |
|       report_fatal_error(
 | |
|         "Function interrupt attribute argument not supported!");
 | |
|   }
 | |
| 
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   MVT XLenVT = Subtarget.getXLenVT();
 | |
|   unsigned XLenInBytes = Subtarget.getXLen() / 8;
 | |
|   // Used with vargs to acumulate store chains.
 | |
|   std::vector<SDValue> OutChains;
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
 | |
|   analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue ArgValue;
 | |
|     // Passing f64 on RV32D with a soft float ABI must be handled as a special
 | |
|     // case.
 | |
|     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
 | |
|       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
 | |
|     else if (VA.isRegLoc())
 | |
|       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
 | |
|     else
 | |
|       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
 | |
| 
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect) {
 | |
|       // If the original argument was split and passed by reference (e.g. i128
 | |
|       // on RV32), we need to load all parts of it here (using the same
 | |
|       // address).
 | |
|       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
 | |
|                                    MachinePointerInfo()));
 | |
|       unsigned ArgIndex = Ins[i].OrigArgIndex;
 | |
|       assert(Ins[i].PartOffset == 0);
 | |
|       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
 | |
|         CCValAssign &PartVA = ArgLocs[i + 1];
 | |
|         unsigned PartOffset = Ins[i + 1].PartOffset;
 | |
|         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
 | |
|                                       DAG.getIntPtrConstant(PartOffset, DL));
 | |
|         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
 | |
|                                      MachinePointerInfo()));
 | |
|         ++i;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     InVals.push_back(ArgValue);
 | |
|   }
 | |
| 
 | |
|   if (IsVarArg) {
 | |
|     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
 | |
|     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
 | |
|     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
 | |
|     MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|     MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
 | |
| 
 | |
|     // Offset of the first variable argument from stack pointer, and size of
 | |
|     // the vararg save area. For now, the varargs save area is either zero or
 | |
|     // large enough to hold a0-a7.
 | |
|     int VaArgOffset, VarArgsSaveSize;
 | |
| 
 | |
|     // If all registers are allocated, then all varargs must be passed on the
 | |
|     // stack and we don't need to save any argregs.
 | |
|     if (ArgRegs.size() == Idx) {
 | |
|       VaArgOffset = CCInfo.getNextStackOffset();
 | |
|       VarArgsSaveSize = 0;
 | |
|     } else {
 | |
|       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
 | |
|       VaArgOffset = -VarArgsSaveSize;
 | |
|     }
 | |
| 
 | |
|     // Record the frame index of the first variable argument
 | |
|     // which is a value necessary to VASTART.
 | |
|     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
 | |
|     RVFI->setVarArgsFrameIndex(FI);
 | |
| 
 | |
|     // If saving an odd number of registers then create an extra stack slot to
 | |
|     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
 | |
|     // offsets to even-numbered registered remain 2*XLEN-aligned.
 | |
|     if (Idx % 2) {
 | |
|       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
 | |
|                                  true);
 | |
|       VarArgsSaveSize += XLenInBytes;
 | |
|     }
 | |
| 
 | |
|     // Copy the integer registers that may have been used for passing varargs
 | |
|     // to the vararg save area.
 | |
|     for (unsigned I = Idx; I < ArgRegs.size();
 | |
|          ++I, VaArgOffset += XLenInBytes) {
 | |
|       const unsigned Reg = RegInfo.createVirtualRegister(RC);
 | |
|       RegInfo.addLiveIn(ArgRegs[I], Reg);
 | |
|       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
 | |
|       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
 | |
|       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | |
|       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
 | |
|                                    MachinePointerInfo::getFixedStack(MF, FI));
 | |
|       cast<StoreSDNode>(Store.getNode())
 | |
|           ->getMemOperand()
 | |
|           ->setValue((Value *)nullptr);
 | |
|       OutChains.push_back(Store);
 | |
|     }
 | |
|     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
 | |
|   }
 | |
| 
 | |
|   // All stores are grouped in one node to allow the matching between
 | |
|   // the size of Ins and InVals. This only happens for vararg functions.
 | |
|   if (!OutChains.empty()) {
 | |
|     OutChains.push_back(Chain);
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization.
 | |
| /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
 | |
| bool RISCVTargetLowering::IsEligibleForTailCallOptimization(
 | |
|   CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
 | |
|   const SmallVector<CCValAssign, 16> &ArgLocs) const {
 | |
| 
 | |
|   auto &Callee = CLI.Callee;
 | |
|   auto CalleeCC = CLI.CallConv;
 | |
|   auto IsVarArg = CLI.IsVarArg;
 | |
|   auto &Outs = CLI.Outs;
 | |
|   auto &Caller = MF.getFunction();
 | |
|   auto CallerCC = Caller.getCallingConv();
 | |
| 
 | |
|   // Do not tail call opt functions with "disable-tail-calls" attribute.
 | |
|   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
 | |
|     return false;
 | |
| 
 | |
|   // Exception-handling functions need a special set of instructions to
 | |
|   // indicate a return to the hardware. Tail-calling another function would
 | |
|   // probably break this.
 | |
|   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
 | |
|   // should be expanded as new function attributes are introduced.
 | |
|   if (Caller.hasFnAttribute("interrupt"))
 | |
|     return false;
 | |
| 
 | |
|   // Do not tail call opt functions with varargs.
 | |
|   if (IsVarArg)
 | |
|     return false;
 | |
| 
 | |
|   // Do not tail call opt if the stack is used to pass parameters.
 | |
|   if (CCInfo.getNextStackOffset() != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Do not tail call opt if any parameters need to be passed indirectly.
 | |
|   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
 | |
|   // passed indirectly. So the address of the value will be passed in a
 | |
|   // register, or if not available, then the address is put on the stack. In
 | |
|   // order to pass indirectly, space on the stack often needs to be allocated
 | |
|   // in order to store the value. In this case the CCInfo.getNextStackOffset()
 | |
|   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
 | |
|   // are passed CCValAssign::Indirect.
 | |
|   for (auto &VA : ArgLocs)
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|       return false;
 | |
| 
 | |
|   // Do not tail call opt if either caller or callee uses struct return
 | |
|   // semantics.
 | |
|   auto IsCallerStructRet = Caller.hasStructRetAttr();
 | |
|   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
 | |
|   if (IsCallerStructRet || IsCalleeStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // Externally-defined functions with weak linkage should not be
 | |
|   // tail-called. The behaviour of branch instructions in this situation (as
 | |
|   // used for tail calls) is implementation-defined, so we cannot rely on the
 | |
|   // linker replacing the tail call with a return.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     if (GV->hasExternalWeakLinkage())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // The callee has to preserve all registers the caller needs to preserve.
 | |
|   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
 | |
|   if (CalleeCC != CallerCC) {
 | |
|     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
 | |
|     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Byval parameters hand the function a pointer directly into the stack area
 | |
|   // we want to reuse during a tail call. Working around this *is* possible
 | |
|   // but less efficient and uglier in LowerCall.
 | |
|   for (auto &Arg : Outs)
 | |
|     if (Arg.Flags.isByVal())
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
 | |
| // and output parameter nodes.
 | |
| SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
 | |
|                                        SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG = CLI.DAG;
 | |
|   SDLoc &DL = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
 | |
|   SDValue Chain = CLI.Chain;
 | |
|   SDValue Callee = CLI.Callee;
 | |
|   bool &IsTailCall = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv = CLI.CallConv;
 | |
|   bool IsVarArg = CLI.IsVarArg;
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   MVT XLenVT = Subtarget.getXLenVT();
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Analyze the operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
 | |
|   analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
 | |
| 
 | |
|   // Check if it's really possible to do a tail call.
 | |
|   if (IsTailCall)
 | |
|     IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF,
 | |
|                                                    ArgLocs);
 | |
| 
 | |
|   if (IsTailCall)
 | |
|     ++NumTailCalls;
 | |
|   else if (CLI.CS && CLI.CS.isMustTailCall())
 | |
|     report_fatal_error("failed to perform tail call elimination on a call "
 | |
|                        "site marked musttail");
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
 | |
| 
 | |
|   // Create local copies for byval args
 | |
|   SmallVector<SDValue, 8> ByValArgs;
 | |
|   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     if (!Flags.isByVal())
 | |
|       continue;
 | |
| 
 | |
|     SDValue Arg = OutVals[i];
 | |
|     unsigned Size = Flags.getByValSize();
 | |
|     unsigned Align = Flags.getByValAlign();
 | |
| 
 | |
|     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
 | |
|     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | |
|     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
 | |
| 
 | |
|     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
 | |
|                           /*IsVolatile=*/false,
 | |
|                           /*AlwaysInline=*/false,
 | |
|                           IsTailCall, MachinePointerInfo(),
 | |
|                           MachinePointerInfo());
 | |
|     ByValArgs.push_back(FIPtr);
 | |
|   }
 | |
| 
 | |
|   if (!IsTailCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
 | |
| 
 | |
|   // Copy argument values to their designated locations.
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   SDValue StackPtr;
 | |
|   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue ArgValue = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // Handle passing f64 on RV32D with a soft float ABI as a special case.
 | |
|     bool IsF64OnRV32DSoftABI =
 | |
|         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
 | |
|     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
 | |
|       SDValue SplitF64 = DAG.getNode(
 | |
|           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
 | |
|       SDValue Lo = SplitF64.getValue(0);
 | |
|       SDValue Hi = SplitF64.getValue(1);
 | |
| 
 | |
|       unsigned RegLo = VA.getLocReg();
 | |
|       RegsToPass.push_back(std::make_pair(RegLo, Lo));
 | |
| 
 | |
|       if (RegLo == RISCV::X17) {
 | |
|         // Second half of f64 is passed on the stack.
 | |
|         // Work out the address of the stack slot.
 | |
|         if (!StackPtr.getNode())
 | |
|           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
 | |
|         // Emit the store.
 | |
|         MemOpChains.push_back(
 | |
|             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
 | |
|       } else {
 | |
|         // Second half of f64 is passed in another GPR.
 | |
|         unsigned RegHigh = RegLo + 1;
 | |
|         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
 | |
|     // as any other MemLoc.
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     // For now, only handle fully promoted and indirect arguments.
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect) {
 | |
|       // Store the argument in a stack slot and pass its address.
 | |
|       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
 | |
|       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|       MemOpChains.push_back(
 | |
|           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
 | |
|                        MachinePointerInfo::getFixedStack(MF, FI)));
 | |
|       // If the original argument was split (e.g. i128), we need
 | |
|       // to store all parts of it here (and pass just one address).
 | |
|       unsigned ArgIndex = Outs[i].OrigArgIndex;
 | |
|       assert(Outs[i].PartOffset == 0);
 | |
|       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
 | |
|         SDValue PartValue = OutVals[i + 1];
 | |
|         unsigned PartOffset = Outs[i + 1].PartOffset;
 | |
|         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
 | |
|                                       DAG.getIntPtrConstant(PartOffset, DL));
 | |
|         MemOpChains.push_back(
 | |
|             DAG.getStore(Chain, DL, PartValue, Address,
 | |
|                          MachinePointerInfo::getFixedStack(MF, FI)));
 | |
|         ++i;
 | |
|       }
 | |
|       ArgValue = SpillSlot;
 | |
|     } else {
 | |
|       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
 | |
|     }
 | |
| 
 | |
|     // Use local copy if it is a byval arg.
 | |
|     if (Flags.isByVal())
 | |
|       ArgValue = ByValArgs[j++];
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       // Queue up the argument copies and emit them at the end.
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
 | |
|     } else {
 | |
|       assert(VA.isMemLoc() && "Argument not register or memory");
 | |
|       assert(!IsTailCall && "Tail call not allowed if stack is used "
 | |
|                             "for passing parameters");
 | |
| 
 | |
|       // Work out the address of the stack slot.
 | |
|       if (!StackPtr.getNode())
 | |
|         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
 | |
|       SDValue Address =
 | |
|           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
 | |
|                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
 | |
| 
 | |
|       // Emit the store.
 | |
|       MemOpChains.push_back(
 | |
|           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Join the stores, which are independent of one another.
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
 | |
| 
 | |
|   SDValue Glue;
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes, chained and glued together.
 | |
|   for (auto &Reg : RegsToPass) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
 | |
|   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
 | |
|   // split it and then direct call can be matched by PseudoCALL.
 | |
|   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0);
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0);
 | |
|   }
 | |
| 
 | |
|   // The first call operand is the chain and the second is the target address.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are
 | |
|   // known live into the call.
 | |
|   for (auto &Reg : RegsToPass)
 | |
|     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
 | |
| 
 | |
|   if (!IsTailCall) {
 | |
|     // Add a register mask operand representing the call-preserved registers.
 | |
|     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
 | |
|     assert(Mask && "Missing call preserved mask for calling convention");
 | |
|     Ops.push_back(DAG.getRegisterMask(Mask));
 | |
|   }
 | |
| 
 | |
|   // Glue the call to the argument copies, if any.
 | |
|   if (Glue.getNode())
 | |
|     Ops.push_back(Glue);
 | |
| 
 | |
|   // Emit the call.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|   if (IsTailCall) {
 | |
|     MF.getFrameInfo().setHasTailCall();
 | |
|     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Mark the end of the call, which is glued to the call itself.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain,
 | |
|                              DAG.getConstant(NumBytes, DL, PtrVT, true),
 | |
|                              DAG.getConstant(0, DL, PtrVT, true),
 | |
|                              Glue, DL);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
 | |
|   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (auto &VA : RVLocs) {
 | |
|     // Copy the value out
 | |
|     SDValue RetValue =
 | |
|         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
 | |
|     // Glue the RetValue to the end of the call sequence
 | |
|     Chain = RetValue.getValue(1);
 | |
|     Glue = RetValue.getValue(2);
 | |
| 
 | |
|     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
 | |
|       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
 | |
|       SDValue RetValue2 =
 | |
|           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
 | |
|       Chain = RetValue2.getValue(1);
 | |
|       Glue = RetValue2.getValue(2);
 | |
|       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
 | |
|                              RetValue2);
 | |
|     }
 | |
| 
 | |
|     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
 | |
| 
 | |
|     InVals.push_back(RetValue);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| bool RISCVTargetLowering::CanLowerReturn(
 | |
|     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
 | |
|   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
 | |
|     MVT VT = Outs[i].VT;
 | |
|     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|     if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
 | |
|                  CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | |
|                                  bool IsVarArg,
 | |
|                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                  const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                  const SDLoc &DL, SelectionDAG &DAG) const {
 | |
|   // Stores the assignment of the return value to a location.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // Info about the registers and stack slot.
 | |
|   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
 | |
|                     nullptr);
 | |
| 
 | |
|   SDValue Glue;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
 | |
|     SDValue Val = OutVals[i];
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
 | |
|       // Handle returning f64 on RV32D with a soft float ABI.
 | |
|       assert(VA.isRegLoc() && "Expected return via registers");
 | |
|       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
 | |
|                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
 | |
|       SDValue Lo = SplitF64.getValue(0);
 | |
|       SDValue Hi = SplitF64.getValue(1);
 | |
|       unsigned RegLo = VA.getLocReg();
 | |
|       unsigned RegHi = RegLo + 1;
 | |
|       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
 | |
|       Glue = Chain.getValue(1);
 | |
|       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
 | |
|       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
 | |
|       Glue = Chain.getValue(1);
 | |
|       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
 | |
|     } else {
 | |
|       // Handle a 'normal' return.
 | |
|       Val = convertValVTToLocVT(DAG, Val, VA, DL);
 | |
|       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
 | |
| 
 | |
|       // Guarantee that all emitted copies are stuck together.
 | |
|       Glue = Chain.getValue(1);
 | |
|       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain; // Update chain.
 | |
| 
 | |
|   // Add the glue node if we have it.
 | |
|   if (Glue.getNode()) {
 | |
|     RetOps.push_back(Glue);
 | |
|   }
 | |
| 
 | |
|   // Interrupt service routines use different return instructions.
 | |
|   const Function &Func = DAG.getMachineFunction().getFunction();
 | |
|   if (Func.hasFnAttribute("interrupt")) {
 | |
|     if (!Func.getReturnType()->isVoidTy())
 | |
|       report_fatal_error(
 | |
|           "Functions with the interrupt attribute must have void return type!");
 | |
| 
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     StringRef Kind =
 | |
|       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
 | |
| 
 | |
|     unsigned RetOpc;
 | |
|     if (Kind == "user")
 | |
|       RetOpc = RISCVISD::URET_FLAG;
 | |
|     else if (Kind == "supervisor")
 | |
|       RetOpc = RISCVISD::SRET_FLAG;
 | |
|     else
 | |
|       RetOpc = RISCVISD::MRET_FLAG;
 | |
| 
 | |
|     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch ((RISCVISD::NodeType)Opcode) {
 | |
|   case RISCVISD::FIRST_NUMBER:
 | |
|     break;
 | |
|   case RISCVISD::RET_FLAG:
 | |
|     return "RISCVISD::RET_FLAG";
 | |
|   case RISCVISD::URET_FLAG:
 | |
|     return "RISCVISD::URET_FLAG";
 | |
|   case RISCVISD::SRET_FLAG:
 | |
|     return "RISCVISD::SRET_FLAG";
 | |
|   case RISCVISD::MRET_FLAG:
 | |
|     return "RISCVISD::MRET_FLAG";
 | |
|   case RISCVISD::CALL:
 | |
|     return "RISCVISD::CALL";
 | |
|   case RISCVISD::SELECT_CC:
 | |
|     return "RISCVISD::SELECT_CC";
 | |
|   case RISCVISD::BuildPairF64:
 | |
|     return "RISCVISD::BuildPairF64";
 | |
|   case RISCVISD::SplitF64:
 | |
|     return "RISCVISD::SplitF64";
 | |
|   case RISCVISD::TAIL:
 | |
|     return "RISCVISD::TAIL";
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | |
|                                                   StringRef Constraint,
 | |
|                                                   MVT VT) const {
 | |
|   // First, see if this is a constraint that directly corresponds to a
 | |
|   // RISCV register class.
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'r':
 | |
|       return std::make_pair(0U, &RISCV::GPRRegClass);
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | |
| }
 | |
| 
 | |
| Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
 | |
|                                                    Instruction *Inst,
 | |
|                                                    AtomicOrdering Ord) const {
 | |
|   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
 | |
|     return Builder.CreateFence(Ord);
 | |
|   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
 | |
|     return Builder.CreateFence(AtomicOrdering::Release);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
 | |
|                                                     Instruction *Inst,
 | |
|                                                     AtomicOrdering Ord) const {
 | |
|   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
 | |
|     return Builder.CreateFence(AtomicOrdering::Acquire);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| TargetLowering::AtomicExpansionKind
 | |
| RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
 | |
|   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
 | |
|   if (Size == 8 || Size == 16)
 | |
|     return AtomicExpansionKind::MaskedIntrinsic;
 | |
|   return AtomicExpansionKind::None;
 | |
| }
 | |
| 
 | |
| static Intrinsic::ID
 | |
| getIntrinsicForMaskedAtomicRMWBinOp32(AtomicRMWInst::BinOp BinOp) {
 | |
|   switch (BinOp) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected AtomicRMW BinOp");
 | |
|   case AtomicRMWInst::Xchg:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
 | |
|   case AtomicRMWInst::Add:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_add_i32;
 | |
|   case AtomicRMWInst::Sub:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_sub_i32;
 | |
|   case AtomicRMWInst::Nand:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_nand_i32;
 | |
|   case AtomicRMWInst::Max:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_max_i32;
 | |
|   case AtomicRMWInst::Min:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_min_i32;
 | |
|   case AtomicRMWInst::UMax:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_umax_i32;
 | |
|   case AtomicRMWInst::UMin:
 | |
|     return Intrinsic::riscv_masked_atomicrmw_umin_i32;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
 | |
|     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
 | |
|     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
 | |
|   Value *Ordering = Builder.getInt32(static_cast<uint32_t>(AI->getOrdering()));
 | |
|   Type *Tys[] = {AlignedAddr->getType()};
 | |
|   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
 | |
|       AI->getModule(),
 | |
|       getIntrinsicForMaskedAtomicRMWBinOp32(AI->getOperation()), Tys);
 | |
| 
 | |
|   // Must pass the shift amount needed to sign extend the loaded value prior
 | |
|   // to performing a signed comparison for min/max. ShiftAmt is the number of
 | |
|   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
 | |
|   // is the number of bits to left+right shift the value in order to
 | |
|   // sign-extend.
 | |
|   if (AI->getOperation() == AtomicRMWInst::Min ||
 | |
|       AI->getOperation() == AtomicRMWInst::Max) {
 | |
|     const DataLayout &DL = AI->getModule()->getDataLayout();
 | |
|     unsigned ValWidth =
 | |
|         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
 | |
|     Value *SextShamt = Builder.CreateSub(
 | |
|         Builder.getInt32(Subtarget.getXLen() - ValWidth), ShiftAmt);
 | |
|     return Builder.CreateCall(LrwOpScwLoop,
 | |
|                               {AlignedAddr, Incr, Mask, SextShamt, Ordering});
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
 | |
| }
 |