3471 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3471 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstPrinter/X86IntelInstPrinter.h"
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "MCTargetDesc/X86MCExpr.h"
 | 
						|
#include "MCTargetDesc/X86TargetStreamer.h"
 | 
						|
#include "X86AsmInstrumentation.h"
 | 
						|
#include "X86AsmParserCommon.h"
 | 
						|
#include "X86Operand.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/MCInstrInfo.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmLexer.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmParser.h"
 | 
						|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 | 
						|
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCSection.h"
 | 
						|
#include "llvm/MC/MCStreamer.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Support/SourceMgr.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
 | 
						|
  if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
 | 
						|
    ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static const char OpPrecedence[] = {
 | 
						|
  0, // IC_OR
 | 
						|
  1, // IC_XOR
 | 
						|
  2, // IC_AND
 | 
						|
  3, // IC_LSHIFT
 | 
						|
  3, // IC_RSHIFT
 | 
						|
  4, // IC_PLUS
 | 
						|
  4, // IC_MINUS
 | 
						|
  5, // IC_MULTIPLY
 | 
						|
  5, // IC_DIVIDE
 | 
						|
  5, // IC_MOD
 | 
						|
  6, // IC_NOT
 | 
						|
  7, // IC_NEG
 | 
						|
  8, // IC_RPAREN
 | 
						|
  9, // IC_LPAREN
 | 
						|
  0, // IC_IMM
 | 
						|
  0  // IC_REGISTER
 | 
						|
};
 | 
						|
 | 
						|
class X86AsmParser : public MCTargetAsmParser {
 | 
						|
  ParseInstructionInfo *InstInfo;
 | 
						|
  std::unique_ptr<X86AsmInstrumentation> Instrumentation;
 | 
						|
  bool Code16GCC;
 | 
						|
 | 
						|
private:
 | 
						|
  SMLoc consumeToken() {
 | 
						|
    MCAsmParser &Parser = getParser();
 | 
						|
    SMLoc Result = Parser.getTok().getLoc();
 | 
						|
    Parser.Lex();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  X86TargetStreamer &getTargetStreamer() {
 | 
						|
    assert(getParser().getStreamer().getTargetStreamer() &&
 | 
						|
           "do not have a target streamer");
 | 
						|
    MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
 | 
						|
    return static_cast<X86TargetStreamer &>(TS);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
 | 
						|
                            uint64_t &ErrorInfo, bool matchingInlineAsm,
 | 
						|
                            unsigned VariantID = 0) {
 | 
						|
    // In Code16GCC mode, match as 32-bit.
 | 
						|
    if (Code16GCC)
 | 
						|
      SwitchMode(X86::Mode32Bit);
 | 
						|
    unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
 | 
						|
                                       matchingInlineAsm, VariantID);
 | 
						|
    if (Code16GCC)
 | 
						|
      SwitchMode(X86::Mode16Bit);
 | 
						|
    return rv;
 | 
						|
  }
 | 
						|
 | 
						|
  enum InfixCalculatorTok {
 | 
						|
    IC_OR = 0,
 | 
						|
    IC_XOR,
 | 
						|
    IC_AND,
 | 
						|
    IC_LSHIFT,
 | 
						|
    IC_RSHIFT,
 | 
						|
    IC_PLUS,
 | 
						|
    IC_MINUS,
 | 
						|
    IC_MULTIPLY,
 | 
						|
    IC_DIVIDE,
 | 
						|
    IC_MOD,
 | 
						|
    IC_NOT,
 | 
						|
    IC_NEG,
 | 
						|
    IC_RPAREN,
 | 
						|
    IC_LPAREN,
 | 
						|
    IC_IMM,
 | 
						|
    IC_REGISTER
 | 
						|
  };
 | 
						|
 | 
						|
  enum IntelOperatorKind {
 | 
						|
    IOK_INVALID = 0,
 | 
						|
    IOK_LENGTH,
 | 
						|
    IOK_SIZE,
 | 
						|
    IOK_TYPE,
 | 
						|
    IOK_OFFSET
 | 
						|
  };
 | 
						|
 | 
						|
  class InfixCalculator {
 | 
						|
    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
 | 
						|
    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
 | 
						|
    SmallVector<ICToken, 4> PostfixStack;
 | 
						|
 | 
						|
    bool isUnaryOperator(const InfixCalculatorTok Op) {
 | 
						|
      return Op == IC_NEG || Op == IC_NOT;
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    int64_t popOperand() {
 | 
						|
      assert (!PostfixStack.empty() && "Poped an empty stack!");
 | 
						|
      ICToken Op = PostfixStack.pop_back_val();
 | 
						|
      if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
 | 
						|
        return -1; // The invalid Scale value will be caught later by checkScale
 | 
						|
      return Op.second;
 | 
						|
    }
 | 
						|
    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
 | 
						|
      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
 | 
						|
              "Unexpected operand!");
 | 
						|
      PostfixStack.push_back(std::make_pair(Op, Val));
 | 
						|
    }
 | 
						|
 | 
						|
    void popOperator() { InfixOperatorStack.pop_back(); }
 | 
						|
    void pushOperator(InfixCalculatorTok Op) {
 | 
						|
      // Push the new operator if the stack is empty.
 | 
						|
      if (InfixOperatorStack.empty()) {
 | 
						|
        InfixOperatorStack.push_back(Op);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Push the new operator if it has a higher precedence than the operator
 | 
						|
      // on the top of the stack or the operator on the top of the stack is a
 | 
						|
      // left parentheses.
 | 
						|
      unsigned Idx = InfixOperatorStack.size() - 1;
 | 
						|
      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
 | 
						|
      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
 | 
						|
        InfixOperatorStack.push_back(Op);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // The operator on the top of the stack has higher precedence than the
 | 
						|
      // new operator.
 | 
						|
      unsigned ParenCount = 0;
 | 
						|
      while (1) {
 | 
						|
        // Nothing to process.
 | 
						|
        if (InfixOperatorStack.empty())
 | 
						|
          break;
 | 
						|
 | 
						|
        Idx = InfixOperatorStack.size() - 1;
 | 
						|
        StackOp = InfixOperatorStack[Idx];
 | 
						|
        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
 | 
						|
          break;
 | 
						|
 | 
						|
        // If we have an even parentheses count and we see a left parentheses,
 | 
						|
        // then stop processing.
 | 
						|
        if (!ParenCount && StackOp == IC_LPAREN)
 | 
						|
          break;
 | 
						|
 | 
						|
        if (StackOp == IC_RPAREN) {
 | 
						|
          ++ParenCount;
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
        } else if (StackOp == IC_LPAREN) {
 | 
						|
          --ParenCount;
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
        } else {
 | 
						|
          InfixOperatorStack.pop_back();
 | 
						|
          PostfixStack.push_back(std::make_pair(StackOp, 0));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Push the new operator.
 | 
						|
      InfixOperatorStack.push_back(Op);
 | 
						|
    }
 | 
						|
 | 
						|
    int64_t execute() {
 | 
						|
      // Push any remaining operators onto the postfix stack.
 | 
						|
      while (!InfixOperatorStack.empty()) {
 | 
						|
        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
 | 
						|
        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
 | 
						|
          PostfixStack.push_back(std::make_pair(StackOp, 0));
 | 
						|
      }
 | 
						|
 | 
						|
      if (PostfixStack.empty())
 | 
						|
        return 0;
 | 
						|
 | 
						|
      SmallVector<ICToken, 16> OperandStack;
 | 
						|
      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
 | 
						|
        ICToken Op = PostfixStack[i];
 | 
						|
        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
 | 
						|
          OperandStack.push_back(Op);
 | 
						|
        } else if (isUnaryOperator(Op.first)) {
 | 
						|
          assert (OperandStack.size() > 0 && "Too few operands.");
 | 
						|
          ICToken Operand = OperandStack.pop_back_val();
 | 
						|
          assert (Operand.first == IC_IMM &&
 | 
						|
                  "Unary operation with a register!");
 | 
						|
          switch (Op.first) {
 | 
						|
          default:
 | 
						|
            report_fatal_error("Unexpected operator!");
 | 
						|
            break;
 | 
						|
          case IC_NEG:
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
 | 
						|
            break;
 | 
						|
          case IC_NOT:
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          assert (OperandStack.size() > 1 && "Too few operands.");
 | 
						|
          int64_t Val;
 | 
						|
          ICToken Op2 = OperandStack.pop_back_val();
 | 
						|
          ICToken Op1 = OperandStack.pop_back_val();
 | 
						|
          switch (Op.first) {
 | 
						|
          default:
 | 
						|
            report_fatal_error("Unexpected operator!");
 | 
						|
            break;
 | 
						|
          case IC_PLUS:
 | 
						|
            Val = Op1.second + Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MINUS:
 | 
						|
            Val = Op1.second - Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MULTIPLY:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Multiply operation with an immediate and a register!");
 | 
						|
            Val = Op1.second * Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_DIVIDE:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Divide operation with an immediate and a register!");
 | 
						|
            assert (Op2.second != 0 && "Division by zero!");
 | 
						|
            Val = Op1.second / Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_MOD:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Modulo operation with an immediate and a register!");
 | 
						|
            Val = Op1.second % Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_OR:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Or operation with an immediate and a register!");
 | 
						|
            Val = Op1.second | Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_XOR:
 | 
						|
            assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
              "Xor operation with an immediate and a register!");
 | 
						|
            Val = Op1.second ^ Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_AND:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "And operation with an immediate and a register!");
 | 
						|
            Val = Op1.second & Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_LSHIFT:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Left shift operation with an immediate and a register!");
 | 
						|
            Val = Op1.second << Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          case IC_RSHIFT:
 | 
						|
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | 
						|
                    "Right shift operation with an immediate and a register!");
 | 
						|
            Val = Op1.second >> Op2.second;
 | 
						|
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      assert (OperandStack.size() == 1 && "Expected a single result.");
 | 
						|
      return OperandStack.pop_back_val().second;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  enum IntelExprState {
 | 
						|
    IES_INIT,
 | 
						|
    IES_OR,
 | 
						|
    IES_XOR,
 | 
						|
    IES_AND,
 | 
						|
    IES_LSHIFT,
 | 
						|
    IES_RSHIFT,
 | 
						|
    IES_PLUS,
 | 
						|
    IES_MINUS,
 | 
						|
    IES_NOT,
 | 
						|
    IES_MULTIPLY,
 | 
						|
    IES_DIVIDE,
 | 
						|
    IES_MOD,
 | 
						|
    IES_LBRAC,
 | 
						|
    IES_RBRAC,
 | 
						|
    IES_LPAREN,
 | 
						|
    IES_RPAREN,
 | 
						|
    IES_REGISTER,
 | 
						|
    IES_INTEGER,
 | 
						|
    IES_IDENTIFIER,
 | 
						|
    IES_ERROR
 | 
						|
  };
 | 
						|
 | 
						|
  class IntelExprStateMachine {
 | 
						|
    IntelExprState State, PrevState;
 | 
						|
    unsigned BaseReg, IndexReg, TmpReg, Scale;
 | 
						|
    int64_t Imm;
 | 
						|
    const MCExpr *Sym;
 | 
						|
    StringRef SymName;
 | 
						|
    InfixCalculator IC;
 | 
						|
    InlineAsmIdentifierInfo Info;
 | 
						|
    short BracCount;
 | 
						|
    bool MemExpr;
 | 
						|
 | 
						|
  public:
 | 
						|
    IntelExprStateMachine()
 | 
						|
        : State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
 | 
						|
          TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
 | 
						|
          MemExpr(false) {}
 | 
						|
 | 
						|
    void addImm(int64_t imm) { Imm += imm; }
 | 
						|
    short getBracCount() { return BracCount; }
 | 
						|
    bool isMemExpr() { return MemExpr; }
 | 
						|
    unsigned getBaseReg() { return BaseReg; }
 | 
						|
    unsigned getIndexReg() { return IndexReg; }
 | 
						|
    unsigned getScale() { return Scale; }
 | 
						|
    const MCExpr *getSym() { return Sym; }
 | 
						|
    StringRef getSymName() { return SymName; }
 | 
						|
    int64_t getImm() { return Imm + IC.execute(); }
 | 
						|
    bool isValidEndState() {
 | 
						|
      return State == IES_RBRAC || State == IES_INTEGER;
 | 
						|
    }
 | 
						|
    bool hadError() { return State == IES_ERROR; }
 | 
						|
    InlineAsmIdentifierInfo &getIdentifierInfo() { return Info; }
 | 
						|
 | 
						|
    void onOr() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_OR;
 | 
						|
        IC.pushOperator(IC_OR);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onXor() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_XOR;
 | 
						|
        IC.pushOperator(IC_XOR);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onAnd() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_AND;
 | 
						|
        IC.pushOperator(IC_AND);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onLShift() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_LSHIFT;
 | 
						|
        IC.pushOperator(IC_LSHIFT);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRShift() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_RSHIFT;
 | 
						|
        IC.pushOperator(IC_RSHIFT);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    bool onPlus(StringRef &ErrMsg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_REGISTER:
 | 
						|
        State = IES_PLUS;
 | 
						|
        IC.pushOperator(IC_PLUS);
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // no explicit scale.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            if (IndexReg) {
 | 
						|
              ErrMsg = "BaseReg/IndexReg already set!";
 | 
						|
              return true;
 | 
						|
            }
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 0;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    bool onMinus(StringRef &ErrMsg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_OR:
 | 
						|
      case IES_XOR:
 | 
						|
      case IES_AND:
 | 
						|
      case IES_LSHIFT:
 | 
						|
      case IES_RSHIFT:
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_MOD:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_RPAREN:
 | 
						|
      case IES_LBRAC:
 | 
						|
      case IES_RBRAC:
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_INIT:
 | 
						|
        State = IES_MINUS;
 | 
						|
        // push minus operator if it is not a negate operator
 | 
						|
        if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
 | 
						|
            CurrState == IES_INTEGER  || CurrState == IES_RBRAC)
 | 
						|
          IC.pushOperator(IC_MINUS);
 | 
						|
        else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | 
						|
          // We have negate operator for Scale: it's illegal
 | 
						|
          ErrMsg = "Scale can't be negative";
 | 
						|
          return true;
 | 
						|
        } else
 | 
						|
          IC.pushOperator(IC_NEG);
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // no explicit scale.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            if (IndexReg) {
 | 
						|
              ErrMsg = "BaseReg/IndexReg already set!";
 | 
						|
              return true;
 | 
						|
            }
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 0;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    void onNot() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_OR:
 | 
						|
      case IES_XOR:
 | 
						|
      case IES_AND:
 | 
						|
      case IES_LSHIFT:
 | 
						|
      case IES_RSHIFT:
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_MOD:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_LBRAC:
 | 
						|
      case IES_INIT:
 | 
						|
        State = IES_NOT;
 | 
						|
        IC.pushOperator(IC_NOT);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
 | 
						|
    bool onRegister(unsigned Reg, StringRef &ErrMsg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_LBRAC:
 | 
						|
        State = IES_REGISTER;
 | 
						|
        TmpReg = Reg;
 | 
						|
        IC.pushOperand(IC_REGISTER);
 | 
						|
        break;
 | 
						|
      case IES_MULTIPLY:
 | 
						|
        // Index Register - Scale * Register
 | 
						|
        if (PrevState == IES_INTEGER) {
 | 
						|
          if (IndexReg) {
 | 
						|
            ErrMsg = "BaseReg/IndexReg already set!";
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
          State = IES_REGISTER;
 | 
						|
          IndexReg = Reg;
 | 
						|
          // Get the scale and replace the 'Scale * Register' with '0'.
 | 
						|
          Scale = IC.popOperand();
 | 
						|
          if (checkScale(Scale, ErrMsg))
 | 
						|
            return true;
 | 
						|
          IC.pushOperand(IC_IMM);
 | 
						|
          IC.popOperator();
 | 
						|
        } else {
 | 
						|
          State = IES_ERROR;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
 | 
						|
                          const InlineAsmIdentifierInfo &IDInfo,
 | 
						|
                          bool ParsingInlineAsm, StringRef &ErrMsg) {
 | 
						|
      // InlineAsm: Treat an enum value as an integer
 | 
						|
      if (ParsingInlineAsm)
 | 
						|
        if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
 | 
						|
          return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
 | 
						|
      // Treat a symbolic constant like an integer
 | 
						|
      if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
 | 
						|
        return onInteger(CE->getValue(), ErrMsg);
 | 
						|
      PrevState = State;
 | 
						|
      bool HasSymbol = Sym != nullptr;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_INIT:
 | 
						|
      case IES_LBRAC:
 | 
						|
        MemExpr = true;
 | 
						|
        State = IES_INTEGER;
 | 
						|
        Sym = SymRef;
 | 
						|
        SymName = SymRefName;
 | 
						|
        IC.pushOperand(IC_IMM);
 | 
						|
        if (ParsingInlineAsm)
 | 
						|
          Info = IDInfo;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (HasSymbol)
 | 
						|
        ErrMsg = "cannot use more than one symbol in memory operand";
 | 
						|
      return HasSymbol;
 | 
						|
    }
 | 
						|
    bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_OR:
 | 
						|
      case IES_XOR:
 | 
						|
      case IES_AND:
 | 
						|
      case IES_LSHIFT:
 | 
						|
      case IES_RSHIFT:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_MOD:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_INIT:
 | 
						|
      case IES_LBRAC:
 | 
						|
        State = IES_INTEGER;
 | 
						|
        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | 
						|
          // Index Register - Register * Scale
 | 
						|
          if (IndexReg) {
 | 
						|
            ErrMsg = "BaseReg/IndexReg already set!";
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
          IndexReg = TmpReg;
 | 
						|
          Scale = TmpInt;
 | 
						|
          if (checkScale(Scale, ErrMsg))
 | 
						|
            return true;
 | 
						|
          // Get the scale and replace the 'Register * Scale' with '0'.
 | 
						|
          IC.popOperator();
 | 
						|
        } else {
 | 
						|
          IC.pushOperand(IC_IMM, TmpInt);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    void onStar() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_MULTIPLY;
 | 
						|
        IC.pushOperator(IC_MULTIPLY);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onDivide() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_DIVIDE;
 | 
						|
        IC.pushOperator(IC_DIVIDE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void onMod() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_MOD;
 | 
						|
        IC.pushOperator(IC_MOD);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool onLBrac() {
 | 
						|
      if (BracCount)
 | 
						|
        return true;
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_RBRAC:
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_PLUS;
 | 
						|
        IC.pushOperator(IC_PLUS);
 | 
						|
        break;
 | 
						|
      case IES_INIT:
 | 
						|
        assert(!BracCount && "BracCount should be zero on parsing's start");
 | 
						|
        State = IES_LBRAC;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      MemExpr = true;
 | 
						|
      BracCount++;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    bool onRBrac() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        if (BracCount-- != 1)
 | 
						|
          return true;
 | 
						|
        State = IES_RBRAC;
 | 
						|
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | 
						|
          // If we already have a BaseReg, then assume this is the IndexReg with
 | 
						|
          // no explicit scale.
 | 
						|
          if (!BaseReg) {
 | 
						|
            BaseReg = TmpReg;
 | 
						|
          } else {
 | 
						|
            assert (!IndexReg && "BaseReg/IndexReg already set!");
 | 
						|
            IndexReg = TmpReg;
 | 
						|
            Scale = 0;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    void onLParen() {
 | 
						|
      IntelExprState CurrState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_PLUS:
 | 
						|
      case IES_MINUS:
 | 
						|
      case IES_NOT:
 | 
						|
      case IES_OR:
 | 
						|
      case IES_XOR:
 | 
						|
      case IES_AND:
 | 
						|
      case IES_LSHIFT:
 | 
						|
      case IES_RSHIFT:
 | 
						|
      case IES_MULTIPLY:
 | 
						|
      case IES_DIVIDE:
 | 
						|
      case IES_MOD:
 | 
						|
      case IES_LPAREN:
 | 
						|
      case IES_INIT:
 | 
						|
      case IES_LBRAC:
 | 
						|
        State = IES_LPAREN;
 | 
						|
        IC.pushOperator(IC_LPAREN);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PrevState = CurrState;
 | 
						|
    }
 | 
						|
    void onRParen() {
 | 
						|
      PrevState = State;
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        State = IES_ERROR;
 | 
						|
        break;
 | 
						|
      case IES_INTEGER:
 | 
						|
      case IES_REGISTER:
 | 
						|
      case IES_RPAREN:
 | 
						|
        State = IES_RPAREN;
 | 
						|
        IC.pushOperator(IC_RPAREN);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
 | 
						|
             bool MatchingInlineAsm = false) {
 | 
						|
    MCAsmParser &Parser = getParser();
 | 
						|
    if (MatchingInlineAsm) {
 | 
						|
      if (!getLexer().isAtStartOfStatement())
 | 
						|
        Parser.eatToEndOfStatement();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return Parser.Error(L, Msg, Range);
 | 
						|
  }
 | 
						|
 | 
						|
  std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
 | 
						|
    Error(Loc, Msg);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
 | 
						|
  std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
 | 
						|
  bool IsSIReg(unsigned Reg);
 | 
						|
  unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
 | 
						|
  void
 | 
						|
  AddDefaultSrcDestOperands(OperandVector &Operands,
 | 
						|
                            std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
 | 
						|
                            std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
 | 
						|
  bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
 | 
						|
                               OperandVector &FinalOperands);
 | 
						|
  std::unique_ptr<X86Operand> ParseOperand();
 | 
						|
  std::unique_ptr<X86Operand> ParseATTOperand();
 | 
						|
  std::unique_ptr<X86Operand> ParseIntelOperand();
 | 
						|
  std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
 | 
						|
  bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
 | 
						|
  unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
 | 
						|
  unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
 | 
						|
  std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start);
 | 
						|
  bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM);
 | 
						|
  void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
 | 
						|
                              SMLoc End);
 | 
						|
  bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
 | 
						|
  bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
 | 
						|
                                     InlineAsmIdentifierInfo &Info,
 | 
						|
                                     bool IsUnevaluatedOperand, SMLoc &End);
 | 
						|
 | 
						|
  std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc MemStart);
 | 
						|
 | 
						|
  bool ParseIntelMemoryOperandSize(unsigned &Size);
 | 
						|
  std::unique_ptr<X86Operand>
 | 
						|
  CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
 | 
						|
                        unsigned IndexReg, unsigned Scale, SMLoc Start,
 | 
						|
                        SMLoc End, unsigned Size, StringRef Identifier,
 | 
						|
                        const InlineAsmIdentifierInfo &Info);
 | 
						|
 | 
						|
  bool parseDirectiveEven(SMLoc L);
 | 
						|
  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
 | 
						|
 | 
						|
  /// CodeView FPO data directives.
 | 
						|
  bool parseDirectiveFPOProc(SMLoc L);
 | 
						|
  bool parseDirectiveFPOSetFrame(SMLoc L);
 | 
						|
  bool parseDirectiveFPOPushReg(SMLoc L);
 | 
						|
  bool parseDirectiveFPOStackAlloc(SMLoc L);
 | 
						|
  bool parseDirectiveFPOStackAlign(SMLoc L);
 | 
						|
  bool parseDirectiveFPOEndPrologue(SMLoc L);
 | 
						|
  bool parseDirectiveFPOEndProc(SMLoc L);
 | 
						|
  bool parseDirectiveFPOData(SMLoc L);
 | 
						|
 | 
						|
  bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
 | 
						|
  bool processInstruction(MCInst &Inst, const OperandVector &Ops);
 | 
						|
 | 
						|
  /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
 | 
						|
  /// instrumentation around Inst.
 | 
						|
  void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
 | 
						|
 | 
						|
  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                               OperandVector &Operands, MCStreamer &Out,
 | 
						|
                               uint64_t &ErrorInfo,
 | 
						|
                               bool MatchingInlineAsm) override;
 | 
						|
 | 
						|
  void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
 | 
						|
                         MCStreamer &Out, bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
 | 
						|
                           bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                  OperandVector &Operands, MCStreamer &Out,
 | 
						|
                                  uint64_t &ErrorInfo,
 | 
						|
                                  bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                    OperandVector &Operands, MCStreamer &Out,
 | 
						|
                                    uint64_t &ErrorInfo,
 | 
						|
                                    bool MatchingInlineAsm);
 | 
						|
 | 
						|
  bool OmitRegisterFromClobberLists(unsigned RegNo) override;
 | 
						|
 | 
						|
  /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
 | 
						|
  /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
 | 
						|
  /// return false if no parsing errors occurred, true otherwise.
 | 
						|
  bool HandleAVX512Operand(OperandVector &Operands,
 | 
						|
                           const MCParsedAsmOperand &Op);
 | 
						|
 | 
						|
  bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
 | 
						|
 | 
						|
  bool is64BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return getSTI().getFeatureBits()[X86::Mode64Bit];
 | 
						|
  }
 | 
						|
  bool is32BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return getSTI().getFeatureBits()[X86::Mode32Bit];
 | 
						|
  }
 | 
						|
  bool is16BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return getSTI().getFeatureBits()[X86::Mode16Bit];
 | 
						|
  }
 | 
						|
  void SwitchMode(unsigned mode) {
 | 
						|
    MCSubtargetInfo &STI = copySTI();
 | 
						|
    FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
 | 
						|
    FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
 | 
						|
    uint64_t FB = ComputeAvailableFeatures(
 | 
						|
      STI.ToggleFeature(OldMode.flip(mode)));
 | 
						|
    setAvailableFeatures(FB);
 | 
						|
 | 
						|
    assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getPointerWidth() {
 | 
						|
    if (is16BitMode()) return 16;
 | 
						|
    if (is32BitMode()) return 32;
 | 
						|
    if (is64BitMode()) return 64;
 | 
						|
    llvm_unreachable("invalid mode");
 | 
						|
  }
 | 
						|
 | 
						|
  bool isParsingIntelSyntax() {
 | 
						|
    return getParser().getAssemblerDialect();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @name Auto-generated Matcher Functions
 | 
						|
  /// {
 | 
						|
 | 
						|
#define GET_ASSEMBLER_HEADER
 | 
						|
#include "X86GenAsmMatcher.inc"
 | 
						|
 | 
						|
  /// }
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
 | 
						|
               const MCInstrInfo &mii, const MCTargetOptions &Options)
 | 
						|
      : MCTargetAsmParser(Options, sti, mii),  InstInfo(nullptr),
 | 
						|
        Code16GCC(false) {
 | 
						|
 | 
						|
    Parser.addAliasForDirective(".word", ".2byte");
 | 
						|
 | 
						|
    // Initialize the set of available features.
 | 
						|
    setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
 | 
						|
    Instrumentation.reset(
 | 
						|
        CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
 | 
						|
  }
 | 
						|
 | 
						|
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
 | 
						|
 | 
						|
  void SetFrameRegister(unsigned RegNo) override;
 | 
						|
 | 
						|
  bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
 | 
						|
 | 
						|
  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | 
						|
                        SMLoc NameLoc, OperandVector &Operands) override;
 | 
						|
 | 
						|
  bool ParseDirective(AsmToken DirectiveID) override;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// @name Auto-generated Match Functions
 | 
						|
/// {
 | 
						|
 | 
						|
static unsigned MatchRegisterName(StringRef Name);
 | 
						|
 | 
						|
/// }
 | 
						|
 | 
						|
static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
 | 
						|
                                            unsigned Scale, bool Is64BitMode,
 | 
						|
                                            StringRef &ErrMsg) {
 | 
						|
  // If we have both a base register and an index register make sure they are
 | 
						|
  // both 64-bit or 32-bit registers.
 | 
						|
  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
 | 
						|
 | 
						|
  if (BaseReg != 0 &&
 | 
						|
      !(BaseReg == X86::RIP || BaseReg == X86::EIP ||
 | 
						|
        X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
 | 
						|
        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
 | 
						|
        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
 | 
						|
    ErrMsg = "invalid base+index expression";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IndexReg != 0 &&
 | 
						|
      !(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
 | 
						|
        X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
 | 
						|
    ErrMsg = "invalid base+index expression";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
 | 
						|
      IndexReg == X86::EIP || IndexReg == X86::RIP ||
 | 
						|
      IndexReg == X86::ESP || IndexReg == X86::RSP) {
 | 
						|
    ErrMsg = "invalid base+index expression";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
 | 
						|
  // and then only in non-64-bit modes.
 | 
						|
  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | 
						|
      (Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
 | 
						|
                       BaseReg != X86::SI && BaseReg != X86::DI)) &&
 | 
						|
      BaseReg != X86::DX) {
 | 
						|
    ErrMsg = "invalid 16-bit base register";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseReg == 0 &&
 | 
						|
      X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
 | 
						|
    ErrMsg = "16-bit memory operand may not include only index register";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseReg != 0 && IndexReg != 0) {
 | 
						|
    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | 
						|
         IndexReg == X86::EIZ)) {
 | 
						|
      ErrMsg = "base register is 64-bit, but index register is not";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | 
						|
         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
 | 
						|
         IndexReg == X86::RIZ)) {
 | 
						|
      ErrMsg = "base register is 32-bit, but index register is not";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
 | 
						|
      if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | 
						|
          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
 | 
						|
        ErrMsg = "base register is 16-bit, but index register is not";
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
 | 
						|
          (IndexReg != X86::SI && IndexReg != X86::DI)) {
 | 
						|
        ErrMsg = "invalid 16-bit base/index register combination";
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // RIP/EIP-relative addressing is only supported in 64-bit mode.
 | 
						|
  if (!Is64BitMode && BaseReg != 0 &&
 | 
						|
      (BaseReg == X86::RIP || BaseReg == X86::EIP)) {
 | 
						|
    ErrMsg = "IP-relative addressing requires 64-bit mode";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return checkScale(Scale, ErrMsg);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseRegister(unsigned &RegNo,
 | 
						|
                                 SMLoc &StartLoc, SMLoc &EndLoc) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  RegNo = 0;
 | 
						|
  const AsmToken &PercentTok = Parser.getTok();
 | 
						|
  StartLoc = PercentTok.getLoc();
 | 
						|
 | 
						|
  // If we encounter a %, ignore it. This code handles registers with and
 | 
						|
  // without the prefix, unprefixed registers can occur in cfi directives.
 | 
						|
  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
 | 
						|
    Parser.Lex(); // Eat percent token.
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  EndLoc = Tok.getEndLoc();
 | 
						|
 | 
						|
  if (Tok.isNot(AsmToken::Identifier)) {
 | 
						|
    if (isParsingIntelSyntax()) return true;
 | 
						|
    return Error(StartLoc, "invalid register name",
 | 
						|
                 SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  RegNo = MatchRegisterName(Tok.getString());
 | 
						|
 | 
						|
  // If the match failed, try the register name as lowercase.
 | 
						|
  if (RegNo == 0)
 | 
						|
    RegNo = MatchRegisterName(Tok.getString().lower());
 | 
						|
 | 
						|
  // The "flags" register cannot be referenced directly.
 | 
						|
  // Treat it as an identifier instead.
 | 
						|
  if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS)
 | 
						|
    RegNo = 0;
 | 
						|
 | 
						|
  if (!is64BitMode()) {
 | 
						|
    // FIXME: This should be done using Requires<Not64BitMode> and
 | 
						|
    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
 | 
						|
    // checked.
 | 
						|
    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
 | 
						|
    // REX prefix.
 | 
						|
    if (RegNo == X86::RIZ || RegNo == X86::RIP ||
 | 
						|
        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
 | 
						|
        X86II::isX86_64NonExtLowByteReg(RegNo) ||
 | 
						|
        X86II::isX86_64ExtendedReg(RegNo))
 | 
						|
      return Error(StartLoc, "register %"
 | 
						|
                   + Tok.getString() + " is only available in 64-bit mode",
 | 
						|
                   SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
 | 
						|
  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
 | 
						|
    RegNo = X86::ST0;
 | 
						|
    Parser.Lex(); // Eat 'st'
 | 
						|
 | 
						|
    // Check to see if we have '(4)' after %st.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen))
 | 
						|
      return false;
 | 
						|
    // Lex the paren.
 | 
						|
    getParser().Lex();
 | 
						|
 | 
						|
    const AsmToken &IntTok = Parser.getTok();
 | 
						|
    if (IntTok.isNot(AsmToken::Integer))
 | 
						|
      return Error(IntTok.getLoc(), "expected stack index");
 | 
						|
    switch (IntTok.getIntVal()) {
 | 
						|
    case 0: RegNo = X86::ST0; break;
 | 
						|
    case 1: RegNo = X86::ST1; break;
 | 
						|
    case 2: RegNo = X86::ST2; break;
 | 
						|
    case 3: RegNo = X86::ST3; break;
 | 
						|
    case 4: RegNo = X86::ST4; break;
 | 
						|
    case 5: RegNo = X86::ST5; break;
 | 
						|
    case 6: RegNo = X86::ST6; break;
 | 
						|
    case 7: RegNo = X86::ST7; break;
 | 
						|
    default: return Error(IntTok.getLoc(), "invalid stack index");
 | 
						|
    }
 | 
						|
 | 
						|
    if (getParser().Lex().isNot(AsmToken::RParen))
 | 
						|
      return Error(Parser.getTok().getLoc(), "expected ')'");
 | 
						|
 | 
						|
    EndLoc = Parser.getTok().getEndLoc();
 | 
						|
    Parser.Lex(); // Eat ')'
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  EndLoc = Parser.getTok().getEndLoc();
 | 
						|
 | 
						|
  // If this is "db[0-15]", match it as an alias
 | 
						|
  // for dr[0-15].
 | 
						|
  if (RegNo == 0 && Tok.getString().startswith("db")) {
 | 
						|
    if (Tok.getString().size() == 3) {
 | 
						|
      switch (Tok.getString()[2]) {
 | 
						|
      case '0': RegNo = X86::DR0; break;
 | 
						|
      case '1': RegNo = X86::DR1; break;
 | 
						|
      case '2': RegNo = X86::DR2; break;
 | 
						|
      case '3': RegNo = X86::DR3; break;
 | 
						|
      case '4': RegNo = X86::DR4; break;
 | 
						|
      case '5': RegNo = X86::DR5; break;
 | 
						|
      case '6': RegNo = X86::DR6; break;
 | 
						|
      case '7': RegNo = X86::DR7; break;
 | 
						|
      case '8': RegNo = X86::DR8; break;
 | 
						|
      case '9': RegNo = X86::DR9; break;
 | 
						|
      }
 | 
						|
    } else if (Tok.getString().size() == 4 && Tok.getString()[2] == '1') {
 | 
						|
      switch (Tok.getString()[3]) {
 | 
						|
      case '0': RegNo = X86::DR10; break;
 | 
						|
      case '1': RegNo = X86::DR11; break;
 | 
						|
      case '2': RegNo = X86::DR12; break;
 | 
						|
      case '3': RegNo = X86::DR13; break;
 | 
						|
      case '4': RegNo = X86::DR14; break;
 | 
						|
      case '5': RegNo = X86::DR15; break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (RegNo != 0) {
 | 
						|
      EndLoc = Parser.getTok().getEndLoc();
 | 
						|
      Parser.Lex(); // Eat it.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RegNo == 0) {
 | 
						|
    if (isParsingIntelSyntax()) return true;
 | 
						|
    return Error(StartLoc, "invalid register name",
 | 
						|
                 SMRange(StartLoc, EndLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  Parser.Lex(); // Eat identifier token.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void X86AsmParser::SetFrameRegister(unsigned RegNo) {
 | 
						|
  Instrumentation->SetInitialFrameRegister(RegNo);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
 | 
						|
  bool Parse32 = is32BitMode() || Code16GCC;
 | 
						|
  unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
 | 
						|
  const MCExpr *Disp = MCConstantExpr::create(0, getContext());
 | 
						|
  return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
 | 
						|
                               /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
 | 
						|
                               Loc, Loc, 0);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
 | 
						|
  bool Parse32 = is32BitMode() || Code16GCC;
 | 
						|
  unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
 | 
						|
  const MCExpr *Disp = MCConstantExpr::create(0, getContext());
 | 
						|
  return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
 | 
						|
                               /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
 | 
						|
                               Loc, Loc, 0);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::IsSIReg(unsigned Reg) {
 | 
						|
  switch (Reg) {
 | 
						|
  default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
 | 
						|
  case X86::RSI:
 | 
						|
  case X86::ESI:
 | 
						|
  case X86::SI:
 | 
						|
    return true;
 | 
						|
  case X86::RDI:
 | 
						|
  case X86::EDI:
 | 
						|
  case X86::DI:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
 | 
						|
                                          bool IsSIReg) {
 | 
						|
  switch (RegClassID) {
 | 
						|
  default: llvm_unreachable("Unexpected register class");
 | 
						|
  case X86::GR64RegClassID:
 | 
						|
    return IsSIReg ? X86::RSI : X86::RDI;
 | 
						|
  case X86::GR32RegClassID:
 | 
						|
    return IsSIReg ? X86::ESI : X86::EDI;
 | 
						|
  case X86::GR16RegClassID:
 | 
						|
    return IsSIReg ? X86::SI : X86::DI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86AsmParser::AddDefaultSrcDestOperands(
 | 
						|
    OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
 | 
						|
    std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
 | 
						|
  if (isParsingIntelSyntax()) {
 | 
						|
    Operands.push_back(std::move(Dst));
 | 
						|
    Operands.push_back(std::move(Src));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    Operands.push_back(std::move(Src));
 | 
						|
    Operands.push_back(std::move(Dst));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
 | 
						|
                                           OperandVector &FinalOperands) {
 | 
						|
 | 
						|
  if (OrigOperands.size() > 1) {
 | 
						|
    // Check if sizes match, OrigOperands also contains the instruction name
 | 
						|
    assert(OrigOperands.size() == FinalOperands.size() + 1 &&
 | 
						|
           "Operand size mismatch");
 | 
						|
 | 
						|
    SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
 | 
						|
    // Verify types match
 | 
						|
    int RegClassID = -1;
 | 
						|
    for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
 | 
						|
      X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
 | 
						|
      X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
 | 
						|
 | 
						|
      if (FinalOp.isReg() &&
 | 
						|
          (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
 | 
						|
        // Return false and let a normal complaint about bogus operands happen
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (FinalOp.isMem()) {
 | 
						|
 | 
						|
        if (!OrigOp.isMem())
 | 
						|
          // Return false and let a normal complaint about bogus operands happen
 | 
						|
          return false;
 | 
						|
 | 
						|
        unsigned OrigReg = OrigOp.Mem.BaseReg;
 | 
						|
        unsigned FinalReg = FinalOp.Mem.BaseReg;
 | 
						|
 | 
						|
        // If we've already encounterd a register class, make sure all register
 | 
						|
        // bases are of the same register class
 | 
						|
        if (RegClassID != -1 &&
 | 
						|
            !X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
 | 
						|
          return Error(OrigOp.getStartLoc(),
 | 
						|
                       "mismatching source and destination index registers");
 | 
						|
        }
 | 
						|
 | 
						|
        if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
 | 
						|
          RegClassID = X86::GR64RegClassID;
 | 
						|
        else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
 | 
						|
          RegClassID = X86::GR32RegClassID;
 | 
						|
        else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
 | 
						|
          RegClassID = X86::GR16RegClassID;
 | 
						|
        else
 | 
						|
          // Unexpected register class type
 | 
						|
          // Return false and let a normal complaint about bogus operands happen
 | 
						|
          return false;
 | 
						|
 | 
						|
        bool IsSI = IsSIReg(FinalReg);
 | 
						|
        FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
 | 
						|
 | 
						|
        if (FinalReg != OrigReg) {
 | 
						|
          std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
 | 
						|
          Warnings.push_back(std::make_pair(
 | 
						|
              OrigOp.getStartLoc(),
 | 
						|
              "memory operand is only for determining the size, " + RegName +
 | 
						|
                  " will be used for the location"));
 | 
						|
        }
 | 
						|
 | 
						|
        FinalOp.Mem.Size = OrigOp.Mem.Size;
 | 
						|
        FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
 | 
						|
        FinalOp.Mem.BaseReg = FinalReg;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Produce warnings only if all the operands passed the adjustment - prevent
 | 
						|
    // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
 | 
						|
    for (auto &WarningMsg : Warnings) {
 | 
						|
      Warning(WarningMsg.first, WarningMsg.second);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove old operands
 | 
						|
    for (unsigned int i = 0; i < FinalOperands.size(); ++i)
 | 
						|
      OrigOperands.pop_back();
 | 
						|
  }
 | 
						|
  // OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
 | 
						|
  for (unsigned int i = 0; i < FinalOperands.size(); ++i)
 | 
						|
    OrigOperands.push_back(std::move(FinalOperands[i]));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
 | 
						|
  if (isParsingIntelSyntax())
 | 
						|
    return ParseIntelOperand();
 | 
						|
  return ParseATTOperand();
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
 | 
						|
    unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
 | 
						|
    unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
 | 
						|
    const InlineAsmIdentifierInfo &Info) {
 | 
						|
  // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
 | 
						|
  // some other label reference.
 | 
						|
  if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
 | 
						|
    // Insert an explicit size if the user didn't have one.
 | 
						|
    if (!Size) {
 | 
						|
      Size = getPointerWidth();
 | 
						|
      InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
 | 
						|
                                          /*Len=*/0, Size);
 | 
						|
    }
 | 
						|
    // Create an absolute memory reference in order to match against
 | 
						|
    // instructions taking a PC relative operand.
 | 
						|
    return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
 | 
						|
                                 Identifier, Info.Label.Decl);
 | 
						|
  }
 | 
						|
  // We either have a direct symbol reference, or an offset from a symbol.  The
 | 
						|
  // parser always puts the symbol on the LHS, so look there for size
 | 
						|
  // calculation purposes.
 | 
						|
  unsigned FrontendSize = 0;
 | 
						|
  void *Decl = nullptr;
 | 
						|
  bool IsGlobalLV = false;
 | 
						|
  if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
 | 
						|
    // Size is in terms of bits in this context.
 | 
						|
    FrontendSize = Info.Var.Type * 8;
 | 
						|
    Decl = Info.Var.Decl;
 | 
						|
    IsGlobalLV = Info.Var.IsGlobalLV;
 | 
						|
  }
 | 
						|
  // It is widely common for MS InlineAsm to use a global variable and one/two
 | 
						|
  // registers in a mmory expression, and though unaccessible via rip/eip.
 | 
						|
  if (IsGlobalLV && (BaseReg || IndexReg)) {
 | 
						|
    return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End);
 | 
						|
  // Otherwise, we set the base register to a non-zero value
 | 
						|
  // if we don't know the actual value at this time.  This is necessary to
 | 
						|
  // get the matching correct in some cases.
 | 
						|
  } else {
 | 
						|
    BaseReg = BaseReg ? BaseReg : 1;
 | 
						|
    return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | 
						|
                                 IndexReg, Scale, Start, End, Size, Identifier,
 | 
						|
                                 Decl, FrontendSize);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Some binary bitwise operators have a named synonymous
 | 
						|
// Query a candidate string for being such a named operator
 | 
						|
// and if so - invoke the appropriate handler
 | 
						|
bool X86AsmParser::ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM) {
 | 
						|
  // A named operator should be either lower or upper case, but not a mix
 | 
						|
  if (Name.compare(Name.lower()) && Name.compare(Name.upper()))
 | 
						|
    return false;
 | 
						|
  if (Name.equals_lower("not"))
 | 
						|
    SM.onNot();
 | 
						|
  else if (Name.equals_lower("or"))
 | 
						|
    SM.onOr();
 | 
						|
  else if (Name.equals_lower("shl"))
 | 
						|
    SM.onLShift();
 | 
						|
  else if (Name.equals_lower("shr"))
 | 
						|
    SM.onRShift();
 | 
						|
  else if (Name.equals_lower("xor"))
 | 
						|
    SM.onXor();
 | 
						|
  else if (Name.equals_lower("and"))
 | 
						|
    SM.onAnd();
 | 
						|
  else if (Name.equals_lower("mod"))
 | 
						|
    SM.onMod();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  StringRef ErrMsg;
 | 
						|
 | 
						|
  AsmToken::TokenKind PrevTK = AsmToken::Error;
 | 
						|
  bool Done = false;
 | 
						|
  while (!Done) {
 | 
						|
    bool UpdateLocLex = true;
 | 
						|
    AsmToken::TokenKind TK = getLexer().getKind();
 | 
						|
 | 
						|
    switch (TK) {
 | 
						|
    default:
 | 
						|
      if ((Done = SM.isValidEndState()))
 | 
						|
        break;
 | 
						|
      return Error(Tok.getLoc(), "unknown token in expression");
 | 
						|
    case AsmToken::EndOfStatement:
 | 
						|
      Done = true;
 | 
						|
      break;
 | 
						|
    case AsmToken::Real:
 | 
						|
      // DotOperator: [ebx].0
 | 
						|
      UpdateLocLex = false;
 | 
						|
      if (ParseIntelDotOperator(SM, End))
 | 
						|
        return true;
 | 
						|
      break;
 | 
						|
    case AsmToken::At:
 | 
						|
    case AsmToken::String:
 | 
						|
    case AsmToken::Identifier: {
 | 
						|
      SMLoc IdentLoc = Tok.getLoc();
 | 
						|
      StringRef Identifier = Tok.getString();
 | 
						|
      UpdateLocLex = false;
 | 
						|
      // Register
 | 
						|
      unsigned Reg;
 | 
						|
      if (Tok.is(AsmToken::Identifier) && !ParseRegister(Reg, IdentLoc, End)) {
 | 
						|
        if (SM.onRegister(Reg, ErrMsg))
 | 
						|
          return Error(Tok.getLoc(), ErrMsg);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Operator synonymous ("not", "or" etc.)
 | 
						|
      if ((UpdateLocLex = ParseIntelNamedOperator(Identifier, SM)))
 | 
						|
        break;
 | 
						|
      // Symbol reference, when parsing assembly content
 | 
						|
      InlineAsmIdentifierInfo Info;
 | 
						|
      const MCExpr *Val;
 | 
						|
      if (!isParsingInlineAsm()) {
 | 
						|
        if (getParser().parsePrimaryExpr(Val, End)) {
 | 
						|
          return Error(Tok.getLoc(), "Unexpected identifier!");
 | 
						|
        } else if (SM.onIdentifierExpr(Val, Identifier, Info, false, ErrMsg)) {
 | 
						|
          return Error(IdentLoc, ErrMsg);
 | 
						|
        } else
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      // MS InlineAsm operators (TYPE/LENGTH/SIZE)
 | 
						|
      if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
 | 
						|
        if (OpKind == IOK_OFFSET)
 | 
						|
          return Error(IdentLoc, "Dealing OFFSET operator as part of"
 | 
						|
            "a compound immediate expression is yet to be supported");
 | 
						|
        if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
 | 
						|
          if (SM.onInteger(Val, ErrMsg))
 | 
						|
            return Error(IdentLoc, ErrMsg);
 | 
						|
        } else
 | 
						|
          return true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // MS Dot Operator expression
 | 
						|
      if (Identifier.count('.') && PrevTK == AsmToken::RBrac) {
 | 
						|
        if (ParseIntelDotOperator(SM, End))
 | 
						|
          return true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // MS InlineAsm identifier
 | 
						|
      // Call parseIdentifier() to combine @ with the identifier behind it.
 | 
						|
      if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
 | 
						|
        return Error(IdentLoc, "expected identifier");
 | 
						|
      if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
 | 
						|
        return true;
 | 
						|
      else if (SM.onIdentifierExpr(Val, Identifier, Info, true, ErrMsg))
 | 
						|
        return Error(IdentLoc, ErrMsg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case AsmToken::Integer: {
 | 
						|
      // Look for 'b' or 'f' following an Integer as a directional label
 | 
						|
      SMLoc Loc = getTok().getLoc();
 | 
						|
      int64_t IntVal = getTok().getIntVal();
 | 
						|
      End = consumeToken();
 | 
						|
      UpdateLocLex = false;
 | 
						|
      if (getLexer().getKind() == AsmToken::Identifier) {
 | 
						|
        StringRef IDVal = getTok().getString();
 | 
						|
        if (IDVal == "f" || IDVal == "b") {
 | 
						|
          MCSymbol *Sym =
 | 
						|
              getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
 | 
						|
          MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | 
						|
          const MCExpr *Val =
 | 
						|
              MCSymbolRefExpr::create(Sym, Variant, getContext());
 | 
						|
          if (IDVal == "b" && Sym->isUndefined())
 | 
						|
            return Error(Loc, "invalid reference to undefined symbol");
 | 
						|
          StringRef Identifier = Sym->getName();
 | 
						|
          InlineAsmIdentifierInfo Info;
 | 
						|
          if (SM.onIdentifierExpr(Val, Identifier, Info,
 | 
						|
              isParsingInlineAsm(), ErrMsg))
 | 
						|
            return Error(Loc, ErrMsg);
 | 
						|
          End = consumeToken();
 | 
						|
        } else {
 | 
						|
          if (SM.onInteger(IntVal, ErrMsg))
 | 
						|
            return Error(Loc, ErrMsg);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (SM.onInteger(IntVal, ErrMsg))
 | 
						|
          return Error(Loc, ErrMsg);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case AsmToken::Plus:
 | 
						|
      if (SM.onPlus(ErrMsg))
 | 
						|
        return Error(getTok().getLoc(), ErrMsg);
 | 
						|
      break;
 | 
						|
    case AsmToken::Minus:
 | 
						|
      if (SM.onMinus(ErrMsg))
 | 
						|
        return Error(getTok().getLoc(), ErrMsg);
 | 
						|
      break;
 | 
						|
    case AsmToken::Tilde:   SM.onNot(); break;
 | 
						|
    case AsmToken::Star:    SM.onStar(); break;
 | 
						|
    case AsmToken::Slash:   SM.onDivide(); break;
 | 
						|
    case AsmToken::Percent: SM.onMod(); break;
 | 
						|
    case AsmToken::Pipe:    SM.onOr(); break;
 | 
						|
    case AsmToken::Caret:   SM.onXor(); break;
 | 
						|
    case AsmToken::Amp:     SM.onAnd(); break;
 | 
						|
    case AsmToken::LessLess:
 | 
						|
                            SM.onLShift(); break;
 | 
						|
    case AsmToken::GreaterGreater:
 | 
						|
                            SM.onRShift(); break;
 | 
						|
    case AsmToken::LBrac:
 | 
						|
      if (SM.onLBrac())
 | 
						|
        return Error(Tok.getLoc(), "unexpected bracket encountered");
 | 
						|
      break;
 | 
						|
    case AsmToken::RBrac:
 | 
						|
      if (SM.onRBrac())
 | 
						|
        return Error(Tok.getLoc(), "unexpected bracket encountered");
 | 
						|
      break;
 | 
						|
    case AsmToken::LParen:  SM.onLParen(); break;
 | 
						|
    case AsmToken::RParen:  SM.onRParen(); break;
 | 
						|
    }
 | 
						|
    if (SM.hadError())
 | 
						|
      return Error(Tok.getLoc(), "unknown token in expression");
 | 
						|
 | 
						|
    if (!Done && UpdateLocLex)
 | 
						|
      End = consumeToken();
 | 
						|
 | 
						|
    PrevTK = TK;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
 | 
						|
                                          SMLoc Start, SMLoc End) {
 | 
						|
  SMLoc Loc = Start;
 | 
						|
  unsigned ExprLen = End.getPointer() - Start.getPointer();
 | 
						|
  // Skip everything before a symbol displacement (if we have one)
 | 
						|
  if (SM.getSym()) {
 | 
						|
    StringRef SymName = SM.getSymName();
 | 
						|
    if (unsigned Len =  SymName.data() - Start.getPointer())
 | 
						|
      InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
 | 
						|
    Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
 | 
						|
    ExprLen = End.getPointer() - (SymName.data() + SymName.size());
 | 
						|
    // If we have only a symbol than there's no need for complex rewrite,
 | 
						|
    // simply skip everything after it
 | 
						|
    if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
 | 
						|
      if (ExprLen)
 | 
						|
        InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Build an Intel Expression rewrite
 | 
						|
  StringRef BaseRegStr;
 | 
						|
  StringRef IndexRegStr;
 | 
						|
  if (SM.getBaseReg())
 | 
						|
    BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
 | 
						|
  if (SM.getIndexReg())
 | 
						|
    IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
 | 
						|
  // Emit it
 | 
						|
  IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), SM.getImm(), SM.isMemExpr());
 | 
						|
  InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
 | 
						|
}
 | 
						|
 | 
						|
// Inline assembly may use variable names with namespace alias qualifiers.
 | 
						|
bool X86AsmParser::ParseIntelInlineAsmIdentifier(const MCExpr *&Val,
 | 
						|
                                                 StringRef &Identifier,
 | 
						|
                                                 InlineAsmIdentifierInfo &Info,
 | 
						|
                                                 bool IsUnevaluatedOperand,
 | 
						|
                                                 SMLoc &End) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  assert(isParsingInlineAsm() && "Expected to be parsing inline assembly.");
 | 
						|
  Val = nullptr;
 | 
						|
 | 
						|
  StringRef LineBuf(Identifier.data());
 | 
						|
  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc Loc = Tok.getLoc();
 | 
						|
 | 
						|
  // Advance the token stream until the end of the current token is
 | 
						|
  // after the end of what the frontend claimed.
 | 
						|
  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
 | 
						|
  do {
 | 
						|
    End = Tok.getEndLoc();
 | 
						|
    getLexer().Lex();
 | 
						|
  } while (End.getPointer() < EndPtr);
 | 
						|
  Identifier = LineBuf;
 | 
						|
 | 
						|
  // The frontend should end parsing on an assembler token boundary, unless it
 | 
						|
  // failed parsing.
 | 
						|
  assert((End.getPointer() == EndPtr ||
 | 
						|
          Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
 | 
						|
          "frontend claimed part of a token?");
 | 
						|
 | 
						|
  // If the identifier lookup was unsuccessful, assume that we are dealing with
 | 
						|
  // a label.
 | 
						|
  if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
 | 
						|
    StringRef InternalName =
 | 
						|
      SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
 | 
						|
                                         Loc, false);
 | 
						|
    assert(InternalName.size() && "We should have an internal name here.");
 | 
						|
    // Push a rewrite for replacing the identifier name with the internal name.
 | 
						|
    InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
 | 
						|
                                        InternalName);
 | 
						|
  } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
 | 
						|
    return false;
 | 
						|
  // Create the symbol reference.
 | 
						|
  MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
 | 
						|
  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | 
						|
  Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
 | 
						|
std::unique_ptr<X86Operand>
 | 
						|
X86AsmParser::ParseRoundingModeOp(SMLoc Start) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  // Eat "{" and mark the current place.
 | 
						|
  const SMLoc consumedToken = consumeToken();
 | 
						|
  if (Tok.getIdentifier().startswith("r")){
 | 
						|
    int rndMode = StringSwitch<int>(Tok.getIdentifier())
 | 
						|
      .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
 | 
						|
      .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
 | 
						|
      .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
 | 
						|
      .Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
 | 
						|
      .Default(-1);
 | 
						|
    if (-1 == rndMode)
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
 | 
						|
     Parser.Lex();  // Eat "r*" of r*-sae
 | 
						|
    if (!getLexer().is(AsmToken::Minus))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Expected - at this point");
 | 
						|
    Parser.Lex();  // Eat "-"
 | 
						|
    Parser.Lex();  // Eat the sae
 | 
						|
    if (!getLexer().is(AsmToken::RCurly))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Expected } at this point");
 | 
						|
    SMLoc End = Tok.getEndLoc();
 | 
						|
    Parser.Lex();  // Eat "}"
 | 
						|
    const MCExpr *RndModeOp =
 | 
						|
      MCConstantExpr::create(rndMode, Parser.getContext());
 | 
						|
    return X86Operand::CreateImm(RndModeOp, Start, End);
 | 
						|
  }
 | 
						|
  if(Tok.getIdentifier().equals("sae")){
 | 
						|
    Parser.Lex();  // Eat the sae
 | 
						|
    if (!getLexer().is(AsmToken::RCurly))
 | 
						|
      return ErrorOperand(Tok.getLoc(), "Expected } at this point");
 | 
						|
    Parser.Lex();  // Eat "}"
 | 
						|
    return X86Operand::CreateToken("{sae}", consumedToken);
 | 
						|
  }
 | 
						|
  return ErrorOperand(Tok.getLoc(), "unknown token in expression");
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the '.' operator.
 | 
						|
bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End) {
 | 
						|
  const AsmToken &Tok = getTok();
 | 
						|
  unsigned Offset;
 | 
						|
 | 
						|
  // Drop the optional '.'.
 | 
						|
  StringRef DotDispStr = Tok.getString();
 | 
						|
  if (DotDispStr.startswith("."))
 | 
						|
    DotDispStr = DotDispStr.drop_front(1);
 | 
						|
 | 
						|
  // .Imm gets lexed as a real.
 | 
						|
  if (Tok.is(AsmToken::Real)) {
 | 
						|
    APInt DotDisp;
 | 
						|
    DotDispStr.getAsInteger(10, DotDisp);
 | 
						|
    Offset = DotDisp.getZExtValue();
 | 
						|
  } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | 
						|
    std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
 | 
						|
    if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
 | 
						|
                                           Offset))
 | 
						|
      return Error(Tok.getLoc(), "Unable to lookup field reference!");
 | 
						|
  } else
 | 
						|
    return Error(Tok.getLoc(), "Unexpected token type!");
 | 
						|
 | 
						|
  // Eat the DotExpression and update End
 | 
						|
  End = SMLoc::getFromPointer(DotDispStr.data());
 | 
						|
  const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
 | 
						|
  while (Tok.getLoc().getPointer() < DotExprEndLoc)
 | 
						|
    Lex();
 | 
						|
  SM.addImm(Offset);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the 'offset' operator.  This operator is used to specify the
 | 
						|
/// location rather then the content of a variable.
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc OffsetOfLoc = Tok.getLoc();
 | 
						|
  Parser.Lex(); // Eat offset.
 | 
						|
 | 
						|
  const MCExpr *Val;
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  SMLoc Start = Tok.getLoc(), End;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
 | 
						|
                                    /*Unevaluated=*/false, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  void *Decl = nullptr;
 | 
						|
  // FIXME: MS evaluates "offset <Constant>" to the underlying integral
 | 
						|
  if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
 | 
						|
    return ErrorOperand(Start, "offset operator cannot yet handle constants");
 | 
						|
  else if (Info.isKind(InlineAsmIdentifierInfo::IK_Var))
 | 
						|
    Decl = Info.Var.Decl;
 | 
						|
  // Don't emit the offset operator.
 | 
						|
  InstInfo->AsmRewrites->emplace_back(AOK_Skip, OffsetOfLoc, 7);
 | 
						|
 | 
						|
  // The offset operator will have an 'r' constraint, thus we need to create
 | 
						|
  // register operand to ensure proper matching.  Just pick a GPR based on
 | 
						|
  // the size of a pointer.
 | 
						|
  bool Parse32 = is32BitMode() || Code16GCC;
 | 
						|
  unsigned RegNo = is64BitMode() ? X86::RBX : (Parse32 ? X86::EBX : X86::BX);
 | 
						|
 | 
						|
  return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
 | 
						|
                               OffsetOfLoc, Identifier, Decl);
 | 
						|
}
 | 
						|
 | 
						|
// Query a candidate string for being an Intel assembly operator
 | 
						|
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
 | 
						|
unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
 | 
						|
  return StringSwitch<unsigned>(Name)
 | 
						|
    .Cases("TYPE","type",IOK_TYPE)
 | 
						|
    .Cases("SIZE","size",IOK_SIZE)
 | 
						|
    .Cases("LENGTH","length",IOK_LENGTH)
 | 
						|
    .Cases("OFFSET","offset",IOK_OFFSET)
 | 
						|
    .Default(IOK_INVALID);
 | 
						|
}
 | 
						|
 | 
						|
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
 | 
						|
/// returns the number of elements in an array.  It returns the value 1 for
 | 
						|
/// non-array variables.  The SIZE operator returns the size of a C or C++
 | 
						|
/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
 | 
						|
/// TYPE operator returns the size of a C or C++ type or variable. If the
 | 
						|
/// variable is an array, TYPE returns the size of a single element.
 | 
						|
unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  Parser.Lex(); // Eat operator.
 | 
						|
 | 
						|
  const MCExpr *Val = nullptr;
 | 
						|
  InlineAsmIdentifierInfo Info;
 | 
						|
  SMLoc Start = Tok.getLoc(), End;
 | 
						|
  StringRef Identifier = Tok.getString();
 | 
						|
  if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
 | 
						|
                                    /*Unevaluated=*/true, End))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
 | 
						|
    Error(Start, "unable to lookup expression");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned CVal = 0;
 | 
						|
  switch(OpKind) {
 | 
						|
  default: llvm_unreachable("Unexpected operand kind!");
 | 
						|
  case IOK_LENGTH: CVal = Info.Var.Length; break;
 | 
						|
  case IOK_SIZE: CVal = Info.Var.Size; break;
 | 
						|
  case IOK_TYPE: CVal = Info.Var.Type; break;
 | 
						|
  }
 | 
						|
 | 
						|
  return CVal;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
 | 
						|
  Size = StringSwitch<unsigned>(getTok().getString())
 | 
						|
    .Cases("BYTE", "byte", 8)
 | 
						|
    .Cases("WORD", "word", 16)
 | 
						|
    .Cases("DWORD", "dword", 32)
 | 
						|
    .Cases("FLOAT", "float", 32)
 | 
						|
    .Cases("LONG", "long", 32)
 | 
						|
    .Cases("FWORD", "fword", 48)
 | 
						|
    .Cases("DOUBLE", "double", 64)
 | 
						|
    .Cases("QWORD", "qword", 64)
 | 
						|
    .Cases("MMWORD","mmword", 64)
 | 
						|
    .Cases("XWORD", "xword", 80)
 | 
						|
    .Cases("TBYTE", "tbyte", 80)
 | 
						|
    .Cases("XMMWORD", "xmmword", 128)
 | 
						|
    .Cases("YMMWORD", "ymmword", 256)
 | 
						|
    .Cases("ZMMWORD", "zmmword", 512)
 | 
						|
    .Default(0);
 | 
						|
  if (Size) {
 | 
						|
    const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
 | 
						|
    if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
 | 
						|
      return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
 | 
						|
    Lex(); // Eat ptr.
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  SMLoc Start, End;
 | 
						|
 | 
						|
  // FIXME: Offset operator
 | 
						|
  // Should be handled as part of immediate expression, as other operators
 | 
						|
  // Currently, only supported as a stand-alone operand
 | 
						|
  if (isParsingInlineAsm())
 | 
						|
    if (IdentifyIntelInlineAsmOperator(Tok.getString()) == IOK_OFFSET)
 | 
						|
      return ParseIntelOffsetOfOperator();
 | 
						|
 | 
						|
  // Parse optional Size directive.
 | 
						|
  unsigned Size;
 | 
						|
  if (ParseIntelMemoryOperandSize(Size))
 | 
						|
    return nullptr;
 | 
						|
  bool PtrInOperand = bool(Size);
 | 
						|
 | 
						|
  Start = Tok.getLoc();
 | 
						|
 | 
						|
  // Rounding mode operand.
 | 
						|
  if (getLexer().is(AsmToken::LCurly))
 | 
						|
    return ParseRoundingModeOp(Start);
 | 
						|
 | 
						|
  // Register operand.
 | 
						|
  unsigned RegNo = 0;
 | 
						|
  if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
 | 
						|
    if (RegNo == X86::RIP)
 | 
						|
      return ErrorOperand(Start, "rip can only be used as a base register");
 | 
						|
    // A Register followed by ':' is considered a segment override
 | 
						|
    if (Tok.isNot(AsmToken::Colon))
 | 
						|
      return !PtrInOperand ? X86Operand::CreateReg(RegNo, Start, End) :
 | 
						|
        ErrorOperand(Start, "expected memory operand after 'ptr', "
 | 
						|
                            "found register operand instead");
 | 
						|
    // An alleged segment override. check if we have a valid segment register
 | 
						|
    if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
 | 
						|
      return ErrorOperand(Start, "invalid segment register");
 | 
						|
    // Eat ':' and update Start location
 | 
						|
    Start = Lex().getLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  // Immediates and Memory
 | 
						|
  IntelExprStateMachine SM;
 | 
						|
  if (ParseIntelExpression(SM, End))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (isParsingInlineAsm())
 | 
						|
    RewriteIntelExpression(SM, Start, Tok.getLoc());
 | 
						|
 | 
						|
  int64_t Imm = SM.getImm();
 | 
						|
  const MCExpr *Disp = SM.getSym();
 | 
						|
  const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
 | 
						|
  if (Disp && Imm)
 | 
						|
    Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
 | 
						|
  if (!Disp)
 | 
						|
    Disp = ImmDisp;
 | 
						|
 | 
						|
  // RegNo != 0 specifies a valid segment register,
 | 
						|
  // and we are parsing a segment override
 | 
						|
  if (!SM.isMemExpr() && !RegNo)
 | 
						|
    return X86Operand::CreateImm(Disp, Start, End);
 | 
						|
 | 
						|
  StringRef ErrMsg;
 | 
						|
  unsigned BaseReg = SM.getBaseReg();
 | 
						|
  unsigned IndexReg = SM.getIndexReg();
 | 
						|
  unsigned Scale = SM.getScale();
 | 
						|
 | 
						|
  if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
 | 
						|
      (IndexReg == X86::ESP || IndexReg == X86::RSP))
 | 
						|
    std::swap(BaseReg, IndexReg);
 | 
						|
 | 
						|
  // If BaseReg is a vector register and IndexReg is not, swap them unless
 | 
						|
  // Scale was specified in which case it would be an error.
 | 
						|
  if (Scale == 0 &&
 | 
						|
      !(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
 | 
						|
        X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
 | 
						|
      (X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
 | 
						|
       X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
 | 
						|
       X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
 | 
						|
    std::swap(BaseReg, IndexReg);
 | 
						|
 | 
						|
  if (Scale != 0 &&
 | 
						|
      X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
 | 
						|
    return ErrorOperand(Start, "16-bit addresses cannot have a scale");
 | 
						|
 | 
						|
  // If there was no explicit scale specified, change it to 1.
 | 
						|
  if (Scale == 0)
 | 
						|
    Scale = 1;
 | 
						|
 | 
						|
  // If this is a 16-bit addressing mode with the base and index in the wrong
 | 
						|
  // order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
 | 
						|
  // shared with att syntax where order matters.
 | 
						|
  if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
 | 
						|
      (IndexReg == X86::BX || IndexReg == X86::BP))
 | 
						|
    std::swap(BaseReg, IndexReg);
 | 
						|
 | 
						|
  if ((BaseReg || IndexReg) &&
 | 
						|
      CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
 | 
						|
                                      ErrMsg))
 | 
						|
    return ErrorOperand(Start, ErrMsg);
 | 
						|
  if (isParsingInlineAsm())
 | 
						|
    return CreateMemForInlineAsm(RegNo, Disp, BaseReg, IndexReg,
 | 
						|
                                 Scale, Start, End, Size, SM.getSymName(),
 | 
						|
                                 SM.getIdentifierInfo());
 | 
						|
  if (!(BaseReg || IndexReg || RegNo))
 | 
						|
    return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
 | 
						|
  return X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
 | 
						|
                               BaseReg, IndexReg, Scale, Start, End, Size);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  switch (getLexer().getKind()) {
 | 
						|
  default:
 | 
						|
    // Parse a memory operand with no segment register.
 | 
						|
    return ParseMemOperand(0, Parser.getTok().getLoc());
 | 
						|
  case AsmToken::Percent: {
 | 
						|
    // Read the register.
 | 
						|
    unsigned RegNo;
 | 
						|
    SMLoc Start, End;
 | 
						|
    if (ParseRegister(RegNo, Start, End)) return nullptr;
 | 
						|
    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
 | 
						|
      Error(Start, "%eiz and %riz can only be used as index registers",
 | 
						|
            SMRange(Start, End));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    if (RegNo == X86::RIP) {
 | 
						|
      Error(Start, "%rip can only be used as a base register",
 | 
						|
            SMRange(Start, End));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a segment register followed by a ':', then this is the start
 | 
						|
    // of a memory reference, otherwise this is a normal register reference.
 | 
						|
    if (getLexer().isNot(AsmToken::Colon))
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End);
 | 
						|
 | 
						|
    if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
 | 
						|
      return ErrorOperand(Start, "invalid segment register");
 | 
						|
 | 
						|
    getParser().Lex(); // Eat the colon.
 | 
						|
    return ParseMemOperand(RegNo, Start);
 | 
						|
  }
 | 
						|
  case AsmToken::Dollar: {
 | 
						|
    // $42 -> immediate.
 | 
						|
    SMLoc Start = Parser.getTok().getLoc(), End;
 | 
						|
    Parser.Lex();
 | 
						|
    const MCExpr *Val;
 | 
						|
    if (getParser().parseExpression(Val, End))
 | 
						|
      return nullptr;
 | 
						|
    return X86Operand::CreateImm(Val, Start, End);
 | 
						|
  }
 | 
						|
  case AsmToken::LCurly:{
 | 
						|
    SMLoc Start = Parser.getTok().getLoc();
 | 
						|
    return ParseRoundingModeOp(Start);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// true on failure, false otherwise
 | 
						|
// If no {z} mark was found - Parser doesn't advance
 | 
						|
bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
 | 
						|
                          const SMLoc &StartLoc) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  // Assuming we are just pass the '{' mark, quering the next token
 | 
						|
  // Searched for {z}, but none was found. Return false, as no parsing error was
 | 
						|
  // encountered
 | 
						|
  if (!(getLexer().is(AsmToken::Identifier) &&
 | 
						|
        (getLexer().getTok().getIdentifier() == "z")))
 | 
						|
    return false;
 | 
						|
  Parser.Lex(); // Eat z
 | 
						|
  // Query and eat the '}' mark
 | 
						|
  if (!getLexer().is(AsmToken::RCurly))
 | 
						|
    return Error(getLexer().getLoc(), "Expected } at this point");
 | 
						|
  Parser.Lex(); // Eat '}'
 | 
						|
  // Assign Z with the {z} mark opernad
 | 
						|
  Z = X86Operand::CreateToken("{z}", StartLoc);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// true on failure, false otherwise
 | 
						|
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
 | 
						|
                                       const MCParsedAsmOperand &Op) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  if (getLexer().is(AsmToken::LCurly)) {
 | 
						|
    // Eat "{" and mark the current place.
 | 
						|
    const SMLoc consumedToken = consumeToken();
 | 
						|
    // Distinguish {1to<NUM>} from {%k<NUM>}.
 | 
						|
    if(getLexer().is(AsmToken::Integer)) {
 | 
						|
      // Parse memory broadcasting ({1to<NUM>}).
 | 
						|
      if (getLexer().getTok().getIntVal() != 1)
 | 
						|
        return TokError("Expected 1to<NUM> at this point");
 | 
						|
      Parser.Lex();  // Eat "1" of 1to8
 | 
						|
      if (!getLexer().is(AsmToken::Identifier) ||
 | 
						|
          !getLexer().getTok().getIdentifier().startswith("to"))
 | 
						|
        return TokError("Expected 1to<NUM> at this point");
 | 
						|
      // Recognize only reasonable suffixes.
 | 
						|
      const char *BroadcastPrimitive =
 | 
						|
        StringSwitch<const char*>(getLexer().getTok().getIdentifier())
 | 
						|
          .Case("to2",  "{1to2}")
 | 
						|
          .Case("to4",  "{1to4}")
 | 
						|
          .Case("to8",  "{1to8}")
 | 
						|
          .Case("to16", "{1to16}")
 | 
						|
          .Default(nullptr);
 | 
						|
      if (!BroadcastPrimitive)
 | 
						|
        return TokError("Invalid memory broadcast primitive.");
 | 
						|
      Parser.Lex();  // Eat "toN" of 1toN
 | 
						|
      if (!getLexer().is(AsmToken::RCurly))
 | 
						|
        return TokError("Expected } at this point");
 | 
						|
      Parser.Lex();  // Eat "}"
 | 
						|
      Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
 | 
						|
                                                 consumedToken));
 | 
						|
      // No AVX512 specific primitives can pass
 | 
						|
      // after memory broadcasting, so return.
 | 
						|
      return false;
 | 
						|
    } else {
 | 
						|
      // Parse either {k}{z}, {z}{k}, {k} or {z}
 | 
						|
      // last one have no meaning, but GCC accepts it
 | 
						|
      // Currently, we're just pass a '{' mark
 | 
						|
      std::unique_ptr<X86Operand> Z;
 | 
						|
      if (ParseZ(Z, consumedToken))
 | 
						|
        return true;
 | 
						|
      // Reaching here means that parsing of the allegadly '{z}' mark yielded
 | 
						|
      // no errors.
 | 
						|
      // Query for the need of further parsing for a {%k<NUM>} mark
 | 
						|
      if (!Z || getLexer().is(AsmToken::LCurly)) {
 | 
						|
        SMLoc StartLoc = Z ? consumeToken() : consumedToken;
 | 
						|
        // Parse an op-mask register mark ({%k<NUM>}), which is now to be
 | 
						|
        // expected
 | 
						|
        unsigned RegNo;
 | 
						|
        SMLoc RegLoc;
 | 
						|
        if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
 | 
						|
            X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
 | 
						|
          if (RegNo == X86::K0)
 | 
						|
            return Error(RegLoc, "Register k0 can't be used as write mask");
 | 
						|
          if (!getLexer().is(AsmToken::RCurly))
 | 
						|
            return Error(getLexer().getLoc(), "Expected } at this point");
 | 
						|
          Operands.push_back(X86Operand::CreateToken("{", StartLoc));
 | 
						|
          Operands.push_back(
 | 
						|
              X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
 | 
						|
          Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
 | 
						|
        } else
 | 
						|
          return Error(getLexer().getLoc(),
 | 
						|
                        "Expected an op-mask register at this point");
 | 
						|
        // {%k<NUM>} mark is found, inquire for {z}
 | 
						|
        if (getLexer().is(AsmToken::LCurly) && !Z) {
 | 
						|
          // Have we've found a parsing error, or found no (expected) {z} mark
 | 
						|
          // - report an error
 | 
						|
          if (ParseZ(Z, consumeToken()) || !Z)
 | 
						|
            return Error(getLexer().getLoc(),
 | 
						|
                         "Expected a {z} mark at this point");
 | 
						|
 | 
						|
        }
 | 
						|
        // '{z}' on its own is meaningless, hence should be ignored.
 | 
						|
        // on the contrary - have it been accompanied by a K register,
 | 
						|
        // allow it.
 | 
						|
        if (Z)
 | 
						|
          Operands.push_back(std::move(Z));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
 | 
						|
/// has already been parsed if present.
 | 
						|
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
 | 
						|
                                                          SMLoc MemStart) {
 | 
						|
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  // We have to disambiguate a parenthesized expression "(4+5)" from the start
 | 
						|
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
 | 
						|
  // only way to do this without lookahead is to eat the '(' and see what is
 | 
						|
  // after it.
 | 
						|
  const MCExpr *Disp = MCConstantExpr::create(0, getParser().getContext());
 | 
						|
  if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
    SMLoc ExprEnd;
 | 
						|
    if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
 | 
						|
    // Disp may be a variable, handle register values.
 | 
						|
    if (auto *RE = dyn_cast<X86MCExpr>(Disp))
 | 
						|
      return X86Operand::CreateReg(RE->getRegNo(), MemStart, ExprEnd);
 | 
						|
 | 
						|
    // After parsing the base expression we could either have a parenthesized
 | 
						|
    // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
      // Unless we have a segment register, treat this as an immediate.
 | 
						|
      if (SegReg == 0)
 | 
						|
        return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd);
 | 
						|
      return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
 | 
						|
                                   MemStart, ExprEnd);
 | 
						|
    }
 | 
						|
 | 
						|
    // Eat the '('.
 | 
						|
    Parser.Lex();
 | 
						|
  } else {
 | 
						|
    // Okay, we have a '('.  We don't know if this is an expression or not, but
 | 
						|
    // so we have to eat the ( to see beyond it.
 | 
						|
    SMLoc LParenLoc = Parser.getTok().getLoc();
 | 
						|
    Parser.Lex(); // Eat the '('.
 | 
						|
 | 
						|
    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
 | 
						|
      // Nothing to do here, fall into the code below with the '(' part of the
 | 
						|
      // memory operand consumed.
 | 
						|
    } else {
 | 
						|
      SMLoc ExprEnd;
 | 
						|
      getLexer().UnLex(AsmToken(AsmToken::LParen, "("));
 | 
						|
 | 
						|
      // It must be either an parenthesized expression, or an expression that
 | 
						|
      // begins from a parenthesized expression, parse it now. Example: (1+2) or
 | 
						|
      // (1+2)+3
 | 
						|
      if (getParser().parseExpression(Disp, ExprEnd))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // After parsing the base expression we could either have a parenthesized
 | 
						|
      // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
      if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
        // Unless we have a segment register, treat this as an immediate.
 | 
						|
        if (SegReg == 0)
 | 
						|
          return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc,
 | 
						|
                                       ExprEnd);
 | 
						|
        return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
 | 
						|
                                     MemStart, ExprEnd);
 | 
						|
      }
 | 
						|
 | 
						|
      // Eat the '('.
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reached here, then we just ate the ( of the memory operand.  Process
 | 
						|
  // the rest of the memory operand.
 | 
						|
  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
 | 
						|
  SMLoc IndexLoc, BaseLoc;
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Percent)) {
 | 
						|
    SMLoc StartLoc, EndLoc;
 | 
						|
    BaseLoc = Parser.getTok().getLoc();
 | 
						|
    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
 | 
						|
    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
 | 
						|
      Error(StartLoc, "eiz and riz can only be used as index registers",
 | 
						|
            SMRange(StartLoc, EndLoc));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Comma)) {
 | 
						|
    Parser.Lex(); // Eat the comma.
 | 
						|
    IndexLoc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
    // Following the comma we should have either an index register, or a scale
 | 
						|
    // value. We don't support the later form, but we want to parse it
 | 
						|
    // correctly.
 | 
						|
    //
 | 
						|
    // Not that even though it would be completely consistent to support syntax
 | 
						|
    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
 | 
						|
    if (getLexer().is(AsmToken::Percent)) {
 | 
						|
      SMLoc L;
 | 
						|
      if (ParseRegister(IndexReg, L, L))
 | 
						|
        return nullptr;
 | 
						|
      if (BaseReg == X86::RIP) {
 | 
						|
        Error(IndexLoc, "%rip as base register can not have an index register");
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
      if (IndexReg == X86::RIP) {
 | 
						|
        Error(IndexLoc, "%rip is not allowed as an index register");
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
        // Parse the scale amount:
 | 
						|
        //  ::= ',' [scale-expression]
 | 
						|
        if (parseToken(AsmToken::Comma, "expected comma in scale expression"))
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
          SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
          int64_t ScaleVal;
 | 
						|
          if (getParser().parseAbsoluteExpression(ScaleVal)){
 | 
						|
            Error(Loc, "expected scale expression");
 | 
						|
            return nullptr;
 | 
						|
          }
 | 
						|
 | 
						|
          // Validate the scale amount.
 | 
						|
          if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | 
						|
              ScaleVal != 1) {
 | 
						|
            Error(Loc, "scale factor in 16-bit address must be 1");
 | 
						|
            return nullptr;
 | 
						|
          }
 | 
						|
          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 &&
 | 
						|
              ScaleVal != 8) {
 | 
						|
            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
 | 
						|
            return nullptr;
 | 
						|
          }
 | 
						|
          Scale = (unsigned)ScaleVal;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
      // A scale amount without an index is ignored.
 | 
						|
      // index.
 | 
						|
      SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
      int64_t Value;
 | 
						|
      if (getParser().parseAbsoluteExpression(Value))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (Value != 1)
 | 
						|
        Warning(Loc, "scale factor without index register is ignored");
 | 
						|
      Scale = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
 | 
						|
  SMLoc MemEnd = Parser.getTok().getEndLoc();
 | 
						|
  if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
 | 
						|
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | 
						|
  // documented form in various unofficial manuals, so a lot of code uses it.
 | 
						|
  if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 &&
 | 
						|
      SegReg == 0 && isa<MCConstantExpr>(Disp) &&
 | 
						|
      cast<MCConstantExpr>(Disp)->getValue() == 0)
 | 
						|
    return X86Operand::CreateDXReg(BaseLoc, BaseLoc);
 | 
						|
 | 
						|
  StringRef ErrMsg;
 | 
						|
  if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
 | 
						|
                                      ErrMsg)) {
 | 
						|
    Error(BaseLoc, ErrMsg);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SegReg || BaseReg || IndexReg)
 | 
						|
    return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | 
						|
                                 IndexReg, Scale, MemStart, MemEnd);
 | 
						|
  return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd);
 | 
						|
}
 | 
						|
 | 
						|
// Parse either a standard primary expression or a register.
 | 
						|
bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  if (Parser.parsePrimaryExpr(Res, EndLoc)) {
 | 
						|
    SMLoc StartLoc = Parser.getTok().getLoc();
 | 
						|
    // Normal Expression parse fails, check if it could be a register.
 | 
						|
    unsigned RegNo;
 | 
						|
    bool TryRegParse =
 | 
						|
        getTok().is(AsmToken::Percent) ||
 | 
						|
        (isParsingIntelSyntax() && getTok().is(AsmToken::Identifier));
 | 
						|
    if (!TryRegParse || ParseRegister(RegNo, StartLoc, EndLoc))
 | 
						|
      return true;
 | 
						|
    // Clear previous parse error and return correct expression.
 | 
						|
    Parser.clearPendingErrors();
 | 
						|
    Res = X86MCExpr::create(RegNo, Parser.getContext());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | 
						|
                                    SMLoc NameLoc, OperandVector &Operands) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  InstInfo = &Info;
 | 
						|
  StringRef PatchedName = Name;
 | 
						|
 | 
						|
  if ((Name.equals("jmp") || Name.equals("jc") || Name.equals("jz")) &&
 | 
						|
      isParsingIntelSyntax() && isParsingInlineAsm()) {
 | 
						|
    StringRef NextTok = Parser.getTok().getString();
 | 
						|
    if (NextTok == "short") {
 | 
						|
      SMLoc NameEndLoc =
 | 
						|
          NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
 | 
						|
      // Eat the short keyword
 | 
						|
      Parser.Lex();
 | 
						|
      // MS ignores the short keyword, it determines the jmp type based
 | 
						|
      // on the distance of the label
 | 
						|
      InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
 | 
						|
                                          NextTok.size() + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to recognize setneb as setne.
 | 
						|
  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
 | 
						|
      PatchedName != "setb" && PatchedName != "setnb")
 | 
						|
    PatchedName = PatchedName.substr(0, Name.size()-1);
 | 
						|
 | 
						|
  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
 | 
						|
  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
 | 
						|
      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
 | 
						|
       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
 | 
						|
    bool IsVCMP = PatchedName[0] == 'v';
 | 
						|
    unsigned CCIdx = IsVCMP ? 4 : 3;
 | 
						|
    unsigned ComparisonCode = StringSwitch<unsigned>(
 | 
						|
      PatchedName.slice(CCIdx, PatchedName.size() - 2))
 | 
						|
      .Case("eq",       0x00)
 | 
						|
      .Case("eq_oq",    0x00)
 | 
						|
      .Case("lt",       0x01)
 | 
						|
      .Case("lt_os",    0x01)
 | 
						|
      .Case("le",       0x02)
 | 
						|
      .Case("le_os",    0x02)
 | 
						|
      .Case("unord",    0x03)
 | 
						|
      .Case("unord_q",  0x03)
 | 
						|
      .Case("neq",      0x04)
 | 
						|
      .Case("neq_uq",   0x04)
 | 
						|
      .Case("nlt",      0x05)
 | 
						|
      .Case("nlt_us",   0x05)
 | 
						|
      .Case("nle",      0x06)
 | 
						|
      .Case("nle_us",   0x06)
 | 
						|
      .Case("ord",      0x07)
 | 
						|
      .Case("ord_q",    0x07)
 | 
						|
      /* AVX only from here */
 | 
						|
      .Case("eq_uq",    0x08)
 | 
						|
      .Case("nge",      0x09)
 | 
						|
      .Case("nge_us",   0x09)
 | 
						|
      .Case("ngt",      0x0A)
 | 
						|
      .Case("ngt_us",   0x0A)
 | 
						|
      .Case("false",    0x0B)
 | 
						|
      .Case("false_oq", 0x0B)
 | 
						|
      .Case("neq_oq",   0x0C)
 | 
						|
      .Case("ge",       0x0D)
 | 
						|
      .Case("ge_os",    0x0D)
 | 
						|
      .Case("gt",       0x0E)
 | 
						|
      .Case("gt_os",    0x0E)
 | 
						|
      .Case("true",     0x0F)
 | 
						|
      .Case("true_uq",  0x0F)
 | 
						|
      .Case("eq_os",    0x10)
 | 
						|
      .Case("lt_oq",    0x11)
 | 
						|
      .Case("le_oq",    0x12)
 | 
						|
      .Case("unord_s",  0x13)
 | 
						|
      .Case("neq_us",   0x14)
 | 
						|
      .Case("nlt_uq",   0x15)
 | 
						|
      .Case("nle_uq",   0x16)
 | 
						|
      .Case("ord_s",    0x17)
 | 
						|
      .Case("eq_us",    0x18)
 | 
						|
      .Case("nge_uq",   0x19)
 | 
						|
      .Case("ngt_uq",   0x1A)
 | 
						|
      .Case("false_os", 0x1B)
 | 
						|
      .Case("neq_os",   0x1C)
 | 
						|
      .Case("ge_oq",    0x1D)
 | 
						|
      .Case("gt_oq",    0x1E)
 | 
						|
      .Case("true_us",  0x1F)
 | 
						|
      .Default(~0U);
 | 
						|
    if (ComparisonCode != ~0U && (IsVCMP || ComparisonCode < 8)) {
 | 
						|
 | 
						|
      Operands.push_back(X86Operand::CreateToken(PatchedName.slice(0, CCIdx),
 | 
						|
                                                 NameLoc));
 | 
						|
 | 
						|
      const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
 | 
						|
                                                   getParser().getContext());
 | 
						|
      Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
      PatchedName = PatchedName.substr(PatchedName.size() - 2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
 | 
						|
  if (PatchedName.startswith("vpcmp") &&
 | 
						|
      (PatchedName.endswith("b") || PatchedName.endswith("w") ||
 | 
						|
       PatchedName.endswith("d") || PatchedName.endswith("q"))) {
 | 
						|
    unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
 | 
						|
    unsigned ComparisonCode = StringSwitch<unsigned>(
 | 
						|
      PatchedName.slice(5, PatchedName.size() - CCIdx))
 | 
						|
      .Case("eq",    0x0) // Only allowed on unsigned. Checked below.
 | 
						|
      .Case("lt",    0x1)
 | 
						|
      .Case("le",    0x2)
 | 
						|
      //.Case("false", 0x3) // Not a documented alias.
 | 
						|
      .Case("neq",   0x4)
 | 
						|
      .Case("nlt",   0x5)
 | 
						|
      .Case("nle",   0x6)
 | 
						|
      //.Case("true",  0x7) // Not a documented alias.
 | 
						|
      .Default(~0U);
 | 
						|
    if (ComparisonCode != ~0U && (ComparisonCode != 0 || CCIdx == 2)) {
 | 
						|
      Operands.push_back(X86Operand::CreateToken("vpcmp", NameLoc));
 | 
						|
 | 
						|
      const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
 | 
						|
                                                   getParser().getContext());
 | 
						|
      Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
      PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
 | 
						|
  if (PatchedName.startswith("vpcom") &&
 | 
						|
      (PatchedName.endswith("b") || PatchedName.endswith("w") ||
 | 
						|
       PatchedName.endswith("d") || PatchedName.endswith("q"))) {
 | 
						|
    unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
 | 
						|
    unsigned ComparisonCode = StringSwitch<unsigned>(
 | 
						|
      PatchedName.slice(5, PatchedName.size() - CCIdx))
 | 
						|
      .Case("lt",    0x0)
 | 
						|
      .Case("le",    0x1)
 | 
						|
      .Case("gt",    0x2)
 | 
						|
      .Case("ge",    0x3)
 | 
						|
      .Case("eq",    0x4)
 | 
						|
      .Case("neq",   0x5)
 | 
						|
      .Case("false", 0x6)
 | 
						|
      .Case("true",  0x7)
 | 
						|
      .Default(~0U);
 | 
						|
    if (ComparisonCode != ~0U) {
 | 
						|
      Operands.push_back(X86Operand::CreateToken("vpcom", NameLoc));
 | 
						|
 | 
						|
      const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
 | 
						|
                                                   getParser().getContext());
 | 
						|
      Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
      PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Determine whether this is an instruction prefix.
 | 
						|
  // FIXME:
 | 
						|
  // Enhance prefixes integrity robustness. for example, following forms
 | 
						|
  // are currently tolerated:
 | 
						|
  // repz repnz <insn>    ; GAS errors for the use of two similar prefixes
 | 
						|
  // lock addq %rax, %rbx ; Destination operand must be of memory type
 | 
						|
  // xacquire <insn>      ; xacquire must be accompanied by 'lock'
 | 
						|
  bool isPrefix = StringSwitch<bool>(Name)
 | 
						|
                      .Cases("rex64", "data32", "data16", true)
 | 
						|
                      .Cases("xacquire", "xrelease", true)
 | 
						|
                      .Cases("acquire", "release", isParsingIntelSyntax())
 | 
						|
                      .Default(false);
 | 
						|
 | 
						|
  auto isLockRepeatNtPrefix = [](StringRef N) {
 | 
						|
    return StringSwitch<bool>(N)
 | 
						|
        .Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
 | 
						|
        .Default(false);
 | 
						|
  };
 | 
						|
 | 
						|
  bool CurlyAsEndOfStatement = false;
 | 
						|
 | 
						|
  unsigned Flags = X86::IP_NO_PREFIX;
 | 
						|
  while (isLockRepeatNtPrefix(Name.lower())) {
 | 
						|
    unsigned Prefix =
 | 
						|
        StringSwitch<unsigned>(Name)
 | 
						|
            .Cases("lock", "lock", X86::IP_HAS_LOCK)
 | 
						|
            .Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
 | 
						|
            .Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
 | 
						|
            .Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
 | 
						|
            .Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
 | 
						|
    Flags |= Prefix;
 | 
						|
    if (getLexer().is(AsmToken::EndOfStatement)) {
 | 
						|
      // We don't have real instr with the given prefix
 | 
						|
      //  let's use the prefix as the instr.
 | 
						|
      // TODO: there could be several prefixes one after another
 | 
						|
      Flags = X86::IP_NO_PREFIX;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    Name = Parser.getTok().getString();
 | 
						|
    Parser.Lex(); // eat the prefix
 | 
						|
    // Hack: we could have something like "rep # some comment" or
 | 
						|
    //    "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
 | 
						|
    while (Name.startswith(";") || Name.startswith("\n") ||
 | 
						|
           Name.startswith("#") || Name.startswith("\t") ||
 | 
						|
           Name.startswith("/")) {
 | 
						|
      Name = Parser.getTok().getString();
 | 
						|
      Parser.Lex(); // go to next prefix or instr
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Flags)
 | 
						|
    PatchedName = Name;
 | 
						|
 | 
						|
  // Hacks to handle 'data16' and 'data32'
 | 
						|
  if (PatchedName == "data16" && is16BitMode()) {
 | 
						|
    return Error(NameLoc, "redundant data16 prefix");
 | 
						|
  }
 | 
						|
  if (PatchedName == "data32") {
 | 
						|
    if (is32BitMode())
 | 
						|
      return Error(NameLoc, "redundant data32 prefix");
 | 
						|
    if (is64BitMode())
 | 
						|
      return Error(NameLoc, "'data32' is not supported in 64-bit mode");
 | 
						|
    // Hack to 'data16' for the table lookup.
 | 
						|
    PatchedName = "data16";
 | 
						|
  }
 | 
						|
 | 
						|
  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
 | 
						|
 | 
						|
  // This does the actual operand parsing.  Don't parse any more if we have a
 | 
						|
  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
 | 
						|
  // just want to parse the "lock" as the first instruction and the "incl" as
 | 
						|
  // the next one.
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
 | 
						|
    // Parse '*' modifier.
 | 
						|
    if (getLexer().is(AsmToken::Star))
 | 
						|
      Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
 | 
						|
 | 
						|
    // Read the operands.
 | 
						|
    while(1) {
 | 
						|
      if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
 | 
						|
        Operands.push_back(std::move(Op));
 | 
						|
        if (HandleAVX512Operand(Operands, *Operands.back()))
 | 
						|
          return true;
 | 
						|
      } else {
 | 
						|
         return true;
 | 
						|
      }
 | 
						|
      // check for comma and eat it
 | 
						|
      if (getLexer().is(AsmToken::Comma))
 | 
						|
        Parser.Lex();
 | 
						|
      else
 | 
						|
        break;
 | 
						|
     }
 | 
						|
 | 
						|
    // In MS inline asm curly braces mark the beginning/end of a block,
 | 
						|
    // therefore they should be interepreted as end of statement
 | 
						|
    CurlyAsEndOfStatement =
 | 
						|
        isParsingIntelSyntax() && isParsingInlineAsm() &&
 | 
						|
        (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
 | 
						|
      return TokError("unexpected token in argument list");
 | 
						|
  }
 | 
						|
 | 
						|
  // Consume the EndOfStatement or the prefix separator Slash
 | 
						|
  if (getLexer().is(AsmToken::EndOfStatement) ||
 | 
						|
      (isPrefix && getLexer().is(AsmToken::Slash)))
 | 
						|
    Parser.Lex();
 | 
						|
  else if (CurlyAsEndOfStatement)
 | 
						|
    // Add an actual EndOfStatement before the curly brace
 | 
						|
    Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
 | 
						|
                                   getLexer().getTok().getLoc(), 0);
 | 
						|
 | 
						|
  // This is for gas compatibility and cannot be done in td.
 | 
						|
  // Adding "p" for some floating point with no argument.
 | 
						|
  // For example: fsub --> fsubp
 | 
						|
  bool IsFp =
 | 
						|
    Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
 | 
						|
  if (IsFp && Operands.size() == 1) {
 | 
						|
    const char *Repl = StringSwitch<const char *>(Name)
 | 
						|
      .Case("fsub", "fsubp")
 | 
						|
      .Case("fdiv", "fdivp")
 | 
						|
      .Case("fsubr", "fsubrp")
 | 
						|
      .Case("fdivr", "fdivrp");
 | 
						|
    static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Moving a 32 or 16 bit value into a segment register has the same
 | 
						|
  // behavior. Modify such instructions to always take shorter form.
 | 
						|
  if ((Name == "mov" || Name == "movw" || Name == "movl") &&
 | 
						|
      (Operands.size() == 3)) {
 | 
						|
    X86Operand &Op1 = (X86Operand &)*Operands[1];
 | 
						|
    X86Operand &Op2 = (X86Operand &)*Operands[2];
 | 
						|
    SMLoc Loc = Op1.getEndLoc();
 | 
						|
    if (Op1.isReg() && Op2.isReg() &&
 | 
						|
        X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
 | 
						|
            Op2.getReg()) &&
 | 
						|
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
 | 
						|
         X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
 | 
						|
      // Change instruction name to match new instruction.
 | 
						|
      if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
 | 
						|
        Name = is16BitMode() ? "movw" : "movl";
 | 
						|
        Operands[0] = X86Operand::CreateToken(Name, NameLoc);
 | 
						|
      }
 | 
						|
      // Select the correct equivalent 16-/32-bit source register.
 | 
						|
      unsigned Reg =
 | 
						|
          getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
 | 
						|
      Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
 | 
						|
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | 
						|
  // documented form in various unofficial manuals, so a lot of code uses it.
 | 
						|
  if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
 | 
						|
       Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = (X86Operand &)*Operands.back();
 | 
						|
    if (Op.isDXReg())
 | 
						|
      Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
 | 
						|
                                              Op.getEndLoc());
 | 
						|
  }
 | 
						|
  // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
 | 
						|
  if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
 | 
						|
       Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = (X86Operand &)*Operands[1];
 | 
						|
    if (Op.isDXReg())
 | 
						|
      Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
 | 
						|
                                          Op.getEndLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
 | 
						|
  bool HadVerifyError = false;
 | 
						|
 | 
						|
  // Append default arguments to "ins[bwld]"
 | 
						|
  if (Name.startswith("ins") &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 3) &&
 | 
						|
      (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
 | 
						|
       Name == "ins")) {
 | 
						|
 | 
						|
    AddDefaultSrcDestOperands(TmpOperands,
 | 
						|
                              X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
 | 
						|
                              DefaultMemDIOperand(NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Append default arguments to "outs[bwld]"
 | 
						|
  if (Name.startswith("outs") &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 3) &&
 | 
						|
      (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
 | 
						|
       Name == "outsd" || Name == "outs")) {
 | 
						|
    AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
 | 
						|
                              X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
 | 
						|
  // values of $SIREG according to the mode. It would be nice if this
 | 
						|
  // could be achieved with InstAlias in the tables.
 | 
						|
  if (Name.startswith("lods") &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 2) &&
 | 
						|
      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
 | 
						|
       Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
 | 
						|
    TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
 | 
						|
  // values of $DIREG according to the mode. It would be nice if this
 | 
						|
  // could be achieved with InstAlias in the tables.
 | 
						|
  if (Name.startswith("stos") &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 2) &&
 | 
						|
      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
 | 
						|
       Name == "stosl" || Name == "stosd" || Name == "stosq")) {
 | 
						|
    TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
 | 
						|
  // values of $DIREG according to the mode. It would be nice if this
 | 
						|
  // could be achieved with InstAlias in the tables.
 | 
						|
  if (Name.startswith("scas") &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 2) &&
 | 
						|
      (Name == "scas" || Name == "scasb" || Name == "scasw" ||
 | 
						|
       Name == "scasl" || Name == "scasd" || Name == "scasq")) {
 | 
						|
    TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add default SI and DI operands to "cmps[bwlq]".
 | 
						|
  if (Name.startswith("cmps") &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 3) &&
 | 
						|
      (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
 | 
						|
       Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
 | 
						|
    AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
 | 
						|
                              DefaultMemSIOperand(NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add default SI and DI operands to "movs[bwlq]".
 | 
						|
  if (((Name.startswith("movs") &&
 | 
						|
        (Name == "movs" || Name == "movsb" || Name == "movsw" ||
 | 
						|
         Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
 | 
						|
       (Name.startswith("smov") &&
 | 
						|
        (Name == "smov" || Name == "smovb" || Name == "smovw" ||
 | 
						|
         Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
 | 
						|
      (Operands.size() == 1 || Operands.size() == 3)) {
 | 
						|
    if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
 | 
						|
      Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
 | 
						|
    AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
 | 
						|
                              DefaultMemDIOperand(NameLoc));
 | 
						|
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we encountered an error for one the string insturctions
 | 
						|
  if (HadVerifyError) {
 | 
						|
    return HadVerifyError;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
 | 
						|
  // "shift <op>".
 | 
						|
  if ((Name.startswith("shr") || Name.startswith("sar") ||
 | 
						|
       Name.startswith("shl") || Name.startswith("sal") ||
 | 
						|
       Name.startswith("rcl") || Name.startswith("rcr") ||
 | 
						|
       Name.startswith("rol") || Name.startswith("ror")) &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    if (isParsingIntelSyntax()) {
 | 
						|
      // Intel syntax
 | 
						|
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
 | 
						|
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | 
						|
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | 
						|
        Operands.pop_back();
 | 
						|
    } else {
 | 
						|
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | 
						|
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | 
						|
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | 
						|
        Operands.erase(Operands.begin() + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
 | 
						|
  // instalias with an immediate operand yet.
 | 
						|
  if (Name == "int" && Operands.size() == 2) {
 | 
						|
    X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | 
						|
    if (Op1.isImm())
 | 
						|
      if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
 | 
						|
        if (CE->getValue() == 3) {
 | 
						|
          Operands.erase(Operands.begin() + 1);
 | 
						|
          static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transforms "xlat mem8" into "xlatb"
 | 
						|
  if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
 | 
						|
    X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | 
						|
    if (Op1.isMem8()) {
 | 
						|
      Warning(Op1.getStartLoc(), "memory operand is only for determining the "
 | 
						|
                                 "size, (R|E)BX will be used for the location");
 | 
						|
      Operands.pop_back();
 | 
						|
      static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Flags)
 | 
						|
    Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
 | 
						|
  const MCRegisterInfo *MRI = getContext().getRegisterInfo();
 | 
						|
 | 
						|
  switch (Inst.getOpcode()) {
 | 
						|
  case X86::VGATHERDPDYrm:
 | 
						|
  case X86::VGATHERDPDrm:
 | 
						|
  case X86::VGATHERDPSYrm:
 | 
						|
  case X86::VGATHERDPSrm:
 | 
						|
  case X86::VGATHERQPDYrm:
 | 
						|
  case X86::VGATHERQPDrm:
 | 
						|
  case X86::VGATHERQPSYrm:
 | 
						|
  case X86::VGATHERQPSrm:
 | 
						|
  case X86::VPGATHERDDYrm:
 | 
						|
  case X86::VPGATHERDDrm:
 | 
						|
  case X86::VPGATHERDQYrm:
 | 
						|
  case X86::VPGATHERDQrm:
 | 
						|
  case X86::VPGATHERQDYrm:
 | 
						|
  case X86::VPGATHERQDrm:
 | 
						|
  case X86::VPGATHERQQYrm:
 | 
						|
  case X86::VPGATHERQQrm: {
 | 
						|
    unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
 | 
						|
    unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
 | 
						|
    unsigned Index =
 | 
						|
      MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
 | 
						|
    if (Dest == Mask || Dest == Index || Mask == Index)
 | 
						|
      return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
 | 
						|
                                            "registers should be distinct");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::VGATHERDPDZ128rm:
 | 
						|
  case X86::VGATHERDPDZ256rm:
 | 
						|
  case X86::VGATHERDPDZrm:
 | 
						|
  case X86::VGATHERDPSZ128rm:
 | 
						|
  case X86::VGATHERDPSZ256rm:
 | 
						|
  case X86::VGATHERDPSZrm:
 | 
						|
  case X86::VGATHERQPDZ128rm:
 | 
						|
  case X86::VGATHERQPDZ256rm:
 | 
						|
  case X86::VGATHERQPDZrm:
 | 
						|
  case X86::VGATHERQPSZ128rm:
 | 
						|
  case X86::VGATHERQPSZ256rm:
 | 
						|
  case X86::VGATHERQPSZrm:
 | 
						|
  case X86::VPGATHERDDZ128rm:
 | 
						|
  case X86::VPGATHERDDZ256rm:
 | 
						|
  case X86::VPGATHERDDZrm:
 | 
						|
  case X86::VPGATHERDQZ128rm:
 | 
						|
  case X86::VPGATHERDQZ256rm:
 | 
						|
  case X86::VPGATHERDQZrm:
 | 
						|
  case X86::VPGATHERQDZ128rm:
 | 
						|
  case X86::VPGATHERQDZ256rm:
 | 
						|
  case X86::VPGATHERQDZrm:
 | 
						|
  case X86::VPGATHERQQZ128rm:
 | 
						|
  case X86::VPGATHERQQZ256rm:
 | 
						|
  case X86::VPGATHERQQZrm: {
 | 
						|
    unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
 | 
						|
    unsigned Index =
 | 
						|
      MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
 | 
						|
    if (Dest == Index)
 | 
						|
      return Warning(Ops[0]->getStartLoc(), "index and destination registers "
 | 
						|
                                            "should be distinct");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::V4FMADDPSrm:
 | 
						|
  case X86::V4FMADDPSrmk:
 | 
						|
  case X86::V4FMADDPSrmkz:
 | 
						|
  case X86::V4FMADDSSrm:
 | 
						|
  case X86::V4FMADDSSrmk:
 | 
						|
  case X86::V4FMADDSSrmkz:
 | 
						|
  case X86::V4FNMADDPSrm:
 | 
						|
  case X86::V4FNMADDPSrmk:
 | 
						|
  case X86::V4FNMADDPSrmkz:
 | 
						|
  case X86::V4FNMADDSSrm:
 | 
						|
  case X86::V4FNMADDSSrmk:
 | 
						|
  case X86::V4FNMADDSSrmkz:
 | 
						|
  case X86::VP4DPWSSDSrm:
 | 
						|
  case X86::VP4DPWSSDSrmk:
 | 
						|
  case X86::VP4DPWSSDSrmkz:
 | 
						|
  case X86::VP4DPWSSDrm:
 | 
						|
  case X86::VP4DPWSSDrmk:
 | 
						|
  case X86::VP4DPWSSDrmkz: {
 | 
						|
    unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
 | 
						|
                                    X86::AddrNumOperands - 1).getReg();
 | 
						|
    unsigned Src2Enc = MRI->getEncodingValue(Src2);
 | 
						|
    if (Src2Enc % 4 != 0) {
 | 
						|
      StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
 | 
						|
      unsigned GroupStart = (Src2Enc / 4) * 4;
 | 
						|
      unsigned GroupEnd = GroupStart + 3;
 | 
						|
      return Warning(Ops[0]->getStartLoc(),
 | 
						|
                     "source register '" + RegName + "' implicitly denotes '" +
 | 
						|
                     RegName.take_front(3) + Twine(GroupStart) + "' to '" +
 | 
						|
                     RegName.take_front(3) + Twine(GroupEnd) +
 | 
						|
                     "' source group");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static const char *getSubtargetFeatureName(uint64_t Val);
 | 
						|
 | 
						|
void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
 | 
						|
                                   MCStreamer &Out) {
 | 
						|
  Instrumentation->InstrumentAndEmitInstruction(
 | 
						|
      Inst, Operands, getContext(), MII, Out,
 | 
						|
      getParser().shouldPrintSchedInfo());
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                           OperandVector &Operands,
 | 
						|
                                           MCStreamer &Out, uint64_t &ErrorInfo,
 | 
						|
                                           bool MatchingInlineAsm) {
 | 
						|
  if (isParsingIntelSyntax())
 | 
						|
    return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | 
						|
                                        MatchingInlineAsm);
 | 
						|
  return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | 
						|
                                    MatchingInlineAsm);
 | 
						|
}
 | 
						|
 | 
						|
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
 | 
						|
                                     OperandVector &Operands, MCStreamer &Out,
 | 
						|
                                     bool MatchingInlineAsm) {
 | 
						|
  // FIXME: This should be replaced with a real .td file alias mechanism.
 | 
						|
  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
 | 
						|
  // call.
 | 
						|
  const char *Repl = StringSwitch<const char *>(Op.getToken())
 | 
						|
                         .Case("finit", "fninit")
 | 
						|
                         .Case("fsave", "fnsave")
 | 
						|
                         .Case("fstcw", "fnstcw")
 | 
						|
                         .Case("fstcww", "fnstcw")
 | 
						|
                         .Case("fstenv", "fnstenv")
 | 
						|
                         .Case("fstsw", "fnstsw")
 | 
						|
                         .Case("fstsww", "fnstsw")
 | 
						|
                         .Case("fclex", "fnclex")
 | 
						|
                         .Default(nullptr);
 | 
						|
  if (Repl) {
 | 
						|
    MCInst Inst;
 | 
						|
    Inst.setOpcode(X86::WAIT);
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
 | 
						|
                                       bool MatchingInlineAsm) {
 | 
						|
  assert(ErrorInfo && "Unknown missing feature!");
 | 
						|
  SmallString<126> Msg;
 | 
						|
  raw_svector_ostream OS(Msg);
 | 
						|
  OS << "instruction requires:";
 | 
						|
  uint64_t Mask = 1;
 | 
						|
  for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
 | 
						|
    if (ErrorInfo & Mask)
 | 
						|
      OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
 | 
						|
    Mask <<= 1;
 | 
						|
  }
 | 
						|
  return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getPrefixes(OperandVector &Operands) {
 | 
						|
  unsigned Result = 0;
 | 
						|
  X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
 | 
						|
  if (Prefix.isPrefix()) {
 | 
						|
    Result = Prefix.getPrefix();
 | 
						|
    Operands.pop_back();
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                              OperandVector &Operands,
 | 
						|
                                              MCStreamer &Out,
 | 
						|
                                              uint64_t &ErrorInfo,
 | 
						|
                                              bool MatchingInlineAsm) {
 | 
						|
  assert(!Operands.empty() && "Unexpect empty operand list!");
 | 
						|
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | 
						|
  assert(Op.isToken() && "Leading operand should always be a mnemonic!");
 | 
						|
  SMRange EmptyRange = None;
 | 
						|
 | 
						|
  // First, handle aliases that expand to multiple instructions.
 | 
						|
  MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
 | 
						|
 | 
						|
  bool WasOriginallyInvalidOperand = false;
 | 
						|
  unsigned Prefixes = getPrefixes(Operands);
 | 
						|
 | 
						|
  MCInst Inst;
 | 
						|
 | 
						|
  if (Prefixes)
 | 
						|
    Inst.setFlags(Prefixes);
 | 
						|
 | 
						|
  // First, try a direct match.
 | 
						|
  switch (MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm,
 | 
						|
                           isParsingIntelSyntax())) {
 | 
						|
  default: llvm_unreachable("Unexpected match result!");
 | 
						|
  case Match_Success:
 | 
						|
    if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
 | 
						|
      return true;
 | 
						|
    // Some instructions need post-processing to, for example, tweak which
 | 
						|
    // encoding is selected. Loop on it while changes happen so the
 | 
						|
    // individual transformations can chain off each other.
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      while (processInstruction(Inst, Operands))
 | 
						|
        ;
 | 
						|
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  case Match_MissingFeature:
 | 
						|
    return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
 | 
						|
  case Match_InvalidOperand:
 | 
						|
    WasOriginallyInvalidOperand = true;
 | 
						|
    break;
 | 
						|
  case Match_MnemonicFail:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Ideally, we would only attempt suffix matches for things which are
 | 
						|
  // valid prefixes, and we could just infer the right unambiguous
 | 
						|
  // type. However, that requires substantially more matcher support than the
 | 
						|
  // following hack.
 | 
						|
 | 
						|
  // Change the operand to point to a temporary token.
 | 
						|
  StringRef Base = Op.getToken();
 | 
						|
  SmallString<16> Tmp;
 | 
						|
  Tmp += Base;
 | 
						|
  Tmp += ' ';
 | 
						|
  Op.setTokenValue(Tmp);
 | 
						|
 | 
						|
  // If this instruction starts with an 'f', then it is a floating point stack
 | 
						|
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
 | 
						|
  // 80-bit floating point, which use the suffixes s,l,t respectively.
 | 
						|
  //
 | 
						|
  // Otherwise, we assume that this may be an integer instruction, which comes
 | 
						|
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
 | 
						|
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
 | 
						|
 | 
						|
  // Check for the various suffix matches.
 | 
						|
  uint64_t ErrorInfoIgnore;
 | 
						|
  uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
 | 
						|
  unsigned Match[4];
 | 
						|
 | 
						|
  for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
 | 
						|
    Tmp.back() = Suffixes[I];
 | 
						|
    Match[I] = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
    // If this returned as a missing feature failure, remember that.
 | 
						|
    if (Match[I] == Match_MissingFeature)
 | 
						|
      ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
  }
 | 
						|
 | 
						|
  // Restore the old token.
 | 
						|
  Op.setTokenValue(Base);
 | 
						|
 | 
						|
  // If exactly one matched, then we treat that as a successful match (and the
 | 
						|
  // instruction will already have been filled in correctly, since the failing
 | 
						|
  // matches won't have modified it).
 | 
						|
  unsigned NumSuccessfulMatches =
 | 
						|
      std::count(std::begin(Match), std::end(Match), Match_Success);
 | 
						|
  if (NumSuccessfulMatches == 1) {
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the match failed, try to produce a decent error message.
 | 
						|
 | 
						|
  // If we had multiple suffix matches, then identify this as an ambiguous
 | 
						|
  // match.
 | 
						|
  if (NumSuccessfulMatches > 1) {
 | 
						|
    char MatchChars[4];
 | 
						|
    unsigned NumMatches = 0;
 | 
						|
    for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
 | 
						|
      if (Match[I] == Match_Success)
 | 
						|
        MatchChars[NumMatches++] = Suffixes[I];
 | 
						|
 | 
						|
    SmallString<126> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "ambiguous instructions require an explicit suffix (could be ";
 | 
						|
    for (unsigned i = 0; i != NumMatches; ++i) {
 | 
						|
      if (i != 0)
 | 
						|
        OS << ", ";
 | 
						|
      if (i + 1 == NumMatches)
 | 
						|
        OS << "or ";
 | 
						|
      OS << "'" << Base << MatchChars[i] << "'";
 | 
						|
    }
 | 
						|
    OS << ")";
 | 
						|
    Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know that none of the variants matched successfully.
 | 
						|
 | 
						|
  // If all of the instructions reported an invalid mnemonic, then the original
 | 
						|
  // mnemonic was invalid.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
 | 
						|
    if (!WasOriginallyInvalidOperand) {
 | 
						|
      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
 | 
						|
                   Op.getLocRange(), MatchingInlineAsm);
 | 
						|
    }
 | 
						|
 | 
						|
    // Recover location info for the operand if we know which was the problem.
 | 
						|
    if (ErrorInfo != ~0ULL) {
 | 
						|
      if (ErrorInfo >= Operands.size())
 | 
						|
        return Error(IDLoc, "too few operands for instruction", EmptyRange,
 | 
						|
                     MatchingInlineAsm);
 | 
						|
 | 
						|
      X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
 | 
						|
      if (Operand.getStartLoc().isValid()) {
 | 
						|
        SMRange OperandRange = Operand.getLocRange();
 | 
						|
        return Error(Operand.getStartLoc(), "invalid operand for instruction",
 | 
						|
                     OperandRange, MatchingInlineAsm);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with a missing feature, report this as a
 | 
						|
  // missing feature.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_MissingFeature) == 1) {
 | 
						|
    ErrorInfo = ErrorInfoMissingFeature;
 | 
						|
    return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
 | 
						|
                               MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with an invalid operand, report this as an
 | 
						|
  // operand failure.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_InvalidOperand) == 1) {
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of these were an outright failure, report it in a useless way.
 | 
						|
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
 | 
						|
        EmptyRange, MatchingInlineAsm);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | 
						|
                                                OperandVector &Operands,
 | 
						|
                                                MCStreamer &Out,
 | 
						|
                                                uint64_t &ErrorInfo,
 | 
						|
                                                bool MatchingInlineAsm) {
 | 
						|
  assert(!Operands.empty() && "Unexpect empty operand list!");
 | 
						|
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | 
						|
  assert(Op.isToken() && "Leading operand should always be a mnemonic!");
 | 
						|
  StringRef Mnemonic = Op.getToken();
 | 
						|
  SMRange EmptyRange = None;
 | 
						|
  StringRef Base = Op.getToken();
 | 
						|
  unsigned Prefixes = getPrefixes(Operands);
 | 
						|
 | 
						|
  // First, handle aliases that expand to multiple instructions.
 | 
						|
  MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
 | 
						|
 | 
						|
  MCInst Inst;
 | 
						|
 | 
						|
  if (Prefixes)
 | 
						|
    Inst.setFlags(Prefixes);
 | 
						|
 | 
						|
  // Find one unsized memory operand, if present.
 | 
						|
  X86Operand *UnsizedMemOp = nullptr;
 | 
						|
  for (const auto &Op : Operands) {
 | 
						|
    X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
 | 
						|
    if (X86Op->isMemUnsized()) {
 | 
						|
      UnsizedMemOp = X86Op;
 | 
						|
      // Have we found an unqualified memory operand,
 | 
						|
      // break. IA allows only one memory operand.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow some instructions to have implicitly pointer-sized operands.  This is
 | 
						|
  // compatible with gas.
 | 
						|
  if (UnsizedMemOp) {
 | 
						|
    static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
 | 
						|
    for (const char *Instr : PtrSizedInstrs) {
 | 
						|
      if (Mnemonic == Instr) {
 | 
						|
        UnsizedMemOp->Mem.Size = getPointerWidth();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> Match;
 | 
						|
  uint64_t ErrorInfoMissingFeature = 0;
 | 
						|
 | 
						|
  // If unsized push has immediate operand we should default the default pointer
 | 
						|
  // size for the size.
 | 
						|
  if (Mnemonic == "push" && Operands.size() == 2) {
 | 
						|
    auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
 | 
						|
    if (X86Op->isImm()) {
 | 
						|
      // If it's not a constant fall through and let remainder take care of it.
 | 
						|
      const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
 | 
						|
      unsigned Size = getPointerWidth();
 | 
						|
      if (CE &&
 | 
						|
          (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
 | 
						|
        SmallString<16> Tmp;
 | 
						|
        Tmp += Base;
 | 
						|
        Tmp += (is64BitMode())
 | 
						|
                   ? "q"
 | 
						|
                   : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
 | 
						|
        Op.setTokenValue(Tmp);
 | 
						|
        // Do match in ATT mode to allow explicit suffix usage.
 | 
						|
        Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
 | 
						|
                                         MatchingInlineAsm,
 | 
						|
                                         false /*isParsingIntelSyntax()*/));
 | 
						|
        Op.setTokenValue(Base);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If an unsized memory operand is present, try to match with each memory
 | 
						|
  // operand size.  In Intel assembly, the size is not part of the instruction
 | 
						|
  // mnemonic.
 | 
						|
  if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
 | 
						|
    static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
 | 
						|
    for (unsigned Size : MopSizes) {
 | 
						|
      UnsizedMemOp->Mem.Size = Size;
 | 
						|
      uint64_t ErrorInfoIgnore;
 | 
						|
      unsigned LastOpcode = Inst.getOpcode();
 | 
						|
      unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
 | 
						|
                                    MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
      if (Match.empty() || LastOpcode != Inst.getOpcode())
 | 
						|
        Match.push_back(M);
 | 
						|
 | 
						|
      // If this returned as a missing feature failure, remember that.
 | 
						|
      if (Match.back() == Match_MissingFeature)
 | 
						|
        ErrorInfoMissingFeature = ErrorInfoIgnore;
 | 
						|
    }
 | 
						|
 | 
						|
    // Restore the size of the unsized memory operand if we modified it.
 | 
						|
    UnsizedMemOp->Mem.Size = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we haven't matched anything yet, this is not a basic integer or FPU
 | 
						|
  // operation.  There shouldn't be any ambiguity in our mnemonic table, so try
 | 
						|
  // matching with the unsized operand.
 | 
						|
  if (Match.empty()) {
 | 
						|
    Match.push_back(MatchInstruction(
 | 
						|
        Operands, Inst, ErrorInfo, MatchingInlineAsm, isParsingIntelSyntax()));
 | 
						|
    // If this returned as a missing feature failure, remember that.
 | 
						|
    if (Match.back() == Match_MissingFeature)
 | 
						|
      ErrorInfoMissingFeature = ErrorInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  // Restore the size of the unsized memory operand if we modified it.
 | 
						|
  if (UnsizedMemOp)
 | 
						|
    UnsizedMemOp->Mem.Size = 0;
 | 
						|
 | 
						|
  // If it's a bad mnemonic, all results will be the same.
 | 
						|
  if (Match.back() == Match_MnemonicFail) {
 | 
						|
    return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
 | 
						|
                 Op.getLocRange(), MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumSuccessfulMatches =
 | 
						|
      std::count(std::begin(Match), std::end(Match), Match_Success);
 | 
						|
 | 
						|
  // If matching was ambiguous and we had size information from the frontend,
 | 
						|
  // try again with that. This handles cases like "movxz eax, m8/m16".
 | 
						|
  if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
 | 
						|
      UnsizedMemOp->getMemFrontendSize()) {
 | 
						|
    UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
 | 
						|
    unsigned M = MatchInstruction(
 | 
						|
        Operands, Inst, ErrorInfo, MatchingInlineAsm, isParsingIntelSyntax());
 | 
						|
    if (M == Match_Success)
 | 
						|
      NumSuccessfulMatches = 1;
 | 
						|
 | 
						|
    // Add a rewrite that encodes the size information we used from the
 | 
						|
    // frontend.
 | 
						|
    InstInfo->AsmRewrites->emplace_back(
 | 
						|
        AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
 | 
						|
        /*Len=*/0, UnsizedMemOp->getMemFrontendSize());
 | 
						|
  }
 | 
						|
 | 
						|
  // If exactly one matched, then we treat that as a successful match (and the
 | 
						|
  // instruction will already have been filled in correctly, since the failing
 | 
						|
  // matches won't have modified it).
 | 
						|
  if (NumSuccessfulMatches == 1) {
 | 
						|
    if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
 | 
						|
      return true;
 | 
						|
    // Some instructions need post-processing to, for example, tweak which
 | 
						|
    // encoding is selected. Loop on it while changes happen so the individual
 | 
						|
    // transformations can chain off each other.
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      while (processInstruction(Inst, Operands))
 | 
						|
        ;
 | 
						|
    Inst.setLoc(IDLoc);
 | 
						|
    if (!MatchingInlineAsm)
 | 
						|
      EmitInstruction(Inst, Operands, Out);
 | 
						|
    Opcode = Inst.getOpcode();
 | 
						|
    return false;
 | 
						|
  } else if (NumSuccessfulMatches > 1) {
 | 
						|
    assert(UnsizedMemOp &&
 | 
						|
           "multiple matches only possible with unsized memory operands");
 | 
						|
    return Error(UnsizedMemOp->getStartLoc(),
 | 
						|
                 "ambiguous operand size for instruction '" + Mnemonic + "\'",
 | 
						|
                 UnsizedMemOp->getLocRange());
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with a missing feature, report this as a
 | 
						|
  // missing feature.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_MissingFeature) == 1) {
 | 
						|
    ErrorInfo = ErrorInfoMissingFeature;
 | 
						|
    return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
 | 
						|
                               MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with an invalid operand, report this as an
 | 
						|
  // operand failure.
 | 
						|
  if (std::count(std::begin(Match), std::end(Match),
 | 
						|
                 Match_InvalidOperand) == 1) {
 | 
						|
    return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | 
						|
                 MatchingInlineAsm);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of these were an outright failure, report it in a useless way.
 | 
						|
  return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
 | 
						|
               MatchingInlineAsm);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
 | 
						|
  return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  StringRef IDVal = DirectiveID.getIdentifier();
 | 
						|
  if (IDVal.startswith(".code"))
 | 
						|
    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
 | 
						|
  else if (IDVal.startswith(".att_syntax")) {
 | 
						|
    getParser().setParsingInlineAsm(false);
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      if (Parser.getTok().getString() == "prefix")
 | 
						|
        Parser.Lex();
 | 
						|
      else if (Parser.getTok().getString() == "noprefix")
 | 
						|
        return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
 | 
						|
                                           "supported: registers must have a "
 | 
						|
                                           "'%' prefix in .att_syntax");
 | 
						|
    }
 | 
						|
    getParser().setAssemblerDialect(0);
 | 
						|
    return false;
 | 
						|
  } else if (IDVal.startswith(".intel_syntax")) {
 | 
						|
    getParser().setAssemblerDialect(1);
 | 
						|
    getParser().setParsingInlineAsm(true);
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      if (Parser.getTok().getString() == "noprefix")
 | 
						|
        Parser.Lex();
 | 
						|
      else if (Parser.getTok().getString() == "prefix")
 | 
						|
        return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
 | 
						|
                                           "supported: registers must not have "
 | 
						|
                                           "a '%' prefix in .intel_syntax");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  } else if (IDVal == ".even")
 | 
						|
    return parseDirectiveEven(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_proc")
 | 
						|
    return parseDirectiveFPOProc(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_setframe")
 | 
						|
    return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_pushreg")
 | 
						|
    return parseDirectiveFPOPushReg(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_stackalloc")
 | 
						|
    return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_stackalign")
 | 
						|
    return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_endprologue")
 | 
						|
    return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
 | 
						|
  else if (IDVal == ".cv_fpo_endproc")
 | 
						|
    return parseDirectiveFPOEndProc(DirectiveID.getLoc());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// parseDirectiveEven
 | 
						|
///  ::= .even
 | 
						|
bool X86AsmParser::parseDirectiveEven(SMLoc L) {
 | 
						|
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MCSection *Section = getStreamer().getCurrentSectionOnly();
 | 
						|
  if (!Section) {
 | 
						|
    getStreamer().InitSections(false);
 | 
						|
    Section = getStreamer().getCurrentSectionOnly();
 | 
						|
  }
 | 
						|
  if (Section->UseCodeAlign())
 | 
						|
    getStreamer().EmitCodeAlignment(2, 0);
 | 
						|
  else
 | 
						|
    getStreamer().EmitValueToAlignment(2, 0, 1, 0);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveCode
 | 
						|
///  ::= .code16 | .code32 | .code64
 | 
						|
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  Code16GCC = false;
 | 
						|
  if (IDVal == ".code16") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is16BitMode()) {
 | 
						|
      SwitchMode(X86::Mode16Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code16gcc") {
 | 
						|
    // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
 | 
						|
    Parser.Lex();
 | 
						|
    Code16GCC = true;
 | 
						|
    if (!is16BitMode()) {
 | 
						|
      SwitchMode(X86::Mode16Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code32") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is32BitMode()) {
 | 
						|
      SwitchMode(X86::Mode32Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code64") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is64BitMode()) {
 | 
						|
      SwitchMode(X86::Mode64Bit);
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Error(L, "unknown directive " + IDVal);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_proc foo
 | 
						|
bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  StringRef ProcName;
 | 
						|
  int64_t ParamsSize;
 | 
						|
  if (Parser.parseIdentifier(ProcName))
 | 
						|
    return Parser.TokError("expected symbol name");
 | 
						|
  if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
 | 
						|
    return true;
 | 
						|
  if (!isUIntN(32, ParamsSize))
 | 
						|
    return Parser.TokError("parameters size out of range");
 | 
						|
  if (Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_proc' directive");
 | 
						|
  MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
 | 
						|
  return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_setframe ebp
 | 
						|
bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  unsigned Reg;
 | 
						|
  SMLoc DummyLoc;
 | 
						|
  if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
 | 
						|
      Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_setframe' directive");
 | 
						|
  return getTargetStreamer().emitFPOSetFrame(Reg, L);
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_pushreg ebx
 | 
						|
bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  unsigned Reg;
 | 
						|
  SMLoc DummyLoc;
 | 
						|
  if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
 | 
						|
      Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
 | 
						|
  return getTargetStreamer().emitFPOPushReg(Reg, L);
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_stackalloc 20
 | 
						|
bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  int64_t Offset;
 | 
						|
  if (Parser.parseIntToken(Offset, "expected offset") ||
 | 
						|
      Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
 | 
						|
  return getTargetStreamer().emitFPOStackAlloc(Offset, L);
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_stackalign 8
 | 
						|
bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  int64_t Offset;
 | 
						|
  if (Parser.parseIntToken(Offset, "expected offset") ||
 | 
						|
      Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
 | 
						|
  return getTargetStreamer().emitFPOStackAlign(Offset, L);
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_endprologue
 | 
						|
bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  if (Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
 | 
						|
  return getTargetStreamer().emitFPOEndPrologue(L);
 | 
						|
}
 | 
						|
 | 
						|
// .cv_fpo_endproc
 | 
						|
bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
 | 
						|
  MCAsmParser &Parser = getParser();
 | 
						|
  if (Parser.parseEOL("unexpected tokens"))
 | 
						|
    return addErrorSuffix(" in '.cv_fpo_endproc' directive");
 | 
						|
  return getTargetStreamer().emitFPOEndProc(L);
 | 
						|
}
 | 
						|
 | 
						|
// Force static initialization.
 | 
						|
extern "C" void LLVMInitializeX86AsmParser() {
 | 
						|
  RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
 | 
						|
  RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
 | 
						|
}
 | 
						|
 | 
						|
#define GET_REGISTER_MATCHER
 | 
						|
#define GET_MATCHER_IMPLEMENTATION
 | 
						|
#define GET_SUBTARGET_FEATURE_NAME
 | 
						|
#include "X86GenAsmMatcher.inc"
 |