354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the pass which inserts x86 AVX vzeroupper instructions
 | 
						|
// before calls to SSE encoded functions. This avoids transition latency
 | 
						|
// penalty when transferring control between AVX encoded instructions and old
 | 
						|
// SSE encoding mode.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-vzeroupper"
 | 
						|
 | 
						|
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class VZeroUpperInserter : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    VZeroUpperInserter() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
      return MachineFunctionProperties().set(
 | 
						|
          MachineFunctionProperties::Property::NoVRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
 | 
						|
 | 
						|
  private:
 | 
						|
    void processBasicBlock(MachineBasicBlock &MBB);
 | 
						|
    void insertVZeroUpper(MachineBasicBlock::iterator I,
 | 
						|
                          MachineBasicBlock &MBB);
 | 
						|
    void addDirtySuccessor(MachineBasicBlock &MBB);
 | 
						|
 | 
						|
    using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
 | 
						|
 | 
						|
    static const char* getBlockExitStateName(BlockExitState ST);
 | 
						|
 | 
						|
    // Core algorithm state:
 | 
						|
    // BlockState - Each block is either:
 | 
						|
    //   - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
 | 
						|
    //                   vzeroupper instructions in this block.
 | 
						|
    //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
 | 
						|
    //                  block that will ensure that YMM/ZMM is clean on exit.
 | 
						|
    //   - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
 | 
						|
    //                  subsequent vzeroupper in the block clears it.
 | 
						|
    //
 | 
						|
    // AddedToDirtySuccessors - This flag is raised when a block is added to the
 | 
						|
    //                          DirtySuccessors list to ensure that it's not
 | 
						|
    //                          added multiple times.
 | 
						|
    //
 | 
						|
    // FirstUnguardedCall - Records the location of the first unguarded call in
 | 
						|
    //                      each basic block that may need to be guarded by a
 | 
						|
    //                      vzeroupper. We won't know whether it actually needs
 | 
						|
    //                      to be guarded until we discover a predecessor that
 | 
						|
    //                      is DIRTY_OUT.
 | 
						|
    struct BlockState {
 | 
						|
      BlockExitState ExitState = PASS_THROUGH;
 | 
						|
      bool AddedToDirtySuccessors = false;
 | 
						|
      MachineBasicBlock::iterator FirstUnguardedCall;
 | 
						|
 | 
						|
      BlockState() = default;
 | 
						|
    };
 | 
						|
 | 
						|
    using BlockStateMap = SmallVector<BlockState, 8>;
 | 
						|
    using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
 | 
						|
 | 
						|
    BlockStateMap BlockStates;
 | 
						|
    DirtySuccessorsWorkList DirtySuccessors;
 | 
						|
    bool EverMadeChange;
 | 
						|
    bool IsX86INTR;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
 | 
						|
    static char ID;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char VZeroUpperInserter::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createX86IssueVZeroUpperPass() {
 | 
						|
  return new VZeroUpperInserter();
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
 | 
						|
  switch (ST) {
 | 
						|
    case PASS_THROUGH: return "Pass-through";
 | 
						|
    case EXITS_DIRTY: return "Exits-dirty";
 | 
						|
    case EXITS_CLEAN: return "Exits-clean";
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid block exit state.");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
 | 
						|
/// Thus, there is no need to check for Y/ZMM16 and above.
 | 
						|
static bool isYmmOrZmmReg(unsigned Reg) {
 | 
						|
  return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
 | 
						|
         (Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
 | 
						|
}
 | 
						|
 | 
						|
static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
 | 
						|
  for (std::pair<unsigned, unsigned> LI : MRI.liveins())
 | 
						|
    if (isYmmOrZmmReg(LI.first))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
 | 
						|
  for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
 | 
						|
    if (!MO.clobbersPhysReg(reg))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
 | 
						|
    if (!MO.clobbersPhysReg(reg))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasYmmOrZmmReg(MachineInstr &MI) {
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
 | 
						|
      return true;
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    if (MO.isDebug())
 | 
						|
      continue;
 | 
						|
    if (isYmmOrZmmReg(MO.getReg()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if given call instruction has a RegMask operand.
 | 
						|
static bool callHasRegMask(MachineInstr &MI) {
 | 
						|
  assert(MI.isCall() && "Can only be called on call instructions.");
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    if (MO.isRegMask())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Insert a vzeroupper instruction before I.
 | 
						|
void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
 | 
						|
                                          MachineBasicBlock &MBB) {
 | 
						|
  DebugLoc dl = I->getDebugLoc();
 | 
						|
  BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
 | 
						|
  ++NumVZU;
 | 
						|
  EverMadeChange = true;
 | 
						|
}
 | 
						|
 | 
						|
/// Add MBB to the DirtySuccessors list if it hasn't already been added.
 | 
						|
void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
 | 
						|
  if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
 | 
						|
    DirtySuccessors.push_back(&MBB);
 | 
						|
    BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Loop over all of the instructions in the basic block, inserting vzeroupper
 | 
						|
/// instructions before function calls.
 | 
						|
void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
 | 
						|
  // Start by assuming that the block is PASS_THROUGH which implies no unguarded
 | 
						|
  // calls.
 | 
						|
  BlockExitState CurState = PASS_THROUGH;
 | 
						|
  BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
 | 
						|
 | 
						|
  for (MachineInstr &MI : MBB) {
 | 
						|
    bool IsCall = MI.isCall();
 | 
						|
    bool IsReturn = MI.isReturn();
 | 
						|
    bool IsControlFlow = IsCall || IsReturn;
 | 
						|
 | 
						|
    // No need for vzeroupper before iret in interrupt handler function,
 | 
						|
    // epilogue will restore YMM/ZMM registers if needed.
 | 
						|
    if (IsX86INTR && IsReturn)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // An existing VZERO* instruction resets the state.
 | 
						|
    if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
 | 
						|
      CurState = EXITS_CLEAN;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Shortcut: don't need to check regular instructions in dirty state.
 | 
						|
    if (!IsControlFlow && CurState == EXITS_DIRTY)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (hasYmmOrZmmReg(MI)) {
 | 
						|
      // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
 | 
						|
      // instruction, or it could be control flow.
 | 
						|
      CurState = EXITS_DIRTY;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for control-flow out of the current function (which might
 | 
						|
    // indirectly execute SSE instructions).
 | 
						|
    if (!IsControlFlow)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the call has no RegMask, skip it as well. It usually happens on
 | 
						|
    // helper function calls (such as '_chkstk', '_ftol2') where standard
 | 
						|
    // calling convention is not used (RegMask is not used to mark register
 | 
						|
    // clobbered and register usage (def/implicit-def/use) is well-defined and
 | 
						|
    // explicitly specified.
 | 
						|
    if (IsCall && !callHasRegMask(MI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
 | 
						|
    // registers. In addition, the processor changes back to Clean state, after
 | 
						|
    // which execution of SSE instructions or AVX instructions has no transition
 | 
						|
    // penalty. Add the VZEROUPPER instruction before any function call/return
 | 
						|
    // that might execute SSE code.
 | 
						|
    // FIXME: In some cases, we may want to move the VZEROUPPER into a
 | 
						|
    // predecessor block.
 | 
						|
    if (CurState == EXITS_DIRTY) {
 | 
						|
      // After the inserted VZEROUPPER the state becomes clean again, but
 | 
						|
      // other YMM/ZMM may appear before other subsequent calls or even before
 | 
						|
      // the end of the BB.
 | 
						|
      insertVZeroUpper(MI, MBB);
 | 
						|
      CurState = EXITS_CLEAN;
 | 
						|
    } else if (CurState == PASS_THROUGH) {
 | 
						|
      // If this block is currently in pass-through state and we encounter a
 | 
						|
      // call then whether we need a vzeroupper or not depends on whether this
 | 
						|
      // block has successors that exit dirty. Record the location of the call,
 | 
						|
      // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
 | 
						|
      // It will be inserted later if necessary.
 | 
						|
      BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
 | 
						|
      CurState = EXITS_CLEAN;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
 | 
						|
                    << getBlockExitStateName(CurState) << '\n');
 | 
						|
 | 
						|
  if (CurState == EXITS_DIRTY)
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
 | 
						|
                                          SE = MBB.succ_end();
 | 
						|
         SI != SE; ++SI)
 | 
						|
      addDirtySuccessor(**SI);
 | 
						|
 | 
						|
  BlockStates[MBB.getNumber()].ExitState = CurState;
 | 
						|
}
 | 
						|
 | 
						|
/// Loop over all of the basic blocks, inserting vzeroupper instructions before
 | 
						|
/// function calls.
 | 
						|
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
 | 
						|
  if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
 | 
						|
    return false;
 | 
						|
  TII = ST.getInstrInfo();
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  EverMadeChange = false;
 | 
						|
  IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
 | 
						|
 | 
						|
  bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
 | 
						|
 | 
						|
  // Fast check: if the function doesn't use any ymm/zmm registers, we don't
 | 
						|
  // need to insert any VZEROUPPER instructions.  This is constant-time, so it
 | 
						|
  // is cheap in the common case of no ymm/zmm use.
 | 
						|
  bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
 | 
						|
  const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
 | 
						|
  for (auto *RC : RCs) {
 | 
						|
    if (!YmmOrZmmUsed) {
 | 
						|
      for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
 | 
						|
           i++) {
 | 
						|
        if (!MRI.reg_nodbg_empty(*i)) {
 | 
						|
          YmmOrZmmUsed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!YmmOrZmmUsed) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(BlockStates.empty() && DirtySuccessors.empty() &&
 | 
						|
         "X86VZeroUpper state should be clear");
 | 
						|
  BlockStates.resize(MF.getNumBlockIDs());
 | 
						|
 | 
						|
  // Process all blocks. This will compute block exit states, record the first
 | 
						|
  // unguarded call in each block, and add successors of dirty blocks to the
 | 
						|
  // DirtySuccessors list.
 | 
						|
  for (MachineBasicBlock &MBB : MF)
 | 
						|
    processBasicBlock(MBB);
 | 
						|
 | 
						|
  // If any YMM/ZMM regs are live-in to this function, add the entry block to
 | 
						|
  // the DirtySuccessors list
 | 
						|
  if (FnHasLiveInYmmOrZmm)
 | 
						|
    addDirtySuccessor(MF.front());
 | 
						|
 | 
						|
  // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
 | 
						|
  // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
 | 
						|
  // through PASS_THROUGH blocks.
 | 
						|
  while (!DirtySuccessors.empty()) {
 | 
						|
    MachineBasicBlock &MBB = *DirtySuccessors.back();
 | 
						|
    DirtySuccessors.pop_back();
 | 
						|
    BlockState &BBState = BlockStates[MBB.getNumber()];
 | 
						|
 | 
						|
    // MBB is a successor of a dirty block, so its first call needs to be
 | 
						|
    // guarded.
 | 
						|
    if (BBState.FirstUnguardedCall != MBB.end())
 | 
						|
      insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
 | 
						|
 | 
						|
    // If this successor was a pass-through block, then it is now dirty. Its
 | 
						|
    // successors need to be added to the worklist (if they haven't been
 | 
						|
    // already).
 | 
						|
    if (BBState.ExitState == PASS_THROUGH) {
 | 
						|
      LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber()
 | 
						|
                        << " was Pass-through, is now Dirty-out.\n");
 | 
						|
      for (MachineBasicBlock *Succ : MBB.successors())
 | 
						|
        addDirtySuccessor(*Succ);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BlockStates.clear();
 | 
						|
  return EverMadeChange;
 | 
						|
}
 |