1107 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1107 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass promotes "by reference" arguments to be "by value" arguments.  In
 | 
						|
// practice, this means looking for internal functions that have pointer
 | 
						|
// arguments.  If it can prove, through the use of alias analysis, that an
 | 
						|
// argument is *only* loaded, then it can pass the value into the function
 | 
						|
// instead of the address of the value.  This can cause recursive simplification
 | 
						|
// of code and lead to the elimination of allocas (especially in C++ template
 | 
						|
// code like the STL).
 | 
						|
//
 | 
						|
// This pass also handles aggregate arguments that are passed into a function,
 | 
						|
// scalarizing them if the elements of the aggregate are only loaded.  Note that
 | 
						|
// by default it refuses to scalarize aggregates which would require passing in
 | 
						|
// more than three operands to the function, because passing thousands of
 | 
						|
// operands for a large array or structure is unprofitable! This limit can be
 | 
						|
// configured or disabled, however.
 | 
						|
//
 | 
						|
// Note that this transformation could also be done for arguments that are only
 | 
						|
// stored to (returning the value instead), but does not currently.  This case
 | 
						|
// would be best handled when and if LLVM begins supporting multiple return
 | 
						|
// values from functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CGSCCPassManager.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/CallGraphSCCPass.h"
 | 
						|
#include "llvm/Analysis/LazyCallGraph.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <functional>
 | 
						|
#include <iterator>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "argpromotion"
 | 
						|
 | 
						|
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
 | 
						|
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
 | 
						|
STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
 | 
						|
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
 | 
						|
 | 
						|
/// A vector used to hold the indices of a single GEP instruction
 | 
						|
using IndicesVector = std::vector<uint64_t>;
 | 
						|
 | 
						|
/// DoPromotion - This method actually performs the promotion of the specified
 | 
						|
/// arguments, and returns the new function.  At this point, we know that it's
 | 
						|
/// safe to do so.
 | 
						|
static Function *
 | 
						|
doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
 | 
						|
            SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
 | 
						|
            Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
 | 
						|
                ReplaceCallSite) {
 | 
						|
  // Start by computing a new prototype for the function, which is the same as
 | 
						|
  // the old function, but has modified arguments.
 | 
						|
  FunctionType *FTy = F->getFunctionType();
 | 
						|
  std::vector<Type *> Params;
 | 
						|
 | 
						|
  using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
 | 
						|
 | 
						|
  // ScalarizedElements - If we are promoting a pointer that has elements
 | 
						|
  // accessed out of it, keep track of which elements are accessed so that we
 | 
						|
  // can add one argument for each.
 | 
						|
  //
 | 
						|
  // Arguments that are directly loaded will have a zero element value here, to
 | 
						|
  // handle cases where there are both a direct load and GEP accesses.
 | 
						|
  std::map<Argument *, ScalarizeTable> ScalarizedElements;
 | 
						|
 | 
						|
  // OriginalLoads - Keep track of a representative load instruction from the
 | 
						|
  // original function so that we can tell the alias analysis implementation
 | 
						|
  // what the new GEP/Load instructions we are inserting look like.
 | 
						|
  // We need to keep the original loads for each argument and the elements
 | 
						|
  // of the argument that are accessed.
 | 
						|
  std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
 | 
						|
 | 
						|
  // Attribute - Keep track of the parameter attributes for the arguments
 | 
						|
  // that we are *not* promoting. For the ones that we do promote, the parameter
 | 
						|
  // attributes are lost
 | 
						|
  SmallVector<AttributeSet, 8> ArgAttrVec;
 | 
						|
  AttributeList PAL = F->getAttributes();
 | 
						|
 | 
						|
  // First, determine the new argument list
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
 | 
						|
       ++I, ++ArgNo) {
 | 
						|
    if (ByValArgsToTransform.count(&*I)) {
 | 
						|
      // Simple byval argument? Just add all the struct element types.
 | 
						|
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
      StructType *STy = cast<StructType>(AgTy);
 | 
						|
      Params.insert(Params.end(), STy->element_begin(), STy->element_end());
 | 
						|
      ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
 | 
						|
                        AttributeSet());
 | 
						|
      ++NumByValArgsPromoted;
 | 
						|
    } else if (!ArgsToPromote.count(&*I)) {
 | 
						|
      // Unchanged argument
 | 
						|
      Params.push_back(I->getType());
 | 
						|
      ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
 | 
						|
    } else if (I->use_empty()) {
 | 
						|
      // Dead argument (which are always marked as promotable)
 | 
						|
      ++NumArgumentsDead;
 | 
						|
 | 
						|
      // There may be remaining metadata uses of the argument for things like
 | 
						|
      // llvm.dbg.value. Replace them with undef.
 | 
						|
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
    } else {
 | 
						|
      // Okay, this is being promoted. This means that the only uses are loads
 | 
						|
      // or GEPs which are only used by loads
 | 
						|
 | 
						|
      // In this table, we will track which indices are loaded from the argument
 | 
						|
      // (where direct loads are tracked as no indices).
 | 
						|
      ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
 | 
						|
      for (User *U : I->users()) {
 | 
						|
        Instruction *UI = cast<Instruction>(U);
 | 
						|
        Type *SrcTy;
 | 
						|
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
 | 
						|
          SrcTy = L->getType();
 | 
						|
        else
 | 
						|
          SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
 | 
						|
        IndicesVector Indices;
 | 
						|
        Indices.reserve(UI->getNumOperands() - 1);
 | 
						|
        // Since loads will only have a single operand, and GEPs only a single
 | 
						|
        // non-index operand, this will record direct loads without any indices,
 | 
						|
        // and gep+loads with the GEP indices.
 | 
						|
        for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
 | 
						|
             II != IE; ++II)
 | 
						|
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
 | 
						|
        // GEPs with a single 0 index can be merged with direct loads
 | 
						|
        if (Indices.size() == 1 && Indices.front() == 0)
 | 
						|
          Indices.clear();
 | 
						|
        ArgIndices.insert(std::make_pair(SrcTy, Indices));
 | 
						|
        LoadInst *OrigLoad;
 | 
						|
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
 | 
						|
          OrigLoad = L;
 | 
						|
        else
 | 
						|
          // Take any load, we will use it only to update Alias Analysis
 | 
						|
          OrigLoad = cast<LoadInst>(UI->user_back());
 | 
						|
        OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add a parameter to the function for each element passed in.
 | 
						|
      for (const auto &ArgIndex : ArgIndices) {
 | 
						|
        // not allowed to dereference ->begin() if size() is 0
 | 
						|
        Params.push_back(GetElementPtrInst::getIndexedType(
 | 
						|
            cast<PointerType>(I->getType()->getScalarType())->getElementType(),
 | 
						|
            ArgIndex.second));
 | 
						|
        ArgAttrVec.push_back(AttributeSet());
 | 
						|
        assert(Params.back());
 | 
						|
      }
 | 
						|
 | 
						|
      if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
 | 
						|
        ++NumArgumentsPromoted;
 | 
						|
      else
 | 
						|
        ++NumAggregatesPromoted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Type *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
  // Construct the new function type using the new arguments.
 | 
						|
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
 | 
						|
 | 
						|
  // Create the new function body and insert it into the module.
 | 
						|
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
 | 
						|
  NF->copyAttributesFrom(F);
 | 
						|
 | 
						|
  // Patch the pointer to LLVM function in debug info descriptor.
 | 
						|
  NF->setSubprogram(F->getSubprogram());
 | 
						|
  F->setSubprogram(nullptr);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
 | 
						|
                    << "From: " << *F);
 | 
						|
 | 
						|
  // Recompute the parameter attributes list based on the new arguments for
 | 
						|
  // the function.
 | 
						|
  NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
 | 
						|
                                       PAL.getRetAttributes(), ArgAttrVec));
 | 
						|
  ArgAttrVec.clear();
 | 
						|
 | 
						|
  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
 | 
						|
  NF->takeName(F);
 | 
						|
 | 
						|
  // Loop over all of the callers of the function, transforming the call sites
 | 
						|
  // to pass in the loaded pointers.
 | 
						|
  //
 | 
						|
  SmallVector<Value *, 16> Args;
 | 
						|
  while (!F->use_empty()) {
 | 
						|
    CallSite CS(F->user_back());
 | 
						|
    assert(CS.getCalledFunction() == F);
 | 
						|
    Instruction *Call = CS.getInstruction();
 | 
						|
    const AttributeList &CallPAL = CS.getAttributes();
 | 
						|
 | 
						|
    // Loop over the operands, inserting GEP and loads in the caller as
 | 
						|
    // appropriate.
 | 
						|
    CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
    ArgNo = 0;
 | 
						|
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
 | 
						|
         ++I, ++AI, ++ArgNo)
 | 
						|
      if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
 | 
						|
        Args.push_back(*AI); // Unmodified argument
 | 
						|
        ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
 | 
						|
      } else if (ByValArgsToTransform.count(&*I)) {
 | 
						|
        // Emit a GEP and load for each element of the struct.
 | 
						|
        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
        StructType *STy = cast<StructType>(AgTy);
 | 
						|
        Value *Idxs[2] = {
 | 
						|
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
 | 
						|
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
 | 
						|
          Value *Idx = GetElementPtrInst::Create(
 | 
						|
              STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
 | 
						|
          // TODO: Tell AA about the new values?
 | 
						|
          Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
 | 
						|
          ArgAttrVec.push_back(AttributeSet());
 | 
						|
        }
 | 
						|
      } else if (!I->use_empty()) {
 | 
						|
        // Non-dead argument: insert GEPs and loads as appropriate.
 | 
						|
        ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
 | 
						|
        // Store the Value* version of the indices in here, but declare it now
 | 
						|
        // for reuse.
 | 
						|
        std::vector<Value *> Ops;
 | 
						|
        for (const auto &ArgIndex : ArgIndices) {
 | 
						|
          Value *V = *AI;
 | 
						|
          LoadInst *OrigLoad =
 | 
						|
              OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
 | 
						|
          if (!ArgIndex.second.empty()) {
 | 
						|
            Ops.reserve(ArgIndex.second.size());
 | 
						|
            Type *ElTy = V->getType();
 | 
						|
            for (auto II : ArgIndex.second) {
 | 
						|
              // Use i32 to index structs, and i64 for others (pointers/arrays).
 | 
						|
              // This satisfies GEP constraints.
 | 
						|
              Type *IdxTy =
 | 
						|
                  (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
 | 
						|
                                      : Type::getInt64Ty(F->getContext()));
 | 
						|
              Ops.push_back(ConstantInt::get(IdxTy, II));
 | 
						|
              // Keep track of the type we're currently indexing.
 | 
						|
              if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
 | 
						|
                ElTy = ElPTy->getElementType();
 | 
						|
              else
 | 
						|
                ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
 | 
						|
            }
 | 
						|
            // And create a GEP to extract those indices.
 | 
						|
            V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
 | 
						|
                                          V->getName() + ".idx", Call);
 | 
						|
            Ops.clear();
 | 
						|
          }
 | 
						|
          // Since we're replacing a load make sure we take the alignment
 | 
						|
          // of the previous load.
 | 
						|
          LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
 | 
						|
          newLoad->setAlignment(OrigLoad->getAlignment());
 | 
						|
          // Transfer the AA info too.
 | 
						|
          AAMDNodes AAInfo;
 | 
						|
          OrigLoad->getAAMetadata(AAInfo);
 | 
						|
          newLoad->setAAMetadata(AAInfo);
 | 
						|
 | 
						|
          Args.push_back(newLoad);
 | 
						|
          ArgAttrVec.push_back(AttributeSet());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Push any varargs arguments on the list.
 | 
						|
    for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
 | 
						|
      Args.push_back(*AI);
 | 
						|
      ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
    CS.getOperandBundlesAsDefs(OpBundles);
 | 
						|
 | 
						|
    CallSite NewCS;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                                 Args, OpBundles, "", Call);
 | 
						|
    } else {
 | 
						|
      auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
 | 
						|
      NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
 | 
						|
      NewCS = NewCall;
 | 
						|
    }
 | 
						|
    NewCS.setCallingConv(CS.getCallingConv());
 | 
						|
    NewCS.setAttributes(
 | 
						|
        AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
 | 
						|
                           CallPAL.getRetAttributes(), ArgAttrVec));
 | 
						|
    NewCS->setDebugLoc(Call->getDebugLoc());
 | 
						|
    uint64_t W;
 | 
						|
    if (Call->extractProfTotalWeight(W))
 | 
						|
      NewCS->setProfWeight(W);
 | 
						|
    Args.clear();
 | 
						|
    ArgAttrVec.clear();
 | 
						|
 | 
						|
    // Update the callgraph to know that the callsite has been transformed.
 | 
						|
    if (ReplaceCallSite)
 | 
						|
      (*ReplaceCallSite)(CS, NewCS);
 | 
						|
 | 
						|
    if (!Call->use_empty()) {
 | 
						|
      Call->replaceAllUsesWith(NewCS.getInstruction());
 | 
						|
      NewCS->takeName(Call);
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, remove the old call from the program, reducing the use-count of
 | 
						|
    // F.
 | 
						|
    Call->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  const DataLayout &DL = F->getParent()->getDataLayout();
 | 
						|
 | 
						|
  // Since we have now created the new function, splice the body of the old
 | 
						|
  // function right into the new function, leaving the old rotting hulk of the
 | 
						|
  // function empty.
 | 
						|
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | 
						|
 | 
						|
  // Loop over the argument list, transferring uses of the old arguments over to
 | 
						|
  // the new arguments, also transferring over the names as well.
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
 | 
						|
                              I2 = NF->arg_begin();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
 | 
						|
      // If this is an unmodified argument, move the name and users over to the
 | 
						|
      // new version.
 | 
						|
      I->replaceAllUsesWith(&*I2);
 | 
						|
      I2->takeName(&*I);
 | 
						|
      ++I2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ByValArgsToTransform.count(&*I)) {
 | 
						|
      // In the callee, we create an alloca, and store each of the new incoming
 | 
						|
      // arguments into the alloca.
 | 
						|
      Instruction *InsertPt = &NF->begin()->front();
 | 
						|
 | 
						|
      // Just add all the struct element types.
 | 
						|
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
      Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
 | 
						|
                                        I->getParamAlignment(), "", InsertPt);
 | 
						|
      StructType *STy = cast<StructType>(AgTy);
 | 
						|
      Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
 | 
						|
                        nullptr};
 | 
						|
 | 
						|
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
 | 
						|
        Value *Idx = GetElementPtrInst::Create(
 | 
						|
            AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
 | 
						|
            InsertPt);
 | 
						|
        I2->setName(I->getName() + "." + Twine(i));
 | 
						|
        new StoreInst(&*I2++, Idx, InsertPt);
 | 
						|
      }
 | 
						|
 | 
						|
      // Anything that used the arg should now use the alloca.
 | 
						|
      I->replaceAllUsesWith(TheAlloca);
 | 
						|
      TheAlloca->takeName(&*I);
 | 
						|
 | 
						|
      // If the alloca is used in a call, we must clear the tail flag since
 | 
						|
      // the callee now uses an alloca from the caller.
 | 
						|
      for (User *U : TheAlloca->users()) {
 | 
						|
        CallInst *Call = dyn_cast<CallInst>(U);
 | 
						|
        if (!Call)
 | 
						|
          continue;
 | 
						|
        Call->setTailCall(false);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I->use_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, if we promoted this argument, then all users are load
 | 
						|
    // instructions (or GEPs with only load users), and all loads should be
 | 
						|
    // using the new argument that we added.
 | 
						|
    ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
 | 
						|
 | 
						|
    while (!I->use_empty()) {
 | 
						|
      if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
 | 
						|
        assert(ArgIndices.begin()->second.empty() &&
 | 
						|
               "Load element should sort to front!");
 | 
						|
        I2->setName(I->getName() + ".val");
 | 
						|
        LI->replaceAllUsesWith(&*I2);
 | 
						|
        LI->eraseFromParent();
 | 
						|
        LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
 | 
						|
                          << "' in function '" << F->getName() << "'\n");
 | 
						|
      } else {
 | 
						|
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
 | 
						|
        IndicesVector Operands;
 | 
						|
        Operands.reserve(GEP->getNumIndices());
 | 
						|
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
 | 
						|
             II != IE; ++II)
 | 
						|
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
 | 
						|
 | 
						|
        // GEPs with a single 0 index can be merged with direct loads
 | 
						|
        if (Operands.size() == 1 && Operands.front() == 0)
 | 
						|
          Operands.clear();
 | 
						|
 | 
						|
        Function::arg_iterator TheArg = I2;
 | 
						|
        for (ScalarizeTable::iterator It = ArgIndices.begin();
 | 
						|
             It->second != Operands; ++It, ++TheArg) {
 | 
						|
          assert(It != ArgIndices.end() && "GEP not handled??");
 | 
						|
        }
 | 
						|
 | 
						|
        std::string NewName = I->getName();
 | 
						|
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
          NewName += "." + utostr(Operands[i]);
 | 
						|
        }
 | 
						|
        NewName += ".val";
 | 
						|
        TheArg->setName(NewName);
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
 | 
						|
                          << "' of function '" << NF->getName() << "'\n");
 | 
						|
 | 
						|
        // All of the uses must be load instructions.  Replace them all with
 | 
						|
        // the argument specified by ArgNo.
 | 
						|
        while (!GEP->use_empty()) {
 | 
						|
          LoadInst *L = cast<LoadInst>(GEP->user_back());
 | 
						|
          L->replaceAllUsesWith(&*TheArg);
 | 
						|
          L->eraseFromParent();
 | 
						|
        }
 | 
						|
        GEP->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Increment I2 past all of the arguments added for this promoted pointer.
 | 
						|
    std::advance(I2, ArgIndices.size());
 | 
						|
  }
 | 
						|
 | 
						|
  return NF;
 | 
						|
}
 | 
						|
 | 
						|
/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
 | 
						|
/// all callees pass in a valid pointer for the specified function argument.
 | 
						|
static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
 | 
						|
  Function *Callee = Arg->getParent();
 | 
						|
  const DataLayout &DL = Callee->getParent()->getDataLayout();
 | 
						|
 | 
						|
  unsigned ArgNo = Arg->getArgNo();
 | 
						|
 | 
						|
  // Look at all call sites of the function.  At this point we know we only have
 | 
						|
  // direct callees.
 | 
						|
  for (User *U : Callee->users()) {
 | 
						|
    CallSite CS(U);
 | 
						|
    assert(CS && "Should only have direct calls!");
 | 
						|
 | 
						|
    if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
 | 
						|
/// that is greater than or equal to the size of prefix, and each of the
 | 
						|
/// elements in Prefix is the same as the corresponding elements in Longer.
 | 
						|
///
 | 
						|
/// This means it also returns true when Prefix and Longer are equal!
 | 
						|
static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
 | 
						|
  if (Prefix.size() > Longer.size())
 | 
						|
    return false;
 | 
						|
  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
 | 
						|
}
 | 
						|
 | 
						|
/// Checks if Indices, or a prefix of Indices, is in Set.
 | 
						|
static bool prefixIn(const IndicesVector &Indices,
 | 
						|
                     std::set<IndicesVector> &Set) {
 | 
						|
  std::set<IndicesVector>::iterator Low;
 | 
						|
  Low = Set.upper_bound(Indices);
 | 
						|
  if (Low != Set.begin())
 | 
						|
    Low--;
 | 
						|
  // Low is now the last element smaller than or equal to Indices. This means
 | 
						|
  // it points to a prefix of Indices (possibly Indices itself), if such
 | 
						|
  // prefix exists.
 | 
						|
  //
 | 
						|
  // This load is safe if any prefix of its operands is safe to load.
 | 
						|
  return Low != Set.end() && isPrefix(*Low, Indices);
 | 
						|
}
 | 
						|
 | 
						|
/// Mark the given indices (ToMark) as safe in the given set of indices
 | 
						|
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
 | 
						|
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
 | 
						|
/// already. Furthermore, any indices that Indices is itself a prefix of, are
 | 
						|
/// removed from Safe (since they are implicitely safe because of Indices now).
 | 
						|
static void markIndicesSafe(const IndicesVector &ToMark,
 | 
						|
                            std::set<IndicesVector> &Safe) {
 | 
						|
  std::set<IndicesVector>::iterator Low;
 | 
						|
  Low = Safe.upper_bound(ToMark);
 | 
						|
  // Guard against the case where Safe is empty
 | 
						|
  if (Low != Safe.begin())
 | 
						|
    Low--;
 | 
						|
  // Low is now the last element smaller than or equal to Indices. This
 | 
						|
  // means it points to a prefix of Indices (possibly Indices itself), if
 | 
						|
  // such prefix exists.
 | 
						|
  if (Low != Safe.end()) {
 | 
						|
    if (isPrefix(*Low, ToMark))
 | 
						|
      // If there is already a prefix of these indices (or exactly these
 | 
						|
      // indices) marked a safe, don't bother adding these indices
 | 
						|
      return;
 | 
						|
 | 
						|
    // Increment Low, so we can use it as a "insert before" hint
 | 
						|
    ++Low;
 | 
						|
  }
 | 
						|
  // Insert
 | 
						|
  Low = Safe.insert(Low, ToMark);
 | 
						|
  ++Low;
 | 
						|
  // If there we're a prefix of longer index list(s), remove those
 | 
						|
  std::set<IndicesVector>::iterator End = Safe.end();
 | 
						|
  while (Low != End && isPrefix(ToMark, *Low)) {
 | 
						|
    std::set<IndicesVector>::iterator Remove = Low;
 | 
						|
    ++Low;
 | 
						|
    Safe.erase(Remove);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToPromoteArgument - As you might guess from the name of this method,
 | 
						|
/// it checks to see if it is both safe and useful to promote the argument.
 | 
						|
/// This method limits promotion of aggregates to only promote up to three
 | 
						|
/// elements of the aggregate in order to avoid exploding the number of
 | 
						|
/// arguments passed in.
 | 
						|
static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
 | 
						|
                                    AAResults &AAR, unsigned MaxElements) {
 | 
						|
  using GEPIndicesSet = std::set<IndicesVector>;
 | 
						|
 | 
						|
  // Quick exit for unused arguments
 | 
						|
  if (Arg->use_empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can only promote this argument if all of the uses are loads, or are GEP
 | 
						|
  // instructions (with constant indices) that are subsequently loaded.
 | 
						|
  //
 | 
						|
  // Promoting the argument causes it to be loaded in the caller
 | 
						|
  // unconditionally. This is only safe if we can prove that either the load
 | 
						|
  // would have happened in the callee anyway (ie, there is a load in the entry
 | 
						|
  // block) or the pointer passed in at every call site is guaranteed to be
 | 
						|
  // valid.
 | 
						|
  // In the former case, invalid loads can happen, but would have happened
 | 
						|
  // anyway, in the latter case, invalid loads won't happen. This prevents us
 | 
						|
  // from introducing an invalid load that wouldn't have happened in the
 | 
						|
  // original code.
 | 
						|
  //
 | 
						|
  // This set will contain all sets of indices that are loaded in the entry
 | 
						|
  // block, and thus are safe to unconditionally load in the caller.
 | 
						|
  //
 | 
						|
  // This optimization is also safe for InAlloca parameters, because it verifies
 | 
						|
  // that the address isn't captured.
 | 
						|
  GEPIndicesSet SafeToUnconditionallyLoad;
 | 
						|
 | 
						|
  // This set contains all the sets of indices that we are planning to promote.
 | 
						|
  // This makes it possible to limit the number of arguments added.
 | 
						|
  GEPIndicesSet ToPromote;
 | 
						|
 | 
						|
  // If the pointer is always valid, any load with first index 0 is valid.
 | 
						|
  if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
 | 
						|
    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
 | 
						|
 | 
						|
  // First, iterate the entry block and mark loads of (geps of) arguments as
 | 
						|
  // safe.
 | 
						|
  BasicBlock &EntryBlock = Arg->getParent()->front();
 | 
						|
  // Declare this here so we can reuse it
 | 
						|
  IndicesVector Indices;
 | 
						|
  for (Instruction &I : EntryBlock)
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | 
						|
      Value *V = LI->getPointerOperand();
 | 
						|
      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
 | 
						|
        V = GEP->getPointerOperand();
 | 
						|
        if (V == Arg) {
 | 
						|
          // This load actually loads (part of) Arg? Check the indices then.
 | 
						|
          Indices.reserve(GEP->getNumIndices());
 | 
						|
          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
 | 
						|
               II != IE; ++II)
 | 
						|
            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
 | 
						|
              Indices.push_back(CI->getSExtValue());
 | 
						|
            else
 | 
						|
              // We found a non-constant GEP index for this argument? Bail out
 | 
						|
              // right away, can't promote this argument at all.
 | 
						|
              return false;
 | 
						|
 | 
						|
          // Indices checked out, mark them as safe
 | 
						|
          markIndicesSafe(Indices, SafeToUnconditionallyLoad);
 | 
						|
          Indices.clear();
 | 
						|
        }
 | 
						|
      } else if (V == Arg) {
 | 
						|
        // Direct loads are equivalent to a GEP with a single 0 index.
 | 
						|
        markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Now, iterate all uses of the argument to see if there are any uses that are
 | 
						|
  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
 | 
						|
  SmallVector<LoadInst *, 16> Loads;
 | 
						|
  IndicesVector Operands;
 | 
						|
  for (Use &U : Arg->uses()) {
 | 
						|
    User *UR = U.getUser();
 | 
						|
    Operands.clear();
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
 | 
						|
      // Don't hack volatile/atomic loads
 | 
						|
      if (!LI->isSimple())
 | 
						|
        return false;
 | 
						|
      Loads.push_back(LI);
 | 
						|
      // Direct loads are equivalent to a GEP with a zero index and then a load.
 | 
						|
      Operands.push_back(0);
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
 | 
						|
      if (GEP->use_empty()) {
 | 
						|
        // Dead GEP's cause trouble later.  Just remove them if we run into
 | 
						|
        // them.
 | 
						|
        GEP->eraseFromParent();
 | 
						|
        // TODO: This runs the above loop over and over again for dead GEPs
 | 
						|
        // Couldn't we just do increment the UI iterator earlier and erase the
 | 
						|
        // use?
 | 
						|
        return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
 | 
						|
                                       MaxElements);
 | 
						|
      }
 | 
						|
 | 
						|
      // Ensure that all of the indices are constants.
 | 
						|
      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
 | 
						|
           ++i)
 | 
						|
        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
 | 
						|
          Operands.push_back(C->getSExtValue());
 | 
						|
        else
 | 
						|
          return false; // Not a constant operand GEP!
 | 
						|
 | 
						|
      // Ensure that the only users of the GEP are load instructions.
 | 
						|
      for (User *GEPU : GEP->users())
 | 
						|
        if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
 | 
						|
          // Don't hack volatile/atomic loads
 | 
						|
          if (!LI->isSimple())
 | 
						|
            return false;
 | 
						|
          Loads.push_back(LI);
 | 
						|
        } else {
 | 
						|
          // Other uses than load?
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
      return false; // Not a load or a GEP.
 | 
						|
    }
 | 
						|
 | 
						|
    // Now, see if it is safe to promote this load / loads of this GEP. Loading
 | 
						|
    // is safe if Operands, or a prefix of Operands, is marked as safe.
 | 
						|
    if (!prefixIn(Operands, SafeToUnconditionallyLoad))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // See if we are already promoting a load with these indices. If not, check
 | 
						|
    // to make sure that we aren't promoting too many elements.  If so, nothing
 | 
						|
    // to do.
 | 
						|
    if (ToPromote.find(Operands) == ToPromote.end()) {
 | 
						|
      if (MaxElements > 0 && ToPromote.size() == MaxElements) {
 | 
						|
        LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
 | 
						|
                          << Arg->getName()
 | 
						|
                          << "' because it would require adding more "
 | 
						|
                          << "than " << MaxElements
 | 
						|
                          << " arguments to the function.\n");
 | 
						|
        // We limit aggregate promotion to only promoting up to a fixed number
 | 
						|
        // of elements of the aggregate.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      ToPromote.insert(std::move(Operands));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Loads.empty())
 | 
						|
    return true; // No users, this is a dead argument.
 | 
						|
 | 
						|
  // Okay, now we know that the argument is only used by load instructions and
 | 
						|
  // it is safe to unconditionally perform all of them. Use alias analysis to
 | 
						|
  // check to see if the pointer is guaranteed to not be modified from entry of
 | 
						|
  // the function to each of the load instructions.
 | 
						|
 | 
						|
  // Because there could be several/many load instructions, remember which
 | 
						|
  // blocks we know to be transparent to the load.
 | 
						|
  df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
 | 
						|
 | 
						|
  for (LoadInst *Load : Loads) {
 | 
						|
    // Check to see if the load is invalidated from the start of the block to
 | 
						|
    // the load itself.
 | 
						|
    BasicBlock *BB = Load->getParent();
 | 
						|
 | 
						|
    MemoryLocation Loc = MemoryLocation::get(Load);
 | 
						|
    if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
 | 
						|
      return false; // Pointer is invalidated!
 | 
						|
 | 
						|
    // Now check every path from the entry block to the load for transparency.
 | 
						|
    // To do this, we perform a depth first search on the inverse CFG from the
 | 
						|
    // loading block.
 | 
						|
    for (BasicBlock *P : predecessors(BB)) {
 | 
						|
      for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
 | 
						|
        if (AAR.canBasicBlockModify(*TranspBB, Loc))
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the path from the entry of the function to each load is free of
 | 
						|
  // instructions that potentially invalidate the load, we can make the
 | 
						|
  // transformation!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks if a type could have padding bytes.
 | 
						|
static bool isDenselyPacked(Type *type, const DataLayout &DL) {
 | 
						|
  // There is no size information, so be conservative.
 | 
						|
  if (!type->isSized())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the alloc size is not equal to the storage size, then there are padding
 | 
						|
  // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
 | 
						|
  if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isa<CompositeType>(type))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For homogenous sequential types, check for padding within members.
 | 
						|
  if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
 | 
						|
    return isDenselyPacked(seqTy->getElementType(), DL);
 | 
						|
 | 
						|
  // Check for padding within and between elements of a struct.
 | 
						|
  StructType *StructTy = cast<StructType>(type);
 | 
						|
  const StructLayout *Layout = DL.getStructLayout(StructTy);
 | 
						|
  uint64_t StartPos = 0;
 | 
						|
  for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
 | 
						|
    Type *ElTy = StructTy->getElementType(i);
 | 
						|
    if (!isDenselyPacked(ElTy, DL))
 | 
						|
      return false;
 | 
						|
    if (StartPos != Layout->getElementOffsetInBits(i))
 | 
						|
      return false;
 | 
						|
    StartPos += DL.getTypeAllocSizeInBits(ElTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks if the padding bytes of an argument could be accessed.
 | 
						|
static bool canPaddingBeAccessed(Argument *arg) {
 | 
						|
  assert(arg->hasByValAttr());
 | 
						|
 | 
						|
  // Track all the pointers to the argument to make sure they are not captured.
 | 
						|
  SmallPtrSet<Value *, 16> PtrValues;
 | 
						|
  PtrValues.insert(arg);
 | 
						|
 | 
						|
  // Track all of the stores.
 | 
						|
  SmallVector<StoreInst *, 16> Stores;
 | 
						|
 | 
						|
  // Scan through the uses recursively to make sure the pointer is always used
 | 
						|
  // sanely.
 | 
						|
  SmallVector<Value *, 16> WorkList;
 | 
						|
  WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Value *V = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
 | 
						|
      if (PtrValues.insert(V).second)
 | 
						|
        WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
 | 
						|
    } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
 | 
						|
      Stores.push_back(Store);
 | 
						|
    } else if (!isa<LoadInst>(V)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to make sure the pointers aren't captured
 | 
						|
  for (StoreInst *Store : Stores)
 | 
						|
    if (PtrValues.count(Store->getValueOperand()))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteArguments - This method checks the specified function to see if there
 | 
						|
/// are any promotable arguments and if it is safe to promote the function (for
 | 
						|
/// example, all callers are direct).  If safe to promote some arguments, it
 | 
						|
/// calls the DoPromotion method.
 | 
						|
static Function *
 | 
						|
promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
 | 
						|
                 unsigned MaxElements,
 | 
						|
                 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
 | 
						|
                     ReplaceCallSite) {
 | 
						|
  // Don't perform argument promotion for naked functions; otherwise we can end
 | 
						|
  // up removing parameters that are seemingly 'not used' as they are referred
 | 
						|
  // to in the assembly.
 | 
						|
  if(F->hasFnAttribute(Attribute::Naked))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Make sure that it is local to this module.
 | 
						|
  if (!F->hasLocalLinkage())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Don't promote arguments for variadic functions. Adding, removing, or
 | 
						|
  // changing non-pack parameters can change the classification of pack
 | 
						|
  // parameters. Frontends encode that classification at the call site in the
 | 
						|
  // IR, while in the callee the classification is determined dynamically based
 | 
						|
  // on the number of registers consumed so far.
 | 
						|
  if (F->isVarArg())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // First check: see if there are any pointer arguments!  If not, quick exit.
 | 
						|
  SmallVector<Argument *, 16> PointerArgs;
 | 
						|
  for (Argument &I : F->args())
 | 
						|
    if (I.getType()->isPointerTy())
 | 
						|
      PointerArgs.push_back(&I);
 | 
						|
  if (PointerArgs.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Second check: make sure that all callers are direct callers.  We can't
 | 
						|
  // transform functions that have indirect callers.  Also see if the function
 | 
						|
  // is self-recursive.
 | 
						|
  bool isSelfRecursive = false;
 | 
						|
  for (Use &U : F->uses()) {
 | 
						|
    CallSite CS(U.getUser());
 | 
						|
    // Must be a direct call.
 | 
						|
    if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Can't change signature of musttail callee
 | 
						|
    if (CS.isMustTailCall())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (CS.getInstruction()->getParent()->getParent() == F)
 | 
						|
      isSelfRecursive = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Can't change signature of musttail caller
 | 
						|
  // FIXME: Support promoting whole chain of musttail functions
 | 
						|
  for (BasicBlock &BB : *F)
 | 
						|
    if (BB.getTerminatingMustTailCall())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  const DataLayout &DL = F->getParent()->getDataLayout();
 | 
						|
 | 
						|
  AAResults &AAR = AARGetter(*F);
 | 
						|
 | 
						|
  // Check to see which arguments are promotable.  If an argument is promotable,
 | 
						|
  // add it to ArgsToPromote.
 | 
						|
  SmallPtrSet<Argument *, 8> ArgsToPromote;
 | 
						|
  SmallPtrSet<Argument *, 8> ByValArgsToTransform;
 | 
						|
  for (Argument *PtrArg : PointerArgs) {
 | 
						|
    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
 | 
						|
 | 
						|
    // Replace sret attribute with noalias. This reduces register pressure by
 | 
						|
    // avoiding a register copy.
 | 
						|
    if (PtrArg->hasStructRetAttr()) {
 | 
						|
      unsigned ArgNo = PtrArg->getArgNo();
 | 
						|
      F->removeParamAttr(ArgNo, Attribute::StructRet);
 | 
						|
      F->addParamAttr(ArgNo, Attribute::NoAlias);
 | 
						|
      for (Use &U : F->uses()) {
 | 
						|
        CallSite CS(U.getUser());
 | 
						|
        CS.removeParamAttr(ArgNo, Attribute::StructRet);
 | 
						|
        CS.addParamAttr(ArgNo, Attribute::NoAlias);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a byval argument, and if the aggregate type is small, just
 | 
						|
    // pass the elements, which is always safe, if the passed value is densely
 | 
						|
    // packed or if we can prove the padding bytes are never accessed. This does
 | 
						|
    // not apply to inalloca.
 | 
						|
    bool isSafeToPromote =
 | 
						|
        PtrArg->hasByValAttr() &&
 | 
						|
        (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
 | 
						|
    if (isSafeToPromote) {
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
 | 
						|
        if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
 | 
						|
          LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
 | 
						|
                            << PtrArg->getName()
 | 
						|
                            << "' because it would require adding more"
 | 
						|
                            << " than " << MaxElements
 | 
						|
                            << " arguments to the function.\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If all the elements are single-value types, we can promote it.
 | 
						|
        bool AllSimple = true;
 | 
						|
        for (const auto *EltTy : STy->elements()) {
 | 
						|
          if (!EltTy->isSingleValueType()) {
 | 
						|
            AllSimple = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Safe to transform, don't even bother trying to "promote" it.
 | 
						|
        // Passing the elements as a scalar will allow sroa to hack on
 | 
						|
        // the new alloca we introduce.
 | 
						|
        if (AllSimple) {
 | 
						|
          ByValArgsToTransform.insert(PtrArg);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the argument is a recursive type and we're in a recursive
 | 
						|
    // function, we could end up infinitely peeling the function argument.
 | 
						|
    if (isSelfRecursive) {
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
 | 
						|
        bool RecursiveType = false;
 | 
						|
        for (const auto *EltTy : STy->elements()) {
 | 
						|
          if (EltTy == PtrArg->getType()) {
 | 
						|
            RecursiveType = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (RecursiveType)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, see if we can promote the pointer to its value.
 | 
						|
    if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
 | 
						|
                                MaxElements))
 | 
						|
      ArgsToPromote.insert(PtrArg);
 | 
						|
  }
 | 
						|
 | 
						|
  // No promotable pointer arguments.
 | 
						|
  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
 | 
						|
                                             CGSCCAnalysisManager &AM,
 | 
						|
                                             LazyCallGraph &CG,
 | 
						|
                                             CGSCCUpdateResult &UR) {
 | 
						|
  bool Changed = false, LocalChange;
 | 
						|
 | 
						|
  // Iterate until we stop promoting from this SCC.
 | 
						|
  do {
 | 
						|
    LocalChange = false;
 | 
						|
 | 
						|
    for (LazyCallGraph::Node &N : C) {
 | 
						|
      Function &OldF = N.getFunction();
 | 
						|
 | 
						|
      FunctionAnalysisManager &FAM =
 | 
						|
          AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
 | 
						|
      // FIXME: This lambda must only be used with this function. We should
 | 
						|
      // skip the lambda and just get the AA results directly.
 | 
						|
      auto AARGetter = [&](Function &F) -> AAResults & {
 | 
						|
        assert(&F == &OldF && "Called with an unexpected function!");
 | 
						|
        return FAM.getResult<AAManager>(F);
 | 
						|
      };
 | 
						|
 | 
						|
      Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None);
 | 
						|
      if (!NewF)
 | 
						|
        continue;
 | 
						|
      LocalChange = true;
 | 
						|
 | 
						|
      // Directly substitute the functions in the call graph. Note that this
 | 
						|
      // requires the old function to be completely dead and completely
 | 
						|
      // replaced by the new function. It does no call graph updates, it merely
 | 
						|
      // swaps out the particular function mapped to a particular node in the
 | 
						|
      // graph.
 | 
						|
      C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
 | 
						|
      OldF.eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    Changed |= LocalChange;
 | 
						|
  } while (LocalChange);
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  return PreservedAnalyses::none();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
 | 
						|
struct ArgPromotion : public CallGraphSCCPass {
 | 
						|
  // Pass identification, replacement for typeid
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  explicit ArgPromotion(unsigned MaxElements = 3)
 | 
						|
      : CallGraphSCCPass(ID), MaxElements(MaxElements) {
 | 
						|
    initializeArgPromotionPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    getAAResultsAnalysisUsage(AU);
 | 
						|
    CallGraphSCCPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnSCC(CallGraphSCC &SCC) override;
 | 
						|
 | 
						|
private:
 | 
						|
  using llvm::Pass::doInitialization;
 | 
						|
 | 
						|
  bool doInitialization(CallGraph &CG) override;
 | 
						|
 | 
						|
  /// The maximum number of elements to expand, or 0 for unlimited.
 | 
						|
  unsigned MaxElements;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char ArgPromotion::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
 | 
						|
                      "Promote 'by reference' arguments to scalars", false,
 | 
						|
                      false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
 | 
						|
                    "Promote 'by reference' arguments to scalars", false, false)
 | 
						|
 | 
						|
Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
 | 
						|
  return new ArgPromotion(MaxElements);
 | 
						|
}
 | 
						|
 | 
						|
bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
 | 
						|
  if (skipSCC(SCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the callgraph information that we need to update to reflect our
 | 
						|
  // changes.
 | 
						|
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
 | 
						|
 | 
						|
  LegacyAARGetter AARGetter(*this);
 | 
						|
 | 
						|
  bool Changed = false, LocalChange;
 | 
						|
 | 
						|
  // Iterate until we stop promoting from this SCC.
 | 
						|
  do {
 | 
						|
    LocalChange = false;
 | 
						|
    // Attempt to promote arguments from all functions in this SCC.
 | 
						|
    for (CallGraphNode *OldNode : SCC) {
 | 
						|
      Function *OldF = OldNode->getFunction();
 | 
						|
      if (!OldF)
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
 | 
						|
        Function *Caller = OldCS.getInstruction()->getParent()->getParent();
 | 
						|
        CallGraphNode *NewCalleeNode =
 | 
						|
            CG.getOrInsertFunction(NewCS.getCalledFunction());
 | 
						|
        CallGraphNode *CallerNode = CG[Caller];
 | 
						|
        CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
 | 
						|
      };
 | 
						|
 | 
						|
      if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
 | 
						|
                                            {ReplaceCallSite})) {
 | 
						|
        LocalChange = true;
 | 
						|
 | 
						|
        // Update the call graph for the newly promoted function.
 | 
						|
        CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
 | 
						|
        NewNode->stealCalledFunctionsFrom(OldNode);
 | 
						|
        if (OldNode->getNumReferences() == 0)
 | 
						|
          delete CG.removeFunctionFromModule(OldNode);
 | 
						|
        else
 | 
						|
          OldF->setLinkage(Function::ExternalLinkage);
 | 
						|
 | 
						|
        // And updat ethe SCC we're iterating as well.
 | 
						|
        SCC.ReplaceNode(OldNode, NewNode);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Remember that we changed something.
 | 
						|
    Changed |= LocalChange;
 | 
						|
  } while (LocalChange);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool ArgPromotion::doInitialization(CallGraph &CG) {
 | 
						|
  return CallGraphSCCPass::doInitialization(CG);
 | 
						|
}
 |