2703 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2703 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Jump Threading pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/JumpThreading.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/GuardUtils.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DomTreeUpdater.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <memory>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace jumpthreading;
 | 
						|
 | 
						|
#define DEBUG_TYPE "jump-threading"
 | 
						|
 | 
						|
STATISTIC(NumThreads, "Number of jumps threaded");
 | 
						|
STATISTIC(NumFolds,   "Number of terminators folded");
 | 
						|
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
BBDuplicateThreshold("jump-threading-threshold",
 | 
						|
          cl::desc("Max block size to duplicate for jump threading"),
 | 
						|
          cl::init(6), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
ImplicationSearchThreshold(
 | 
						|
  "jump-threading-implication-search-threshold",
 | 
						|
  cl::desc("The number of predecessors to search for a stronger "
 | 
						|
           "condition to use to thread over a weaker condition"),
 | 
						|
  cl::init(3), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> PrintLVIAfterJumpThreading(
 | 
						|
    "print-lvi-after-jump-threading",
 | 
						|
    cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  /// This pass performs 'jump threading', which looks at blocks that have
 | 
						|
  /// multiple predecessors and multiple successors.  If one or more of the
 | 
						|
  /// predecessors of the block can be proven to always jump to one of the
 | 
						|
  /// successors, we forward the edge from the predecessor to the successor by
 | 
						|
  /// duplicating the contents of this block.
 | 
						|
  ///
 | 
						|
  /// An example of when this can occur is code like this:
 | 
						|
  ///
 | 
						|
  ///   if () { ...
 | 
						|
  ///     X = 4;
 | 
						|
  ///   }
 | 
						|
  ///   if (X < 3) {
 | 
						|
  ///
 | 
						|
  /// In this case, the unconditional branch at the end of the first if can be
 | 
						|
  /// revectored to the false side of the second if.
 | 
						|
  class JumpThreading : public FunctionPass {
 | 
						|
    JumpThreadingPass Impl;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
 | 
						|
    JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
 | 
						|
      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<AAResultsWrapperPass>();
 | 
						|
      AU.addRequired<LazyValueInfoWrapperPass>();
 | 
						|
      AU.addPreserved<LazyValueInfoWrapperPass>();
 | 
						|
      AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseMemory() override { Impl.releaseMemory(); }
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char JumpThreading::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
 | 
						|
                "Jump Threading", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_END(JumpThreading, "jump-threading",
 | 
						|
                "Jump Threading", false, false)
 | 
						|
 | 
						|
// Public interface to the Jump Threading pass
 | 
						|
FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
 | 
						|
  return new JumpThreading(Threshold);
 | 
						|
}
 | 
						|
 | 
						|
JumpThreadingPass::JumpThreadingPass(int T) {
 | 
						|
  BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
 | 
						|
}
 | 
						|
 | 
						|
// Update branch probability information according to conditional
 | 
						|
// branch probability. This is usually made possible for cloned branches
 | 
						|
// in inline instances by the context specific profile in the caller.
 | 
						|
// For instance,
 | 
						|
//
 | 
						|
//  [Block PredBB]
 | 
						|
//  [Branch PredBr]
 | 
						|
//  if (t) {
 | 
						|
//     Block A;
 | 
						|
//  } else {
 | 
						|
//     Block B;
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  [Block BB]
 | 
						|
//  cond = PN([true, %A], [..., %B]); // PHI node
 | 
						|
//  [Branch CondBr]
 | 
						|
//  if (cond) {
 | 
						|
//    ...  // P(cond == true) = 1%
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  Here we know that when block A is taken, cond must be true, which means
 | 
						|
//      P(cond == true | A) = 1
 | 
						|
//
 | 
						|
//  Given that P(cond == true) = P(cond == true | A) * P(A) +
 | 
						|
//                               P(cond == true | B) * P(B)
 | 
						|
//  we get:
 | 
						|
//     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
 | 
						|
//
 | 
						|
//  which gives us:
 | 
						|
//     P(A) is less than P(cond == true), i.e.
 | 
						|
//     P(t == true) <= P(cond == true)
 | 
						|
//
 | 
						|
//  In other words, if we know P(cond == true) is unlikely, we know
 | 
						|
//  that P(t == true) is also unlikely.
 | 
						|
//
 | 
						|
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
 | 
						|
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!CondBr)
 | 
						|
    return;
 | 
						|
 | 
						|
  BranchProbability BP;
 | 
						|
  uint64_t TrueWeight, FalseWeight;
 | 
						|
  if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Returns the outgoing edge of the dominating predecessor block
 | 
						|
  // that leads to the PhiNode's incoming block:
 | 
						|
  auto GetPredOutEdge =
 | 
						|
      [](BasicBlock *IncomingBB,
 | 
						|
         BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
 | 
						|
    auto *PredBB = IncomingBB;
 | 
						|
    auto *SuccBB = PhiBB;
 | 
						|
    while (true) {
 | 
						|
      BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
 | 
						|
      if (PredBr && PredBr->isConditional())
 | 
						|
        return {PredBB, SuccBB};
 | 
						|
      auto *SinglePredBB = PredBB->getSinglePredecessor();
 | 
						|
      if (!SinglePredBB)
 | 
						|
        return {nullptr, nullptr};
 | 
						|
      SuccBB = PredBB;
 | 
						|
      PredBB = SinglePredBB;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *PhiOpnd = PN->getIncomingValue(i);
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
 | 
						|
 | 
						|
    if (!CI || !CI->getType()->isIntegerTy(1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BP = (CI->isOne() ? BranchProbability::getBranchProbability(
 | 
						|
                            TrueWeight, TrueWeight + FalseWeight)
 | 
						|
                      : BranchProbability::getBranchProbability(
 | 
						|
                            FalseWeight, TrueWeight + FalseWeight));
 | 
						|
 | 
						|
    auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
 | 
						|
    if (!PredOutEdge.first)
 | 
						|
      return;
 | 
						|
 | 
						|
    BasicBlock *PredBB = PredOutEdge.first;
 | 
						|
    BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
 | 
						|
 | 
						|
    uint64_t PredTrueWeight, PredFalseWeight;
 | 
						|
    // FIXME: We currently only set the profile data when it is missing.
 | 
						|
    // With PGO, this can be used to refine even existing profile data with
 | 
						|
    // context information. This needs to be done after more performance
 | 
						|
    // testing.
 | 
						|
    if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can not infer anything useful when BP >= 50%, because BP is the
 | 
						|
    // upper bound probability value.
 | 
						|
    if (BP >= BranchProbability(50, 100))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallVector<uint32_t, 2> Weights;
 | 
						|
    if (PredBr->getSuccessor(0) == PredOutEdge.second) {
 | 
						|
      Weights.push_back(BP.getNumerator());
 | 
						|
      Weights.push_back(BP.getCompl().getNumerator());
 | 
						|
    } else {
 | 
						|
      Weights.push_back(BP.getCompl().getNumerator());
 | 
						|
      Weights.push_back(BP.getNumerator());
 | 
						|
    }
 | 
						|
    PredBr->setMetadata(LLVMContext::MD_prof,
 | 
						|
                        MDBuilder(PredBr->getParent()->getContext())
 | 
						|
                            .createBranchWeights(Weights));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// runOnFunction - Toplevel algorithm.
 | 
						|
bool JumpThreading::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
  auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  // Get DT analysis before LVI. When LVI is initialized it conditionally adds
 | 
						|
  // DT if it's available.
 | 
						|
  auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
 | 
						|
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
  std::unique_ptr<BlockFrequencyInfo> BFI;
 | 
						|
  std::unique_ptr<BranchProbabilityInfo> BPI;
 | 
						|
  bool HasProfileData = F.hasProfileData();
 | 
						|
  if (HasProfileData) {
 | 
						|
    LoopInfo LI{DominatorTree(F)};
 | 
						|
    BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
 | 
						|
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
 | 
						|
                              std::move(BFI), std::move(BPI));
 | 
						|
  if (PrintLVIAfterJumpThreading) {
 | 
						|
    dbgs() << "LVI for function '" << F.getName() << "':\n";
 | 
						|
    LVI->printLVI(F, *DT, dbgs());
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses JumpThreadingPass::run(Function &F,
 | 
						|
                                         FunctionAnalysisManager &AM) {
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  // Get DT analysis before LVI. When LVI is initialized it conditionally adds
 | 
						|
  // DT if it's available.
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &LVI = AM.getResult<LazyValueAnalysis>(F);
 | 
						|
  auto &AA = AM.getResult<AAManager>(F);
 | 
						|
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
 | 
						|
  std::unique_ptr<BlockFrequencyInfo> BFI;
 | 
						|
  std::unique_ptr<BranchProbabilityInfo> BPI;
 | 
						|
  if (F.hasProfileData()) {
 | 
						|
    LoopInfo LI{DominatorTree(F)};
 | 
						|
    BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
 | 
						|
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
 | 
						|
                         std::move(BFI), std::move(BPI));
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<LazyValueAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
 | 
						|
                                LazyValueInfo *LVI_, AliasAnalysis *AA_,
 | 
						|
                                DomTreeUpdater *DTU_, bool HasProfileData_,
 | 
						|
                                std::unique_ptr<BlockFrequencyInfo> BFI_,
 | 
						|
                                std::unique_ptr<BranchProbabilityInfo> BPI_) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
 | 
						|
  TLI = TLI_;
 | 
						|
  LVI = LVI_;
 | 
						|
  AA = AA_;
 | 
						|
  DTU = DTU_;
 | 
						|
  BFI.reset();
 | 
						|
  BPI.reset();
 | 
						|
  // When profile data is available, we need to update edge weights after
 | 
						|
  // successful jump threading, which requires both BPI and BFI being available.
 | 
						|
  HasProfileData = HasProfileData_;
 | 
						|
  auto *GuardDecl = F.getParent()->getFunction(
 | 
						|
      Intrinsic::getName(Intrinsic::experimental_guard));
 | 
						|
  HasGuards = GuardDecl && !GuardDecl->use_empty();
 | 
						|
  if (HasProfileData) {
 | 
						|
    BPI = std::move(BPI_);
 | 
						|
    BFI = std::move(BFI_);
 | 
						|
  }
 | 
						|
 | 
						|
  // JumpThreading must not processes blocks unreachable from entry. It's a
 | 
						|
  // waste of compute time and can potentially lead to hangs.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> Unreachable;
 | 
						|
  assert(DTU && "DTU isn't passed into JumpThreading before using it.");
 | 
						|
  assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
 | 
						|
  DominatorTree &DT = DTU->getDomTree();
 | 
						|
  for (auto &BB : F)
 | 
						|
    if (!DT.isReachableFromEntry(&BB))
 | 
						|
      Unreachable.insert(&BB);
 | 
						|
 | 
						|
  FindLoopHeaders(F);
 | 
						|
 | 
						|
  bool EverChanged = false;
 | 
						|
  bool Changed;
 | 
						|
  do {
 | 
						|
    Changed = false;
 | 
						|
    for (auto &BB : F) {
 | 
						|
      if (Unreachable.count(&BB))
 | 
						|
        continue;
 | 
						|
      while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
 | 
						|
        Changed = true;
 | 
						|
      // Stop processing BB if it's the entry or is now deleted. The following
 | 
						|
      // routines attempt to eliminate BB and locating a suitable replacement
 | 
						|
      // for the entry is non-trivial.
 | 
						|
      if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (pred_empty(&BB)) {
 | 
						|
        // When ProcessBlock makes BB unreachable it doesn't bother to fix up
 | 
						|
        // the instructions in it. We must remove BB to prevent invalid IR.
 | 
						|
        LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
 | 
						|
                          << "' with terminator: " << *BB.getTerminator()
 | 
						|
                          << '\n');
 | 
						|
        LoopHeaders.erase(&BB);
 | 
						|
        LVI->eraseBlock(&BB);
 | 
						|
        DeleteDeadBlock(&BB, DTU);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
 | 
						|
      // is "almost empty", we attempt to merge BB with its sole successor.
 | 
						|
      auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
 | 
						|
      if (BI && BI->isUnconditional() &&
 | 
						|
          // The terminator must be the only non-phi instruction in BB.
 | 
						|
          BB.getFirstNonPHIOrDbg()->isTerminator() &&
 | 
						|
          // Don't alter Loop headers and latches to ensure another pass can
 | 
						|
          // detect and transform nested loops later.
 | 
						|
          !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
 | 
						|
          TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
 | 
						|
        // BB is valid for cleanup here because we passed in DTU. F remains
 | 
						|
        // BB's parent until a DTU->getDomTree() event.
 | 
						|
        LVI->eraseBlock(&BB);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    EverChanged |= Changed;
 | 
						|
  } while (Changed);
 | 
						|
 | 
						|
  LoopHeaders.clear();
 | 
						|
  // Flush only the Dominator Tree.
 | 
						|
  DTU->getDomTree();
 | 
						|
  LVI->enableDT();
 | 
						|
  return EverChanged;
 | 
						|
}
 | 
						|
 | 
						|
// Replace uses of Cond with ToVal when safe to do so. If all uses are
 | 
						|
// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
 | 
						|
// because we may incorrectly replace uses when guards/assumes are uses of
 | 
						|
// of `Cond` and we used the guards/assume to reason about the `Cond` value
 | 
						|
// at the end of block. RAUW unconditionally replaces all uses
 | 
						|
// including the guards/assumes themselves and the uses before the
 | 
						|
// guard/assume.
 | 
						|
static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
 | 
						|
  assert(Cond->getType() == ToVal->getType());
 | 
						|
  auto *BB = Cond->getParent();
 | 
						|
  // We can unconditionally replace all uses in non-local blocks (i.e. uses
 | 
						|
  // strictly dominated by BB), since LVI information is true from the
 | 
						|
  // terminator of BB.
 | 
						|
  replaceNonLocalUsesWith(Cond, ToVal);
 | 
						|
  for (Instruction &I : reverse(*BB)) {
 | 
						|
    // Reached the Cond whose uses we are trying to replace, so there are no
 | 
						|
    // more uses.
 | 
						|
    if (&I == Cond)
 | 
						|
      break;
 | 
						|
    // We only replace uses in instructions that are guaranteed to reach the end
 | 
						|
    // of BB, where we know Cond is ToVal.
 | 
						|
    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
 | 
						|
      break;
 | 
						|
    I.replaceUsesOfWith(Cond, ToVal);
 | 
						|
  }
 | 
						|
  if (Cond->use_empty() && !Cond->mayHaveSideEffects())
 | 
						|
    Cond->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the cost of duplicating a piece of this block from first non-phi
 | 
						|
/// and before StopAt instruction to thread across it. Stop scanning the block
 | 
						|
/// when exceeding the threshold. If duplication is impossible, returns ~0U.
 | 
						|
static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
 | 
						|
                                             Instruction *StopAt,
 | 
						|
                                             unsigned Threshold) {
 | 
						|
  assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
 | 
						|
  /// Ignore PHI nodes, these will be flattened when duplication happens.
 | 
						|
  BasicBlock::const_iterator I(BB->getFirstNonPHI());
 | 
						|
 | 
						|
  // FIXME: THREADING will delete values that are just used to compute the
 | 
						|
  // branch, so they shouldn't count against the duplication cost.
 | 
						|
 | 
						|
  unsigned Bonus = 0;
 | 
						|
  if (BB->getTerminator() == StopAt) {
 | 
						|
    // Threading through a switch statement is particularly profitable.  If this
 | 
						|
    // block ends in a switch, decrease its cost to make it more likely to
 | 
						|
    // happen.
 | 
						|
    if (isa<SwitchInst>(StopAt))
 | 
						|
      Bonus = 6;
 | 
						|
 | 
						|
    // The same holds for indirect branches, but slightly more so.
 | 
						|
    if (isa<IndirectBrInst>(StopAt))
 | 
						|
      Bonus = 8;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bump the threshold up so the early exit from the loop doesn't skip the
 | 
						|
  // terminator-based Size adjustment at the end.
 | 
						|
  Threshold += Bonus;
 | 
						|
 | 
						|
  // Sum up the cost of each instruction until we get to the terminator.  Don't
 | 
						|
  // include the terminator because the copy won't include it.
 | 
						|
  unsigned Size = 0;
 | 
						|
  for (; &*I != StopAt; ++I) {
 | 
						|
 | 
						|
    // Stop scanning the block if we've reached the threshold.
 | 
						|
    if (Size > Threshold)
 | 
						|
      return Size;
 | 
						|
 | 
						|
    // Debugger intrinsics don't incur code size.
 | 
						|
    if (isa<DbgInfoIntrinsic>(I)) continue;
 | 
						|
 | 
						|
    // If this is a pointer->pointer bitcast, it is free.
 | 
						|
    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Bail out if this instruction gives back a token type, it is not possible
 | 
						|
    // to duplicate it if it is used outside this BB.
 | 
						|
    if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
 | 
						|
      return ~0U;
 | 
						|
 | 
						|
    // All other instructions count for at least one unit.
 | 
						|
    ++Size;
 | 
						|
 | 
						|
    // Calls are more expensive.  If they are non-intrinsic calls, we model them
 | 
						|
    // as having cost of 4.  If they are a non-vector intrinsic, we model them
 | 
						|
    // as having cost of 2 total, and if they are a vector intrinsic, we model
 | 
						|
    // them as having cost 1.
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
      if (CI->cannotDuplicate() || CI->isConvergent())
 | 
						|
        // Blocks with NoDuplicate are modelled as having infinite cost, so they
 | 
						|
        // are never duplicated.
 | 
						|
        return ~0U;
 | 
						|
      else if (!isa<IntrinsicInst>(CI))
 | 
						|
        Size += 3;
 | 
						|
      else if (!CI->getType()->isVectorTy())
 | 
						|
        Size += 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Size > Bonus ? Size - Bonus : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// FindLoopHeaders - We do not want jump threading to turn proper loop
 | 
						|
/// structures into irreducible loops.  Doing this breaks up the loop nesting
 | 
						|
/// hierarchy and pessimizes later transformations.  To prevent this from
 | 
						|
/// happening, we first have to find the loop headers.  Here we approximate this
 | 
						|
/// by finding targets of backedges in the CFG.
 | 
						|
///
 | 
						|
/// Note that there definitely are cases when we want to allow threading of
 | 
						|
/// edges across a loop header.  For example, threading a jump from outside the
 | 
						|
/// loop (the preheader) to an exit block of the loop is definitely profitable.
 | 
						|
/// It is also almost always profitable to thread backedges from within the loop
 | 
						|
/// to exit blocks, and is often profitable to thread backedges to other blocks
 | 
						|
/// within the loop (forming a nested loop).  This simple analysis is not rich
 | 
						|
/// enough to track all of these properties and keep it up-to-date as the CFG
 | 
						|
/// mutates, so we don't allow any of these transformations.
 | 
						|
void JumpThreadingPass::FindLoopHeaders(Function &F) {
 | 
						|
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
 | 
						|
  FindFunctionBackedges(F, Edges);
 | 
						|
 | 
						|
  for (const auto &Edge : Edges)
 | 
						|
    LoopHeaders.insert(Edge.second);
 | 
						|
}
 | 
						|
 | 
						|
/// getKnownConstant - Helper method to determine if we can thread over a
 | 
						|
/// terminator with the given value as its condition, and if so what value to
 | 
						|
/// use for that. What kind of value this is depends on whether we want an
 | 
						|
/// integer or a block address, but an undef is always accepted.
 | 
						|
/// Returns null if Val is null or not an appropriate constant.
 | 
						|
static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
 | 
						|
  if (!Val)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Undef is "known" enough.
 | 
						|
  if (UndefValue *U = dyn_cast<UndefValue>(Val))
 | 
						|
    return U;
 | 
						|
 | 
						|
  if (Preference == WantBlockAddress)
 | 
						|
    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
 | 
						|
 | 
						|
  return dyn_cast<ConstantInt>(Val);
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
 | 
						|
/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
 | 
						|
/// in any of our predecessors.  If so, return the known list of value and pred
 | 
						|
/// BB in the result vector.
 | 
						|
///
 | 
						|
/// This returns true if there were any known values.
 | 
						|
bool JumpThreadingPass::ComputeValueKnownInPredecessors(
 | 
						|
    Value *V, BasicBlock *BB, PredValueInfo &Result,
 | 
						|
    ConstantPreference Preference, Instruction *CxtI) {
 | 
						|
  // This method walks up use-def chains recursively.  Because of this, we could
 | 
						|
  // get into an infinite loop going around loops in the use-def chain.  To
 | 
						|
  // prevent this, keep track of what (value, block) pairs we've already visited
 | 
						|
  // and terminate the search if we loop back to them
 | 
						|
  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // An RAII help to remove this pair from the recursion set once the recursion
 | 
						|
  // stack pops back out again.
 | 
						|
  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
 | 
						|
 | 
						|
  // If V is a constant, then it is known in all predecessors.
 | 
						|
  if (Constant *KC = getKnownConstant(V, Preference)) {
 | 
						|
    for (BasicBlock *Pred : predecessors(BB))
 | 
						|
      Result.push_back(std::make_pair(KC, Pred));
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  // If V is a non-instruction value, or an instruction in a different block,
 | 
						|
  // then it can't be derived from a PHI.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || I->getParent() != BB) {
 | 
						|
 | 
						|
    // Okay, if this is a live-in value, see if it has a known value at the end
 | 
						|
    // of any of our predecessors.
 | 
						|
    //
 | 
						|
    // FIXME: This should be an edge property, not a block end property.
 | 
						|
    /// TODO: Per PR2563, we could infer value range information about a
 | 
						|
    /// predecessor based on its terminator.
 | 
						|
    //
 | 
						|
    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
 | 
						|
    // "I" is a non-local compare-with-a-constant instruction.  This would be
 | 
						|
    // able to handle value inequalities better, for example if the compare is
 | 
						|
    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
 | 
						|
    // Perhaps getConstantOnEdge should be smart enough to do this?
 | 
						|
 | 
						|
    if (DTU->hasPendingDomTreeUpdates())
 | 
						|
      LVI->disableDT();
 | 
						|
    else
 | 
						|
      LVI->enableDT();
 | 
						|
    for (BasicBlock *P : predecessors(BB)) {
 | 
						|
      // If the value is known by LazyValueInfo to be a constant in a
 | 
						|
      // predecessor, use that information to try to thread this block.
 | 
						|
      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
 | 
						|
      if (Constant *KC = getKnownConstant(PredCst, Preference))
 | 
						|
        Result.push_back(std::make_pair(KC, P));
 | 
						|
    }
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  /// If I is a PHI node, then we know the incoming values for any constants.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    if (DTU->hasPendingDomTreeUpdates())
 | 
						|
      LVI->disableDT();
 | 
						|
    else
 | 
						|
      LVI->enableDT();
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *InVal = PN->getIncomingValue(i);
 | 
						|
      if (Constant *KC = getKnownConstant(InVal, Preference)) {
 | 
						|
        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
 | 
						|
      } else {
 | 
						|
        Constant *CI = LVI->getConstantOnEdge(InVal,
 | 
						|
                                              PN->getIncomingBlock(i),
 | 
						|
                                              BB, CxtI);
 | 
						|
        if (Constant *KC = getKnownConstant(CI, Preference))
 | 
						|
          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle Cast instructions.  Only see through Cast when the source operand is
 | 
						|
  // PHI or Cmp to save the compilation time.
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
    Value *Source = CI->getOperand(0);
 | 
						|
    if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
 | 
						|
      return false;
 | 
						|
    ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
 | 
						|
    if (Result.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Convert the known values.
 | 
						|
    for (auto &R : Result)
 | 
						|
      R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle some boolean conditions.
 | 
						|
  if (I->getType()->getPrimitiveSizeInBits() == 1) {
 | 
						|
    assert(Preference == WantInteger && "One-bit non-integer type?");
 | 
						|
    // X | true -> true
 | 
						|
    // X & false -> false
 | 
						|
    if (I->getOpcode() == Instruction::Or ||
 | 
						|
        I->getOpcode() == Instruction::And) {
 | 
						|
      PredValueInfoTy LHSVals, RHSVals;
 | 
						|
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
 | 
						|
      if (LHSVals.empty() && RHSVals.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
      ConstantInt *InterestingVal;
 | 
						|
      if (I->getOpcode() == Instruction::Or)
 | 
						|
        InterestingVal = ConstantInt::getTrue(I->getContext());
 | 
						|
      else
 | 
						|
        InterestingVal = ConstantInt::getFalse(I->getContext());
 | 
						|
 | 
						|
      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
 | 
						|
 | 
						|
      // Scan for the sentinel.  If we find an undef, force it to the
 | 
						|
      // interesting value: x|undef -> true and x&undef -> false.
 | 
						|
      for (const auto &LHSVal : LHSVals)
 | 
						|
        if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
 | 
						|
          Result.emplace_back(InterestingVal, LHSVal.second);
 | 
						|
          LHSKnownBBs.insert(LHSVal.second);
 | 
						|
        }
 | 
						|
      for (const auto &RHSVal : RHSVals)
 | 
						|
        if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
 | 
						|
          // If we already inferred a value for this block on the LHS, don't
 | 
						|
          // re-add it.
 | 
						|
          if (!LHSKnownBBs.count(RHSVal.second))
 | 
						|
            Result.emplace_back(InterestingVal, RHSVal.second);
 | 
						|
        }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the NOT form of XOR.
 | 
						|
    if (I->getOpcode() == Instruction::Xor &&
 | 
						|
        isa<ConstantInt>(I->getOperand(1)) &&
 | 
						|
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
      if (Result.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Invert the known values.
 | 
						|
      for (auto &R : Result)
 | 
						|
        R.first = ConstantExpr::getNot(R.first);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  // Try to simplify some other binary operator values.
 | 
						|
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    assert(Preference != WantBlockAddress
 | 
						|
            && "A binary operator creating a block address?");
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
      PredValueInfoTy LHSVals;
 | 
						|
      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
 | 
						|
      // Try to use constant folding to simplify the binary operator.
 | 
						|
      for (const auto &LHSVal : LHSVals) {
 | 
						|
        Constant *V = LHSVal.first;
 | 
						|
        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
 | 
						|
 | 
						|
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
 | 
						|
          Result.push_back(std::make_pair(KC, LHSVal.second));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle compare with phi operand, where the PHI is defined in this block.
 | 
						|
  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
 | 
						|
    assert(Preference == WantInteger && "Compares only produce integers");
 | 
						|
    Type *CmpType = Cmp->getType();
 | 
						|
    Value *CmpLHS = Cmp->getOperand(0);
 | 
						|
    Value *CmpRHS = Cmp->getOperand(1);
 | 
						|
    CmpInst::Predicate Pred = Cmp->getPredicate();
 | 
						|
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(CmpLHS);
 | 
						|
    if (!PN)
 | 
						|
      PN = dyn_cast<PHINode>(CmpRHS);
 | 
						|
    if (PN && PN->getParent() == BB) {
 | 
						|
      const DataLayout &DL = PN->getModule()->getDataLayout();
 | 
						|
      // We can do this simplification if any comparisons fold to true or false.
 | 
						|
      // See if any do.
 | 
						|
      if (DTU->hasPendingDomTreeUpdates())
 | 
						|
        LVI->disableDT();
 | 
						|
      else
 | 
						|
        LVI->enableDT();
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        BasicBlock *PredBB = PN->getIncomingBlock(i);
 | 
						|
        Value *LHS, *RHS;
 | 
						|
        if (PN == CmpLHS) {
 | 
						|
          LHS = PN->getIncomingValue(i);
 | 
						|
          RHS = CmpRHS->DoPHITranslation(BB, PredBB);
 | 
						|
        } else {
 | 
						|
          LHS = CmpLHS->DoPHITranslation(BB, PredBB);
 | 
						|
          RHS = PN->getIncomingValue(i);
 | 
						|
        }
 | 
						|
        Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
 | 
						|
        if (!Res) {
 | 
						|
          if (!isa<Constant>(RHS))
 | 
						|
            continue;
 | 
						|
 | 
						|
          // getPredicateOnEdge call will make no sense if LHS is defined in BB.
 | 
						|
          auto LHSInst = dyn_cast<Instruction>(LHS);
 | 
						|
          if (LHSInst && LHSInst->getParent() == BB)
 | 
						|
            continue;
 | 
						|
 | 
						|
          LazyValueInfo::Tristate
 | 
						|
            ResT = LVI->getPredicateOnEdge(Pred, LHS,
 | 
						|
                                           cast<Constant>(RHS), PredBB, BB,
 | 
						|
                                           CxtI ? CxtI : Cmp);
 | 
						|
          if (ResT == LazyValueInfo::Unknown)
 | 
						|
            continue;
 | 
						|
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
 | 
						|
        }
 | 
						|
 | 
						|
        if (Constant *KC = getKnownConstant(Res, WantInteger))
 | 
						|
          Result.push_back(std::make_pair(KC, PredBB));
 | 
						|
      }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // If comparing a live-in value against a constant, see if we know the
 | 
						|
    // live-in value on any predecessors.
 | 
						|
    if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
 | 
						|
      Constant *CmpConst = cast<Constant>(CmpRHS);
 | 
						|
 | 
						|
      if (!isa<Instruction>(CmpLHS) ||
 | 
						|
          cast<Instruction>(CmpLHS)->getParent() != BB) {
 | 
						|
        if (DTU->hasPendingDomTreeUpdates())
 | 
						|
          LVI->disableDT();
 | 
						|
        else
 | 
						|
          LVI->enableDT();
 | 
						|
        for (BasicBlock *P : predecessors(BB)) {
 | 
						|
          // If the value is known by LazyValueInfo to be a constant in a
 | 
						|
          // predecessor, use that information to try to thread this block.
 | 
						|
          LazyValueInfo::Tristate Res =
 | 
						|
            LVI->getPredicateOnEdge(Pred, CmpLHS,
 | 
						|
                                    CmpConst, P, BB, CxtI ? CxtI : Cmp);
 | 
						|
          if (Res == LazyValueInfo::Unknown)
 | 
						|
            continue;
 | 
						|
 | 
						|
          Constant *ResC = ConstantInt::get(CmpType, Res);
 | 
						|
          Result.push_back(std::make_pair(ResC, P));
 | 
						|
        }
 | 
						|
 | 
						|
        return !Result.empty();
 | 
						|
      }
 | 
						|
 | 
						|
      // InstCombine can fold some forms of constant range checks into
 | 
						|
      // (icmp (add (x, C1)), C2). See if we have we have such a thing with
 | 
						|
      // x as a live-in.
 | 
						|
      {
 | 
						|
        using namespace PatternMatch;
 | 
						|
 | 
						|
        Value *AddLHS;
 | 
						|
        ConstantInt *AddConst;
 | 
						|
        if (isa<ConstantInt>(CmpConst) &&
 | 
						|
            match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
 | 
						|
          if (!isa<Instruction>(AddLHS) ||
 | 
						|
              cast<Instruction>(AddLHS)->getParent() != BB) {
 | 
						|
            if (DTU->hasPendingDomTreeUpdates())
 | 
						|
              LVI->disableDT();
 | 
						|
            else
 | 
						|
              LVI->enableDT();
 | 
						|
            for (BasicBlock *P : predecessors(BB)) {
 | 
						|
              // If the value is known by LazyValueInfo to be a ConstantRange in
 | 
						|
              // a predecessor, use that information to try to thread this
 | 
						|
              // block.
 | 
						|
              ConstantRange CR = LVI->getConstantRangeOnEdge(
 | 
						|
                  AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
 | 
						|
              // Propagate the range through the addition.
 | 
						|
              CR = CR.add(AddConst->getValue());
 | 
						|
 | 
						|
              // Get the range where the compare returns true.
 | 
						|
              ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
 | 
						|
                  Pred, cast<ConstantInt>(CmpConst)->getValue());
 | 
						|
 | 
						|
              Constant *ResC;
 | 
						|
              if (CmpRange.contains(CR))
 | 
						|
                ResC = ConstantInt::getTrue(CmpType);
 | 
						|
              else if (CmpRange.inverse().contains(CR))
 | 
						|
                ResC = ConstantInt::getFalse(CmpType);
 | 
						|
              else
 | 
						|
                continue;
 | 
						|
 | 
						|
              Result.push_back(std::make_pair(ResC, P));
 | 
						|
            }
 | 
						|
 | 
						|
            return !Result.empty();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to find a constant value for the LHS of a comparison,
 | 
						|
      // and evaluate it statically if we can.
 | 
						|
      PredValueInfoTy LHSVals;
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
 | 
						|
      for (const auto &LHSVal : LHSVals) {
 | 
						|
        Constant *V = LHSVal.first;
 | 
						|
        Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
 | 
						|
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
 | 
						|
          Result.push_back(std::make_pair(KC, LHSVal.second));
 | 
						|
      }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | 
						|
    // Handle select instructions where at least one operand is a known constant
 | 
						|
    // and we can figure out the condition value for any predecessor block.
 | 
						|
    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
 | 
						|
    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
 | 
						|
    PredValueInfoTy Conds;
 | 
						|
    if ((TrueVal || FalseVal) &&
 | 
						|
        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
 | 
						|
                                        WantInteger, CxtI)) {
 | 
						|
      for (auto &C : Conds) {
 | 
						|
        Constant *Cond = C.first;
 | 
						|
 | 
						|
        // Figure out what value to use for the condition.
 | 
						|
        bool KnownCond;
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
 | 
						|
          // A known boolean.
 | 
						|
          KnownCond = CI->isOne();
 | 
						|
        } else {
 | 
						|
          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
 | 
						|
          // Either operand will do, so be sure to pick the one that's a known
 | 
						|
          // constant.
 | 
						|
          // FIXME: Do this more cleverly if both values are known constants?
 | 
						|
          KnownCond = (TrueVal != nullptr);
 | 
						|
        }
 | 
						|
 | 
						|
        // See if the select has a known constant value for this predecessor.
 | 
						|
        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
 | 
						|
          Result.push_back(std::make_pair(Val, C.second));
 | 
						|
      }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If all else fails, see if LVI can figure out a constant value for us.
 | 
						|
  if (DTU->hasPendingDomTreeUpdates())
 | 
						|
    LVI->disableDT();
 | 
						|
  else
 | 
						|
    LVI->enableDT();
 | 
						|
  Constant *CI = LVI->getConstant(V, BB, CxtI);
 | 
						|
  if (Constant *KC = getKnownConstant(CI, Preference)) {
 | 
						|
    for (BasicBlock *Pred : predecessors(BB))
 | 
						|
      Result.push_back(std::make_pair(KC, Pred));
 | 
						|
  }
 | 
						|
 | 
						|
  return !Result.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
 | 
						|
/// in an undefined jump, decide which block is best to revector to.
 | 
						|
///
 | 
						|
/// Since we can pick an arbitrary destination, we pick the successor with the
 | 
						|
/// fewest predecessors.  This should reduce the in-degree of the others.
 | 
						|
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
 | 
						|
  TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
  unsigned MinSucc = 0;
 | 
						|
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
 | 
						|
  // Compute the successor with the minimum number of predecessors.
 | 
						|
  unsigned MinNumPreds = pred_size(TestBB);
 | 
						|
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
    TestBB = BBTerm->getSuccessor(i);
 | 
						|
    unsigned NumPreds = pred_size(TestBB);
 | 
						|
    if (NumPreds < MinNumPreds) {
 | 
						|
      MinSucc = i;
 | 
						|
      MinNumPreds = NumPreds;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MinSucc;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasAddressTakenAndUsed(BasicBlock *BB) {
 | 
						|
  if (!BB->hasAddressTaken()) return false;
 | 
						|
 | 
						|
  // If the block has its address taken, it may be a tree of dead constants
 | 
						|
  // hanging off of it.  These shouldn't keep the block alive.
 | 
						|
  BlockAddress *BA = BlockAddress::get(BB);
 | 
						|
  BA->removeDeadConstantUsers();
 | 
						|
  return !BA->use_empty();
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBlock - If there are any predecessors whose control can be threaded
 | 
						|
/// through to a successor, transform them now.
 | 
						|
bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
 | 
						|
  // If the block is trivially dead, just return and let the caller nuke it.
 | 
						|
  // This simplifies other transformations.
 | 
						|
  if (DTU->isBBPendingDeletion(BB) ||
 | 
						|
      (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this block has a single predecessor, and if that pred has a single
 | 
						|
  // successor, merge the blocks.  This encourages recursive jump threading
 | 
						|
  // because now the condition in this block can be threaded through
 | 
						|
  // predecessors of our predecessor block.
 | 
						|
  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
 | 
						|
    const TerminatorInst *TI = SinglePred->getTerminator();
 | 
						|
    if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
 | 
						|
        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
 | 
						|
      // If SinglePred was a loop header, BB becomes one.
 | 
						|
      if (LoopHeaders.erase(SinglePred))
 | 
						|
        LoopHeaders.insert(BB);
 | 
						|
 | 
						|
      LVI->eraseBlock(SinglePred);
 | 
						|
      MergeBasicBlockIntoOnlyPred(BB, DTU);
 | 
						|
 | 
						|
      // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
 | 
						|
      // BB code within one basic block `BB`), we need to invalidate the LVI
 | 
						|
      // information associated with BB, because the LVI information need not be
 | 
						|
      // true for all of BB after the merge. For example,
 | 
						|
      // Before the merge, LVI info and code is as follows:
 | 
						|
      // SinglePred: <LVI info1 for %p val>
 | 
						|
      // %y = use of %p
 | 
						|
      // call @exit() // need not transfer execution to successor.
 | 
						|
      // assume(%p) // from this point on %p is true
 | 
						|
      // br label %BB
 | 
						|
      // BB: <LVI info2 for %p val, i.e. %p is true>
 | 
						|
      // %x = use of %p
 | 
						|
      // br label exit
 | 
						|
      //
 | 
						|
      // Note that this LVI info for blocks BB and SinglPred is correct for %p
 | 
						|
      // (info2 and info1 respectively). After the merge and the deletion of the
 | 
						|
      // LVI info1 for SinglePred. We have the following code:
 | 
						|
      // BB: <LVI info2 for %p val>
 | 
						|
      // %y = use of %p
 | 
						|
      // call @exit()
 | 
						|
      // assume(%p)
 | 
						|
      // %x = use of %p <-- LVI info2 is correct from here onwards.
 | 
						|
      // br label exit
 | 
						|
      // LVI info2 for BB is incorrect at the beginning of BB.
 | 
						|
 | 
						|
      // Invalidate LVI information for BB if the LVI is not provably true for
 | 
						|
      // all of BB.
 | 
						|
      if (!isGuaranteedToTransferExecutionToSuccessor(BB))
 | 
						|
        LVI->eraseBlock(BB);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TryToUnfoldSelectInCurrBB(BB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Look if we can propagate guards to predecessors.
 | 
						|
  if (HasGuards && ProcessGuards(BB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // What kind of constant we're looking for.
 | 
						|
  ConstantPreference Preference = WantInteger;
 | 
						|
 | 
						|
  // Look to see if the terminator is a conditional branch, switch or indirect
 | 
						|
  // branch, if not we can't thread it.
 | 
						|
  Value *Condition;
 | 
						|
  Instruction *Terminator = BB->getTerminator();
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
 | 
						|
    // Can't thread an unconditional jump.
 | 
						|
    if (BI->isUnconditional()) return false;
 | 
						|
    Condition = BI->getCondition();
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
 | 
						|
    Condition = SI->getCondition();
 | 
						|
  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
 | 
						|
    // Can't thread indirect branch with no successors.
 | 
						|
    if (IB->getNumSuccessors() == 0) return false;
 | 
						|
    Condition = IB->getAddress()->stripPointerCasts();
 | 
						|
    Preference = WantBlockAddress;
 | 
						|
  } else {
 | 
						|
    return false; // Must be an invoke.
 | 
						|
  }
 | 
						|
 | 
						|
  // Run constant folding to see if we can reduce the condition to a simple
 | 
						|
  // constant.
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
 | 
						|
    Value *SimpleVal =
 | 
						|
        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
 | 
						|
    if (SimpleVal) {
 | 
						|
      I->replaceAllUsesWith(SimpleVal);
 | 
						|
      if (isInstructionTriviallyDead(I, TLI))
 | 
						|
        I->eraseFromParent();
 | 
						|
      Condition = SimpleVal;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminator is branching on an undef, we can pick any of the
 | 
						|
  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
 | 
						|
  if (isa<UndefValue>(Condition)) {
 | 
						|
    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
 | 
						|
    std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
 | 
						|
    // Fold the branch/switch.
 | 
						|
    TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
    Updates.reserve(BBTerm->getNumSuccessors());
 | 
						|
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
      if (i == BestSucc) continue;
 | 
						|
      BasicBlock *Succ = BBTerm->getSuccessor(i);
 | 
						|
      Succ->removePredecessor(BB, true);
 | 
						|
      Updates.push_back({DominatorTree::Delete, BB, Succ});
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
 | 
						|
                      << "' folding undef terminator: " << *BBTerm << '\n');
 | 
						|
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
 | 
						|
    BBTerm->eraseFromParent();
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminator of this block is branching on a constant, simplify the
 | 
						|
  // terminator to an unconditional branch.  This can occur due to threading in
 | 
						|
  // other blocks.
 | 
						|
  if (getKnownConstant(Condition, Preference)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
 | 
						|
                      << "' folding terminator: " << *BB->getTerminator()
 | 
						|
                      << '\n');
 | 
						|
    ++NumFolds;
 | 
						|
    ConstantFoldTerminator(BB, true, nullptr, DTU);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *CondInst = dyn_cast<Instruction>(Condition);
 | 
						|
 | 
						|
  // All the rest of our checks depend on the condition being an instruction.
 | 
						|
  if (!CondInst) {
 | 
						|
    // FIXME: Unify this with code below.
 | 
						|
    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
 | 
						|
    // If we're branching on a conditional, LVI might be able to determine
 | 
						|
    // it's value at the branch instruction.  We only handle comparisons
 | 
						|
    // against a constant at this time.
 | 
						|
    // TODO: This should be extended to handle switches as well.
 | 
						|
    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
 | 
						|
    if (CondBr && CondConst) {
 | 
						|
      // We should have returned as soon as we turn a conditional branch to
 | 
						|
      // unconditional. Because its no longer interesting as far as jump
 | 
						|
      // threading is concerned.
 | 
						|
      assert(CondBr->isConditional() && "Threading on unconditional terminator");
 | 
						|
 | 
						|
      if (DTU->hasPendingDomTreeUpdates())
 | 
						|
        LVI->disableDT();
 | 
						|
      else
 | 
						|
        LVI->enableDT();
 | 
						|
      LazyValueInfo::Tristate Ret =
 | 
						|
        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
 | 
						|
                            CondConst, CondBr);
 | 
						|
      if (Ret != LazyValueInfo::Unknown) {
 | 
						|
        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
 | 
						|
        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
 | 
						|
        BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
 | 
						|
        ToRemoveSucc->removePredecessor(BB, true);
 | 
						|
        BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
 | 
						|
        CondBr->eraseFromParent();
 | 
						|
        if (CondCmp->use_empty())
 | 
						|
          CondCmp->eraseFromParent();
 | 
						|
        // We can safely replace *some* uses of the CondInst if it has
 | 
						|
        // exactly one value as returned by LVI. RAUW is incorrect in the
 | 
						|
        // presence of guards and assumes, that have the `Cond` as the use. This
 | 
						|
        // is because we use the guards/assume to reason about the `Cond` value
 | 
						|
        // at the end of block, but RAUW unconditionally replaces all uses
 | 
						|
        // including the guards/assumes themselves and the uses before the
 | 
						|
        // guard/assume.
 | 
						|
        else if (CondCmp->getParent() == BB) {
 | 
						|
          auto *CI = Ret == LazyValueInfo::True ?
 | 
						|
            ConstantInt::getTrue(CondCmp->getType()) :
 | 
						|
            ConstantInt::getFalse(CondCmp->getType());
 | 
						|
          ReplaceFoldableUses(CondCmp, CI);
 | 
						|
        }
 | 
						|
        DTU->deleteEdgeRelaxed(BB, ToRemoveSucc);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // We did not manage to simplify this branch, try to see whether
 | 
						|
      // CondCmp depends on a known phi-select pattern.
 | 
						|
      if (TryToUnfoldSelect(CondCmp, BB))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for some cases that are worth simplifying.  Right now we want to look
 | 
						|
  // for loads that are used by a switch or by the condition for the branch.  If
 | 
						|
  // we see one, check to see if it's partially redundant.  If so, insert a PHI
 | 
						|
  // which can then be used to thread the values.
 | 
						|
  Value *SimplifyValue = CondInst;
 | 
						|
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
 | 
						|
    if (isa<Constant>(CondCmp->getOperand(1)))
 | 
						|
      SimplifyValue = CondCmp->getOperand(0);
 | 
						|
 | 
						|
  // TODO: There are other places where load PRE would be profitable, such as
 | 
						|
  // more complex comparisons.
 | 
						|
  if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
 | 
						|
    if (SimplifyPartiallyRedundantLoad(LoadI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Before threading, try to propagate profile data backwards:
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
 | 
						|
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | 
						|
      updatePredecessorProfileMetadata(PN, BB);
 | 
						|
 | 
						|
  // Handle a variety of cases where we are branching on something derived from
 | 
						|
  // a PHI node in the current block.  If we can prove that any predecessors
 | 
						|
  // compute a predictable value based on a PHI node, thread those predecessors.
 | 
						|
  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is an otherwise-unfoldable branch on a phi node in the current
 | 
						|
  // block, see if we can simplify.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
 | 
						|
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | 
						|
      return ProcessBranchOnPHI(PN);
 | 
						|
 | 
						|
  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
 | 
						|
  if (CondInst->getOpcode() == Instruction::Xor &&
 | 
						|
      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | 
						|
    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
 | 
						|
 | 
						|
  // Search for a stronger dominating condition that can be used to simplify a
 | 
						|
  // conditional branch leaving BB.
 | 
						|
  if (ProcessImpliedCondition(BB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
 | 
						|
  auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  BasicBlock *CurrentBB = BB;
 | 
						|
  BasicBlock *CurrentPred = BB->getSinglePredecessor();
 | 
						|
  unsigned Iter = 0;
 | 
						|
 | 
						|
  auto &DL = BB->getModule()->getDataLayout();
 | 
						|
 | 
						|
  while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
 | 
						|
    auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
 | 
						|
    if (!PBI || !PBI->isConditional())
 | 
						|
      return false;
 | 
						|
    if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
 | 
						|
    Optional<bool> Implication =
 | 
						|
        isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
 | 
						|
    if (Implication) {
 | 
						|
      BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
 | 
						|
      BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
 | 
						|
      RemoveSucc->removePredecessor(BB);
 | 
						|
      BranchInst::Create(KeepSucc, BI);
 | 
						|
      BI->eraseFromParent();
 | 
						|
      DTU->deleteEdgeRelaxed(BB, RemoveSucc);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    CurrentBB = CurrentPred;
 | 
						|
    CurrentPred = CurrentBB->getSinglePredecessor();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if Op is an instruction defined in the given block.
 | 
						|
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
 | 
						|
  if (Instruction *OpInst = dyn_cast<Instruction>(Op))
 | 
						|
    if (OpInst->getParent() == BB)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
 | 
						|
/// redundant load instruction, eliminate it by replacing it with a PHI node.
 | 
						|
/// This is an important optimization that encourages jump threading, and needs
 | 
						|
/// to be run interlaced with other jump threading tasks.
 | 
						|
bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
 | 
						|
  // Don't hack volatile and ordered loads.
 | 
						|
  if (!LoadI->isUnordered()) return false;
 | 
						|
 | 
						|
  // If the load is defined in a block with exactly one predecessor, it can't be
 | 
						|
  // partially redundant.
 | 
						|
  BasicBlock *LoadBB = LoadI->getParent();
 | 
						|
  if (LoadBB->getSinglePredecessor())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the load is defined in an EH pad, it can't be partially redundant,
 | 
						|
  // because the edges between the invoke and the EH pad cannot have other
 | 
						|
  // instructions between them.
 | 
						|
  if (LoadBB->isEHPad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *LoadedPtr = LoadI->getOperand(0);
 | 
						|
 | 
						|
  // If the loaded operand is defined in the LoadBB and its not a phi,
 | 
						|
  // it can't be available in predecessors.
 | 
						|
  if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Scan a few instructions up from the load, to see if it is obviously live at
 | 
						|
  // the entry to its block.
 | 
						|
  BasicBlock::iterator BBIt(LoadI);
 | 
						|
  bool IsLoadCSE;
 | 
						|
  if (Value *AvailableVal = FindAvailableLoadedValue(
 | 
						|
          LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
 | 
						|
    // If the value of the load is locally available within the block, just use
 | 
						|
    // it.  This frequently occurs for reg2mem'd allocas.
 | 
						|
 | 
						|
    if (IsLoadCSE) {
 | 
						|
      LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
 | 
						|
      combineMetadataForCSE(NLoadI, LoadI, false);
 | 
						|
    };
 | 
						|
 | 
						|
    // If the returned value is the load itself, replace with an undef. This can
 | 
						|
    // only happen in dead loops.
 | 
						|
    if (AvailableVal == LoadI)
 | 
						|
      AvailableVal = UndefValue::get(LoadI->getType());
 | 
						|
    if (AvailableVal->getType() != LoadI->getType())
 | 
						|
      AvailableVal = CastInst::CreateBitOrPointerCast(
 | 
						|
          AvailableVal, LoadI->getType(), "", LoadI);
 | 
						|
    LoadI->replaceAllUsesWith(AvailableVal);
 | 
						|
    LoadI->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if we scanned the whole block and got to the top of the block,
 | 
						|
  // we know the block is locally transparent to the load.  If not, something
 | 
						|
  // might clobber its value.
 | 
						|
  if (BBIt != LoadBB->begin())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If all of the loads and stores that feed the value have the same AA tags,
 | 
						|
  // then we can propagate them onto any newly inserted loads.
 | 
						|
  AAMDNodes AATags;
 | 
						|
  LoadI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock*, 8> PredsScanned;
 | 
						|
 | 
						|
  using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
 | 
						|
 | 
						|
  AvailablePredsTy AvailablePreds;
 | 
						|
  BasicBlock *OneUnavailablePred = nullptr;
 | 
						|
  SmallVector<LoadInst*, 8> CSELoads;
 | 
						|
 | 
						|
  // If we got here, the loaded value is transparent through to the start of the
 | 
						|
  // block.  Check to see if it is available in any of the predecessor blocks.
 | 
						|
  for (BasicBlock *PredBB : predecessors(LoadBB)) {
 | 
						|
    // If we already scanned this predecessor, skip it.
 | 
						|
    if (!PredsScanned.insert(PredBB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    BBIt = PredBB->end();
 | 
						|
    unsigned NumScanedInst = 0;
 | 
						|
    Value *PredAvailable = nullptr;
 | 
						|
    // NOTE: We don't CSE load that is volatile or anything stronger than
 | 
						|
    // unordered, that should have been checked when we entered the function.
 | 
						|
    assert(LoadI->isUnordered() &&
 | 
						|
           "Attempting to CSE volatile or atomic loads");
 | 
						|
    // If this is a load on a phi pointer, phi-translate it and search
 | 
						|
    // for available load/store to the pointer in predecessors.
 | 
						|
    Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
 | 
						|
    PredAvailable = FindAvailablePtrLoadStore(
 | 
						|
        Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
 | 
						|
        DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
 | 
						|
 | 
						|
    // If PredBB has a single predecessor, continue scanning through the
 | 
						|
    // single predecessor.
 | 
						|
    BasicBlock *SinglePredBB = PredBB;
 | 
						|
    while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
 | 
						|
           NumScanedInst < DefMaxInstsToScan) {
 | 
						|
      SinglePredBB = SinglePredBB->getSinglePredecessor();
 | 
						|
      if (SinglePredBB) {
 | 
						|
        BBIt = SinglePredBB->end();
 | 
						|
        PredAvailable = FindAvailablePtrLoadStore(
 | 
						|
            Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
 | 
						|
            (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
 | 
						|
            &NumScanedInst);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PredAvailable) {
 | 
						|
      OneUnavailablePred = PredBB;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsLoadCSE)
 | 
						|
      CSELoads.push_back(cast<LoadInst>(PredAvailable));
 | 
						|
 | 
						|
    // If so, this load is partially redundant.  Remember this info so that we
 | 
						|
    // can create a PHI node.
 | 
						|
    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the loaded value isn't available in any predecessor, it isn't partially
 | 
						|
  // redundant.
 | 
						|
  if (AvailablePreds.empty()) return false;
 | 
						|
 | 
						|
  // Okay, the loaded value is available in at least one (and maybe all!)
 | 
						|
  // predecessors.  If the value is unavailable in more than one unique
 | 
						|
  // predecessor, we want to insert a merge block for those common predecessors.
 | 
						|
  // This ensures that we only have to insert one reload, thus not increasing
 | 
						|
  // code size.
 | 
						|
  BasicBlock *UnavailablePred = nullptr;
 | 
						|
 | 
						|
  // If the value is unavailable in one of predecessors, we will end up
 | 
						|
  // inserting a new instruction into them. It is only valid if all the
 | 
						|
  // instructions before LoadI are guaranteed to pass execution to its
 | 
						|
  // successor, or if LoadI is safe to speculate.
 | 
						|
  // TODO: If this logic becomes more complex, and we will perform PRE insertion
 | 
						|
  // farther than to a predecessor, we need to reuse the code from GVN's PRE.
 | 
						|
  // It requires domination tree analysis, so for this simple case it is an
 | 
						|
  // overkill.
 | 
						|
  if (PredsScanned.size() != AvailablePreds.size() &&
 | 
						|
      !isSafeToSpeculativelyExecute(LoadI))
 | 
						|
    for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
 | 
						|
      if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
 | 
						|
        return false;
 | 
						|
 | 
						|
  // If there is exactly one predecessor where the value is unavailable, the
 | 
						|
  // already computed 'OneUnavailablePred' block is it.  If it ends in an
 | 
						|
  // unconditional branch, we know that it isn't a critical edge.
 | 
						|
  if (PredsScanned.size() == AvailablePreds.size()+1 &&
 | 
						|
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
 | 
						|
    UnavailablePred = OneUnavailablePred;
 | 
						|
  } else if (PredsScanned.size() != AvailablePreds.size()) {
 | 
						|
    // Otherwise, we had multiple unavailable predecessors or we had a critical
 | 
						|
    // edge from the one.
 | 
						|
    SmallVector<BasicBlock*, 8> PredsToSplit;
 | 
						|
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
 | 
						|
 | 
						|
    for (const auto &AvailablePred : AvailablePreds)
 | 
						|
      AvailablePredSet.insert(AvailablePred.first);
 | 
						|
 | 
						|
    // Add all the unavailable predecessors to the PredsToSplit list.
 | 
						|
    for (BasicBlock *P : predecessors(LoadBB)) {
 | 
						|
      // If the predecessor is an indirect goto, we can't split the edge.
 | 
						|
      if (isa<IndirectBrInst>(P->getTerminator()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!AvailablePredSet.count(P))
 | 
						|
        PredsToSplit.push_back(P);
 | 
						|
    }
 | 
						|
 | 
						|
    // Split them out to their own block.
 | 
						|
    UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
 | 
						|
  }
 | 
						|
 | 
						|
  // If the value isn't available in all predecessors, then there will be
 | 
						|
  // exactly one where it isn't available.  Insert a load on that edge and add
 | 
						|
  // it to the AvailablePreds list.
 | 
						|
  if (UnavailablePred) {
 | 
						|
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
           "Can't handle critical edge here!");
 | 
						|
    LoadInst *NewVal =
 | 
						|
        new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
 | 
						|
                     LoadI->getName() + ".pr", false, LoadI->getAlignment(),
 | 
						|
                     LoadI->getOrdering(), LoadI->getSyncScopeID(),
 | 
						|
                     UnavailablePred->getTerminator());
 | 
						|
    NewVal->setDebugLoc(LoadI->getDebugLoc());
 | 
						|
    if (AATags)
 | 
						|
      NewVal->setAAMetadata(AATags);
 | 
						|
 | 
						|
    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that each predecessor of this block has a value in
 | 
						|
  // AvailablePreds, sort them for efficient access as we're walking the preds.
 | 
						|
  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 | 
						|
 | 
						|
  // Create a PHI node at the start of the block for the PRE'd load value.
 | 
						|
  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | 
						|
  PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
 | 
						|
                                &LoadBB->front());
 | 
						|
  PN->takeName(LoadI);
 | 
						|
  PN->setDebugLoc(LoadI->getDebugLoc());
 | 
						|
 | 
						|
  // Insert new entries into the PHI for each predecessor.  A single block may
 | 
						|
  // have multiple entries here.
 | 
						|
  for (pred_iterator PI = PB; PI != PE; ++PI) {
 | 
						|
    BasicBlock *P = *PI;
 | 
						|
    AvailablePredsTy::iterator I =
 | 
						|
      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
 | 
						|
                       std::make_pair(P, (Value*)nullptr));
 | 
						|
 | 
						|
    assert(I != AvailablePreds.end() && I->first == P &&
 | 
						|
           "Didn't find entry for predecessor!");
 | 
						|
 | 
						|
    // If we have an available predecessor but it requires casting, insert the
 | 
						|
    // cast in the predecessor and use the cast. Note that we have to update the
 | 
						|
    // AvailablePreds vector as we go so that all of the PHI entries for this
 | 
						|
    // predecessor use the same bitcast.
 | 
						|
    Value *&PredV = I->second;
 | 
						|
    if (PredV->getType() != LoadI->getType())
 | 
						|
      PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
 | 
						|
                                               P->getTerminator());
 | 
						|
 | 
						|
    PN->addIncoming(PredV, I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  for (LoadInst *PredLoadI : CSELoads) {
 | 
						|
    combineMetadataForCSE(PredLoadI, LoadI, true);
 | 
						|
  }
 | 
						|
 | 
						|
  LoadI->replaceAllUsesWith(PN);
 | 
						|
  LoadI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindMostPopularDest - The specified list contains multiple possible
 | 
						|
/// threadable destinations.  Pick the one that occurs the most frequently in
 | 
						|
/// the list.
 | 
						|
static BasicBlock *
 | 
						|
FindMostPopularDest(BasicBlock *BB,
 | 
						|
                    const SmallVectorImpl<std::pair<BasicBlock *,
 | 
						|
                                          BasicBlock *>> &PredToDestList) {
 | 
						|
  assert(!PredToDestList.empty());
 | 
						|
 | 
						|
  // Determine popularity.  If there are multiple possible destinations, we
 | 
						|
  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
 | 
						|
  // blocks with known and real destinations to threading undef.  We'll handle
 | 
						|
  // them later if interesting.
 | 
						|
  DenseMap<BasicBlock*, unsigned> DestPopularity;
 | 
						|
  for (const auto &PredToDest : PredToDestList)
 | 
						|
    if (PredToDest.second)
 | 
						|
      DestPopularity[PredToDest.second]++;
 | 
						|
 | 
						|
  if (DestPopularity.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Find the most popular dest.
 | 
						|
  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
 | 
						|
  BasicBlock *MostPopularDest = DPI->first;
 | 
						|
  unsigned Popularity = DPI->second;
 | 
						|
  SmallVector<BasicBlock*, 4> SamePopularity;
 | 
						|
 | 
						|
  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
 | 
						|
    // If the popularity of this entry isn't higher than the popularity we've
 | 
						|
    // seen so far, ignore it.
 | 
						|
    if (DPI->second < Popularity)
 | 
						|
      ; // ignore.
 | 
						|
    else if (DPI->second == Popularity) {
 | 
						|
      // If it is the same as what we've seen so far, keep track of it.
 | 
						|
      SamePopularity.push_back(DPI->first);
 | 
						|
    } else {
 | 
						|
      // If it is more popular, remember it.
 | 
						|
      SamePopularity.clear();
 | 
						|
      MostPopularDest = DPI->first;
 | 
						|
      Popularity = DPI->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, now we know the most popular destination.  If there is more than one
 | 
						|
  // destination, we need to determine one.  This is arbitrary, but we need
 | 
						|
  // to make a deterministic decision.  Pick the first one that appears in the
 | 
						|
  // successor list.
 | 
						|
  if (!SamePopularity.empty()) {
 | 
						|
    SamePopularity.push_back(MostPopularDest);
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    for (unsigned i = 0; ; ++i) {
 | 
						|
      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
 | 
						|
 | 
						|
      if (!is_contained(SamePopularity, TI->getSuccessor(i)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      MostPopularDest = TI->getSuccessor(i);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have finally picked the most popular destination.
 | 
						|
  return MostPopularDest;
 | 
						|
}
 | 
						|
 | 
						|
bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 | 
						|
                                               ConstantPreference Preference,
 | 
						|
                                               Instruction *CxtI) {
 | 
						|
  // If threading this would thread across a loop header, don't even try to
 | 
						|
  // thread the edge.
 | 
						|
  if (LoopHeaders.count(BB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  PredValueInfoTy PredValues;
 | 
						|
  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(!PredValues.empty() &&
 | 
						|
         "ComputeValueKnownInPredecessors returned true with no values");
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
 | 
						|
             for (const auto &PredValue : PredValues) {
 | 
						|
               dbgs() << "  BB '" << BB->getName()
 | 
						|
                      << "': FOUND condition = " << *PredValue.first
 | 
						|
                      << " for pred '" << PredValue.second->getName() << "'.\n";
 | 
						|
  });
 | 
						|
 | 
						|
  // Decide what we want to thread through.  Convert our list of known values to
 | 
						|
  // a list of known destinations for each pred.  This also discards duplicate
 | 
						|
  // predecessors and keeps track of the undefined inputs (which are represented
 | 
						|
  // as a null dest in the PredToDestList).
 | 
						|
  SmallPtrSet<BasicBlock*, 16> SeenPreds;
 | 
						|
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
 | 
						|
 | 
						|
  BasicBlock *OnlyDest = nullptr;
 | 
						|
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
 | 
						|
  Constant *OnlyVal = nullptr;
 | 
						|
  Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
 | 
						|
 | 
						|
  unsigned PredWithKnownDest = 0;
 | 
						|
  for (const auto &PredValue : PredValues) {
 | 
						|
    BasicBlock *Pred = PredValue.second;
 | 
						|
    if (!SeenPreds.insert(Pred).second)
 | 
						|
      continue;  // Duplicate predecessor entry.
 | 
						|
 | 
						|
    Constant *Val = PredValue.first;
 | 
						|
 | 
						|
    BasicBlock *DestBB;
 | 
						|
    if (isa<UndefValue>(Val))
 | 
						|
      DestBB = nullptr;
 | 
						|
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | 
						|
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
 | 
						|
      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
 | 
						|
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
 | 
						|
      DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
 | 
						|
    } else {
 | 
						|
      assert(isa<IndirectBrInst>(BB->getTerminator())
 | 
						|
              && "Unexpected terminator");
 | 
						|
      assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
 | 
						|
      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have exactly one destination, remember it for efficiency below.
 | 
						|
    if (PredToDestList.empty()) {
 | 
						|
      OnlyDest = DestBB;
 | 
						|
      OnlyVal = Val;
 | 
						|
    } else {
 | 
						|
      if (OnlyDest != DestBB)
 | 
						|
        OnlyDest = MultipleDestSentinel;
 | 
						|
      // It possible we have same destination, but different value, e.g. default
 | 
						|
      // case in switchinst.
 | 
						|
      if (Val != OnlyVal)
 | 
						|
        OnlyVal = MultipleVal;
 | 
						|
    }
 | 
						|
 | 
						|
    // We know where this predecessor is going.
 | 
						|
    ++PredWithKnownDest;
 | 
						|
 | 
						|
    // If the predecessor ends with an indirect goto, we can't change its
 | 
						|
    // destination.
 | 
						|
    if (isa<IndirectBrInst>(Pred->getTerminator()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    PredToDestList.push_back(std::make_pair(Pred, DestBB));
 | 
						|
  }
 | 
						|
 | 
						|
  // If all edges were unthreadable, we fail.
 | 
						|
  if (PredToDestList.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If all the predecessors go to a single known successor, we want to fold,
 | 
						|
  // not thread. By doing so, we do not need to duplicate the current block and
 | 
						|
  // also miss potential opportunities in case we dont/cant duplicate.
 | 
						|
  if (OnlyDest && OnlyDest != MultipleDestSentinel) {
 | 
						|
    if (PredWithKnownDest == (size_t)pred_size(BB)) {
 | 
						|
      bool SeenFirstBranchToOnlyDest = false;
 | 
						|
      std::vector <DominatorTree::UpdateType> Updates;
 | 
						|
      Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
 | 
						|
      for (BasicBlock *SuccBB : successors(BB)) {
 | 
						|
        if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
 | 
						|
          SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
 | 
						|
        } else {
 | 
						|
          SuccBB->removePredecessor(BB, true); // This is unreachable successor.
 | 
						|
          Updates.push_back({DominatorTree::Delete, BB, SuccBB});
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Finally update the terminator.
 | 
						|
      TerminatorInst *Term = BB->getTerminator();
 | 
						|
      BranchInst::Create(OnlyDest, Term);
 | 
						|
      Term->eraseFromParent();
 | 
						|
      DTU->applyUpdates(Updates);
 | 
						|
 | 
						|
      // If the condition is now dead due to the removal of the old terminator,
 | 
						|
      // erase it.
 | 
						|
      if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
 | 
						|
        if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
 | 
						|
          CondInst->eraseFromParent();
 | 
						|
        // We can safely replace *some* uses of the CondInst if it has
 | 
						|
        // exactly one value as returned by LVI. RAUW is incorrect in the
 | 
						|
        // presence of guards and assumes, that have the `Cond` as the use. This
 | 
						|
        // is because we use the guards/assume to reason about the `Cond` value
 | 
						|
        // at the end of block, but RAUW unconditionally replaces all uses
 | 
						|
        // including the guards/assumes themselves and the uses before the
 | 
						|
        // guard/assume.
 | 
						|
        else if (OnlyVal && OnlyVal != MultipleVal &&
 | 
						|
                 CondInst->getParent() == BB)
 | 
						|
          ReplaceFoldableUses(CondInst, OnlyVal);
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine which is the most common successor.  If we have many inputs and
 | 
						|
  // this block is a switch, we want to start by threading the batch that goes
 | 
						|
  // to the most popular destination first.  If we only know about one
 | 
						|
  // threadable destination (the common case) we can avoid this.
 | 
						|
  BasicBlock *MostPopularDest = OnlyDest;
 | 
						|
 | 
						|
  if (MostPopularDest == MultipleDestSentinel) {
 | 
						|
    // Remove any loop headers from the Dest list, ThreadEdge conservatively
 | 
						|
    // won't process them, but we might have other destination that are eligible
 | 
						|
    // and we still want to process.
 | 
						|
    erase_if(PredToDestList,
 | 
						|
             [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
 | 
						|
               return LoopHeaders.count(PredToDest.second) != 0;
 | 
						|
             });
 | 
						|
 | 
						|
    if (PredToDestList.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know what the most popular destination is, factor all
 | 
						|
  // predecessors that will jump to it into a single predecessor.
 | 
						|
  SmallVector<BasicBlock*, 16> PredsToFactor;
 | 
						|
  for (const auto &PredToDest : PredToDestList)
 | 
						|
    if (PredToDest.second == MostPopularDest) {
 | 
						|
      BasicBlock *Pred = PredToDest.first;
 | 
						|
 | 
						|
      // This predecessor may be a switch or something else that has multiple
 | 
						|
      // edges to the block.  Factor each of these edges by listing them
 | 
						|
      // according to # occurrences in PredsToFactor.
 | 
						|
      for (BasicBlock *Succ : successors(Pred))
 | 
						|
        if (Succ == BB)
 | 
						|
          PredsToFactor.push_back(Pred);
 | 
						|
    }
 | 
						|
 | 
						|
  // If the threadable edges are branching on an undefined value, we get to pick
 | 
						|
  // the destination that these predecessors should get to.
 | 
						|
  if (!MostPopularDest)
 | 
						|
    MostPopularDest = BB->getTerminator()->
 | 
						|
                            getSuccessor(GetBestDestForJumpOnUndef(BB));
 | 
						|
 | 
						|
  // Ok, try to thread it!
 | 
						|
  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
 | 
						|
/// a PHI node in the current block.  See if there are any simplifications we
 | 
						|
/// can do based on inputs to the phi node.
 | 
						|
bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
 | 
						|
  BasicBlock *BB = PN->getParent();
 | 
						|
 | 
						|
  // TODO: We could make use of this to do it once for blocks with common PHI
 | 
						|
  // values.
 | 
						|
  SmallVector<BasicBlock*, 1> PredBBs;
 | 
						|
  PredBBs.resize(1);
 | 
						|
 | 
						|
  // If any of the predecessor blocks end in an unconditional branch, we can
 | 
						|
  // *duplicate* the conditional branch into that block in order to further
 | 
						|
  // encourage jump threading and to eliminate cases where we have branch on a
 | 
						|
  // phi of an icmp (branch on icmp is much better).
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *PredBB = PN->getIncomingBlock(i);
 | 
						|
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
 | 
						|
      if (PredBr->isUnconditional()) {
 | 
						|
        PredBBs[0] = PredBB;
 | 
						|
        // Try to duplicate BB into PredBB.
 | 
						|
        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
 | 
						|
/// a xor instruction in the current block.  See if there are any
 | 
						|
/// simplifications we can do based on inputs to the xor.
 | 
						|
bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
 | 
						|
  BasicBlock *BB = BO->getParent();
 | 
						|
 | 
						|
  // If either the LHS or RHS of the xor is a constant, don't do this
 | 
						|
  // optimization.
 | 
						|
  if (isa<ConstantInt>(BO->getOperand(0)) ||
 | 
						|
      isa<ConstantInt>(BO->getOperand(1)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the first instruction in BB isn't a phi, we won't be able to infer
 | 
						|
  // anything special about any particular predecessor.
 | 
						|
  if (!isa<PHINode>(BB->front()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this BB is a landing pad, we won't be able to split the edge into it.
 | 
						|
  if (BB->isEHPad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have a xor as the branch input to this block, and we know that the
 | 
						|
  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
 | 
						|
  // the condition into the predecessor and fix that value to true, saving some
 | 
						|
  // logical ops on that path and encouraging other paths to simplify.
 | 
						|
  //
 | 
						|
  // This copies something like this:
 | 
						|
  //
 | 
						|
  //  BB:
 | 
						|
  //    %X = phi i1 [1],  [%X']
 | 
						|
  //    %Y = icmp eq i32 %A, %B
 | 
						|
  //    %Z = xor i1 %X, %Y
 | 
						|
  //    br i1 %Z, ...
 | 
						|
  //
 | 
						|
  // Into:
 | 
						|
  //  BB':
 | 
						|
  //    %Y = icmp ne i32 %A, %B
 | 
						|
  //    br i1 %Y, ...
 | 
						|
 | 
						|
  PredValueInfoTy XorOpValues;
 | 
						|
  bool isLHS = true;
 | 
						|
  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
 | 
						|
                                       WantInteger, BO)) {
 | 
						|
    assert(XorOpValues.empty());
 | 
						|
    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
 | 
						|
                                         WantInteger, BO))
 | 
						|
      return false;
 | 
						|
    isLHS = false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!XorOpValues.empty() &&
 | 
						|
         "ComputeValueKnownInPredecessors returned true with no values");
 | 
						|
 | 
						|
  // Scan the information to see which is most popular: true or false.  The
 | 
						|
  // predecessors can be of the set true, false, or undef.
 | 
						|
  unsigned NumTrue = 0, NumFalse = 0;
 | 
						|
  for (const auto &XorOpValue : XorOpValues) {
 | 
						|
    if (isa<UndefValue>(XorOpValue.first))
 | 
						|
      // Ignore undefs for the count.
 | 
						|
      continue;
 | 
						|
    if (cast<ConstantInt>(XorOpValue.first)->isZero())
 | 
						|
      ++NumFalse;
 | 
						|
    else
 | 
						|
      ++NumTrue;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine which value to split on, true, false, or undef if neither.
 | 
						|
  ConstantInt *SplitVal = nullptr;
 | 
						|
  if (NumTrue > NumFalse)
 | 
						|
    SplitVal = ConstantInt::getTrue(BB->getContext());
 | 
						|
  else if (NumTrue != 0 || NumFalse != 0)
 | 
						|
    SplitVal = ConstantInt::getFalse(BB->getContext());
 | 
						|
 | 
						|
  // Collect all of the blocks that this can be folded into so that we can
 | 
						|
  // factor this once and clone it once.
 | 
						|
  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
 | 
						|
  for (const auto &XorOpValue : XorOpValues) {
 | 
						|
    if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BlocksToFoldInto.push_back(XorOpValue.second);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we inferred a value for all of the predecessors, then duplication won't
 | 
						|
  // help us.  However, we can just replace the LHS or RHS with the constant.
 | 
						|
  if (BlocksToFoldInto.size() ==
 | 
						|
      cast<PHINode>(BB->front()).getNumIncomingValues()) {
 | 
						|
    if (!SplitVal) {
 | 
						|
      // If all preds provide undef, just nuke the xor, because it is undef too.
 | 
						|
      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
 | 
						|
      BO->eraseFromParent();
 | 
						|
    } else if (SplitVal->isZero()) {
 | 
						|
      // If all preds provide 0, replace the xor with the other input.
 | 
						|
      BO->replaceAllUsesWith(BO->getOperand(isLHS));
 | 
						|
      BO->eraseFromParent();
 | 
						|
    } else {
 | 
						|
      // If all preds provide 1, set the computed value to 1.
 | 
						|
      BO->setOperand(!isLHS, SplitVal);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to duplicate BB into PredBB.
 | 
						|
  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
 | 
						|
}
 | 
						|
 | 
						|
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
 | 
						|
/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
 | 
						|
/// NewPred using the entries from OldPred (suitably mapped).
 | 
						|
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
 | 
						|
                                            BasicBlock *OldPred,
 | 
						|
                                            BasicBlock *NewPred,
 | 
						|
                                     DenseMap<Instruction*, Value*> &ValueMap) {
 | 
						|
  for (PHINode &PN : PHIBB->phis()) {
 | 
						|
    // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | 
						|
    // DestBlock.
 | 
						|
    Value *IV = PN.getIncomingValueForBlock(OldPred);
 | 
						|
 | 
						|
    // Remap the value if necessary.
 | 
						|
    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
 | 
						|
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
 | 
						|
      if (I != ValueMap.end())
 | 
						|
        IV = I->second;
 | 
						|
    }
 | 
						|
 | 
						|
    PN.addIncoming(IV, NewPred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadEdge - We have decided that it is safe and profitable to factor the
 | 
						|
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
 | 
						|
/// across BB.  Transform the IR to reflect this change.
 | 
						|
bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
 | 
						|
                                   const SmallVectorImpl<BasicBlock *> &PredBBs,
 | 
						|
                                   BasicBlock *SuccBB) {
 | 
						|
  // If threading to the same block as we come from, we would infinite loop.
 | 
						|
  if (SuccBB == BB) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
 | 
						|
                      << "' - would thread to self!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If threading this would thread across a loop header, don't thread the edge.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
 | 
						|
    LLVM_DEBUG({
 | 
						|
      bool BBIsHeader = LoopHeaders.count(BB);
 | 
						|
      bool SuccIsHeader = LoopHeaders.count(SuccBB);
 | 
						|
      dbgs() << "  Not threading across "
 | 
						|
          << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
 | 
						|
          << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
 | 
						|
          << SuccBB->getName() << "' - it might create an irreducible loop!\n";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned JumpThreadCost =
 | 
						|
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
 | 
						|
  if (JumpThreadCost > BBDupThreshold) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
 | 
						|
                      << "' - Cost is too high: " << JumpThreadCost << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // And finally, do it!  Start by factoring the predecessors if needed.
 | 
						|
  BasicBlock *PredBB;
 | 
						|
  if (PredBBs.size() == 1)
 | 
						|
    PredBB = PredBBs[0];
 | 
						|
  else {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
 | 
						|
                      << " common predecessors.\n");
 | 
						|
    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
 | 
						|
  }
 | 
						|
 | 
						|
  // And finally, do it!
 | 
						|
  LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
 | 
						|
                    << "' to '" << SuccBB->getName()
 | 
						|
                    << "' with cost: " << JumpThreadCost
 | 
						|
                    << ", across block:\n    " << *BB << "\n");
 | 
						|
 | 
						|
  if (DTU->hasPendingDomTreeUpdates())
 | 
						|
    LVI->disableDT();
 | 
						|
  else
 | 
						|
    LVI->enableDT();
 | 
						|
  LVI->threadEdge(PredBB, BB, SuccBB);
 | 
						|
 | 
						|
  // We are going to have to map operands from the original BB block to the new
 | 
						|
  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
 | 
						|
  // account for entry from PredBB.
 | 
						|
  DenseMap<Instruction*, Value*> ValueMapping;
 | 
						|
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
 | 
						|
                                         BB->getName()+".thread",
 | 
						|
                                         BB->getParent(), BB);
 | 
						|
  NewBB->moveAfter(PredBB);
 | 
						|
 | 
						|
  // Set the block frequency of NewBB.
 | 
						|
  if (HasProfileData) {
 | 
						|
    auto NewBBFreq =
 | 
						|
        BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
 | 
						|
    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator BI = BB->begin();
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | 
						|
 | 
						|
  // Clone the non-phi instructions of BB into NewBB, keeping track of the
 | 
						|
  // mapping and using it to remap operands in the cloned instructions.
 | 
						|
  for (; !BI->isTerminator(); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
    New->setName(BI->getName());
 | 
						|
    NewBB->getInstList().push_back(New);
 | 
						|
    ValueMapping[&*BI] = New;
 | 
						|
 | 
						|
    // Remap operands to patch up intra-block references.
 | 
						|
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | 
						|
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | 
						|
        if (I != ValueMapping.end())
 | 
						|
          New->setOperand(i, I->second);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // We didn't copy the terminator from BB over to NewBB, because there is now
 | 
						|
  // an unconditional jump to SuccBB.  Insert the unconditional jump.
 | 
						|
  BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
 | 
						|
  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
 | 
						|
 | 
						|
  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
 | 
						|
  // PHI nodes for NewBB now.
 | 
						|
  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
 | 
						|
 | 
						|
  // Update the terminator of PredBB to jump to NewBB instead of BB.  This
 | 
						|
  // eliminates predecessors from BB, which requires us to simplify any PHI
 | 
						|
  // nodes in BB.
 | 
						|
  TerminatorInst *PredTerm = PredBB->getTerminator();
 | 
						|
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
 | 
						|
    if (PredTerm->getSuccessor(i) == BB) {
 | 
						|
      BB->removePredecessor(PredBB, true);
 | 
						|
      PredTerm->setSuccessor(i, NewBB);
 | 
						|
    }
 | 
						|
 | 
						|
  // Enqueue required DT updates.
 | 
						|
  DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
 | 
						|
                     {DominatorTree::Insert, PredBB, NewBB},
 | 
						|
                     {DominatorTree::Delete, PredBB, BB}});
 | 
						|
 | 
						|
  // If there were values defined in BB that are used outside the block, then we
 | 
						|
  // now have to update all uses of the value to use either the original value,
 | 
						|
  // the cloned value, or some PHI derived value.  This can require arbitrary
 | 
						|
  // PHI insertion, of which we are prepared to do, clean these up now.
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SmallVector<Use*, 16> UsesToRename;
 | 
						|
 | 
						|
  for (Instruction &I : *BB) {
 | 
						|
    // Scan all uses of this instruction to see if their uses are no longer
 | 
						|
    // dominated by the previous def and if so, record them in UsesToRename.
 | 
						|
    // Also, skip phi operands from PredBB - we'll remove them anyway.
 | 
						|
    for (Use &U : I.uses()) {
 | 
						|
      Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (UserPN->getIncomingBlock(U) == BB)
 | 
						|
          continue;
 | 
						|
      } else if (User->getParent() == BB)
 | 
						|
        continue;
 | 
						|
 | 
						|
      UsesToRename.push_back(&U);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are no uses outside the block, we're done with this instruction.
 | 
						|
    if (UsesToRename.empty())
 | 
						|
      continue;
 | 
						|
    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
 | 
						|
 | 
						|
    // We found a use of I outside of BB.  Rename all uses of I that are outside
 | 
						|
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | 
						|
    // with the two values we know.
 | 
						|
    SSAUpdate.Initialize(I.getType(), I.getName());
 | 
						|
    SSAUpdate.AddAvailableValue(BB, &I);
 | 
						|
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
 | 
						|
 | 
						|
    while (!UsesToRename.empty())
 | 
						|
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | 
						|
    LLVM_DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point, the IR is fully up to date and consistent.  Do a quick scan
 | 
						|
  // over the new instructions and zap any that are constants or dead.  This
 | 
						|
  // frequently happens because of phi translation.
 | 
						|
  SimplifyInstructionsInBlock(NewBB, TLI);
 | 
						|
 | 
						|
  // Update the edge weight from BB to SuccBB, which should be less than before.
 | 
						|
  UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
 | 
						|
 | 
						|
  // Threaded an edge!
 | 
						|
  ++NumThreads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new basic block that will be the predecessor of BB and successor of
 | 
						|
/// all blocks in Preds. When profile data is available, update the frequency of
 | 
						|
/// this new block.
 | 
						|
BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
 | 
						|
                                               ArrayRef<BasicBlock *> Preds,
 | 
						|
                                               const char *Suffix) {
 | 
						|
  SmallVector<BasicBlock *, 2> NewBBs;
 | 
						|
 | 
						|
  // Collect the frequencies of all predecessors of BB, which will be used to
 | 
						|
  // update the edge weight of the result of splitting predecessors.
 | 
						|
  DenseMap<BasicBlock *, BlockFrequency> FreqMap;
 | 
						|
  if (HasProfileData)
 | 
						|
    for (auto Pred : Preds)
 | 
						|
      FreqMap.insert(std::make_pair(
 | 
						|
          Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
 | 
						|
 | 
						|
  // In the case when BB is a LandingPad block we create 2 new predecessors
 | 
						|
  // instead of just one.
 | 
						|
  if (BB->isLandingPad()) {
 | 
						|
    std::string NewName = std::string(Suffix) + ".split-lp";
 | 
						|
    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
 | 
						|
  } else {
 | 
						|
    NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
  Updates.reserve((2 * Preds.size()) + NewBBs.size());
 | 
						|
  for (auto NewBB : NewBBs) {
 | 
						|
    BlockFrequency NewBBFreq(0);
 | 
						|
    Updates.push_back({DominatorTree::Insert, NewBB, BB});
 | 
						|
    for (auto Pred : predecessors(NewBB)) {
 | 
						|
      Updates.push_back({DominatorTree::Delete, Pred, BB});
 | 
						|
      Updates.push_back({DominatorTree::Insert, Pred, NewBB});
 | 
						|
      if (HasProfileData) // Update frequencies between Pred -> NewBB.
 | 
						|
        NewBBFreq += FreqMap.lookup(Pred);
 | 
						|
    }
 | 
						|
    if (HasProfileData) // Apply the summed frequency to NewBB.
 | 
						|
      BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
 | 
						|
  }
 | 
						|
 | 
						|
  DTU->applyUpdates(Updates);
 | 
						|
  return NewBBs[0];
 | 
						|
}
 | 
						|
 | 
						|
bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
 | 
						|
  const TerminatorInst *TI = BB->getTerminator();
 | 
						|
  assert(TI->getNumSuccessors() > 1 && "not a split");
 | 
						|
 | 
						|
  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
 | 
						|
  if (!WeightsNode)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
 | 
						|
  if (MDName->getString() != "branch_weights")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure there are weights for all of the successors. Note that the first
 | 
						|
  // operand to the metadata node is a name, not a weight.
 | 
						|
  return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the block frequency of BB and branch weight and the metadata on the
 | 
						|
/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
 | 
						|
/// Freq(PredBB->BB) / Freq(BB->SuccBB).
 | 
						|
void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
 | 
						|
                                                     BasicBlock *BB,
 | 
						|
                                                     BasicBlock *NewBB,
 | 
						|
                                                     BasicBlock *SuccBB) {
 | 
						|
  if (!HasProfileData)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(BFI && BPI && "BFI & BPI should have been created here");
 | 
						|
 | 
						|
  // As the edge from PredBB to BB is deleted, we have to update the block
 | 
						|
  // frequency of BB.
 | 
						|
  auto BBOrigFreq = BFI->getBlockFreq(BB);
 | 
						|
  auto NewBBFreq = BFI->getBlockFreq(NewBB);
 | 
						|
  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
 | 
						|
  auto BBNewFreq = BBOrigFreq - NewBBFreq;
 | 
						|
  BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
 | 
						|
 | 
						|
  // Collect updated outgoing edges' frequencies from BB and use them to update
 | 
						|
  // edge probabilities.
 | 
						|
  SmallVector<uint64_t, 4> BBSuccFreq;
 | 
						|
  for (BasicBlock *Succ : successors(BB)) {
 | 
						|
    auto SuccFreq = (Succ == SuccBB)
 | 
						|
                        ? BB2SuccBBFreq - NewBBFreq
 | 
						|
                        : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
 | 
						|
    BBSuccFreq.push_back(SuccFreq.getFrequency());
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t MaxBBSuccFreq =
 | 
						|
      *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
 | 
						|
 | 
						|
  SmallVector<BranchProbability, 4> BBSuccProbs;
 | 
						|
  if (MaxBBSuccFreq == 0)
 | 
						|
    BBSuccProbs.assign(BBSuccFreq.size(),
 | 
						|
                       {1, static_cast<unsigned>(BBSuccFreq.size())});
 | 
						|
  else {
 | 
						|
    for (uint64_t Freq : BBSuccFreq)
 | 
						|
      BBSuccProbs.push_back(
 | 
						|
          BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
 | 
						|
    // Normalize edge probabilities so that they sum up to one.
 | 
						|
    BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
 | 
						|
                                              BBSuccProbs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Update edge probabilities in BPI.
 | 
						|
  for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
 | 
						|
    BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
 | 
						|
 | 
						|
  // Update the profile metadata as well.
 | 
						|
  //
 | 
						|
  // Don't do this if the profile of the transformed blocks was statically
 | 
						|
  // estimated.  (This could occur despite the function having an entry
 | 
						|
  // frequency in completely cold parts of the CFG.)
 | 
						|
  //
 | 
						|
  // In this case we don't want to suggest to subsequent passes that the
 | 
						|
  // calculated weights are fully consistent.  Consider this graph:
 | 
						|
  //
 | 
						|
  //                 check_1
 | 
						|
  //             50% /  |
 | 
						|
  //             eq_1   | 50%
 | 
						|
  //                 \  |
 | 
						|
  //                 check_2
 | 
						|
  //             50% /  |
 | 
						|
  //             eq_2   | 50%
 | 
						|
  //                 \  |
 | 
						|
  //                 check_3
 | 
						|
  //             50% /  |
 | 
						|
  //             eq_3   | 50%
 | 
						|
  //                 \  |
 | 
						|
  //
 | 
						|
  // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
 | 
						|
  // the overall probabilities are inconsistent; the total probability that the
 | 
						|
  // value is either 1, 2 or 3 is 150%.
 | 
						|
  //
 | 
						|
  // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
 | 
						|
  // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
 | 
						|
  // the loop exit edge.  Then based solely on static estimation we would assume
 | 
						|
  // the loop was extremely hot.
 | 
						|
  //
 | 
						|
  // FIXME this locally as well so that BPI and BFI are consistent as well.  We
 | 
						|
  // shouldn't make edges extremely likely or unlikely based solely on static
 | 
						|
  // estimation.
 | 
						|
  if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
 | 
						|
    SmallVector<uint32_t, 4> Weights;
 | 
						|
    for (auto Prob : BBSuccProbs)
 | 
						|
      Weights.push_back(Prob.getNumerator());
 | 
						|
 | 
						|
    auto TI = BB->getTerminator();
 | 
						|
    TI->setMetadata(
 | 
						|
        LLVMContext::MD_prof,
 | 
						|
        MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
 | 
						|
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
 | 
						|
/// If we can duplicate the contents of BB up into PredBB do so now, this
 | 
						|
/// improves the odds that the branch will be on an analyzable instruction like
 | 
						|
/// a compare.
 | 
						|
bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
 | 
						|
    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
 | 
						|
  assert(!PredBBs.empty() && "Can't handle an empty set");
 | 
						|
 | 
						|
  // If BB is a loop header, then duplicating this block outside the loop would
 | 
						|
  // cause us to transform this into an irreducible loop, don't do this.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
 | 
						|
                      << "' into predecessor block '" << PredBBs[0]->getName()
 | 
						|
                      << "' - it might create an irreducible loop!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned DuplicationCost =
 | 
						|
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
 | 
						|
  if (DuplicationCost > BBDupThreshold) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
 | 
						|
                      << "' - Cost is too high: " << DuplicationCost << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // And finally, do it!  Start by factoring the predecessors if needed.
 | 
						|
  std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
  BasicBlock *PredBB;
 | 
						|
  if (PredBBs.size() == 1)
 | 
						|
    PredBB = PredBBs[0];
 | 
						|
  else {
 | 
						|
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
 | 
						|
                      << " common predecessors.\n");
 | 
						|
    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
 | 
						|
  }
 | 
						|
  Updates.push_back({DominatorTree::Delete, PredBB, BB});
 | 
						|
 | 
						|
  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
 | 
						|
  // of PredBB.
 | 
						|
  LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
 | 
						|
                    << "' into end of '" << PredBB->getName()
 | 
						|
                    << "' to eliminate branch on phi.  Cost: "
 | 
						|
                    << DuplicationCost << " block is:" << *BB << "\n");
 | 
						|
 | 
						|
  // Unless PredBB ends with an unconditional branch, split the edge so that we
 | 
						|
  // can just clone the bits from BB into the end of the new PredBB.
 | 
						|
  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
 | 
						|
 | 
						|
  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
 | 
						|
    BasicBlock *OldPredBB = PredBB;
 | 
						|
    PredBB = SplitEdge(OldPredBB, BB);
 | 
						|
    Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
 | 
						|
    Updates.push_back({DominatorTree::Insert, PredBB, BB});
 | 
						|
    Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
 | 
						|
    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
 | 
						|
  }
 | 
						|
 | 
						|
  // We are going to have to map operands from the original BB block into the
 | 
						|
  // PredBB block.  Evaluate PHI nodes in BB.
 | 
						|
  DenseMap<Instruction*, Value*> ValueMapping;
 | 
						|
 | 
						|
  BasicBlock::iterator BI = BB->begin();
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | 
						|
  // Clone the non-phi instructions of BB into PredBB, keeping track of the
 | 
						|
  // mapping and using it to remap operands in the cloned instructions.
 | 
						|
  for (; BI != BB->end(); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
 | 
						|
    // Remap operands to patch up intra-block references.
 | 
						|
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | 
						|
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | 
						|
        if (I != ValueMapping.end())
 | 
						|
          New->setOperand(i, I->second);
 | 
						|
      }
 | 
						|
 | 
						|
    // If this instruction can be simplified after the operands are updated,
 | 
						|
    // just use the simplified value instead.  This frequently happens due to
 | 
						|
    // phi translation.
 | 
						|
    if (Value *IV = SimplifyInstruction(
 | 
						|
            New,
 | 
						|
            {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
 | 
						|
      ValueMapping[&*BI] = IV;
 | 
						|
      if (!New->mayHaveSideEffects()) {
 | 
						|
        New->deleteValue();
 | 
						|
        New = nullptr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ValueMapping[&*BI] = New;
 | 
						|
    }
 | 
						|
    if (New) {
 | 
						|
      // Otherwise, insert the new instruction into the block.
 | 
						|
      New->setName(BI->getName());
 | 
						|
      PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
 | 
						|
      // Update Dominance from simplified New instruction operands.
 | 
						|
      for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
        if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
 | 
						|
          Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if the targets of the branch had PHI nodes. If so, we need to
 | 
						|
  // add entries to the PHI nodes for branch from PredBB now.
 | 
						|
  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
 | 
						|
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
 | 
						|
                                  ValueMapping);
 | 
						|
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
 | 
						|
                                  ValueMapping);
 | 
						|
 | 
						|
  // If there were values defined in BB that are used outside the block, then we
 | 
						|
  // now have to update all uses of the value to use either the original value,
 | 
						|
  // the cloned value, or some PHI derived value.  This can require arbitrary
 | 
						|
  // PHI insertion, of which we are prepared to do, clean these up now.
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SmallVector<Use*, 16> UsesToRename;
 | 
						|
  for (Instruction &I : *BB) {
 | 
						|
    // Scan all uses of this instruction to see if it is used outside of its
 | 
						|
    // block, and if so, record them in UsesToRename.
 | 
						|
    for (Use &U : I.uses()) {
 | 
						|
      Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (UserPN->getIncomingBlock(U) == BB)
 | 
						|
          continue;
 | 
						|
      } else if (User->getParent() == BB)
 | 
						|
        continue;
 | 
						|
 | 
						|
      UsesToRename.push_back(&U);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are no uses outside the block, we're done with this instruction.
 | 
						|
    if (UsesToRename.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
 | 
						|
 | 
						|
    // We found a use of I outside of BB.  Rename all uses of I that are outside
 | 
						|
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | 
						|
    // with the two values we know.
 | 
						|
    SSAUpdate.Initialize(I.getType(), I.getName());
 | 
						|
    SSAUpdate.AddAvailableValue(BB, &I);
 | 
						|
    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
 | 
						|
 | 
						|
    while (!UsesToRename.empty())
 | 
						|
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | 
						|
    LLVM_DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
 | 
						|
  // that we nuked.
 | 
						|
  BB->removePredecessor(PredBB, true);
 | 
						|
 | 
						|
  // Remove the unconditional branch at the end of the PredBB block.
 | 
						|
  OldPredBranch->eraseFromParent();
 | 
						|
  DTU->applyUpdates(Updates);
 | 
						|
 | 
						|
  ++NumDupes;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// TryToUnfoldSelect - Look for blocks of the form
 | 
						|
/// bb1:
 | 
						|
///   %a = select
 | 
						|
///   br bb2
 | 
						|
///
 | 
						|
/// bb2:
 | 
						|
///   %p = phi [%a, %bb1] ...
 | 
						|
///   %c = icmp %p
 | 
						|
///   br i1 %c
 | 
						|
///
 | 
						|
/// And expand the select into a branch structure if one of its arms allows %c
 | 
						|
/// to be folded. This later enables threading from bb1 over bb2.
 | 
						|
bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
 | 
						|
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
 | 
						|
  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
 | 
						|
 | 
						|
  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
 | 
						|
      CondLHS->getParent() != BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
 | 
						|
    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
 | 
						|
    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
 | 
						|
 | 
						|
    // Look if one of the incoming values is a select in the corresponding
 | 
						|
    // predecessor.
 | 
						|
    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
 | 
						|
      continue;
 | 
						|
 | 
						|
    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
 | 
						|
    if (!PredTerm || !PredTerm->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Now check if one of the select values would allow us to constant fold the
 | 
						|
    // terminator in BB. We don't do the transform if both sides fold, those
 | 
						|
    // cases will be threaded in any case.
 | 
						|
    if (DTU->hasPendingDomTreeUpdates())
 | 
						|
      LVI->disableDT();
 | 
						|
    else
 | 
						|
      LVI->enableDT();
 | 
						|
    LazyValueInfo::Tristate LHSFolds =
 | 
						|
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
 | 
						|
                                CondRHS, Pred, BB, CondCmp);
 | 
						|
    LazyValueInfo::Tristate RHSFolds =
 | 
						|
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
 | 
						|
                                CondRHS, Pred, BB, CondCmp);
 | 
						|
    if ((LHSFolds != LazyValueInfo::Unknown ||
 | 
						|
         RHSFolds != LazyValueInfo::Unknown) &&
 | 
						|
        LHSFolds != RHSFolds) {
 | 
						|
      // Expand the select.
 | 
						|
      //
 | 
						|
      // Pred --
 | 
						|
      //  |    v
 | 
						|
      //  |  NewBB
 | 
						|
      //  |    |
 | 
						|
      //  |-----
 | 
						|
      //  v
 | 
						|
      // BB
 | 
						|
      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
 | 
						|
                                             BB->getParent(), BB);
 | 
						|
      // Move the unconditional branch to NewBB.
 | 
						|
      PredTerm->removeFromParent();
 | 
						|
      NewBB->getInstList().insert(NewBB->end(), PredTerm);
 | 
						|
      // Create a conditional branch and update PHI nodes.
 | 
						|
      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
 | 
						|
      CondLHS->setIncomingValue(I, SI->getFalseValue());
 | 
						|
      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
 | 
						|
      // The select is now dead.
 | 
						|
      SI->eraseFromParent();
 | 
						|
 | 
						|
      DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB},
 | 
						|
                         {DominatorTree::Insert, Pred, NewBB}});
 | 
						|
      // Update any other PHI nodes in BB.
 | 
						|
      for (BasicBlock::iterator BI = BB->begin();
 | 
						|
           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
        if (Phi != CondLHS)
 | 
						|
          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
 | 
						|
/// same BB in the form
 | 
						|
/// bb:
 | 
						|
///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
 | 
						|
///   %s = select %p, trueval, falseval
 | 
						|
///
 | 
						|
/// or
 | 
						|
///
 | 
						|
/// bb:
 | 
						|
///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
 | 
						|
///   %c = cmp %p, 0
 | 
						|
///   %s = select %c, trueval, falseval
 | 
						|
///
 | 
						|
/// And expand the select into a branch structure. This later enables
 | 
						|
/// jump-threading over bb in this pass.
 | 
						|
///
 | 
						|
/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
 | 
						|
/// select if the associated PHI has at least one constant.  If the unfolded
 | 
						|
/// select is not jump-threaded, it will be folded again in the later
 | 
						|
/// optimizations.
 | 
						|
bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
 | 
						|
  // If threading this would thread across a loop header, don't thread the edge.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (BasicBlock::iterator BI = BB->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
 | 
						|
    // Look for a Phi having at least one constant incoming value.
 | 
						|
    if (llvm::all_of(PN->incoming_values(),
 | 
						|
                     [](Value *V) { return !isa<ConstantInt>(V); }))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
 | 
						|
      // Check if SI is in BB and use V as condition.
 | 
						|
      if (SI->getParent() != BB)
 | 
						|
        return false;
 | 
						|
      Value *Cond = SI->getCondition();
 | 
						|
      return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
 | 
						|
    };
 | 
						|
 | 
						|
    SelectInst *SI = nullptr;
 | 
						|
    for (Use &U : PN->uses()) {
 | 
						|
      if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
 | 
						|
        // Look for a ICmp in BB that compares PN with a constant and is the
 | 
						|
        // condition of a Select.
 | 
						|
        if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
 | 
						|
            isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
 | 
						|
          if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
 | 
						|
            if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
 | 
						|
              SI = SelectI;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
      } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
 | 
						|
        // Look for a Select in BB that uses PN as condition.
 | 
						|
        if (isUnfoldCandidate(SelectI, U.get())) {
 | 
						|
          SI = SelectI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!SI)
 | 
						|
      continue;
 | 
						|
    // Expand the select.
 | 
						|
    TerminatorInst *Term =
 | 
						|
        SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
 | 
						|
    BasicBlock *SplitBB = SI->getParent();
 | 
						|
    BasicBlock *NewBB = Term->getParent();
 | 
						|
    PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
 | 
						|
    NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
 | 
						|
    NewPN->addIncoming(SI->getFalseValue(), BB);
 | 
						|
    SI->replaceAllUsesWith(NewPN);
 | 
						|
    SI->eraseFromParent();
 | 
						|
    // NewBB and SplitBB are newly created blocks which require insertion.
 | 
						|
    std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
    Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
 | 
						|
    Updates.push_back({DominatorTree::Insert, BB, SplitBB});
 | 
						|
    Updates.push_back({DominatorTree::Insert, BB, NewBB});
 | 
						|
    Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
 | 
						|
    // BB's successors were moved to SplitBB, update DTU accordingly.
 | 
						|
    for (auto *Succ : successors(SplitBB)) {
 | 
						|
      Updates.push_back({DominatorTree::Delete, BB, Succ});
 | 
						|
      Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
 | 
						|
    }
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to propagate a guard from the current BB into one of its predecessors
 | 
						|
/// in case if another branch of execution implies that the condition of this
 | 
						|
/// guard is always true. Currently we only process the simplest case that
 | 
						|
/// looks like:
 | 
						|
///
 | 
						|
/// Start:
 | 
						|
///   %cond = ...
 | 
						|
///   br i1 %cond, label %T1, label %F1
 | 
						|
/// T1:
 | 
						|
///   br label %Merge
 | 
						|
/// F1:
 | 
						|
///   br label %Merge
 | 
						|
/// Merge:
 | 
						|
///   %condGuard = ...
 | 
						|
///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
 | 
						|
///
 | 
						|
/// And cond either implies condGuard or !condGuard. In this case all the
 | 
						|
/// instructions before the guard can be duplicated in both branches, and the
 | 
						|
/// guard is then threaded to one of them.
 | 
						|
bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
 | 
						|
  using namespace PatternMatch;
 | 
						|
 | 
						|
  // We only want to deal with two predecessors.
 | 
						|
  BasicBlock *Pred1, *Pred2;
 | 
						|
  auto PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
  if (PI == PE)
 | 
						|
    return false;
 | 
						|
  Pred1 = *PI++;
 | 
						|
  if (PI == PE)
 | 
						|
    return false;
 | 
						|
  Pred2 = *PI++;
 | 
						|
  if (PI != PE)
 | 
						|
    return false;
 | 
						|
  if (Pred1 == Pred2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try to thread one of the guards of the block.
 | 
						|
  // TODO: Look up deeper than to immediate predecessor?
 | 
						|
  auto *Parent = Pred1->getSinglePredecessor();
 | 
						|
  if (!Parent || Parent != Pred2->getSinglePredecessor())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
 | 
						|
    for (auto &I : *BB)
 | 
						|
      if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to propagate the guard from BB which is the lower block of a diamond
 | 
						|
/// to one of its branches, in case if diamond's condition implies guard's
 | 
						|
/// condition.
 | 
						|
bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
 | 
						|
                                    BranchInst *BI) {
 | 
						|
  assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
 | 
						|
  assert(BI->isConditional() && "Unconditional branch has 2 successors?");
 | 
						|
  Value *GuardCond = Guard->getArgOperand(0);
 | 
						|
  Value *BranchCond = BI->getCondition();
 | 
						|
  BasicBlock *TrueDest = BI->getSuccessor(0);
 | 
						|
  BasicBlock *FalseDest = BI->getSuccessor(1);
 | 
						|
 | 
						|
  auto &DL = BB->getModule()->getDataLayout();
 | 
						|
  bool TrueDestIsSafe = false;
 | 
						|
  bool FalseDestIsSafe = false;
 | 
						|
 | 
						|
  // True dest is safe if BranchCond => GuardCond.
 | 
						|
  auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
 | 
						|
  if (Impl && *Impl)
 | 
						|
    TrueDestIsSafe = true;
 | 
						|
  else {
 | 
						|
    // False dest is safe if !BranchCond => GuardCond.
 | 
						|
    Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
 | 
						|
    if (Impl && *Impl)
 | 
						|
      FalseDestIsSafe = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TrueDestIsSafe && !FalseDestIsSafe)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
 | 
						|
  BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
 | 
						|
 | 
						|
  ValueToValueMapTy UnguardedMapping, GuardedMapping;
 | 
						|
  Instruction *AfterGuard = Guard->getNextNode();
 | 
						|
  unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
 | 
						|
  if (Cost > BBDupThreshold)
 | 
						|
    return false;
 | 
						|
  // Duplicate all instructions before the guard and the guard itself to the
 | 
						|
  // branch where implication is not proved.
 | 
						|
  BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
 | 
						|
      BB, PredGuardedBlock, AfterGuard, GuardedMapping);
 | 
						|
  assert(GuardedBlock && "Could not create the guarded block?");
 | 
						|
  // Duplicate all instructions before the guard in the unguarded branch.
 | 
						|
  // Since we have successfully duplicated the guarded block and this block
 | 
						|
  // has fewer instructions, we expect it to succeed.
 | 
						|
  BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
 | 
						|
      BB, PredUnguardedBlock, Guard, UnguardedMapping);
 | 
						|
  assert(UnguardedBlock && "Could not create the unguarded block?");
 | 
						|
  LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
 | 
						|
                    << GuardedBlock->getName() << "\n");
 | 
						|
  // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
 | 
						|
  // PredBB and BB. We need to perform two inserts and one delete for each of
 | 
						|
  // the above calls to update Dominators.
 | 
						|
  DTU->applyUpdates(
 | 
						|
      {// Guarded block split.
 | 
						|
       {DominatorTree::Delete, PredGuardedBlock, BB},
 | 
						|
       {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
 | 
						|
       {DominatorTree::Insert, GuardedBlock, BB},
 | 
						|
       // Unguarded block split.
 | 
						|
       {DominatorTree::Delete, PredUnguardedBlock, BB},
 | 
						|
       {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
 | 
						|
       {DominatorTree::Insert, UnguardedBlock, BB}});
 | 
						|
  // Some instructions before the guard may still have uses. For them, we need
 | 
						|
  // to create Phi nodes merging their copies in both guarded and unguarded
 | 
						|
  // branches. Those instructions that have no uses can be just removed.
 | 
						|
  SmallVector<Instruction *, 4> ToRemove;
 | 
						|
  for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
 | 
						|
    if (!isa<PHINode>(&*BI))
 | 
						|
      ToRemove.push_back(&*BI);
 | 
						|
 | 
						|
  Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
 | 
						|
  assert(InsertionPoint && "Empty block?");
 | 
						|
  // Substitute with Phis & remove.
 | 
						|
  for (auto *Inst : reverse(ToRemove)) {
 | 
						|
    if (!Inst->use_empty()) {
 | 
						|
      PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
 | 
						|
      NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
 | 
						|
      NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
 | 
						|
      NewPN->insertBefore(InsertionPoint);
 | 
						|
      Inst->replaceAllUsesWith(NewPN);
 | 
						|
    }
 | 
						|
    Inst->eraseFromParent();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 |