862 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			862 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform manipulations on basic blocks, and
 | |
| // instructions contained within basic blocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DomTreeUpdater.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU) {
 | |
|   assert((pred_begin(BB) == pred_end(BB) ||
 | |
|          // Can delete self loop.
 | |
|          BB->getSinglePredecessor() == BB) && "Block is not dead!");
 | |
|   TerminatorInst *BBTerm = BB->getTerminator();
 | |
|   std::vector<DominatorTree::UpdateType> Updates;
 | |
| 
 | |
|   // Loop through all of our successors and make sure they know that one
 | |
|   // of their predecessors is going away.
 | |
|   if (DTU)
 | |
|     Updates.reserve(BBTerm->getNumSuccessors());
 | |
|   for (BasicBlock *Succ : successors(BBTerm)) {
 | |
|     Succ->removePredecessor(BB);
 | |
|     if (DTU)
 | |
|       Updates.push_back({DominatorTree::Delete, BB, Succ});
 | |
|   }
 | |
| 
 | |
|   // Zap all the instructions in the block.
 | |
|   while (!BB->empty()) {
 | |
|     Instruction &I = BB->back();
 | |
|     // If this instruction is used, replace uses with an arbitrary value.
 | |
|     // Because control flow can't get here, we don't care what we replace the
 | |
|     // value with.  Note that since this block is unreachable, and all values
 | |
|     // contained within it must dominate their uses, that all uses will
 | |
|     // eventually be removed (they are themselves dead).
 | |
|     if (!I.use_empty())
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     BB->getInstList().pop_back();
 | |
|   }
 | |
|   new UnreachableInst(BB->getContext(), BB);
 | |
|   assert(BB->getInstList().size() == 1 &&
 | |
|          isa<UnreachableInst>(BB->getTerminator()) &&
 | |
|          "The successor list of BB isn't empty before "
 | |
|          "applying corresponding DTU updates.");
 | |
| 
 | |
|   if (DTU) {
 | |
|     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
 | |
|     DTU->deleteBB(BB);
 | |
|   } else {
 | |
|     BB->eraseFromParent(); // Zap the block!
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
 | |
|                                    MemoryDependenceResults *MemDep) {
 | |
|   if (!isa<PHINode>(BB->begin())) return;
 | |
| 
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     if (PN->getIncomingValue(0) != PN)
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     else
 | |
|       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
| 
 | |
|     if (MemDep)
 | |
|       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
 | |
| 
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
 | |
|   // Recursively deleting a PHI may cause multiple PHIs to be deleted
 | |
|   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
 | |
|   SmallVector<WeakTrackingVH, 8> PHIs;
 | |
|   for (PHINode &PN : BB->phis())
 | |
|     PHIs.push_back(&PN);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
 | |
|       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
 | |
|                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | |
|                                      MemoryDependenceResults *MemDep) {
 | |
|   if (BB->hasAddressTaken())
 | |
|     return false;
 | |
| 
 | |
|   // Can't merge if there are multiple predecessors, or no predecessors.
 | |
|   BasicBlock *PredBB = BB->getUniquePredecessor();
 | |
|   if (!PredBB) return false;
 | |
| 
 | |
|   // Don't break self-loops.
 | |
|   if (PredBB == BB) return false;
 | |
|   // Don't break unwinding instructions.
 | |
|   if (PredBB->getTerminator()->isExceptionalTerminator())
 | |
|     return false;
 | |
| 
 | |
|   // Can't merge if there are multiple distinct successors.
 | |
|   if (PredBB->getUniqueSuccessor() != BB)
 | |
|     return false;
 | |
| 
 | |
|   // Can't merge if there is PHI loop.
 | |
|   for (PHINode &PN : BB->phis())
 | |
|     for (Value *IncValue : PN.incoming_values())
 | |
|       if (IncValue == &PN)
 | |
|         return false;
 | |
| 
 | |
|   // Begin by getting rid of unneeded PHIs.
 | |
|   SmallVector<AssertingVH<Value>, 4> IncomingValues;
 | |
|   if (isa<PHINode>(BB->front())) {
 | |
|     for (PHINode &PN : BB->phis())
 | |
|       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
 | |
|           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
 | |
|         IncomingValues.push_back(PN.getIncomingValue(0));
 | |
|     FoldSingleEntryPHINodes(BB, MemDep);
 | |
|   }
 | |
| 
 | |
|   // DTU update: Collect all the edges that exit BB.
 | |
|   // These dominator edges will be redirected from Pred.
 | |
|   std::vector<DominatorTree::UpdateType> Updates;
 | |
|   if (DTU) {
 | |
|     Updates.reserve(1 + (2 * succ_size(BB)));
 | |
|     Updates.push_back({DominatorTree::Delete, PredBB, BB});
 | |
|     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
 | |
|       Updates.push_back({DominatorTree::Delete, BB, *I});
 | |
|       Updates.push_back({DominatorTree::Insert, PredBB, *I});
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MSSAU)
 | |
|     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
 | |
| 
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   PredBB->getInstList().pop_back();
 | |
| 
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(PredBB);
 | |
| 
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
 | |
|   new UnreachableInst(BB->getContext(), BB);
 | |
| 
 | |
|   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
 | |
|   for (auto Incoming : IncomingValues) {
 | |
|     if (isa<Instruction>(*Incoming)) {
 | |
|       SmallVector<DbgValueInst *, 2> DbgValues;
 | |
|       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
 | |
|           DbgValueSet;
 | |
|       llvm::findDbgValues(DbgValues, Incoming);
 | |
|       for (auto &DVI : DbgValues) {
 | |
|         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
 | |
|         if (!R.second)
 | |
|           DVI->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Inherit predecessors name if it exists.
 | |
|   if (!PredBB->hasName())
 | |
|     PredBB->takeName(BB);
 | |
| 
 | |
|   if (LI)
 | |
|     LI->removeBlock(BB);
 | |
| 
 | |
|   if (MemDep)
 | |
|     MemDep->invalidateCachedPredecessors();
 | |
| 
 | |
|   // Finally, erase the old block and update dominator info.
 | |
|   if (DTU) {
 | |
|     assert(BB->getInstList().size() == 1 &&
 | |
|            isa<UnreachableInst>(BB->getTerminator()) &&
 | |
|            "The successor list of BB isn't empty before "
 | |
|            "applying corresponding DTU updates.");
 | |
|     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
 | |
|     DTU->deleteBB(BB);
 | |
|   }
 | |
| 
 | |
|   else {
 | |
|     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
 | |
|                                 BasicBlock::iterator &BI, Value *V) {
 | |
|   Instruction &I = *BI;
 | |
|   // Replaces all of the uses of the instruction with uses of the value
 | |
|   I.replaceAllUsesWith(V);
 | |
| 
 | |
|   // Make sure to propagate a name if there is one already.
 | |
|   if (I.hasName() && !V->hasName())
 | |
|     V->takeName(&I);
 | |
| 
 | |
|   // Delete the unnecessary instruction now...
 | |
|   BI = BIL.erase(BI);
 | |
| }
 | |
| 
 | |
| void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
 | |
|                                BasicBlock::iterator &BI, Instruction *I) {
 | |
|   assert(I->getParent() == nullptr &&
 | |
|          "ReplaceInstWithInst: Instruction already inserted into basic block!");
 | |
| 
 | |
|   // Copy debug location to newly added instruction, if it wasn't already set
 | |
|   // by the caller.
 | |
|   if (!I->getDebugLoc())
 | |
|     I->setDebugLoc(BI->getDebugLoc());
 | |
| 
 | |
|   // Insert the new instruction into the basic block...
 | |
|   BasicBlock::iterator New = BIL.insert(BI, I);
 | |
| 
 | |
|   // Replace all uses of the old instruction, and delete it.
 | |
|   ReplaceInstWithValue(BIL, BI, I);
 | |
| 
 | |
|   // Move BI back to point to the newly inserted instruction
 | |
|   BI = New;
 | |
| }
 | |
| 
 | |
| void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
 | |
|   BasicBlock::iterator BI(From);
 | |
|   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
 | |
| }
 | |
| 
 | |
| BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
 | |
|                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
 | |
|   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
 | |
| 
 | |
|   // If this is a critical edge, let SplitCriticalEdge do it.
 | |
|   TerminatorInst *LatchTerm = BB->getTerminator();
 | |
|   if (SplitCriticalEdge(
 | |
|           LatchTerm, SuccNum,
 | |
|           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
 | |
|     return LatchTerm->getSuccessor(SuccNum);
 | |
| 
 | |
|   // If the edge isn't critical, then BB has a single successor or Succ has a
 | |
|   // single pred.  Split the block.
 | |
|   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | |
|     // If the successor only has a single pred, split the top of the successor
 | |
|     // block.
 | |
|     assert(SP == BB && "CFG broken");
 | |
|     SP = nullptr;
 | |
|     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if BB has a single successor, split it at the bottom of the
 | |
|   // block.
 | |
|   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|          "Should have a single succ!");
 | |
|   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| llvm::SplitAllCriticalEdges(Function &F,
 | |
|                             const CriticalEdgeSplittingOptions &Options) {
 | |
|   unsigned NumBroken = 0;
 | |
|   for (BasicBlock &BB : F) {
 | |
|     TerminatorInst *TI = BB.getTerminator();
 | |
|     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
 | |
|       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|         if (SplitCriticalEdge(TI, i, Options))
 | |
|           ++NumBroken;
 | |
|   }
 | |
|   return NumBroken;
 | |
| }
 | |
| 
 | |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
 | |
|                              DominatorTree *DT, LoopInfo *LI,
 | |
|                              MemorySSAUpdater *MSSAU) {
 | |
|   BasicBlock::iterator SplitIt = SplitPt->getIterator();
 | |
|   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
 | |
|     ++SplitIt;
 | |
|   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 | |
| 
 | |
|   // The new block lives in whichever loop the old one did. This preserves
 | |
|   // LCSSA as well, because we force the split point to be after any PHI nodes.
 | |
|   if (LI)
 | |
|     if (Loop *L = LI->getLoopFor(Old))
 | |
|       L->addBasicBlockToLoop(New, *LI);
 | |
| 
 | |
|   if (DT)
 | |
|     // Old dominates New. New node dominates all other nodes dominated by Old.
 | |
|     if (DomTreeNode *OldNode = DT->getNode(Old)) {
 | |
|       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
 | |
| 
 | |
|       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
 | |
|       for (DomTreeNode *I : Children)
 | |
|         DT->changeImmediateDominator(I, NewNode);
 | |
|     }
 | |
| 
 | |
|   // Move MemoryAccesses still tracked in Old, but part of New now.
 | |
|   // Update accesses in successor blocks accordingly.
 | |
|   if (MSSAU)
 | |
|     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | |
| static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
 | |
|                                       ArrayRef<BasicBlock *> Preds,
 | |
|                                       DominatorTree *DT, LoopInfo *LI,
 | |
|                                       MemorySSAUpdater *MSSAU,
 | |
|                                       bool PreserveLCSSA, bool &HasLoopExit) {
 | |
|   // Update dominator tree if available.
 | |
|   if (DT) {
 | |
|     if (OldBB == DT->getRootNode()->getBlock()) {
 | |
|       assert(NewBB == &NewBB->getParent()->getEntryBlock());
 | |
|       DT->setNewRoot(NewBB);
 | |
|     } else {
 | |
|       // Split block expects NewBB to have a non-empty set of predecessors.
 | |
|       DT->splitBlock(NewBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update MemoryPhis after split if MemorySSA is available
 | |
|   if (MSSAU)
 | |
|     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
 | |
| 
 | |
|   // The rest of the logic is only relevant for updating the loop structures.
 | |
|   if (!LI)
 | |
|     return;
 | |
| 
 | |
|   assert(DT && "DT should be available to update LoopInfo!");
 | |
|   Loop *L = LI->getLoopFor(OldBB);
 | |
| 
 | |
|   // If we need to preserve loop analyses, collect some information about how
 | |
|   // this split will affect loops.
 | |
|   bool IsLoopEntry = !!L;
 | |
|   bool SplitMakesNewLoopHeader = false;
 | |
|   for (BasicBlock *Pred : Preds) {
 | |
|     // Preds that are not reachable from entry should not be used to identify if
 | |
|     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
 | |
|     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
 | |
|     // as true and make the NewBB the header of some loop. This breaks LI.
 | |
|     if (!DT->isReachableFromEntry(Pred))
 | |
|       continue;
 | |
|     // If we need to preserve LCSSA, determine if any of the preds is a loop
 | |
|     // exit.
 | |
|     if (PreserveLCSSA)
 | |
|       if (Loop *PL = LI->getLoopFor(Pred))
 | |
|         if (!PL->contains(OldBB))
 | |
|           HasLoopExit = true;
 | |
| 
 | |
|     // If we need to preserve LoopInfo, note whether any of the preds crosses
 | |
|     // an interesting loop boundary.
 | |
|     if (!L)
 | |
|       continue;
 | |
|     if (L->contains(Pred))
 | |
|       IsLoopEntry = false;
 | |
|     else
 | |
|       SplitMakesNewLoopHeader = true;
 | |
|   }
 | |
| 
 | |
|   // Unless we have a loop for OldBB, nothing else to do here.
 | |
|   if (!L)
 | |
|     return;
 | |
| 
 | |
|   if (IsLoopEntry) {
 | |
|     // Add the new block to the nearest enclosing loop (and not an adjacent
 | |
|     // loop). To find this, examine each of the predecessors and determine which
 | |
|     // loops enclose them, and select the most-nested loop which contains the
 | |
|     // loop containing the block being split.
 | |
|     Loop *InnermostPredLoop = nullptr;
 | |
|     for (BasicBlock *Pred : Preds) {
 | |
|       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
 | |
|         // Seek a loop which actually contains the block being split (to avoid
 | |
|         // adjacent loops).
 | |
|         while (PredLoop && !PredLoop->contains(OldBB))
 | |
|           PredLoop = PredLoop->getParentLoop();
 | |
| 
 | |
|         // Select the most-nested of these loops which contains the block.
 | |
|         if (PredLoop && PredLoop->contains(OldBB) &&
 | |
|             (!InnermostPredLoop ||
 | |
|              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
 | |
|           InnermostPredLoop = PredLoop;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (InnermostPredLoop)
 | |
|       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
|   } else {
 | |
|     L->addBasicBlockToLoop(NewBB, *LI);
 | |
|     if (SplitMakesNewLoopHeader)
 | |
|       L->moveToHeader(NewBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
 | |
| /// This also updates AliasAnalysis, if available.
 | |
| static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
 | |
|                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
 | |
|                            bool HasLoopExit) {
 | |
|   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
 | |
|   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
 | |
|   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I++);
 | |
| 
 | |
|     // Check to see if all of the values coming in are the same.  If so, we
 | |
|     // don't need to create a new PHI node, unless it's needed for LCSSA.
 | |
|     Value *InVal = nullptr;
 | |
|     if (!HasLoopExit) {
 | |
|       InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         if (!PredSet.count(PN->getIncomingBlock(i)))
 | |
|           continue;
 | |
|         if (!InVal)
 | |
|           InVal = PN->getIncomingValue(i);
 | |
|         else if (InVal != PN->getIncomingValue(i)) {
 | |
|           InVal = nullptr;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (InVal) {
 | |
|       // If all incoming values for the new PHI would be the same, just don't
 | |
|       // make a new PHI.  Instead, just remove the incoming values from the old
 | |
|       // PHI.
 | |
| 
 | |
|       // NOTE! This loop walks backwards for a reason! First off, this minimizes
 | |
|       // the cost of removal if we end up removing a large number of values, and
 | |
|       // second off, this ensures that the indices for the incoming values
 | |
|       // aren't invalidated when we remove one.
 | |
|       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
 | |
|         if (PredSet.count(PN->getIncomingBlock(i)))
 | |
|           PN->removeIncomingValue(i, false);
 | |
| 
 | |
|       // Add an incoming value to the PHI node in the loop for the preheader
 | |
|       // edge.
 | |
|       PN->addIncoming(InVal, NewBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the values coming into the block are not the same, we need a new
 | |
|     // PHI.
 | |
|     // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|     PHINode *NewPHI =
 | |
|         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
 | |
| 
 | |
|     // NOTE! This loop walks backwards for a reason! First off, this minimizes
 | |
|     // the cost of removal if we end up removing a large number of values, and
 | |
|     // second off, this ensures that the indices for the incoming values aren't
 | |
|     // invalidated when we remove one.
 | |
|     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
 | |
|       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
 | |
|       if (PredSet.count(IncomingBB)) {
 | |
|         Value *V = PN->removeIncomingValue(i, false);
 | |
|         NewPHI->addIncoming(V, IncomingBB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PN->addIncoming(NewPHI, NewBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
 | |
|                                          ArrayRef<BasicBlock *> Preds,
 | |
|                                          const char *Suffix, DominatorTree *DT,
 | |
|                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | |
|                                          bool PreserveLCSSA) {
 | |
|   // Do not attempt to split that which cannot be split.
 | |
|   if (!BB->canSplitPredecessors())
 | |
|     return nullptr;
 | |
| 
 | |
|   // For the landingpads we need to act a bit differently.
 | |
|   // Delegate this work to the SplitLandingPadPredecessors.
 | |
|   if (BB->isLandingPad()) {
 | |
|     SmallVector<BasicBlock*, 2> NewBBs;
 | |
|     std::string NewName = std::string(Suffix) + ".split-lp";
 | |
| 
 | |
|     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
 | |
|                                 LI, MSSAU, PreserveLCSSA);
 | |
|     return NewBBs[0];
 | |
|   }
 | |
| 
 | |
|   // Create new basic block, insert right before the original block.
 | |
|   BasicBlock *NewBB = BasicBlock::Create(
 | |
|       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
 | |
| 
 | |
|   // The new block unconditionally branches to the old block.
 | |
|   BranchInst *BI = BranchInst::Create(BB, NewBB);
 | |
|   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
 | |
| 
 | |
|   // Move the edges from Preds to point to NewBB instead of BB.
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|     // This is slightly more strict than necessary; the minimum requirement
 | |
|     // is that there be no more than one indirectbr branching to BB. And
 | |
|     // all BlockAddress uses would need to be updated.
 | |
|     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
|     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
 | |
|   // node becomes an incoming value for BB's phi node.  However, if the Preds
 | |
|   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
 | |
|   // account for the newly created predecessor.
 | |
|   if (Preds.empty()) {
 | |
|     // Insert dummy values as the incoming value.
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
 | |
|       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
 | |
|   }
 | |
| 
 | |
|   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | |
|   bool HasLoopExit = false;
 | |
|   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
 | |
|                             HasLoopExit);
 | |
| 
 | |
|   if (!Preds.empty()) {
 | |
|     // Update the PHI nodes in BB with the values coming from NewBB.
 | |
|     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
 | |
|   }
 | |
| 
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
 | |
|                                        ArrayRef<BasicBlock *> Preds,
 | |
|                                        const char *Suffix1, const char *Suffix2,
 | |
|                                        SmallVectorImpl<BasicBlock *> &NewBBs,
 | |
|                                        DominatorTree *DT, LoopInfo *LI,
 | |
|                                        MemorySSAUpdater *MSSAU,
 | |
|                                        bool PreserveLCSSA) {
 | |
|   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
 | |
| 
 | |
|   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
 | |
|   // it right before the original block.
 | |
|   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
 | |
|                                           OrigBB->getName() + Suffix1,
 | |
|                                           OrigBB->getParent(), OrigBB);
 | |
|   NewBBs.push_back(NewBB1);
 | |
| 
 | |
|   // The new block unconditionally branches to the old block.
 | |
|   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
 | |
|   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
 | |
| 
 | |
|   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|     // This is slightly more strict than necessary; the minimum requirement
 | |
|     // is that there be no more than one indirectbr branching to BB. And
 | |
|     // all BlockAddress uses would need to be updated.
 | |
|     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
|     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
 | |
|   }
 | |
| 
 | |
|   bool HasLoopExit = false;
 | |
|   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
 | |
|                             HasLoopExit);
 | |
| 
 | |
|   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
 | |
|   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
 | |
| 
 | |
|   // Move the remaining edges from OrigBB to point to NewBB2.
 | |
|   SmallVector<BasicBlock*, 8> NewBB2Preds;
 | |
|   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
 | |
|        i != e; ) {
 | |
|     BasicBlock *Pred = *i++;
 | |
|     if (Pred == NewBB1) continue;
 | |
|     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
|     NewBB2Preds.push_back(Pred);
 | |
|     e = pred_end(OrigBB);
 | |
|   }
 | |
| 
 | |
|   BasicBlock *NewBB2 = nullptr;
 | |
|   if (!NewBB2Preds.empty()) {
 | |
|     // Create another basic block for the rest of OrigBB's predecessors.
 | |
|     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
 | |
|                                 OrigBB->getName() + Suffix2,
 | |
|                                 OrigBB->getParent(), OrigBB);
 | |
|     NewBBs.push_back(NewBB2);
 | |
| 
 | |
|     // The new block unconditionally branches to the old block.
 | |
|     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
 | |
|     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
 | |
| 
 | |
|     // Move the remaining edges from OrigBB to point to NewBB2.
 | |
|     for (BasicBlock *NewBB2Pred : NewBB2Preds)
 | |
|       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
 | |
| 
 | |
|     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | |
|     HasLoopExit = false;
 | |
|     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
 | |
|                               PreserveLCSSA, HasLoopExit);
 | |
| 
 | |
|     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
 | |
|     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
 | |
|   }
 | |
| 
 | |
|   LandingPadInst *LPad = OrigBB->getLandingPadInst();
 | |
|   Instruction *Clone1 = LPad->clone();
 | |
|   Clone1->setName(Twine("lpad") + Suffix1);
 | |
|   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
 | |
| 
 | |
|   if (NewBB2) {
 | |
|     Instruction *Clone2 = LPad->clone();
 | |
|     Clone2->setName(Twine("lpad") + Suffix2);
 | |
|     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
 | |
| 
 | |
|     // Create a PHI node for the two cloned landingpad instructions only
 | |
|     // if the original landingpad instruction has some uses.
 | |
|     if (!LPad->use_empty()) {
 | |
|       assert(!LPad->getType()->isTokenTy() &&
 | |
|              "Split cannot be applied if LPad is token type. Otherwise an "
 | |
|              "invalid PHINode of token type would be created.");
 | |
|       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
 | |
|       PN->addIncoming(Clone1, NewBB1);
 | |
|       PN->addIncoming(Clone2, NewBB2);
 | |
|       LPad->replaceAllUsesWith(PN);
 | |
|     }
 | |
|     LPad->eraseFromParent();
 | |
|   } else {
 | |
|     // There is no second clone. Just replace the landing pad with the first
 | |
|     // clone.
 | |
|     LPad->replaceAllUsesWith(Clone1);
 | |
|     LPad->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
 | |
|                                              BasicBlock *Pred,
 | |
|                                              DomTreeUpdater *DTU) {
 | |
|   Instruction *UncondBranch = Pred->getTerminator();
 | |
|   // Clone the return and add it to the end of the predecessor.
 | |
|   Instruction *NewRet = RI->clone();
 | |
|   Pred->getInstList().push_back(NewRet);
 | |
| 
 | |
|   // If the return instruction returns a value, and if the value was a
 | |
|   // PHI node in "BB", propagate the right value into the return.
 | |
|   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
 | |
|        i != e; ++i) {
 | |
|     Value *V = *i;
 | |
|     Instruction *NewBC = nullptr;
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
 | |
|       // Return value might be bitcasted. Clone and insert it before the
 | |
|       // return instruction.
 | |
|       V = BCI->getOperand(0);
 | |
|       NewBC = BCI->clone();
 | |
|       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
 | |
|       *i = NewBC;
 | |
|     }
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|       if (PN->getParent() == BB) {
 | |
|         if (NewBC)
 | |
|           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | |
|         else
 | |
|           *i = PN->getIncomingValueForBlock(Pred);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update any PHI nodes in the returning block to realize that we no
 | |
|   // longer branch to them.
 | |
|   BB->removePredecessor(Pred);
 | |
|   UncondBranch->eraseFromParent();
 | |
| 
 | |
|   if (DTU)
 | |
|     DTU->deleteEdge(Pred, BB);
 | |
| 
 | |
|   return cast<ReturnInst>(NewRet);
 | |
| }
 | |
| 
 | |
| TerminatorInst *
 | |
| llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
 | |
|                                 bool Unreachable, MDNode *BranchWeights,
 | |
|                                 DominatorTree *DT, LoopInfo *LI) {
 | |
|   BasicBlock *Head = SplitBefore->getParent();
 | |
|   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
 | |
|   TerminatorInst *HeadOldTerm = Head->getTerminator();
 | |
|   LLVMContext &C = Head->getContext();
 | |
|   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | |
|   TerminatorInst *CheckTerm;
 | |
|   if (Unreachable)
 | |
|     CheckTerm = new UnreachableInst(C, ThenBlock);
 | |
|   else
 | |
|     CheckTerm = BranchInst::Create(Tail, ThenBlock);
 | |
|   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
 | |
|   BranchInst *HeadNewTerm =
 | |
|     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
 | |
|   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | |
|   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | |
| 
 | |
|   if (DT) {
 | |
|     if (DomTreeNode *OldNode = DT->getNode(Head)) {
 | |
|       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
 | |
| 
 | |
|       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
 | |
|       for (DomTreeNode *Child : Children)
 | |
|         DT->changeImmediateDominator(Child, NewNode);
 | |
| 
 | |
|       // Head dominates ThenBlock.
 | |
|       DT->addNewBlock(ThenBlock, Head);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LI) {
 | |
|     if (Loop *L = LI->getLoopFor(Head)) {
 | |
|       L->addBasicBlockToLoop(ThenBlock, *LI);
 | |
|       L->addBasicBlockToLoop(Tail, *LI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return CheckTerm;
 | |
| }
 | |
| 
 | |
| void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
 | |
|                                          TerminatorInst **ThenTerm,
 | |
|                                          TerminatorInst **ElseTerm,
 | |
|                                          MDNode *BranchWeights) {
 | |
|   BasicBlock *Head = SplitBefore->getParent();
 | |
|   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
 | |
|   TerminatorInst *HeadOldTerm = Head->getTerminator();
 | |
|   LLVMContext &C = Head->getContext();
 | |
|   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | |
|   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | |
|   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
 | |
|   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
 | |
|   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
 | |
|   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
 | |
|   BranchInst *HeadNewTerm =
 | |
|     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
 | |
|   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | |
|   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | |
| }
 | |
| 
 | |
| Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
 | |
|                              BasicBlock *&IfFalse) {
 | |
|   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
 | |
|   BasicBlock *Pred1 = nullptr;
 | |
|   BasicBlock *Pred2 = nullptr;
 | |
| 
 | |
|   if (SomePHI) {
 | |
|     if (SomePHI->getNumIncomingValues() != 2)
 | |
|       return nullptr;
 | |
|     Pred1 = SomePHI->getIncomingBlock(0);
 | |
|     Pred2 = SomePHI->getIncomingBlock(1);
 | |
|   } else {
 | |
|     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
|     if (PI == PE) // No predecessor
 | |
|       return nullptr;
 | |
|     Pred1 = *PI++;
 | |
|     if (PI == PE) // Only one predecessor
 | |
|       return nullptr;
 | |
|     Pred2 = *PI++;
 | |
|     if (PI != PE) // More than two predecessors
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // We can only handle branches.  Other control flow will be lowered to
 | |
|   // branches if possible anyway.
 | |
|   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
 | |
|   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
 | |
|   if (!Pred1Br || !Pred2Br)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | |
|   // either are.
 | |
|   if (Pred2Br->isConditional()) {
 | |
|     // If both branches are conditional, we don't have an "if statement".  In
 | |
|     // reality, we could transform this case, but since the condition will be
 | |
|     // required anyway, we stand no chance of eliminating it, so the xform is
 | |
|     // probably not profitable.
 | |
|     if (Pred1Br->isConditional())
 | |
|       return nullptr;
 | |
| 
 | |
|     std::swap(Pred1, Pred2);
 | |
|     std::swap(Pred1Br, Pred2Br);
 | |
|   }
 | |
| 
 | |
|   if (Pred1Br->isConditional()) {
 | |
|     // The only thing we have to watch out for here is to make sure that Pred2
 | |
|     // doesn't have incoming edges from other blocks.  If it does, the condition
 | |
|     // doesn't dominate BB.
 | |
|     if (!Pred2->getSinglePredecessor())
 | |
|       return nullptr;
 | |
| 
 | |
|     // If we found a conditional branch predecessor, make sure that it branches
 | |
|     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | |
|     if (Pred1Br->getSuccessor(0) == BB &&
 | |
|         Pred1Br->getSuccessor(1) == Pred2) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | |
|                Pred1Br->getSuccessor(1) == BB) {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     } else {
 | |
|       // We know that one arm of the conditional goes to BB, so the other must
 | |
|       // go somewhere unrelated, and this must not be an "if statement".
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     return Pred1Br->getCondition();
 | |
|   }
 | |
| 
 | |
|   // Ok, if we got here, both predecessors end with an unconditional branch to
 | |
|   // BB.  Don't panic!  If both blocks only have a single (identical)
 | |
|   // predecessor, and THAT is a conditional branch, then we're all ok!
 | |
|   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
 | |
|   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, if this is a conditional branch, then we can use it!
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
 | |
|   if (!BI) return nullptr;
 | |
| 
 | |
|   assert(BI->isConditional() && "Two successors but not conditional?");
 | |
|   if (BI->getSuccessor(0) == Pred1) {
 | |
|     IfTrue = Pred1;
 | |
|     IfFalse = Pred2;
 | |
|   } else {
 | |
|     IfTrue = Pred2;
 | |
|     IfFalse = Pred1;
 | |
|   }
 | |
|   return BI->getCondition();
 | |
| }
 |