1293 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1293 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the interface to tear out a code region, such as an
 | |
| // individual loop or a parallel section, into a new function, replacing it with
 | |
| // a call to the new function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/CodeExtractor.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BlockFrequency.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using ProfileCount = Function::ProfileCount;
 | |
| 
 | |
| #define DEBUG_TYPE "code-extractor"
 | |
| 
 | |
| // Provide a command-line option to aggregate function arguments into a struct
 | |
| // for functions produced by the code extractor. This is useful when converting
 | |
| // extracted functions to pthread-based code, as only one argument (void*) can
 | |
| // be passed in to pthread_create().
 | |
| static cl::opt<bool>
 | |
| AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
 | |
|                  cl::desc("Aggregate arguments to code-extracted functions"));
 | |
| 
 | |
| /// Test whether a block is valid for extraction.
 | |
| static bool isBlockValidForExtraction(const BasicBlock &BB,
 | |
|                                       const SetVector<BasicBlock *> &Result,
 | |
|                                       bool AllowVarArgs, bool AllowAlloca) {
 | |
|   // taking the address of a basic block moved to another function is illegal
 | |
|   if (BB.hasAddressTaken())
 | |
|     return false;
 | |
| 
 | |
|   // don't hoist code that uses another basicblock address, as it's likely to
 | |
|   // lead to unexpected behavior, like cross-function jumps
 | |
|   SmallPtrSet<User const *, 16> Visited;
 | |
|   SmallVector<User const *, 16> ToVisit;
 | |
| 
 | |
|   for (Instruction const &Inst : BB)
 | |
|     ToVisit.push_back(&Inst);
 | |
| 
 | |
|   while (!ToVisit.empty()) {
 | |
|     User const *Curr = ToVisit.pop_back_val();
 | |
|     if (!Visited.insert(Curr).second)
 | |
|       continue;
 | |
|     if (isa<BlockAddress const>(Curr))
 | |
|       return false; // even a reference to self is likely to be not compatible
 | |
| 
 | |
|     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
 | |
|       continue;
 | |
| 
 | |
|     for (auto const &U : Curr->operands()) {
 | |
|       if (auto *UU = dyn_cast<User>(U))
 | |
|         ToVisit.push_back(UU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If explicitly requested, allow vastart and alloca. For invoke instructions
 | |
|   // verify that extraction is valid.
 | |
|   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
 | |
|     if (isa<AllocaInst>(I)) {
 | |
|        if (!AllowAlloca)
 | |
|          return false;
 | |
|        continue;
 | |
|     }
 | |
| 
 | |
|     if (const auto *II = dyn_cast<InvokeInst>(I)) {
 | |
|       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
 | |
|       // must be a part of the subgraph which is being extracted.
 | |
|       if (auto *UBB = II->getUnwindDest())
 | |
|         if (!Result.count(UBB))
 | |
|           return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // All catch handlers of a catchswitch instruction as well as the unwind
 | |
|     // destination must be in the subgraph.
 | |
|     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
 | |
|       if (auto *UBB = CSI->getUnwindDest())
 | |
|         if (!Result.count(UBB))
 | |
|           return false;
 | |
|       for (auto *HBB : CSI->handlers())
 | |
|         if (!Result.count(const_cast<BasicBlock*>(HBB)))
 | |
|           return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Make sure that entire catch handler is within subgraph. It is sufficient
 | |
|     // to check that catch return's block is in the list.
 | |
|     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
 | |
|       for (const auto *U : CPI->users())
 | |
|         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
 | |
|           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
 | |
|             return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // And do similar checks for cleanup handler - the entire handler must be
 | |
|     // in subgraph which is going to be extracted. For cleanup return should
 | |
|     // additionally check that the unwind destination is also in the subgraph.
 | |
|     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
 | |
|       for (const auto *U : CPI->users())
 | |
|         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
 | |
|           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
 | |
|             return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
 | |
|       if (auto *UBB = CRI->getUnwindDest())
 | |
|         if (!Result.count(UBB))
 | |
|           return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|       if (const Function *F = CI->getCalledFunction())
 | |
|         if (F->getIntrinsicID() == Intrinsic::vastart) {
 | |
|           if (AllowVarArgs)
 | |
|             continue;
 | |
|           else
 | |
|             return false;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Build a set of blocks to extract if the input blocks are viable.
 | |
| static SetVector<BasicBlock *>
 | |
| buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
 | |
|                         bool AllowVarArgs, bool AllowAlloca) {
 | |
|   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
 | |
|   SetVector<BasicBlock *> Result;
 | |
| 
 | |
|   // Loop over the blocks, adding them to our set-vector, and aborting with an
 | |
|   // empty set if we encounter invalid blocks.
 | |
|   for (BasicBlock *BB : BBs) {
 | |
|     // If this block is dead, don't process it.
 | |
|     if (DT && !DT->isReachableFromEntry(BB))
 | |
|       continue;
 | |
| 
 | |
|     if (!Result.insert(BB))
 | |
|       llvm_unreachable("Repeated basic blocks in extraction input");
 | |
|   }
 | |
| 
 | |
|   for (auto *BB : Result) {
 | |
|     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
 | |
|       return {};
 | |
| 
 | |
|     // Make sure that the first block is not a landing pad.
 | |
|     if (BB == Result.front()) {
 | |
|       if (BB->isEHPad()) {
 | |
|         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
 | |
|         return {};
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // All blocks other than the first must not have predecessors outside of
 | |
|     // the subgraph which is being extracted.
 | |
|     for (auto *PBB : predecessors(BB))
 | |
|       if (!Result.count(PBB)) {
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "No blocks in this region may have entries from "
 | |
|                       "outside the region except for the first block!\n");
 | |
|         return {};
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
 | |
|                              bool AggregateArgs, BlockFrequencyInfo *BFI,
 | |
|                              BranchProbabilityInfo *BPI, bool AllowVarArgs,
 | |
|                              bool AllowAlloca)
 | |
|     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
 | |
|       BPI(BPI), AllowVarArgs(AllowVarArgs),
 | |
|       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)) {}
 | |
| 
 | |
| CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
 | |
|                              BlockFrequencyInfo *BFI,
 | |
|                              BranchProbabilityInfo *BPI)
 | |
|     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
 | |
|       BPI(BPI), AllowVarArgs(false),
 | |
|       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
 | |
|                                      /* AllowVarArgs */ false,
 | |
|                                      /* AllowAlloca */ false)) {}
 | |
| 
 | |
| /// definedInRegion - Return true if the specified value is defined in the
 | |
| /// extracted region.
 | |
| static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (Blocks.count(I->getParent()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// definedInCaller - Return true if the specified value is defined in the
 | |
| /// function being code extracted, but not in the region being extracted.
 | |
| /// These values must be passed in as live-ins to the function.
 | |
| static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
 | |
|   if (isa<Argument>(V)) return true;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (!Blocks.count(I->getParent()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
 | |
|   BasicBlock *CommonExitBlock = nullptr;
 | |
|   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
 | |
|     for (auto *Succ : successors(Block)) {
 | |
|       // Internal edges, ok.
 | |
|       if (Blocks.count(Succ))
 | |
|         continue;
 | |
|       if (!CommonExitBlock) {
 | |
|         CommonExitBlock = Succ;
 | |
|         continue;
 | |
|       }
 | |
|       if (CommonExitBlock == Succ)
 | |
|         continue;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   if (any_of(Blocks, hasNonCommonExitSucc))
 | |
|     return nullptr;
 | |
| 
 | |
|   return CommonExitBlock;
 | |
| }
 | |
| 
 | |
| bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
 | |
|     Instruction *Addr) const {
 | |
|   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
 | |
|   Function *Func = (*Blocks.begin())->getParent();
 | |
|   for (BasicBlock &BB : *Func) {
 | |
|     if (Blocks.count(&BB))
 | |
|       continue;
 | |
|     for (Instruction &II : BB) {
 | |
|       if (isa<DbgInfoIntrinsic>(II))
 | |
|         continue;
 | |
| 
 | |
|       unsigned Opcode = II.getOpcode();
 | |
|       Value *MemAddr = nullptr;
 | |
|       switch (Opcode) {
 | |
|       case Instruction::Store:
 | |
|       case Instruction::Load: {
 | |
|         if (Opcode == Instruction::Store) {
 | |
|           StoreInst *SI = cast<StoreInst>(&II);
 | |
|           MemAddr = SI->getPointerOperand();
 | |
|         } else {
 | |
|           LoadInst *LI = cast<LoadInst>(&II);
 | |
|           MemAddr = LI->getPointerOperand();
 | |
|         }
 | |
|         // Global variable can not be aliased with locals.
 | |
|         if (dyn_cast<Constant>(MemAddr))
 | |
|           break;
 | |
|         Value *Base = MemAddr->stripInBoundsConstantOffsets();
 | |
|         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
 | |
|           return false;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
 | |
|         if (IntrInst) {
 | |
|           if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|               IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
 | |
|             break;
 | |
|           return false;
 | |
|         }
 | |
|         // Treat all the other cases conservatively if it has side effects.
 | |
|         if (II.mayHaveSideEffects())
 | |
|           return false;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| BasicBlock *
 | |
| CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
 | |
|   BasicBlock *SinglePredFromOutlineRegion = nullptr;
 | |
|   assert(!Blocks.count(CommonExitBlock) &&
 | |
|          "Expect a block outside the region!");
 | |
|   for (auto *Pred : predecessors(CommonExitBlock)) {
 | |
|     if (!Blocks.count(Pred))
 | |
|       continue;
 | |
|     if (!SinglePredFromOutlineRegion) {
 | |
|       SinglePredFromOutlineRegion = Pred;
 | |
|     } else if (SinglePredFromOutlineRegion != Pred) {
 | |
|       SinglePredFromOutlineRegion = nullptr;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SinglePredFromOutlineRegion)
 | |
|     return SinglePredFromOutlineRegion;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   auto getFirstPHI = [](BasicBlock *BB) {
 | |
|     BasicBlock::iterator I = BB->begin();
 | |
|     PHINode *FirstPhi = nullptr;
 | |
|     while (I != BB->end()) {
 | |
|       PHINode *Phi = dyn_cast<PHINode>(I);
 | |
|       if (!Phi)
 | |
|         break;
 | |
|       if (!FirstPhi) {
 | |
|         FirstPhi = Phi;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return FirstPhi;
 | |
|   };
 | |
|   // If there are any phi nodes, the single pred either exists or has already
 | |
|   // be created before code extraction.
 | |
|   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
 | |
| #endif
 | |
| 
 | |
|   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
 | |
|       CommonExitBlock->getFirstNonPHI()->getIterator());
 | |
| 
 | |
|   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
 | |
|        PI != PE;) {
 | |
|     BasicBlock *Pred = *PI++;
 | |
|     if (Blocks.count(Pred))
 | |
|       continue;
 | |
|     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
 | |
|   }
 | |
|   // Now add the old exit block to the outline region.
 | |
|   Blocks.insert(CommonExitBlock);
 | |
|   return CommonExitBlock;
 | |
| }
 | |
| 
 | |
| void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
 | |
|                                 BasicBlock *&ExitBlock) const {
 | |
|   Function *Func = (*Blocks.begin())->getParent();
 | |
|   ExitBlock = getCommonExitBlock(Blocks);
 | |
| 
 | |
|   for (BasicBlock &BB : *Func) {
 | |
|     if (Blocks.count(&BB))
 | |
|       continue;
 | |
|     for (Instruction &II : BB) {
 | |
|       auto *AI = dyn_cast<AllocaInst>(&II);
 | |
|       if (!AI)
 | |
|         continue;
 | |
| 
 | |
|       // Find the pair of life time markers for address 'Addr' that are either
 | |
|       // defined inside the outline region or can legally be shrinkwrapped into
 | |
|       // the outline region. If there are not other untracked uses of the
 | |
|       // address, return the pair of markers if found; otherwise return a pair
 | |
|       // of nullptr.
 | |
|       auto GetLifeTimeMarkers =
 | |
|           [&](Instruction *Addr, bool &SinkLifeStart,
 | |
|               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
 | |
|         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
 | |
| 
 | |
|         for (User *U : Addr->users()) {
 | |
|           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
 | |
|           if (IntrInst) {
 | |
|             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
 | |
|               // Do not handle the case where AI has multiple start markers.
 | |
|               if (LifeStart)
 | |
|                 return std::make_pair<Instruction *>(nullptr, nullptr);
 | |
|               LifeStart = IntrInst;
 | |
|             }
 | |
|             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|               if (LifeEnd)
 | |
|                 return std::make_pair<Instruction *>(nullptr, nullptr);
 | |
|               LifeEnd = IntrInst;
 | |
|             }
 | |
|             continue;
 | |
|           }
 | |
|           // Find untracked uses of the address, bail.
 | |
|           if (!definedInRegion(Blocks, U))
 | |
|             return std::make_pair<Instruction *>(nullptr, nullptr);
 | |
|         }
 | |
| 
 | |
|         if (!LifeStart || !LifeEnd)
 | |
|           return std::make_pair<Instruction *>(nullptr, nullptr);
 | |
| 
 | |
|         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
 | |
|         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
 | |
|         // Do legality Check.
 | |
|         if ((SinkLifeStart || HoistLifeEnd) &&
 | |
|             !isLegalToShrinkwrapLifetimeMarkers(Addr))
 | |
|           return std::make_pair<Instruction *>(nullptr, nullptr);
 | |
| 
 | |
|         // Check to see if we have a place to do hoisting, if not, bail.
 | |
|         if (HoistLifeEnd && !ExitBlock)
 | |
|           return std::make_pair<Instruction *>(nullptr, nullptr);
 | |
| 
 | |
|         return std::make_pair(LifeStart, LifeEnd);
 | |
|       };
 | |
| 
 | |
|       bool SinkLifeStart = false, HoistLifeEnd = false;
 | |
|       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
 | |
| 
 | |
|       if (Markers.first) {
 | |
|         if (SinkLifeStart)
 | |
|           SinkCands.insert(Markers.first);
 | |
|         SinkCands.insert(AI);
 | |
|         if (HoistLifeEnd)
 | |
|           HoistCands.insert(Markers.second);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Follow the bitcast.
 | |
|       Instruction *MarkerAddr = nullptr;
 | |
|       for (User *U : AI->users()) {
 | |
|         if (U->stripInBoundsConstantOffsets() == AI) {
 | |
|           SinkLifeStart = false;
 | |
|           HoistLifeEnd = false;
 | |
|           Instruction *Bitcast = cast<Instruction>(U);
 | |
|           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
 | |
|           if (Markers.first) {
 | |
|             MarkerAddr = Bitcast;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Found unknown use of AI.
 | |
|         if (!definedInRegion(Blocks, U)) {
 | |
|           MarkerAddr = nullptr;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (MarkerAddr) {
 | |
|         if (SinkLifeStart)
 | |
|           SinkCands.insert(Markers.first);
 | |
|         if (!definedInRegion(Blocks, MarkerAddr))
 | |
|           SinkCands.insert(MarkerAddr);
 | |
|         SinkCands.insert(AI);
 | |
|         if (HoistLifeEnd)
 | |
|           HoistCands.insert(Markers.second);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
 | |
|                                       const ValueSet &SinkCands) const {
 | |
|   for (BasicBlock *BB : Blocks) {
 | |
|     // If a used value is defined outside the region, it's an input.  If an
 | |
|     // instruction is used outside the region, it's an output.
 | |
|     for (Instruction &II : *BB) {
 | |
|       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
 | |
|            ++OI) {
 | |
|         Value *V = *OI;
 | |
|         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
 | |
|           Inputs.insert(V);
 | |
|       }
 | |
| 
 | |
|       for (User *U : II.users())
 | |
|         if (!definedInRegion(Blocks, U)) {
 | |
|           Outputs.insert(&II);
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
 | |
| /// region, we need to split the entry block of the region so that the PHI node
 | |
| /// is easier to deal with.
 | |
| void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
 | |
|   unsigned NumPredsFromRegion = 0;
 | |
|   unsigned NumPredsOutsideRegion = 0;
 | |
| 
 | |
|   if (Header != &Header->getParent()->getEntryBlock()) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(Header->begin());
 | |
|     if (!PN) return;  // No PHI nodes.
 | |
| 
 | |
|     // If the header node contains any PHI nodes, check to see if there is more
 | |
|     // than one entry from outside the region.  If so, we need to sever the
 | |
|     // header block into two.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (Blocks.count(PN->getIncomingBlock(i)))
 | |
|         ++NumPredsFromRegion;
 | |
|       else
 | |
|         ++NumPredsOutsideRegion;
 | |
| 
 | |
|     // If there is one (or fewer) predecessor from outside the region, we don't
 | |
|     // need to do anything special.
 | |
|     if (NumPredsOutsideRegion <= 1) return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we need to split the header block into two pieces: one
 | |
|   // containing PHI nodes merging values from outside of the region, and a
 | |
|   // second that contains all of the code for the block and merges back any
 | |
|   // incoming values from inside of the region.
 | |
|   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
 | |
| 
 | |
|   // We only want to code extract the second block now, and it becomes the new
 | |
|   // header of the region.
 | |
|   BasicBlock *OldPred = Header;
 | |
|   Blocks.remove(OldPred);
 | |
|   Blocks.insert(NewBB);
 | |
|   Header = NewBB;
 | |
| 
 | |
|   // Okay, now we need to adjust the PHI nodes and any branches from within the
 | |
|   // region to go to the new header block instead of the old header block.
 | |
|   if (NumPredsFromRegion) {
 | |
|     PHINode *PN = cast<PHINode>(OldPred->begin());
 | |
|     // Loop over all of the predecessors of OldPred that are in the region,
 | |
|     // changing them to branch to NewBB instead.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (Blocks.count(PN->getIncomingBlock(i))) {
 | |
|         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
 | |
|         TI->replaceUsesOfWith(OldPred, NewBB);
 | |
|       }
 | |
| 
 | |
|     // Okay, everything within the region is now branching to the right block, we
 | |
|     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
 | |
|     BasicBlock::iterator AfterPHIs;
 | |
|     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
 | |
|       PHINode *PN = cast<PHINode>(AfterPHIs);
 | |
|       // Create a new PHI node in the new region, which has an incoming value
 | |
|       // from OldPred of PN.
 | |
|       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
 | |
|                                        PN->getName() + ".ce", &NewBB->front());
 | |
|       PN->replaceAllUsesWith(NewPN);
 | |
|       NewPN->addIncoming(PN, OldPred);
 | |
| 
 | |
|       // Loop over all of the incoming value in PN, moving them to NewPN if they
 | |
|       // are from the extracted region.
 | |
|       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
 | |
|         if (Blocks.count(PN->getIncomingBlock(i))) {
 | |
|           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
 | |
|           PN->removeIncomingValue(i);
 | |
|           --i;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeExtractor::splitReturnBlocks() {
 | |
|   for (BasicBlock *Block : Blocks)
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
 | |
|       BasicBlock *New =
 | |
|           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
 | |
|       if (DT) {
 | |
|         // Old dominates New. New node dominates all other nodes dominated
 | |
|         // by Old.
 | |
|         DomTreeNode *OldNode = DT->getNode(Block);
 | |
|         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
 | |
|                                                OldNode->end());
 | |
| 
 | |
|         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
 | |
| 
 | |
|         for (DomTreeNode *I : Children)
 | |
|           DT->changeImmediateDominator(I, NewNode);
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// constructFunction - make a function based on inputs and outputs, as follows:
 | |
| /// f(in0, ..., inN, out0, ..., outN)
 | |
| Function *CodeExtractor::constructFunction(const ValueSet &inputs,
 | |
|                                            const ValueSet &outputs,
 | |
|                                            BasicBlock *header,
 | |
|                                            BasicBlock *newRootNode,
 | |
|                                            BasicBlock *newHeader,
 | |
|                                            Function *oldFunction,
 | |
|                                            Module *M) {
 | |
|   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
 | |
| 
 | |
|   // This function returns unsigned, outputs will go back by reference.
 | |
|   switch (NumExitBlocks) {
 | |
|   case 0:
 | |
|   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
 | |
|   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
 | |
|   default: RetTy = Type::getInt16Ty(header->getContext()); break;
 | |
|   }
 | |
| 
 | |
|   std::vector<Type *> paramTy;
 | |
| 
 | |
|   // Add the types of the input values to the function's argument list
 | |
|   for (Value *value : inputs) {
 | |
|     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
 | |
|     paramTy.push_back(value->getType());
 | |
|   }
 | |
| 
 | |
|   // Add the types of the output values to the function's argument list.
 | |
|   for (Value *output : outputs) {
 | |
|     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
 | |
|     if (AggregateArgs)
 | |
|       paramTy.push_back(output->getType());
 | |
|     else
 | |
|       paramTy.push_back(PointerType::getUnqual(output->getType()));
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Function type: " << *RetTy << " f(";
 | |
|     for (Type *i : paramTy)
 | |
|       dbgs() << *i << ", ";
 | |
|     dbgs() << ")\n";
 | |
|   });
 | |
| 
 | |
|   StructType *StructTy;
 | |
|   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
 | |
|     StructTy = StructType::get(M->getContext(), paramTy);
 | |
|     paramTy.clear();
 | |
|     paramTy.push_back(PointerType::getUnqual(StructTy));
 | |
|   }
 | |
|   FunctionType *funcType =
 | |
|                   FunctionType::get(RetTy, paramTy,
 | |
|                                     AllowVarArgs && oldFunction->isVarArg());
 | |
| 
 | |
|   // Create the new function
 | |
|   Function *newFunction = Function::Create(
 | |
|       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
 | |
|       oldFunction->getName() + "_" + header->getName(), M);
 | |
|   // If the old function is no-throw, so is the new one.
 | |
|   if (oldFunction->doesNotThrow())
 | |
|     newFunction->setDoesNotThrow();
 | |
| 
 | |
|   // Inherit the uwtable attribute if we need to.
 | |
|   if (oldFunction->hasUWTable())
 | |
|     newFunction->setHasUWTable();
 | |
| 
 | |
|   // Inherit all of the target dependent attributes and white-listed
 | |
|   // target independent attributes.
 | |
|   //  (e.g. If the extracted region contains a call to an x86.sse
 | |
|   //  instruction we need to make sure that the extracted region has the
 | |
|   //  "target-features" attribute allowing it to be lowered.
 | |
|   // FIXME: This should be changed to check to see if a specific
 | |
|   //           attribute can not be inherited.
 | |
|   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
 | |
|     if (Attr.isStringAttribute()) {
 | |
|       if (Attr.getKindAsString() == "thunk")
 | |
|         continue;
 | |
|     } else
 | |
|       switch (Attr.getKindAsEnum()) {
 | |
|       // Those attributes cannot be propagated safely. Explicitly list them
 | |
|       // here so we get a warning if new attributes are added. This list also
 | |
|       // includes non-function attributes.
 | |
|       case Attribute::Alignment:
 | |
|       case Attribute::AllocSize:
 | |
|       case Attribute::ArgMemOnly:
 | |
|       case Attribute::Builtin:
 | |
|       case Attribute::ByVal:
 | |
|       case Attribute::Convergent:
 | |
|       case Attribute::Dereferenceable:
 | |
|       case Attribute::DereferenceableOrNull:
 | |
|       case Attribute::InAlloca:
 | |
|       case Attribute::InReg:
 | |
|       case Attribute::InaccessibleMemOnly:
 | |
|       case Attribute::InaccessibleMemOrArgMemOnly:
 | |
|       case Attribute::JumpTable:
 | |
|       case Attribute::Naked:
 | |
|       case Attribute::Nest:
 | |
|       case Attribute::NoAlias:
 | |
|       case Attribute::NoBuiltin:
 | |
|       case Attribute::NoCapture:
 | |
|       case Attribute::NoReturn:
 | |
|       case Attribute::None:
 | |
|       case Attribute::NonNull:
 | |
|       case Attribute::ReadNone:
 | |
|       case Attribute::ReadOnly:
 | |
|       case Attribute::Returned:
 | |
|       case Attribute::ReturnsTwice:
 | |
|       case Attribute::SExt:
 | |
|       case Attribute::Speculatable:
 | |
|       case Attribute::StackAlignment:
 | |
|       case Attribute::StructRet:
 | |
|       case Attribute::SwiftError:
 | |
|       case Attribute::SwiftSelf:
 | |
|       case Attribute::WriteOnly:
 | |
|       case Attribute::ZExt:
 | |
|       case Attribute::EndAttrKinds:
 | |
|         continue;
 | |
|       // Those attributes should be safe to propagate to the extracted function.
 | |
|       case Attribute::AlwaysInline:
 | |
|       case Attribute::Cold:
 | |
|       case Attribute::NoRecurse:
 | |
|       case Attribute::InlineHint:
 | |
|       case Attribute::MinSize:
 | |
|       case Attribute::NoDuplicate:
 | |
|       case Attribute::NoImplicitFloat:
 | |
|       case Attribute::NoInline:
 | |
|       case Attribute::NonLazyBind:
 | |
|       case Attribute::NoRedZone:
 | |
|       case Attribute::NoUnwind:
 | |
|       case Attribute::OptForFuzzing:
 | |
|       case Attribute::OptimizeNone:
 | |
|       case Attribute::OptimizeForSize:
 | |
|       case Attribute::SafeStack:
 | |
|       case Attribute::ShadowCallStack:
 | |
|       case Attribute::SanitizeAddress:
 | |
|       case Attribute::SanitizeMemory:
 | |
|       case Attribute::SanitizeThread:
 | |
|       case Attribute::SanitizeHWAddress:
 | |
|       case Attribute::SpeculativeLoadHardening:
 | |
|       case Attribute::StackProtect:
 | |
|       case Attribute::StackProtectReq:
 | |
|       case Attribute::StackProtectStrong:
 | |
|       case Attribute::StrictFP:
 | |
|       case Attribute::UWTable:
 | |
|       case Attribute::NoCfCheck:
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     newFunction->addFnAttr(Attr);
 | |
|   }
 | |
|   newFunction->getBasicBlockList().push_back(newRootNode);
 | |
| 
 | |
|   // Create an iterator to name all of the arguments we inserted.
 | |
|   Function::arg_iterator AI = newFunction->arg_begin();
 | |
| 
 | |
|   // Rewrite all users of the inputs in the extracted region to use the
 | |
|   // arguments (or appropriate addressing into struct) instead.
 | |
|   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
 | |
|     Value *RewriteVal;
 | |
|     if (AggregateArgs) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
 | |
|       TerminatorInst *TI = newFunction->begin()->getTerminator();
 | |
|       GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | |
|           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
 | |
|       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
 | |
|     } else
 | |
|       RewriteVal = &*AI++;
 | |
| 
 | |
|     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
 | |
|     for (User *use : Users)
 | |
|       if (Instruction *inst = dyn_cast<Instruction>(use))
 | |
|         if (Blocks.count(inst->getParent()))
 | |
|           inst->replaceUsesOfWith(inputs[i], RewriteVal);
 | |
|   }
 | |
| 
 | |
|   // Set names for input and output arguments.
 | |
|   if (!AggregateArgs) {
 | |
|     AI = newFunction->arg_begin();
 | |
|     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
 | |
|       AI->setName(inputs[i]->getName());
 | |
|     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
 | |
|       AI->setName(outputs[i]->getName()+".out");
 | |
|   }
 | |
| 
 | |
|   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
 | |
|   // within the new function. This must be done before we lose track of which
 | |
|   // blocks were originally in the code region.
 | |
|   std::vector<User *> Users(header->user_begin(), header->user_end());
 | |
|   for (unsigned i = 0, e = Users.size(); i != e; ++i)
 | |
|     // The BasicBlock which contains the branch is not in the region
 | |
|     // modify the branch target to a new block
 | |
|     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
 | |
|       if (!Blocks.count(TI->getParent()) &&
 | |
|           TI->getParent()->getParent() == oldFunction)
 | |
|         TI->replaceUsesOfWith(header, newHeader);
 | |
| 
 | |
|   return newFunction;
 | |
| }
 | |
| 
 | |
| /// emitCallAndSwitchStatement - This method sets up the caller side by adding
 | |
| /// the call instruction, splitting any PHI nodes in the header block as
 | |
| /// necessary.
 | |
| void CodeExtractor::
 | |
| emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
 | |
|                            ValueSet &inputs, ValueSet &outputs) {
 | |
|   // Emit a call to the new function, passing in: *pointer to struct (if
 | |
|   // aggregating parameters), or plan inputs and allocated memory for outputs
 | |
|   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
 | |
| 
 | |
|   Module *M = newFunction->getParent();
 | |
|   LLVMContext &Context = M->getContext();
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
| 
 | |
|   // Add inputs as params, or to be filled into the struct
 | |
|   for (Value *input : inputs)
 | |
|     if (AggregateArgs)
 | |
|       StructValues.push_back(input);
 | |
|     else
 | |
|       params.push_back(input);
 | |
| 
 | |
|   // Create allocas for the outputs
 | |
|   for (Value *output : outputs) {
 | |
|     if (AggregateArgs) {
 | |
|       StructValues.push_back(output);
 | |
|     } else {
 | |
|       AllocaInst *alloca =
 | |
|         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
 | |
|                        nullptr, output->getName() + ".loc",
 | |
|                        &codeReplacer->getParent()->front().front());
 | |
|       ReloadOutputs.push_back(alloca);
 | |
|       params.push_back(alloca);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   StructType *StructArgTy = nullptr;
 | |
|   AllocaInst *Struct = nullptr;
 | |
|   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
 | |
|     std::vector<Type *> ArgTypes;
 | |
|     for (ValueSet::iterator v = StructValues.begin(),
 | |
|            ve = StructValues.end(); v != ve; ++v)
 | |
|       ArgTypes.push_back((*v)->getType());
 | |
| 
 | |
|     // Allocate a struct at the beginning of this function
 | |
|     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
 | |
|     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
 | |
|                             "structArg",
 | |
|                             &codeReplacer->getParent()->front().front());
 | |
|     params.push_back(Struct);
 | |
| 
 | |
|     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
 | |
|       GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | |
|           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
 | |
|       codeReplacer->getInstList().push_back(GEP);
 | |
|       StoreInst *SI = new StoreInst(StructValues[i], GEP);
 | |
|       codeReplacer->getInstList().push_back(SI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit the call to the function
 | |
|   CallInst *call = CallInst::Create(newFunction, params,
 | |
|                                     NumExitBlocks > 1 ? "targetBlock" : "");
 | |
|   // Add debug location to the new call, if the original function has debug
 | |
|   // info. In that case, the terminator of the entry block of the extracted
 | |
|   // function contains the first debug location of the extracted function,
 | |
|   // set in extractCodeRegion.
 | |
|   if (codeReplacer->getParent()->getSubprogram()) {
 | |
|     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
 | |
|       call->setDebugLoc(DL);
 | |
|   }
 | |
|   codeReplacer->getInstList().push_back(call);
 | |
| 
 | |
|   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
 | |
|   unsigned FirstOut = inputs.size();
 | |
|   if (!AggregateArgs)
 | |
|     std::advance(OutputArgBegin, inputs.size());
 | |
| 
 | |
|   // Reload the outputs passed in by reference.
 | |
|   Function::arg_iterator OAI = OutputArgBegin;
 | |
|   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
 | |
|     Value *Output = nullptr;
 | |
|     if (AggregateArgs) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
 | |
|       GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | |
|           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
 | |
|       codeReplacer->getInstList().push_back(GEP);
 | |
|       Output = GEP;
 | |
|     } else {
 | |
|       Output = ReloadOutputs[i];
 | |
|     }
 | |
|     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
 | |
|     Reloads.push_back(load);
 | |
|     codeReplacer->getInstList().push_back(load);
 | |
|     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
 | |
|     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
 | |
|       Instruction *inst = cast<Instruction>(Users[u]);
 | |
|       if (!Blocks.count(inst->getParent()))
 | |
|         inst->replaceUsesOfWith(outputs[i], load);
 | |
|     }
 | |
| 
 | |
|     // Store to argument right after the definition of output value.
 | |
|     auto *OutI = dyn_cast<Instruction>(outputs[i]);
 | |
|     if (!OutI)
 | |
|       continue;
 | |
| 
 | |
|     // Find proper insertion point.
 | |
|     Instruction *InsertPt;
 | |
|     // In case OutI is an invoke, we insert the store at the beginning in the
 | |
|     // 'normal destination' BB. Otherwise we insert the store right after OutI.
 | |
|     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
 | |
|       InsertPt = InvokeI->getNormalDest()->getFirstNonPHI();
 | |
|     else
 | |
|       InsertPt = OutI->getNextNode();
 | |
| 
 | |
|     // Let's assume that there is no other guy interleave non-PHI in PHIs.
 | |
|     if (isa<PHINode>(InsertPt))
 | |
|       InsertPt = InsertPt->getParent()->getFirstNonPHI();
 | |
| 
 | |
|     assert(OAI != newFunction->arg_end() &&
 | |
|            "Number of output arguments should match "
 | |
|            "the amount of defined values");
 | |
|     if (AggregateArgs) {
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | |
|       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
 | |
|       GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | |
|           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
 | |
|       new StoreInst(outputs[i], GEP, InsertPt);
 | |
|       // Since there should be only one struct argument aggregating
 | |
|       // all the output values, we shouldn't increment OAI, which always
 | |
|       // points to the struct argument, in this case.
 | |
|     } else {
 | |
|       new StoreInst(outputs[i], &*OAI, InsertPt);
 | |
|       ++OAI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we can emit a switch statement using the call as a value.
 | |
|   SwitchInst *TheSwitch =
 | |
|       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
 | |
|                          codeReplacer, 0, codeReplacer);
 | |
| 
 | |
|   // Since there may be multiple exits from the original region, make the new
 | |
|   // function return an unsigned, switch on that number.  This loop iterates
 | |
|   // over all of the blocks in the extracted region, updating any terminator
 | |
|   // instructions in the to-be-extracted region that branch to blocks that are
 | |
|   // not in the region to be extracted.
 | |
|   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
 | |
| 
 | |
|   unsigned switchVal = 0;
 | |
|   for (BasicBlock *Block : Blocks) {
 | |
|     TerminatorInst *TI = Block->getTerminator();
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       if (!Blocks.count(TI->getSuccessor(i))) {
 | |
|         BasicBlock *OldTarget = TI->getSuccessor(i);
 | |
|         // add a new basic block which returns the appropriate value
 | |
|         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
 | |
|         if (!NewTarget) {
 | |
|           // If we don't already have an exit stub for this non-extracted
 | |
|           // destination, create one now!
 | |
|           NewTarget = BasicBlock::Create(Context,
 | |
|                                          OldTarget->getName() + ".exitStub",
 | |
|                                          newFunction);
 | |
|           unsigned SuccNum = switchVal++;
 | |
| 
 | |
|           Value *brVal = nullptr;
 | |
|           switch (NumExitBlocks) {
 | |
|           case 0:
 | |
|           case 1: break;  // No value needed.
 | |
|           case 2:         // Conditional branch, return a bool
 | |
|             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
 | |
|             break;
 | |
|           default:
 | |
|             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           ReturnInst::Create(Context, brVal, NewTarget);
 | |
| 
 | |
|           // Update the switch instruction.
 | |
|           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
 | |
|                                               SuccNum),
 | |
|                              OldTarget);
 | |
|         }
 | |
| 
 | |
|         // rewrite the original branch instruction with this new target
 | |
|         TI->setSuccessor(i, NewTarget);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Now that we've done the deed, simplify the switch instruction.
 | |
|   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
 | |
|   switch (NumExitBlocks) {
 | |
|   case 0:
 | |
|     // There are no successors (the block containing the switch itself), which
 | |
|     // means that previously this was the last part of the function, and hence
 | |
|     // this should be rewritten as a `ret'
 | |
| 
 | |
|     // Check if the function should return a value
 | |
|     if (OldFnRetTy->isVoidTy()) {
 | |
|       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
 | |
|     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
 | |
|       // return what we have
 | |
|       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
 | |
|     } else {
 | |
|       // Otherwise we must have code extracted an unwind or something, just
 | |
|       // return whatever we want.
 | |
|       ReturnInst::Create(Context,
 | |
|                          Constant::getNullValue(OldFnRetTy), TheSwitch);
 | |
|     }
 | |
| 
 | |
|     TheSwitch->eraseFromParent();
 | |
|     break;
 | |
|   case 1:
 | |
|     // Only a single destination, change the switch into an unconditional
 | |
|     // branch.
 | |
|     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
 | |
|     TheSwitch->eraseFromParent();
 | |
|     break;
 | |
|   case 2:
 | |
|     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
 | |
|                        call, TheSwitch);
 | |
|     TheSwitch->eraseFromParent();
 | |
|     break;
 | |
|   default:
 | |
|     // Otherwise, make the default destination of the switch instruction be one
 | |
|     // of the other successors.
 | |
|     TheSwitch->setCondition(call);
 | |
|     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
 | |
|     // Remove redundant case
 | |
|     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeExtractor::moveCodeToFunction(Function *newFunction) {
 | |
|   Function *oldFunc = (*Blocks.begin())->getParent();
 | |
|   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
 | |
|   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
 | |
| 
 | |
|   for (BasicBlock *Block : Blocks) {
 | |
|     // Delete the basic block from the old function, and the list of blocks
 | |
|     oldBlocks.remove(Block);
 | |
| 
 | |
|     // Insert this basic block into the new function
 | |
|     newBlocks.push_back(Block);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeExtractor::calculateNewCallTerminatorWeights(
 | |
|     BasicBlock *CodeReplacer,
 | |
|     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
 | |
|     BranchProbabilityInfo *BPI) {
 | |
|   using Distribution = BlockFrequencyInfoImplBase::Distribution;
 | |
|   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
 | |
| 
 | |
|   // Update the branch weights for the exit block.
 | |
|   TerminatorInst *TI = CodeReplacer->getTerminator();
 | |
|   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
 | |
| 
 | |
|   // Block Frequency distribution with dummy node.
 | |
|   Distribution BranchDist;
 | |
| 
 | |
|   // Add each of the frequencies of the successors.
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
 | |
|     BlockNode ExitNode(i);
 | |
|     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
 | |
|     if (ExitFreq != 0)
 | |
|       BranchDist.addExit(ExitNode, ExitFreq);
 | |
|     else
 | |
|       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
 | |
|   }
 | |
| 
 | |
|   // Check for no total weight.
 | |
|   if (BranchDist.Total == 0)
 | |
|     return;
 | |
| 
 | |
|   // Normalize the distribution so that they can fit in unsigned.
 | |
|   BranchDist.normalize();
 | |
| 
 | |
|   // Create normalized branch weights and set the metadata.
 | |
|   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
 | |
|     const auto &Weight = BranchDist.Weights[I];
 | |
| 
 | |
|     // Get the weight and update the current BFI.
 | |
|     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
 | |
|     BranchProbability BP(Weight.Amount, BranchDist.Total);
 | |
|     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
 | |
|   }
 | |
|   TI->setMetadata(
 | |
|       LLVMContext::MD_prof,
 | |
|       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
 | |
| }
 | |
| 
 | |
| Function *CodeExtractor::extractCodeRegion() {
 | |
|   if (!isEligible())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Assumption: this is a single-entry code region, and the header is the first
 | |
|   // block in the region.
 | |
|   BasicBlock *header = *Blocks.begin();
 | |
|   Function *oldFunction = header->getParent();
 | |
| 
 | |
|   // For functions with varargs, check that varargs handling is only done in the
 | |
|   // outlined function, i.e vastart and vaend are only used in outlined blocks.
 | |
|   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
 | |
|     auto containsVarArgIntrinsic = [](Instruction &I) {
 | |
|       if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | |
|         if (const Function *F = CI->getCalledFunction())
 | |
|           return F->getIntrinsicID() == Intrinsic::vastart ||
 | |
|                  F->getIntrinsicID() == Intrinsic::vaend;
 | |
|       return false;
 | |
|     };
 | |
| 
 | |
|     for (auto &BB : *oldFunction) {
 | |
|       if (Blocks.count(&BB))
 | |
|         continue;
 | |
|       if (llvm::any_of(BB, containsVarArgIntrinsic))
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
|   ValueSet inputs, outputs, SinkingCands, HoistingCands;
 | |
|   BasicBlock *CommonExit = nullptr;
 | |
| 
 | |
|   // Calculate the entry frequency of the new function before we change the root
 | |
|   //   block.
 | |
|   BlockFrequency EntryFreq;
 | |
|   if (BFI) {
 | |
|     assert(BPI && "Both BPI and BFI are required to preserve profile info");
 | |
|     for (BasicBlock *Pred : predecessors(header)) {
 | |
|       if (Blocks.count(Pred))
 | |
|         continue;
 | |
|       EntryFreq +=
 | |
|           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have to split PHI nodes or the entry block, do so now.
 | |
|   severSplitPHINodes(header);
 | |
| 
 | |
|   // If we have any return instructions in the region, split those blocks so
 | |
|   // that the return is not in the region.
 | |
|   splitReturnBlocks();
 | |
| 
 | |
|   // This takes place of the original loop
 | |
|   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
 | |
|                                                 "codeRepl", oldFunction,
 | |
|                                                 header);
 | |
| 
 | |
|   // The new function needs a root node because other nodes can branch to the
 | |
|   // head of the region, but the entry node of a function cannot have preds.
 | |
|   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
 | |
|                                                "newFuncRoot");
 | |
|   auto *BranchI = BranchInst::Create(header);
 | |
|   // If the original function has debug info, we have to add a debug location
 | |
|   // to the new branch instruction from the artificial entry block.
 | |
|   // We use the debug location of the first instruction in the extracted
 | |
|   // blocks, as there is no other equivalent line in the source code.
 | |
|   if (oldFunction->getSubprogram()) {
 | |
|     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
 | |
|       return any_of(*BB, [&BranchI](const Instruction &I) {
 | |
|         if (!I.getDebugLoc())
 | |
|           return false;
 | |
|         BranchI->setDebugLoc(I.getDebugLoc());
 | |
|         return true;
 | |
|       });
 | |
|     });
 | |
|   }
 | |
|   newFuncRoot->getInstList().push_back(BranchI);
 | |
| 
 | |
|   findAllocas(SinkingCands, HoistingCands, CommonExit);
 | |
|   assert(HoistingCands.empty() || CommonExit);
 | |
| 
 | |
|   // Find inputs to, outputs from the code region.
 | |
|   findInputsOutputs(inputs, outputs, SinkingCands);
 | |
| 
 | |
|   // Now sink all instructions which only have non-phi uses inside the region
 | |
|   for (auto *II : SinkingCands)
 | |
|     cast<Instruction>(II)->moveBefore(*newFuncRoot,
 | |
|                                       newFuncRoot->getFirstInsertionPt());
 | |
| 
 | |
|   if (!HoistingCands.empty()) {
 | |
|     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
 | |
|     Instruction *TI = HoistToBlock->getTerminator();
 | |
|     for (auto *II : HoistingCands)
 | |
|       cast<Instruction>(II)->moveBefore(TI);
 | |
|   }
 | |
| 
 | |
|   // Calculate the exit blocks for the extracted region and the total exit
 | |
|   // weights for each of those blocks.
 | |
|   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
 | |
|   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
 | |
|   for (BasicBlock *Block : Blocks) {
 | |
|     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
 | |
|          ++SI) {
 | |
|       if (!Blocks.count(*SI)) {
 | |
|         // Update the branch weight for this successor.
 | |
|         if (BFI) {
 | |
|           BlockFrequency &BF = ExitWeights[*SI];
 | |
|           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
 | |
|         }
 | |
|         ExitBlocks.insert(*SI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   NumExitBlocks = ExitBlocks.size();
 | |
| 
 | |
|   // Construct new function based on inputs/outputs & add allocas for all defs.
 | |
|   Function *newFunction = constructFunction(inputs, outputs, header,
 | |
|                                             newFuncRoot,
 | |
|                                             codeReplacer, oldFunction,
 | |
|                                             oldFunction->getParent());
 | |
| 
 | |
|   // Update the entry count of the function.
 | |
|   if (BFI) {
 | |
|     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
 | |
|     if (Count.hasValue())
 | |
|       newFunction->setEntryCount(
 | |
|           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
 | |
|     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
 | |
|   }
 | |
| 
 | |
|   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
 | |
| 
 | |
|   moveCodeToFunction(newFunction);
 | |
| 
 | |
|   // Propagate personality info to the new function if there is one.
 | |
|   if (oldFunction->hasPersonalityFn())
 | |
|     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
 | |
| 
 | |
|   // Update the branch weights for the exit block.
 | |
|   if (BFI && NumExitBlocks > 1)
 | |
|     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
 | |
| 
 | |
|   // Loop over all of the PHI nodes in the header block, and change any
 | |
|   // references to the old incoming edge to be the new incoming edge.
 | |
|   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!Blocks.count(PN->getIncomingBlock(i)))
 | |
|         PN->setIncomingBlock(i, newFuncRoot);
 | |
|   }
 | |
| 
 | |
|   // Look at all successors of the codeReplacer block.  If any of these blocks
 | |
|   // had PHI nodes in them, we need to update the "from" block to be the code
 | |
|   // replacer, not the original block in the extracted region.
 | |
|   std::vector<BasicBlock *> Succs(succ_begin(codeReplacer),
 | |
|                                   succ_end(codeReplacer));
 | |
|   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
 | |
|     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       std::set<BasicBlock*> ProcessedPreds;
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (Blocks.count(PN->getIncomingBlock(i))) {
 | |
|           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
 | |
|             PN->setIncomingBlock(i, codeReplacer);
 | |
|           else {
 | |
|             // There were multiple entries in the PHI for this block, now there
 | |
|             // is only one, so remove the duplicated entries.
 | |
|             PN->removeIncomingValue(i, false);
 | |
|             --i; --e;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   LLVM_DEBUG(if (verifyFunction(*newFunction))
 | |
|                  report_fatal_error("verifyFunction failed!"));
 | |
|   return newFunction;
 | |
| }
 |