451 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass transforms loops by placing phi nodes at the end of the loops for
 | |
| // all values that are live across the loop boundary.  For example, it turns
 | |
| // the left into the right code:
 | |
| //
 | |
| // for (...)                for (...)
 | |
| //   if (c)                   if (c)
 | |
| //     X1 = ...                 X1 = ...
 | |
| //   else                     else
 | |
| //     X2 = ...                 X2 = ...
 | |
| //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
 | |
| // ... = X3 + 4             X4 = phi(X3)
 | |
| //                          ... = X4 + 4
 | |
| //
 | |
| // This is still valid LLVM; the extra phi nodes are purely redundant, and will
 | |
| // be trivially eliminated by InstCombine.  The major benefit of this
 | |
| // transformation is that it makes many other loop optimizations, such as
 | |
| // LoopUnswitching, simpler.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/LCSSA.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/PredIteratorCache.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Transforms/Utils.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "lcssa"
 | |
| 
 | |
| STATISTIC(NumLCSSA, "Number of live out of a loop variables");
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
| static bool VerifyLoopLCSSA = true;
 | |
| #else
 | |
| static bool VerifyLoopLCSSA = false;
 | |
| #endif
 | |
| static cl::opt<bool, true>
 | |
|     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
 | |
|                         cl::Hidden,
 | |
|                         cl::desc("Verify loop lcssa form (time consuming)"));
 | |
| 
 | |
| /// Return true if the specified block is in the list.
 | |
| static bool isExitBlock(BasicBlock *BB,
 | |
|                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | |
|   return is_contained(ExitBlocks, BB);
 | |
| }
 | |
| 
 | |
| /// For every instruction from the worklist, check to see if it has any uses
 | |
| /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
 | |
| /// rewrite the uses.
 | |
| bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
 | |
|                                     DominatorTree &DT, LoopInfo &LI) {
 | |
|   SmallVector<Use *, 16> UsesToRewrite;
 | |
|   SmallSetVector<PHINode *, 16> PHIsToRemove;
 | |
|   PredIteratorCache PredCache;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
 | |
|   // instructions within the same loops, computing the exit blocks is
 | |
|   // expensive, and we're not mutating the loop structure.
 | |
|   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     UsesToRewrite.clear();
 | |
| 
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
|     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
 | |
|     BasicBlock *InstBB = I->getParent();
 | |
|     Loop *L = LI.getLoopFor(InstBB);
 | |
|     assert(L && "Instruction belongs to a BB that's not part of a loop");
 | |
|     if (!LoopExitBlocks.count(L))
 | |
|       L->getExitBlocks(LoopExitBlocks[L]);
 | |
|     assert(LoopExitBlocks.count(L));
 | |
|     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
 | |
| 
 | |
|     if (ExitBlocks.empty())
 | |
|       continue;
 | |
| 
 | |
|     for (Use &U : I->uses()) {
 | |
|       Instruction *User = cast<Instruction>(U.getUser());
 | |
|       BasicBlock *UserBB = User->getParent();
 | |
|       if (auto *PN = dyn_cast<PHINode>(User))
 | |
|         UserBB = PN->getIncomingBlock(U);
 | |
| 
 | |
|       if (InstBB != UserBB && !L->contains(UserBB))
 | |
|         UsesToRewrite.push_back(&U);
 | |
|     }
 | |
| 
 | |
|     // If there are no uses outside the loop, exit with no change.
 | |
|     if (UsesToRewrite.empty())
 | |
|       continue;
 | |
| 
 | |
|     ++NumLCSSA; // We are applying the transformation
 | |
| 
 | |
|     // Invoke instructions are special in that their result value is not
 | |
|     // available along their unwind edge. The code below tests to see whether
 | |
|     // DomBB dominates the value, so adjust DomBB to the normal destination
 | |
|     // block, which is effectively where the value is first usable.
 | |
|     BasicBlock *DomBB = InstBB;
 | |
|     if (auto *Inv = dyn_cast<InvokeInst>(I))
 | |
|       DomBB = Inv->getNormalDest();
 | |
| 
 | |
|     DomTreeNode *DomNode = DT.getNode(DomBB);
 | |
| 
 | |
|     SmallVector<PHINode *, 16> AddedPHIs;
 | |
|     SmallVector<PHINode *, 8> PostProcessPHIs;
 | |
| 
 | |
|     SmallVector<PHINode *, 4> InsertedPHIs;
 | |
|     SSAUpdater SSAUpdate(&InsertedPHIs);
 | |
|     SSAUpdate.Initialize(I->getType(), I->getName());
 | |
| 
 | |
|     // Insert the LCSSA phi's into all of the exit blocks dominated by the
 | |
|     // value, and add them to the Phi's map.
 | |
|     for (BasicBlock *ExitBB : ExitBlocks) {
 | |
|       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
 | |
|         continue;
 | |
| 
 | |
|       // If we already inserted something for this BB, don't reprocess it.
 | |
|       if (SSAUpdate.HasValueForBlock(ExitBB))
 | |
|         continue;
 | |
| 
 | |
|       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
 | |
|                                     I->getName() + ".lcssa", &ExitBB->front());
 | |
|       // Get the debug location from the original instruction.
 | |
|       PN->setDebugLoc(I->getDebugLoc());
 | |
|       // Add inputs from inside the loop for this PHI.
 | |
|       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
 | |
|         PN->addIncoming(I, Pred);
 | |
| 
 | |
|         // If the exit block has a predecessor not within the loop, arrange for
 | |
|         // the incoming value use corresponding to that predecessor to be
 | |
|         // rewritten in terms of a different LCSSA PHI.
 | |
|         if (!L->contains(Pred))
 | |
|           UsesToRewrite.push_back(
 | |
|               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
 | |
|                   PN->getNumIncomingValues() - 1)));
 | |
|       }
 | |
| 
 | |
|       AddedPHIs.push_back(PN);
 | |
| 
 | |
|       // Remember that this phi makes the value alive in this block.
 | |
|       SSAUpdate.AddAvailableValue(ExitBB, PN);
 | |
| 
 | |
|       // LoopSimplify might fail to simplify some loops (e.g. when indirect
 | |
|       // branches are involved). In such situations, it might happen that an
 | |
|       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
 | |
|       // create PHIs in such an exit block, we are also inserting PHIs into L2's
 | |
|       // header. This could break LCSSA form for L2 because these inserted PHIs
 | |
|       // can also have uses outside of L2. Remember all PHIs in such situation
 | |
|       // as to revisit than later on. FIXME: Remove this if indirectbr support
 | |
|       // into LoopSimplify gets improved.
 | |
|       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
 | |
|         if (!L->contains(OtherLoop))
 | |
|           PostProcessPHIs.push_back(PN);
 | |
|     }
 | |
| 
 | |
|     // Rewrite all uses outside the loop in terms of the new PHIs we just
 | |
|     // inserted.
 | |
|     for (Use *UseToRewrite : UsesToRewrite) {
 | |
|       // If this use is in an exit block, rewrite to use the newly inserted PHI.
 | |
|       // This is required for correctness because SSAUpdate doesn't handle uses
 | |
|       // in the same block.  It assumes the PHI we inserted is at the end of the
 | |
|       // block.
 | |
|       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
 | |
|       BasicBlock *UserBB = User->getParent();
 | |
|       if (auto *PN = dyn_cast<PHINode>(User))
 | |
|         UserBB = PN->getIncomingBlock(*UseToRewrite);
 | |
| 
 | |
|       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
 | |
|         // Tell the VHs that the uses changed. This updates SCEV's caches.
 | |
|         if (UseToRewrite->get()->hasValueHandle())
 | |
|           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
 | |
|         UseToRewrite->set(&UserBB->front());
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, do full PHI insertion.
 | |
|       SSAUpdate.RewriteUse(*UseToRewrite);
 | |
|     }
 | |
| 
 | |
|     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
 | |
|     // to post-process them to keep LCSSA form.
 | |
|     for (PHINode *InsertedPN : InsertedPHIs) {
 | |
|       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
 | |
|         if (!L->contains(OtherLoop))
 | |
|           PostProcessPHIs.push_back(InsertedPN);
 | |
|     }
 | |
| 
 | |
|     // Post process PHI instructions that were inserted into another disjoint
 | |
|     // loop and update their exits properly.
 | |
|     for (auto *PostProcessPN : PostProcessPHIs)
 | |
|       if (!PostProcessPN->use_empty())
 | |
|         Worklist.push_back(PostProcessPN);
 | |
| 
 | |
|     // Keep track of PHI nodes that we want to remove because they did not have
 | |
|     // any uses rewritten. If the new PHI is used, store it so that we can
 | |
|     // try to propagate dbg.value intrinsics to it.
 | |
|     SmallVector<PHINode *, 2> NeedDbgValues;
 | |
|     for (PHINode *PN : AddedPHIs)
 | |
|       if (PN->use_empty())
 | |
|         PHIsToRemove.insert(PN);
 | |
|       else
 | |
|         NeedDbgValues.push_back(PN);
 | |
|     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
 | |
|     Changed = true;
 | |
|   }
 | |
|   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
 | |
|   // use_empty() check here, because even if the PHI node wasn't used when added
 | |
|   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
 | |
|   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
 | |
|   // each other. Such situations has only been noticed when the input IR
 | |
|   // contains unreachable code, and leaving some extra redundant PHI nodes in
 | |
|   // such situations is considered a minor problem.
 | |
|   for (PHINode *PN : PHIsToRemove)
 | |
|     if (PN->use_empty())
 | |
|       PN->eraseFromParent();
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
 | |
| static void computeBlocksDominatingExits(
 | |
|     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
 | |
|     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
 | |
|   SmallVector<BasicBlock *, 8> BBWorklist;
 | |
| 
 | |
|   // We start from the exit blocks, as every block trivially dominates itself
 | |
|   // (not strictly).
 | |
|   for (BasicBlock *BB : ExitBlocks)
 | |
|     BBWorklist.push_back(BB);
 | |
| 
 | |
|   while (!BBWorklist.empty()) {
 | |
|     BasicBlock *BB = BBWorklist.pop_back_val();
 | |
| 
 | |
|     // Check if this is a loop header. If this is the case, we're done.
 | |
|     if (L.getHeader() == BB)
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, add its immediate predecessor in the dominator tree to the
 | |
|     // worklist, unless we visited it already.
 | |
|     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
 | |
| 
 | |
|     // Exit blocks can have an immediate dominator not beloinging to the
 | |
|     // loop. For an exit block to be immediately dominated by another block
 | |
|     // outside the loop, it implies not all paths from that dominator, to the
 | |
|     // exit block, go through the loop.
 | |
|     // Example:
 | |
|     //
 | |
|     // |---- A
 | |
|     // |     |
 | |
|     // |     B<--
 | |
|     // |     |  |
 | |
|     // |---> C --
 | |
|     //       |
 | |
|     //       D
 | |
|     //
 | |
|     // C is the exit block of the loop and it's immediately dominated by A,
 | |
|     // which doesn't belong to the loop.
 | |
|     if (!L.contains(IDomBB))
 | |
|       continue;
 | |
| 
 | |
|     if (BlocksDominatingExits.insert(IDomBB))
 | |
|       BBWorklist.push_back(IDomBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
 | |
|                      ScalarEvolution *SE) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|   L.getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.empty())
 | |
|     return false;
 | |
| 
 | |
|   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
 | |
| 
 | |
|   // We want to avoid use-scanning leveraging dominance informations.
 | |
|   // If a block doesn't dominate any of the loop exits, the none of the values
 | |
|   // defined in the loop can be used outside.
 | |
|   // We compute the set of blocks fullfilling the conditions in advance
 | |
|   // walking the dominator tree upwards until we hit a loop header.
 | |
|   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
 | |
| 
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
| 
 | |
|   // Look at all the instructions in the loop, checking to see if they have uses
 | |
|   // outside the loop.  If so, put them into the worklist to rewrite those uses.
 | |
|   for (BasicBlock *BB : BlocksDominatingExits) {
 | |
|     for (Instruction &I : *BB) {
 | |
|       // Reject two common cases fast: instructions with no uses (like stores)
 | |
|       // and instructions with one use that is in the same block as this.
 | |
|       if (I.use_empty() ||
 | |
|           (I.hasOneUse() && I.user_back()->getParent() == BB &&
 | |
|            !isa<PHINode>(I.user_back())))
 | |
|         continue;
 | |
| 
 | |
|       // Tokens cannot be used in PHI nodes, so we skip over them.
 | |
|       // We can run into tokens which are live out of a loop with catchswitch
 | |
|       // instructions in Windows EH if the catchswitch has one catchpad which
 | |
|       // is inside the loop and another which is not.
 | |
|       if (I.getType()->isTokenTy())
 | |
|         continue;
 | |
| 
 | |
|       Worklist.push_back(&I);
 | |
|     }
 | |
|   }
 | |
|   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
 | |
| 
 | |
|   // If we modified the code, remove any caches about the loop from SCEV to
 | |
|   // avoid dangling entries.
 | |
|   // FIXME: This is a big hammer, can we clear the cache more selectively?
 | |
|   if (SE && Changed)
 | |
|     SE->forgetLoop(&L);
 | |
| 
 | |
|   assert(L.isLCSSAForm(DT));
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Process a loop nest depth first.
 | |
| bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
 | |
|                                 ScalarEvolution *SE) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Recurse depth-first through inner loops.
 | |
|   for (Loop *SubLoop : L.getSubLoops())
 | |
|     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
 | |
| 
 | |
|   Changed |= formLCSSA(L, DT, LI, SE);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Process all loops in the function, inner-most out.
 | |
| static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
 | |
|                                 ScalarEvolution *SE) {
 | |
|   bool Changed = false;
 | |
|   for (auto &L : *LI)
 | |
|     Changed |= formLCSSARecursively(*L, DT, LI, SE);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct LCSSAWrapperPass : public FunctionPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   LCSSAWrapperPass() : FunctionPass(ID) {
 | |
|     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   // Cached analysis information for the current function.
 | |
|   DominatorTree *DT;
 | |
|   LoopInfo *LI;
 | |
|   ScalarEvolution *SE;
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
|   void verifyAnalysis() const override {
 | |
|     // This check is very expensive. On the loop intensive compiles it may cause
 | |
|     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
 | |
|     // always does limited form of the LCSSA verification. Similar reasoning
 | |
|     // was used for the LoopInfo verifier.
 | |
|     if (VerifyLoopLCSSA) {
 | |
|       assert(all_of(*LI,
 | |
|                     [&](Loop *L) {
 | |
|                       return L->isRecursivelyLCSSAForm(*DT, *LI);
 | |
|                     }) &&
 | |
|              "LCSSA form is broken!");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// This transformation requires natural loop information & requires that
 | |
|   /// loop preheaders be inserted into the CFG.  It maintains both of these,
 | |
|   /// as well as the CFG.  It also requires dominator information.
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
| 
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addPreservedID(LoopSimplifyID);
 | |
|     AU.addPreserved<AAResultsWrapperPass>();
 | |
|     AU.addPreserved<BasicAAWrapperPass>();
 | |
|     AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     AU.addPreserved<ScalarEvolutionWrapperPass>();
 | |
|     AU.addPreserved<SCEVAAWrapperPass>();
 | |
| 
 | |
|     // This is needed to perform LCSSA verification inside LPPassManager
 | |
|     AU.addRequired<LCSSAVerificationPass>();
 | |
|     AU.addPreserved<LCSSAVerificationPass>();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char LCSSAWrapperPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
 | |
| INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
 | |
|                     false, false)
 | |
| 
 | |
| Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
 | |
| char &llvm::LCSSAID = LCSSAWrapperPass::ID;
 | |
| 
 | |
| /// Transform \p F into loop-closed SSA form.
 | |
| bool LCSSAWrapperPass::runOnFunction(Function &F) {
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | |
|   SE = SEWP ? &SEWP->getSE() : nullptr;
 | |
| 
 | |
|   return formLCSSAOnAllLoops(LI, *DT, SE);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto &LI = AM.getResult<LoopAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
 | |
|   if (!formLCSSAOnAllLoops(&LI, DT, SE))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   PA.preserve<BasicAA>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   PA.preserve<SCEVAA>();
 | |
|   PA.preserve<ScalarEvolutionAnalysis>();
 | |
|   return PA;
 | |
| }
 |