905 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements some loop unrolling utilities. It does not define any
 | |
| // actual pass or policy, but provides a single function to perform loop
 | |
| // unrolling.
 | |
| //
 | |
| // The process of unrolling can produce extraneous basic blocks linked with
 | |
| // unconditional branches.  This will be corrected in the future.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/LoopSimplify.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| 
 | |
| // TODO: Should these be here or in LoopUnroll?
 | |
| STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | |
| STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
 | |
|                     cl::desc("Allow runtime unrolled loops to be unrolled "
 | |
|                              "with epilog instead of prolog."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
 | |
|                     cl::desc("Verify domtree after unrolling"),
 | |
| #ifdef NDEBUG
 | |
|     cl::init(false)
 | |
| #else
 | |
|     cl::init(true)
 | |
| #endif
 | |
|                     );
 | |
| 
 | |
| /// Convert the instruction operands from referencing the current values into
 | |
| /// those specified by VMap.
 | |
| void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
 | |
|   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | |
|     Value *Op = I->getOperand(op);
 | |
| 
 | |
|     // Unwrap arguments of dbg.value intrinsics.
 | |
|     bool Wrapped = false;
 | |
|     if (auto *V = dyn_cast<MetadataAsValue>(Op))
 | |
|       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
 | |
|         Op = Unwrapped->getValue();
 | |
|         Wrapped = true;
 | |
|       }
 | |
| 
 | |
|     auto wrap = [&](Value *V) {
 | |
|       auto &C = I->getContext();
 | |
|       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
 | |
|     };
 | |
| 
 | |
|     ValueToValueMapTy::iterator It = VMap.find(Op);
 | |
|     if (It != VMap.end())
 | |
|       I->setOperand(op, wrap(It->second));
 | |
|   }
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
 | |
|       if (It != VMap.end())
 | |
|         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Folds a basic block into its predecessor if it only has one predecessor, and
 | |
| /// that predecessor only has one successor.
 | |
| /// The LoopInfo Analysis that is passed will be kept consistent.
 | |
| BasicBlock *llvm::foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI,
 | |
|                                            ScalarEvolution *SE,
 | |
|                                            DominatorTree *DT) {
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   BasicBlock *OnlyPred = BB->getSinglePredecessor();
 | |
|   if (!OnlyPred) return nullptr;
 | |
| 
 | |
|   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
 | |
|                     << OnlyPred->getName() << "\n");
 | |
| 
 | |
|   // Resolve any PHI nodes at the start of the block.  They are all
 | |
|   // guaranteed to have exactly one entry if they exist, unless there are
 | |
|   // multiple duplicate (but guaranteed to be equal) entries for the
 | |
|   // incoming edges.  This occurs when there are multiple edges from
 | |
|   // OnlyPred to OnlySucc.
 | |
|   FoldSingleEntryPHINodes(BB);
 | |
| 
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   OnlyPred->getInstList().pop_back();
 | |
| 
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(OnlyPred);
 | |
| 
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | |
| 
 | |
|   // OldName will be valid until erased.
 | |
|   StringRef OldName = BB->getName();
 | |
| 
 | |
|   // Erase the old block and update dominator info.
 | |
|   if (DT)
 | |
|     if (DomTreeNode *DTN = DT->getNode(BB)) {
 | |
|       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
 | |
|       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
 | |
|       for (auto *DI : Children)
 | |
|         DT->changeImmediateDominator(DI, PredDTN);
 | |
| 
 | |
|       DT->eraseNode(BB);
 | |
|     }
 | |
| 
 | |
|   LI->removeBlock(BB);
 | |
| 
 | |
|   // Inherit predecessor's name if it exists...
 | |
|   if (!OldName.empty() && !OnlyPred->hasName())
 | |
|     OnlyPred->setName(OldName);
 | |
| 
 | |
|   BB->eraseFromParent();
 | |
| 
 | |
|   return OnlyPred;
 | |
| }
 | |
| 
 | |
| /// Check if unrolling created a situation where we need to insert phi nodes to
 | |
| /// preserve LCSSA form.
 | |
| /// \param Blocks is a vector of basic blocks representing unrolled loop.
 | |
| /// \param L is the outer loop.
 | |
| /// It's possible that some of the blocks are in L, and some are not. In this
 | |
| /// case, if there is a use is outside L, and definition is inside L, we need to
 | |
| /// insert a phi-node, otherwise LCSSA will be broken.
 | |
| /// The function is just a helper function for llvm::UnrollLoop that returns
 | |
| /// true if this situation occurs, indicating that LCSSA needs to be fixed.
 | |
| static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
 | |
|                                      LoopInfo *LI) {
 | |
|   for (BasicBlock *BB : Blocks) {
 | |
|     if (LI->getLoopFor(BB) == L)
 | |
|       continue;
 | |
|     for (Instruction &I : *BB) {
 | |
|       for (Use &U : I.operands()) {
 | |
|         if (auto Def = dyn_cast<Instruction>(U)) {
 | |
|           Loop *DefLoop = LI->getLoopFor(Def->getParent());
 | |
|           if (!DefLoop)
 | |
|             continue;
 | |
|           if (DefLoop->contains(L))
 | |
|             return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
 | |
| /// and adds a mapping from the original loop to the new loop to NewLoops.
 | |
| /// Returns nullptr if no new loop was created and a pointer to the
 | |
| /// original loop OriginalBB was part of otherwise.
 | |
| const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
 | |
|                                            BasicBlock *ClonedBB, LoopInfo *LI,
 | |
|                                            NewLoopsMap &NewLoops) {
 | |
|   // Figure out which loop New is in.
 | |
|   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
 | |
|   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
 | |
| 
 | |
|   Loop *&NewLoop = NewLoops[OldLoop];
 | |
|   if (!NewLoop) {
 | |
|     // Found a new sub-loop.
 | |
|     assert(OriginalBB == OldLoop->getHeader() &&
 | |
|            "Header should be first in RPO");
 | |
| 
 | |
|     NewLoop = LI->AllocateLoop();
 | |
|     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
 | |
| 
 | |
|     if (NewLoopParent)
 | |
|       NewLoopParent->addChildLoop(NewLoop);
 | |
|     else
 | |
|       LI->addTopLevelLoop(NewLoop);
 | |
| 
 | |
|     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
 | |
|     return OldLoop;
 | |
|   } else {
 | |
|     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// The function chooses which type of unroll (epilog or prolog) is more
 | |
| /// profitabale.
 | |
| /// Epilog unroll is more profitable when there is PHI that starts from
 | |
| /// constant.  In this case epilog will leave PHI start from constant,
 | |
| /// but prolog will convert it to non-constant.
 | |
| ///
 | |
| /// loop:
 | |
| ///   PN = PHI [I, Latch], [CI, PreHeader]
 | |
| ///   I = foo(PN)
 | |
| ///   ...
 | |
| ///
 | |
| /// Epilog unroll case.
 | |
| /// loop:
 | |
| ///   PN = PHI [I2, Latch], [CI, PreHeader]
 | |
| ///   I1 = foo(PN)
 | |
| ///   I2 = foo(I1)
 | |
| ///   ...
 | |
| /// Prolog unroll case.
 | |
| ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
 | |
| /// loop:
 | |
| ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
 | |
| ///   I1 = foo(PN)
 | |
| ///   I2 = foo(I1)
 | |
| ///   ...
 | |
| ///
 | |
| static bool isEpilogProfitable(Loop *L) {
 | |
|   BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   assert(PreHeader && Header);
 | |
|   for (const PHINode &PN : Header->phis()) {
 | |
|     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform some cleanup and simplifications on loops after unrolling. It is
 | |
| /// useful to simplify the IV's in the new loop, as well as do a quick
 | |
| /// simplify/dce pass of the instructions.
 | |
| void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
 | |
|                                    ScalarEvolution *SE, DominatorTree *DT,
 | |
|                                    AssumptionCache *AC) {
 | |
|   // Simplify any new induction variables in the partially unrolled loop.
 | |
|   if (SE && SimplifyIVs) {
 | |
|     SmallVector<WeakTrackingVH, 16> DeadInsts;
 | |
|     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
 | |
| 
 | |
|     // Aggressively clean up dead instructions that simplifyLoopIVs already
 | |
|     // identified. Any remaining should be cleaned up below.
 | |
|     while (!DeadInsts.empty())
 | |
|       if (Instruction *Inst =
 | |
|               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
|   }
 | |
| 
 | |
|   // At this point, the code is well formed.  We now do a quick sweep over the
 | |
|   // inserted code, doing constant propagation and dead code elimination as we
 | |
|   // go.
 | |
|   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | |
|   for (BasicBlock *BB : L->getBlocks()) {
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|       Instruction *Inst = &*I++;
 | |
| 
 | |
|       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
 | |
|         if (LI->replacementPreservesLCSSAForm(Inst, V))
 | |
|           Inst->replaceAllUsesWith(V);
 | |
|       if (isInstructionTriviallyDead(Inst))
 | |
|         BB->getInstList().erase(Inst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: after peeling or unrolling, previously loop variant conditions are
 | |
|   // likely to fold to constants, eagerly propagating those here will require
 | |
|   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
 | |
|   // appropriate.
 | |
| }
 | |
| 
 | |
| /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
 | |
| /// can only fail when the loop's latch block is not terminated by a conditional
 | |
| /// branch instruction. However, if the trip count (and multiple) are not known,
 | |
| /// loop unrolling will mostly produce more code that is no faster.
 | |
| ///
 | |
| /// TripCount is the upper bound of the iteration on which control exits
 | |
| /// LatchBlock. Control may exit the loop prior to TripCount iterations either
 | |
| /// via an early branch in other loop block or via LatchBlock terminator. This
 | |
| /// is relaxed from the general definition of trip count which is the number of
 | |
| /// times the loop header executes. Note that UnrollLoop assumes that the loop
 | |
| /// counter test is in LatchBlock in order to remove unnecesssary instances of
 | |
| /// the test.  If control can exit the loop from the LatchBlock's terminator
 | |
| /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
 | |
| ///
 | |
| /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
 | |
| /// needs to be preserved.  It is needed when we use trip count upper bound to
 | |
| /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
 | |
| /// conditional branch needs to be preserved.
 | |
| ///
 | |
| /// Similarly, TripMultiple divides the number of times that the LatchBlock may
 | |
| /// execute without exiting the loop.
 | |
| ///
 | |
| /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
 | |
| /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
 | |
| /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
 | |
| /// iterations before branching into the unrolled loop.  UnrollLoop will not
 | |
| /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
 | |
| /// AllowExpensiveTripCount is false.
 | |
| ///
 | |
| /// If we want to perform PGO-based loop peeling, PeelCount is set to the
 | |
| /// number of iterations we want to peel off.
 | |
| ///
 | |
| /// The LoopInfo Analysis that is passed will be kept consistent.
 | |
| ///
 | |
| /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
 | |
| /// DominatorTree if they are non-null.
 | |
| LoopUnrollResult llvm::UnrollLoop(
 | |
|     Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
 | |
|     bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
 | |
|     unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
 | |
|     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
 | |
|     OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader) {
 | |
|     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   if (!LatchBlock) {
 | |
|     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   // Loops with indirectbr cannot be cloned.
 | |
|   if (!L->isSafeToClone()) {
 | |
|     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   // The current loop unroll pass can only unroll loops with a single latch
 | |
|   // that's a conditional branch exiting the loop.
 | |
|   // FIXME: The implementation can be extended to work with more complicated
 | |
|   // cases, e.g. loops with multiple latches.
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | |
| 
 | |
|   if (!BI || BI->isUnconditional()) {
 | |
|     // The loop-rotate pass can be helpful to avoid this in many cases.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs()
 | |
|         << "  Can't unroll; loop not terminated by a conditional branch.\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
 | |
|     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
 | |
|   };
 | |
| 
 | |
|   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
 | |
|     LLVM_DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
 | |
|                          " exiting the loop can be unrolled\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   if (Header->hasAddressTaken()) {
 | |
|     // The loop-rotate pass can be helpful to avoid this in many cases.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   if (TripCount != 0)
 | |
|     LLVM_DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
 | |
|   if (TripMultiple != 1)
 | |
|     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
 | |
| 
 | |
|   // Effectively "DCE" unrolled iterations that are beyond the tripcount
 | |
|   // and will never be executed.
 | |
|   if (TripCount != 0 && Count > TripCount)
 | |
|     Count = TripCount;
 | |
| 
 | |
|   // Don't enter the unroll code if there is nothing to do.
 | |
|   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   assert(Count > 0);
 | |
|   assert(TripMultiple > 0);
 | |
|   assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | |
| 
 | |
|   // Are we eliminating the loop control altogether?
 | |
|   bool CompletelyUnroll = Count == TripCount;
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
 | |
| 
 | |
|   // Go through all exits of L and see if there are any phi-nodes there. We just
 | |
|   // conservatively assume that they're inserted to preserve LCSSA form, which
 | |
|   // means that complete unrolling might break this form. We need to either fix
 | |
|   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
 | |
|   // now we just recompute LCSSA for the outer loop, but it should be possible
 | |
|   // to fix it in-place.
 | |
|   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
 | |
|                         any_of(ExitBlocks, [](const BasicBlock *BB) {
 | |
|                           return isa<PHINode>(BB->begin());
 | |
|                         });
 | |
| 
 | |
|   // We assume a run-time trip count if the compiler cannot
 | |
|   // figure out the loop trip count and the unroll-runtime
 | |
|   // flag is specified.
 | |
|   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
 | |
| 
 | |
|   assert((!RuntimeTripCount || !PeelCount) &&
 | |
|          "Did not expect runtime trip-count unrolling "
 | |
|          "and peeling for the same loop");
 | |
| 
 | |
|   bool Peeled = false;
 | |
|   if (PeelCount) {
 | |
|     Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
 | |
| 
 | |
|     // Successful peeling may result in a change in the loop preheader/trip
 | |
|     // counts. If we later unroll the loop, we want these to be updated.
 | |
|     if (Peeled) {
 | |
|       BasicBlock *ExitingBlock = L->getExitingBlock();
 | |
|       assert(ExitingBlock && "Loop without exiting block?");
 | |
|       Preheader = L->getLoopPreheader();
 | |
|       TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
 | |
|       TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loops containing convergent instructions must have a count that divides
 | |
|   // their TripMultiple.
 | |
|   LLVM_DEBUG(
 | |
|       {
 | |
|         bool HasConvergent = false;
 | |
|         for (auto &BB : L->blocks())
 | |
|           for (auto &I : *BB)
 | |
|             if (auto CS = CallSite(&I))
 | |
|               HasConvergent |= CS.isConvergent();
 | |
|         assert((!HasConvergent || TripMultiple % Count == 0) &&
 | |
|                "Unroll count must divide trip multiple if loop contains a "
 | |
|                "convergent operation.");
 | |
|       });
 | |
| 
 | |
|   bool EpilogProfitability =
 | |
|       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
 | |
|                                               : isEpilogProfitable(L);
 | |
| 
 | |
|   if (RuntimeTripCount && TripMultiple % Count != 0 &&
 | |
|       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
 | |
|                                   EpilogProfitability, UnrollRemainder, LI, SE,
 | |
|                                   DT, AC, PreserveLCSSA)) {
 | |
|     if (Force)
 | |
|       RuntimeTripCount = false;
 | |
|     else {
 | |
|       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
 | |
|                            "generated when assuming runtime trip count\n");
 | |
|       return LoopUnrollResult::Unmodified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we know the trip count, we know the multiple...
 | |
|   unsigned BreakoutTrip = 0;
 | |
|   if (TripCount != 0) {
 | |
|     BreakoutTrip = TripCount % Count;
 | |
|     TripMultiple = 0;
 | |
|   } else {
 | |
|     // Figure out what multiple to use.
 | |
|     BreakoutTrip = TripMultiple =
 | |
|       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
 | |
|   }
 | |
| 
 | |
|   using namespace ore;
 | |
|   // Report the unrolling decision.
 | |
|   if (CompletelyUnroll) {
 | |
|     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
 | |
|                       << " with trip count " << TripCount << "!\n");
 | |
|     if (ORE)
 | |
|       ORE->emit([&]() {
 | |
|         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
 | |
|                                   L->getHeader())
 | |
|                << "completely unrolled loop with "
 | |
|                << NV("UnrollCount", TripCount) << " iterations";
 | |
|       });
 | |
|   } else if (PeelCount) {
 | |
|     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
 | |
|                       << " with iteration count " << PeelCount << "!\n");
 | |
|     if (ORE)
 | |
|       ORE->emit([&]() {
 | |
|         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
 | |
|                                   L->getHeader())
 | |
|                << " peeled loop by " << NV("PeelCount", PeelCount)
 | |
|                << " iterations";
 | |
|       });
 | |
|   } else {
 | |
|     auto DiagBuilder = [&]() {
 | |
|       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
 | |
|                               L->getHeader());
 | |
|       return Diag << "unrolled loop by a factor of "
 | |
|                   << NV("UnrollCount", Count);
 | |
|     };
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
 | |
|                       << Count);
 | |
|     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
 | |
|       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
 | |
|       if (ORE)
 | |
|         ORE->emit([&]() {
 | |
|           return DiagBuilder() << " with a breakout at trip "
 | |
|                                << NV("BreakoutTrip", BreakoutTrip);
 | |
|         });
 | |
|     } else if (TripMultiple != 1) {
 | |
|       LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
 | |
|       if (ORE)
 | |
|         ORE->emit([&]() {
 | |
|           return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
 | |
|                                << " trips per branch";
 | |
|         });
 | |
|     } else if (RuntimeTripCount) {
 | |
|       LLVM_DEBUG(dbgs() << " with run-time trip count");
 | |
|       if (ORE)
 | |
|         ORE->emit(
 | |
|             [&]() { return DiagBuilder() << " with run-time trip count"; });
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "!\n");
 | |
|   }
 | |
| 
 | |
|   // We are going to make changes to this loop. SCEV may be keeping cached info
 | |
|   // about it, in particular about backedge taken count. The changes we make
 | |
|   // are guaranteed to invalidate this information for our loop. It is tempting
 | |
|   // to only invalidate the loop being unrolled, but it is incorrect as long as
 | |
|   // all exiting branches from all inner loops have impact on the outer loops,
 | |
|   // and if something changes inside them then any of outer loops may also
 | |
|   // change. When we forget outermost loop, we also forget all contained loops
 | |
|   // and this is what we need here.
 | |
|   if (SE)
 | |
|     SE->forgetTopmostLoop(L);
 | |
| 
 | |
|   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | |
|   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | |
| 
 | |
|   // For the first iteration of the loop, we should use the precloned values for
 | |
|   // PHI nodes.  Insert associations now.
 | |
|   ValueToValueMapTy LastValueMap;
 | |
|   std::vector<PHINode*> OrigPHINode;
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     OrigPHINode.push_back(cast<PHINode>(I));
 | |
|   }
 | |
| 
 | |
|   std::vector<BasicBlock*> Headers;
 | |
|   std::vector<BasicBlock*> Latches;
 | |
|   Headers.push_back(Header);
 | |
|   Latches.push_back(LatchBlock);
 | |
| 
 | |
|   // The current on-the-fly SSA update requires blocks to be processed in
 | |
|   // reverse postorder so that LastValueMap contains the correct value at each
 | |
|   // exit.
 | |
|   LoopBlocksDFS DFS(L);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   // Stash the DFS iterators before adding blocks to the loop.
 | |
|   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
 | |
|   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
 | |
| 
 | |
|   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
 | |
| 
 | |
|   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
 | |
|   // might break loop-simplified form for these loops (as they, e.g., would
 | |
|   // share the same exit blocks). We'll keep track of loops for which we can
 | |
|   // break this so that later we can re-simplify them.
 | |
|   SmallSetVector<Loop *, 4> LoopsToSimplify;
 | |
|   for (Loop *SubLoop : *L)
 | |
|     LoopsToSimplify.insert(SubLoop);
 | |
| 
 | |
|   if (Header->getParent()->isDebugInfoForProfiling())
 | |
|     for (BasicBlock *BB : L->getBlocks())
 | |
|       for (Instruction &I : *BB)
 | |
|         if (!isa<DbgInfoIntrinsic>(&I))
 | |
|           if (const DILocation *DIL = I.getDebugLoc())
 | |
|             I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
 | |
| 
 | |
|   for (unsigned It = 1; It != Count; ++It) {
 | |
|     std::vector<BasicBlock*> NewBlocks;
 | |
|     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
 | |
|     NewLoops[L] = L;
 | |
| 
 | |
|     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | |
|       ValueToValueMapTy VMap;
 | |
|       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
 | |
|       Header->getParent()->getBasicBlockList().push_back(New);
 | |
| 
 | |
|       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
 | |
|              "Header should not be in a sub-loop");
 | |
|       // Tell LI about New.
 | |
|       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
 | |
|       if (OldLoop)
 | |
|         LoopsToSimplify.insert(NewLoops[OldLoop]);
 | |
| 
 | |
|       if (*BB == Header)
 | |
|         // Loop over all of the PHI nodes in the block, changing them to use
 | |
|         // the incoming values from the previous block.
 | |
|         for (PHINode *OrigPHI : OrigPHINode) {
 | |
|           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
 | |
|           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | |
|           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | |
|             if (It > 1 && L->contains(InValI))
 | |
|               InVal = LastValueMap[InValI];
 | |
|           VMap[OrigPHI] = InVal;
 | |
|           New->getInstList().erase(NewPHI);
 | |
|         }
 | |
| 
 | |
|       // Update our running map of newest clones
 | |
|       LastValueMap[*BB] = New;
 | |
|       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | |
|            VI != VE; ++VI)
 | |
|         LastValueMap[VI->first] = VI->second;
 | |
| 
 | |
|       // Add phi entries for newly created values to all exit blocks.
 | |
|       for (BasicBlock *Succ : successors(*BB)) {
 | |
|         if (L->contains(Succ))
 | |
|           continue;
 | |
|         for (PHINode &PHI : Succ->phis()) {
 | |
|           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
 | |
|           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
 | |
|           if (It != LastValueMap.end())
 | |
|             Incoming = It->second;
 | |
|           PHI.addIncoming(Incoming, New);
 | |
|         }
 | |
|       }
 | |
|       // Keep track of new headers and latches as we create them, so that
 | |
|       // we can insert the proper branches later.
 | |
|       if (*BB == Header)
 | |
|         Headers.push_back(New);
 | |
|       if (*BB == LatchBlock)
 | |
|         Latches.push_back(New);
 | |
| 
 | |
|       NewBlocks.push_back(New);
 | |
|       UnrolledLoopBlocks.push_back(New);
 | |
| 
 | |
|       // Update DomTree: since we just copy the loop body, and each copy has a
 | |
|       // dedicated entry block (copy of the header block), this header's copy
 | |
|       // dominates all copied blocks. That means, dominance relations in the
 | |
|       // copied body are the same as in the original body.
 | |
|       if (DT) {
 | |
|         if (*BB == Header)
 | |
|           DT->addNewBlock(New, Latches[It - 1]);
 | |
|         else {
 | |
|           auto BBDomNode = DT->getNode(*BB);
 | |
|           auto BBIDom = BBDomNode->getIDom();
 | |
|           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
 | |
|           DT->addNewBlock(
 | |
|               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Remap all instructions in the most recent iteration
 | |
|     for (BasicBlock *NewBlock : NewBlocks) {
 | |
|       for (Instruction &I : *NewBlock) {
 | |
|         ::remapInstruction(&I, LastValueMap);
 | |
|         if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|           if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|             AC->registerAssumption(II);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop over the PHI nodes in the original block, setting incoming values.
 | |
|   for (PHINode *PN : OrigPHINode) {
 | |
|     if (CompletelyUnroll) {
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | |
|       Header->getInstList().erase(PN);
 | |
|     }
 | |
|     else if (Count > 1) {
 | |
|       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | |
|       // If this value was defined in the loop, take the value defined by the
 | |
|       // last iteration of the loop.
 | |
|       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | |
|         if (L->contains(InValI))
 | |
|           InVal = LastValueMap[InVal];
 | |
|       }
 | |
|       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
 | |
|       PN->addIncoming(InVal, Latches.back());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all the basic blocks for the unrolled iterations are in place,
 | |
|   // set up the branches to connect them.
 | |
|   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | |
|     // The original branch was replicated in each unrolled iteration.
 | |
|     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | |
| 
 | |
|     // The branch destination.
 | |
|     unsigned j = (i + 1) % e;
 | |
|     BasicBlock *Dest = Headers[j];
 | |
|     bool NeedConditional = true;
 | |
| 
 | |
|     if (RuntimeTripCount && j != 0) {
 | |
|       NeedConditional = false;
 | |
|     }
 | |
| 
 | |
|     // For a complete unroll, make the last iteration end with a branch
 | |
|     // to the exit block.
 | |
|     if (CompletelyUnroll) {
 | |
|       if (j == 0)
 | |
|         Dest = LoopExit;
 | |
|       // If using trip count upper bound to completely unroll, we need to keep
 | |
|       // the conditional branch except the last one because the loop may exit
 | |
|       // after any iteration.
 | |
|       assert(NeedConditional &&
 | |
|              "NeedCondition cannot be modified by both complete "
 | |
|              "unrolling and runtime unrolling");
 | |
|       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
 | |
|     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
 | |
|       // If we know the trip count or a multiple of it, we can safely use an
 | |
|       // unconditional branch for some iterations.
 | |
|       NeedConditional = false;
 | |
|     }
 | |
| 
 | |
|     if (NeedConditional) {
 | |
|       // Update the conditional branch's successor for the following
 | |
|       // iteration.
 | |
|       Term->setSuccessor(!ContinueOnTrue, Dest);
 | |
|     } else {
 | |
|       // Remove phi operands at this loop exit
 | |
|       if (Dest != LoopExit) {
 | |
|         BasicBlock *BB = Latches[i];
 | |
|         for (BasicBlock *Succ: successors(BB)) {
 | |
|           if (Succ == Headers[i])
 | |
|             continue;
 | |
|           for (PHINode &Phi : Succ->phis())
 | |
|             Phi.removeIncomingValue(BB, false);
 | |
|         }
 | |
|       }
 | |
|       // Replace the conditional branch with an unconditional one.
 | |
|       BranchInst::Create(Dest, Term);
 | |
|       Term->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update dominators of blocks we might reach through exits.
 | |
|   // Immediate dominator of such block might change, because we add more
 | |
|   // routes which can lead to the exit: we can now reach it from the copied
 | |
|   // iterations too.
 | |
|   if (DT && Count > 1) {
 | |
|     for (auto *BB : OriginalLoopBlocks) {
 | |
|       auto *BBDomNode = DT->getNode(BB);
 | |
|       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
 | |
|       for (auto *ChildDomNode : BBDomNode->getChildren()) {
 | |
|         auto *ChildBB = ChildDomNode->getBlock();
 | |
|         if (!L->contains(ChildBB))
 | |
|           ChildrenToUpdate.push_back(ChildBB);
 | |
|       }
 | |
|       BasicBlock *NewIDom;
 | |
|       if (BB == LatchBlock) {
 | |
|         // The latch is special because we emit unconditional branches in
 | |
|         // some cases where the original loop contained a conditional branch.
 | |
|         // Since the latch is always at the bottom of the loop, if the latch
 | |
|         // dominated an exit before unrolling, the new dominator of that exit
 | |
|         // must also be a latch.  Specifically, the dominator is the first
 | |
|         // latch which ends in a conditional branch, or the last latch if
 | |
|         // there is no such latch.
 | |
|         NewIDom = Latches.back();
 | |
|         for (BasicBlock *IterLatch : Latches) {
 | |
|           TerminatorInst *Term = IterLatch->getTerminator();
 | |
|           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
 | |
|             NewIDom = IterLatch;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         // The new idom of the block will be the nearest common dominator
 | |
|         // of all copies of the previous idom. This is equivalent to the
 | |
|         // nearest common dominator of the previous idom and the first latch,
 | |
|         // which dominates all copies of the previous idom.
 | |
|         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
 | |
|       }
 | |
|       for (auto *ChildBB : ChildrenToUpdate)
 | |
|         DT->changeImmediateDominator(ChildBB, NewIDom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!DT || !UnrollVerifyDomtree ||
 | |
|       DT->verify(DominatorTree::VerificationLevel::Fast));
 | |
| 
 | |
|   // Merge adjacent basic blocks, if possible.
 | |
|   for (BasicBlock *Latch : Latches) {
 | |
|     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
 | |
|     if (Term->isUnconditional()) {
 | |
|       BasicBlock *Dest = Term->getSuccessor(0);
 | |
|       if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
 | |
|         // Dest has been folded into Fold. Update our worklists accordingly.
 | |
|         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | |
|         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
 | |
|                                              UnrolledLoopBlocks.end(), Dest),
 | |
|                                  UnrolledLoopBlocks.end());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At this point, the code is well formed.  We now simplify the unrolled loop,
 | |
|   // doing constant propagation and dead code elimination as we go.
 | |
|   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (Count > 1 || Peeled), LI, SE,
 | |
|                           DT, AC);
 | |
| 
 | |
|   NumCompletelyUnrolled += CompletelyUnroll;
 | |
|   ++NumUnrolled;
 | |
| 
 | |
|   Loop *OuterL = L->getParentLoop();
 | |
|   // Update LoopInfo if the loop is completely removed.
 | |
|   if (CompletelyUnroll)
 | |
|     LI->erase(L);
 | |
| 
 | |
|   // After complete unrolling most of the blocks should be contained in OuterL.
 | |
|   // However, some of them might happen to be out of OuterL (e.g. if they
 | |
|   // precede a loop exit). In this case we might need to insert PHI nodes in
 | |
|   // order to preserve LCSSA form.
 | |
|   // We don't need to check this if we already know that we need to fix LCSSA
 | |
|   // form.
 | |
|   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
 | |
|   // it should be possible to fix it in-place.
 | |
|   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
 | |
|     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
 | |
| 
 | |
|   // If we have a pass and a DominatorTree we should re-simplify impacted loops
 | |
|   // to ensure subsequent analyses can rely on this form. We want to simplify
 | |
|   // at least one layer outside of the loop that was unrolled so that any
 | |
|   // changes to the parent loop exposed by the unrolling are considered.
 | |
|   if (DT) {
 | |
|     if (OuterL) {
 | |
|       // OuterL includes all loops for which we can break loop-simplify, so
 | |
|       // it's sufficient to simplify only it (it'll recursively simplify inner
 | |
|       // loops too).
 | |
|       if (NeedToFixLCSSA) {
 | |
|         // LCSSA must be performed on the outermost affected loop. The unrolled
 | |
|         // loop's last loop latch is guaranteed to be in the outermost loop
 | |
|         // after LoopInfo's been updated by LoopInfo::erase.
 | |
|         Loop *LatchLoop = LI->getLoopFor(Latches.back());
 | |
|         Loop *FixLCSSALoop = OuterL;
 | |
|         if (!FixLCSSALoop->contains(LatchLoop))
 | |
|           while (FixLCSSALoop->getParentLoop() != LatchLoop)
 | |
|             FixLCSSALoop = FixLCSSALoop->getParentLoop();
 | |
| 
 | |
|         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
 | |
|       } else if (PreserveLCSSA) {
 | |
|         assert(OuterL->isLCSSAForm(*DT) &&
 | |
|                "Loops should be in LCSSA form after loop-unroll.");
 | |
|       }
 | |
| 
 | |
|       // TODO: That potentially might be compile-time expensive. We should try
 | |
|       // to fix the loop-simplified form incrementally.
 | |
|       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
 | |
|     } else {
 | |
|       // Simplify loops for which we might've broken loop-simplify form.
 | |
|       for (Loop *SubLoop : LoopsToSimplify)
 | |
|         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
 | |
|                           : LoopUnrollResult::PartiallyUnrolled;
 | |
| }
 | |
| 
 | |
| /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
 | |
| /// node with the given name (for example, "llvm.loop.unroll.count"). If no
 | |
| /// such metadata node exists, then nullptr is returned.
 | |
| MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
 | |
|   // First operand should refer to the loop id itself.
 | |
|   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | |
|   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | |
| 
 | |
|   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | |
|     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|     if (!MD)
 | |
|       continue;
 | |
| 
 | |
|     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|     if (!S)
 | |
|       continue;
 | |
| 
 | |
|     if (Name.equals(S->getString()))
 | |
|       return MD;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 |