810 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			810 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements loop unroll and jam as a routine, much like
 | |
| // LoopUnroll.cpp implements loop unroll.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/DependenceAnalysis.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopAnalysisManager.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/Utils/Local.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/LoopSimplify.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll-and-jam"
 | |
| 
 | |
| STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
 | |
| STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
 | |
| 
 | |
| typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;
 | |
| 
 | |
| // Partition blocks in an outer/inner loop pair into blocks before and after
 | |
| // the loop
 | |
| static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
 | |
|                                      BasicBlockSet &ForeBlocks,
 | |
|                                      BasicBlockSet &SubLoopBlocks,
 | |
|                                      BasicBlockSet &AftBlocks,
 | |
|                                      DominatorTree *DT) {
 | |
|   BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
 | |
|   SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
 | |
| 
 | |
|   for (BasicBlock *BB : L->blocks()) {
 | |
|     if (!SubLoop->contains(BB)) {
 | |
|       if (DT->dominates(SubLoopLatch, BB))
 | |
|         AftBlocks.insert(BB);
 | |
|       else
 | |
|         ForeBlocks.insert(BB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that all blocks in ForeBlocks together dominate the subloop
 | |
|   // TODO: This might ideally be done better with a dominator/postdominators.
 | |
|   BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
 | |
|   for (BasicBlock *BB : ForeBlocks) {
 | |
|     if (BB == SubLoopPreHeader)
 | |
|       continue;
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       if (!ForeBlocks.count(TI->getSuccessor(i)))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Looks at the phi nodes in Header for values coming from Latch. For these
 | |
| // instructions and all their operands calls Visit on them, keeping going for
 | |
| // all the operands in AftBlocks. Returns false if Visit returns false,
 | |
| // otherwise returns true. This is used to process the instructions in the
 | |
| // Aft blocks that need to be moved before the subloop. It is used in two
 | |
| // places. One to check that the required set of instructions can be moved
 | |
| // before the loop. Then to collect the instructions to actually move in
 | |
| // moveHeaderPhiOperandsToForeBlocks.
 | |
| template <typename T>
 | |
| static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
 | |
|                                      BasicBlockSet &AftBlocks, T Visit) {
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
|   for (auto &Phi : Header->phis()) {
 | |
|     Value *V = Phi.getIncomingValueForBlock(Latch);
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|       Worklist.push_back(I);
 | |
|   }
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
|     if (!Visit(I))
 | |
|       return false;
 | |
| 
 | |
|     if (AftBlocks.count(I->getParent()))
 | |
|       for (auto &U : I->operands())
 | |
|         if (Instruction *II = dyn_cast<Instruction>(U))
 | |
|           Worklist.push_back(II);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
 | |
| static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
 | |
|                                               BasicBlock *Latch,
 | |
|                                               Instruction *InsertLoc,
 | |
|                                               BasicBlockSet &AftBlocks) {
 | |
|   // We need to ensure we move the instructions in the correct order,
 | |
|   // starting with the earliest required instruction and moving forward.
 | |
|   std::vector<Instruction *> Visited;
 | |
|   processHeaderPhiOperands(Header, Latch, AftBlocks,
 | |
|                            [&Visited, &AftBlocks](Instruction *I) {
 | |
|                              if (AftBlocks.count(I->getParent()))
 | |
|                                Visited.push_back(I);
 | |
|                              return true;
 | |
|                            });
 | |
| 
 | |
|   // Move all instructions in program order to before the InsertLoc
 | |
|   BasicBlock *InsertLocBB = InsertLoc->getParent();
 | |
|   for (Instruction *I : reverse(Visited)) {
 | |
|     if (I->getParent() != InsertLocBB)
 | |
|       I->moveBefore(InsertLoc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|   This method performs Unroll and Jam. For a simple loop like:
 | |
|   for (i = ..)
 | |
|     Fore(i)
 | |
|     for (j = ..)
 | |
|       SubLoop(i, j)
 | |
|     Aft(i)
 | |
| 
 | |
|   Instead of doing normal inner or outer unrolling, we do:
 | |
|   for (i = .., i+=2)
 | |
|     Fore(i)
 | |
|     Fore(i+1)
 | |
|     for (j = ..)
 | |
|       SubLoop(i, j)
 | |
|       SubLoop(i+1, j)
 | |
|     Aft(i)
 | |
|     Aft(i+1)
 | |
| 
 | |
|   So the outer loop is essetially unrolled and then the inner loops are fused
 | |
|   ("jammed") together into a single loop. This can increase speed when there
 | |
|   are loads in SubLoop that are invariant to i, as they become shared between
 | |
|   the now jammed inner loops.
 | |
| 
 | |
|   We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
 | |
|   Fore blocks are those before the inner loop, Aft are those after. Normal
 | |
|   Unroll code is used to copy each of these sets of blocks and the results are
 | |
|   combined together into the final form above.
 | |
| 
 | |
|   isSafeToUnrollAndJam should be used prior to calling this to make sure the
 | |
|   unrolling will be valid. Checking profitablility is also advisable.
 | |
| */
 | |
| LoopUnrollResult
 | |
| llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount,
 | |
|                        unsigned TripMultiple, bool UnrollRemainder,
 | |
|                        LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
 | |
|                        AssumptionCache *AC, OptimizationRemarkEmitter *ORE) {
 | |
| 
 | |
|   // When we enter here we should have already checked that it is safe
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   assert(L->getSubLoops().size() == 1);
 | |
|   Loop *SubLoop = *L->begin();
 | |
| 
 | |
|   // Don't enter the unroll code if there is nothing to do.
 | |
|   if (TripCount == 0 && Count < 2) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
 | |
|     return LoopUnrollResult::Unmodified;
 | |
|   }
 | |
| 
 | |
|   assert(Count > 0);
 | |
|   assert(TripMultiple > 0);
 | |
|   assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | |
| 
 | |
|   // Are we eliminating the loop control altogether?
 | |
|   bool CompletelyUnroll = (Count == TripCount);
 | |
| 
 | |
|   // We use the runtime remainder in cases where we don't know trip multiple
 | |
|   if (TripMultiple == 1 || TripMultiple % Count != 0) {
 | |
|     if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
 | |
|                                     /*UseEpilogRemainder*/ true,
 | |
|                                     UnrollRemainder, LI, SE, DT, AC, true)) {
 | |
|       LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
 | |
|                            "generated when assuming runtime trip count\n");
 | |
|       return LoopUnrollResult::Unmodified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Notify ScalarEvolution that the loop will be substantially changed,
 | |
|   // if not outright eliminated.
 | |
|   if (SE) {
 | |
|     SE->forgetLoop(L);
 | |
|     SE->forgetLoop(SubLoop);
 | |
|   }
 | |
| 
 | |
|   using namespace ore;
 | |
|   // Report the unrolling decision.
 | |
|   if (CompletelyUnroll) {
 | |
|     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
 | |
|                       << Header->getName() << " with trip count " << TripCount
 | |
|                       << "!\n");
 | |
|     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
 | |
|                                  L->getHeader())
 | |
|               << "completely unroll and jammed loop with "
 | |
|               << NV("UnrollCount", TripCount) << " iterations");
 | |
|   } else {
 | |
|     auto DiagBuilder = [&]() {
 | |
|       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
 | |
|                               L->getHeader());
 | |
|       return Diag << "unroll and jammed loop by a factor of "
 | |
|                   << NV("UnrollCount", Count);
 | |
|     };
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
 | |
|                       << " by " << Count);
 | |
|     if (TripMultiple != 1) {
 | |
|       LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
 | |
|       ORE->emit([&]() {
 | |
|         return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
 | |
|                              << " trips per branch";
 | |
|       });
 | |
|     } else {
 | |
|       LLVM_DEBUG(dbgs() << " with run-time trip count");
 | |
|       ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "!\n");
 | |
|   }
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | |
|   assert(Preheader && LatchBlock && Header);
 | |
|   assert(BI && !BI->isUnconditional());
 | |
|   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | |
|   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | |
|   bool SubLoopContinueOnTrue = SubLoop->contains(
 | |
|       SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
 | |
| 
 | |
|   // Partition blocks in an outer/inner loop pair into blocks before and after
 | |
|   // the loop
 | |
|   BasicBlockSet SubLoopBlocks;
 | |
|   BasicBlockSet ForeBlocks;
 | |
|   BasicBlockSet AftBlocks;
 | |
|   partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
 | |
|                            DT);
 | |
| 
 | |
|   // We keep track of the entering/first and exiting/last block of each of
 | |
|   // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
 | |
|   // blocks easier.
 | |
|   std::vector<BasicBlock *> ForeBlocksFirst;
 | |
|   std::vector<BasicBlock *> ForeBlocksLast;
 | |
|   std::vector<BasicBlock *> SubLoopBlocksFirst;
 | |
|   std::vector<BasicBlock *> SubLoopBlocksLast;
 | |
|   std::vector<BasicBlock *> AftBlocksFirst;
 | |
|   std::vector<BasicBlock *> AftBlocksLast;
 | |
|   ForeBlocksFirst.push_back(Header);
 | |
|   ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
 | |
|   SubLoopBlocksFirst.push_back(SubLoop->getHeader());
 | |
|   SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
 | |
|   AftBlocksFirst.push_back(SubLoop->getExitBlock());
 | |
|   AftBlocksLast.push_back(L->getExitingBlock());
 | |
|   // Maps Blocks[0] -> Blocks[It]
 | |
|   ValueToValueMapTy LastValueMap;
 | |
| 
 | |
|   // Move any instructions from fore phi operands from AftBlocks into Fore.
 | |
|   moveHeaderPhiOperandsToForeBlocks(
 | |
|       Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(),
 | |
|       AftBlocks);
 | |
| 
 | |
|   // The current on-the-fly SSA update requires blocks to be processed in
 | |
|   // reverse postorder so that LastValueMap contains the correct value at each
 | |
|   // exit.
 | |
|   LoopBlocksDFS DFS(L);
 | |
|   DFS.perform(LI);
 | |
|   // Stash the DFS iterators before adding blocks to the loop.
 | |
|   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
 | |
|   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
 | |
| 
 | |
|   if (Header->getParent()->isDebugInfoForProfiling())
 | |
|     for (BasicBlock *BB : L->getBlocks())
 | |
|       for (Instruction &I : *BB)
 | |
|         if (!isa<DbgInfoIntrinsic>(&I))
 | |
|           if (const DILocation *DIL = I.getDebugLoc())
 | |
|             I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
 | |
| 
 | |
|   // Copy all blocks
 | |
|   for (unsigned It = 1; It != Count; ++It) {
 | |
|     std::vector<BasicBlock *> NewBlocks;
 | |
|     // Maps Blocks[It] -> Blocks[It-1]
 | |
|     DenseMap<Value *, Value *> PrevItValueMap;
 | |
| 
 | |
|     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | |
|       ValueToValueMapTy VMap;
 | |
|       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
 | |
|       Header->getParent()->getBasicBlockList().push_back(New);
 | |
| 
 | |
|       if (ForeBlocks.count(*BB)) {
 | |
|         L->addBasicBlockToLoop(New, *LI);
 | |
| 
 | |
|         if (*BB == ForeBlocksFirst[0])
 | |
|           ForeBlocksFirst.push_back(New);
 | |
|         if (*BB == ForeBlocksLast[0])
 | |
|           ForeBlocksLast.push_back(New);
 | |
|       } else if (SubLoopBlocks.count(*BB)) {
 | |
|         SubLoop->addBasicBlockToLoop(New, *LI);
 | |
| 
 | |
|         if (*BB == SubLoopBlocksFirst[0])
 | |
|           SubLoopBlocksFirst.push_back(New);
 | |
|         if (*BB == SubLoopBlocksLast[0])
 | |
|           SubLoopBlocksLast.push_back(New);
 | |
|       } else if (AftBlocks.count(*BB)) {
 | |
|         L->addBasicBlockToLoop(New, *LI);
 | |
| 
 | |
|         if (*BB == AftBlocksFirst[0])
 | |
|           AftBlocksFirst.push_back(New);
 | |
|         if (*BB == AftBlocksLast[0])
 | |
|           AftBlocksLast.push_back(New);
 | |
|       } else {
 | |
|         llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
 | |
|       }
 | |
| 
 | |
|       // Update our running maps of newest clones
 | |
|       PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
 | |
|       LastValueMap[*BB] = New;
 | |
|       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | |
|            VI != VE; ++VI) {
 | |
|         PrevItValueMap[VI->second] =
 | |
|             const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
 | |
|         LastValueMap[VI->first] = VI->second;
 | |
|       }
 | |
| 
 | |
|       NewBlocks.push_back(New);
 | |
| 
 | |
|       // Update DomTree:
 | |
|       if (*BB == ForeBlocksFirst[0])
 | |
|         DT->addNewBlock(New, ForeBlocksLast[It - 1]);
 | |
|       else if (*BB == SubLoopBlocksFirst[0])
 | |
|         DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
 | |
|       else if (*BB == AftBlocksFirst[0])
 | |
|         DT->addNewBlock(New, AftBlocksLast[It - 1]);
 | |
|       else {
 | |
|         // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
 | |
|         // structure.
 | |
|         auto BBDomNode = DT->getNode(*BB);
 | |
|         auto BBIDom = BBDomNode->getIDom();
 | |
|         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
 | |
|         assert(OriginalBBIDom);
 | |
|         assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
 | |
|         DT->addNewBlock(
 | |
|             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Remap all instructions in the most recent iteration
 | |
|     for (BasicBlock *NewBlock : NewBlocks) {
 | |
|       for (Instruction &I : *NewBlock) {
 | |
|         ::remapInstruction(&I, LastValueMap);
 | |
|         if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|           if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|             AC->registerAssumption(II);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Alter the ForeBlocks phi's, pointing them at the latest version of the
 | |
|     // value from the previous iteration's phis
 | |
|     for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
 | |
|       Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
 | |
|       assert(OldValue && "should have incoming edge from Aft[It]");
 | |
|       Value *NewValue = OldValue;
 | |
|       if (Value *PrevValue = PrevItValueMap[OldValue])
 | |
|         NewValue = PrevValue;
 | |
| 
 | |
|       assert(Phi.getNumOperands() == 2);
 | |
|       Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
 | |
|       Phi.setIncomingValue(0, NewValue);
 | |
|       Phi.removeIncomingValue(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all the basic blocks for the unrolled iterations are in place,
 | |
|   // finish up connecting the blocks and phi nodes. At this point LastValueMap
 | |
|   // is the last unrolled iterations values.
 | |
| 
 | |
|   // Update Phis in BB from OldBB to point to NewBB
 | |
|   auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB,
 | |
|                             BasicBlock *NewBB) {
 | |
|     for (PHINode &Phi : BB->phis()) {
 | |
|       int I = Phi.getBasicBlockIndex(OldBB);
 | |
|       Phi.setIncomingBlock(I, NewBB);
 | |
|     }
 | |
|   };
 | |
|   // Update Phis in BB from OldBB to point to NewBB and use the latest value
 | |
|   // from LastValueMap
 | |
|   auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
 | |
|                                      BasicBlock *NewBB,
 | |
|                                      ValueToValueMapTy &LastValueMap) {
 | |
|     for (PHINode &Phi : BB->phis()) {
 | |
|       for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
 | |
|         if (Phi.getIncomingBlock(b) == OldBB) {
 | |
|           Value *OldValue = Phi.getIncomingValue(b);
 | |
|           if (Value *LastValue = LastValueMap[OldValue])
 | |
|             Phi.setIncomingValue(b, LastValue);
 | |
|           Phi.setIncomingBlock(b, NewBB);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
|   // Move all the phis from Src into Dest
 | |
|   auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
 | |
|     Instruction *insertPoint = Dest->getFirstNonPHI();
 | |
|     while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
 | |
|       Phi->moveBefore(insertPoint);
 | |
|   };
 | |
| 
 | |
|   // Update the PHI values outside the loop to point to the last block
 | |
|   updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
 | |
|                            LastValueMap);
 | |
| 
 | |
|   // Update ForeBlocks successors and phi nodes
 | |
|   BranchInst *ForeTerm =
 | |
|       cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
 | |
|   BasicBlock *Dest = SubLoopBlocksFirst[0];
 | |
|   ForeTerm->setSuccessor(0, Dest);
 | |
| 
 | |
|   if (CompletelyUnroll) {
 | |
|     while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
 | |
|       Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
 | |
|       Phi->getParent()->getInstList().erase(Phi);
 | |
|     }
 | |
|   } else {
 | |
|     // Update the PHI values to point to the last aft block
 | |
|     updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
 | |
|                              AftBlocksLast.back(), LastValueMap);
 | |
|   }
 | |
| 
 | |
|   for (unsigned It = 1; It != Count; It++) {
 | |
|     // Remap ForeBlock successors from previous iteration to this
 | |
|     BranchInst *ForeTerm =
 | |
|         cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
 | |
|     BasicBlock *Dest = ForeBlocksFirst[It];
 | |
|     ForeTerm->setSuccessor(0, Dest);
 | |
|   }
 | |
| 
 | |
|   // Subloop successors and phis
 | |
|   BranchInst *SubTerm =
 | |
|       cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
 | |
|   SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
 | |
|   SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
 | |
|   updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0],
 | |
|                   ForeBlocksLast.back());
 | |
|   updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0],
 | |
|                   SubLoopBlocksLast.back());
 | |
| 
 | |
|   for (unsigned It = 1; It != Count; It++) {
 | |
|     // Replace the conditional branch of the previous iteration subloop with an
 | |
|     // unconditional one to this one
 | |
|     BranchInst *SubTerm =
 | |
|         cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
 | |
|     BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
 | |
|     SubTerm->eraseFromParent();
 | |
| 
 | |
|     updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It],
 | |
|                     ForeBlocksLast.back());
 | |
|     updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It],
 | |
|                     SubLoopBlocksLast.back());
 | |
|     movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
 | |
|   }
 | |
| 
 | |
|   // Aft blocks successors and phis
 | |
|   BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
 | |
|   if (CompletelyUnroll) {
 | |
|     BranchInst::Create(LoopExit, Term);
 | |
|     Term->eraseFromParent();
 | |
|   } else {
 | |
|     Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
 | |
|   }
 | |
|   updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0],
 | |
|                   SubLoopBlocksLast.back());
 | |
| 
 | |
|   for (unsigned It = 1; It != Count; It++) {
 | |
|     // Replace the conditional branch of the previous iteration subloop with an
 | |
|     // unconditional one to this one
 | |
|     BranchInst *AftTerm =
 | |
|         cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
 | |
|     BranchInst::Create(AftBlocksFirst[It], AftTerm);
 | |
|     AftTerm->eraseFromParent();
 | |
| 
 | |
|     updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It],
 | |
|                     SubLoopBlocksLast.back());
 | |
|     movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
 | |
|   }
 | |
| 
 | |
|   // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
 | |
|   // new ones required.
 | |
|   if (Count != 1) {
 | |
|     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
 | |
|     DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
 | |
|                            SubLoopBlocksFirst[0]);
 | |
|     DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
 | |
|                            SubLoopBlocksLast[0], AftBlocksFirst[0]);
 | |
| 
 | |
|     DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
 | |
|                            ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
 | |
|     DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
 | |
|                            SubLoopBlocksLast.back(), AftBlocksFirst[0]);
 | |
|     DT->applyUpdates(DTUpdates);
 | |
|   }
 | |
| 
 | |
|   // Merge adjacent basic blocks, if possible.
 | |
|   SmallPtrSet<BasicBlock *, 16> MergeBlocks;
 | |
|   MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
 | |
|   MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
 | |
|   MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
 | |
|   while (!MergeBlocks.empty()) {
 | |
|     BasicBlock *BB = *MergeBlocks.begin();
 | |
|     BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) {
 | |
|       BasicBlock *Dest = Term->getSuccessor(0);
 | |
|       if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
 | |
|         // Don't remove BB and add Fold as they are the same BB
 | |
|         assert(Fold == BB);
 | |
|         (void)Fold;
 | |
|         MergeBlocks.erase(Dest);
 | |
|       } else
 | |
|         MergeBlocks.erase(BB);
 | |
|     } else
 | |
|       MergeBlocks.erase(BB);
 | |
|   }
 | |
| 
 | |
|   // At this point, the code is well formed.  We now do a quick sweep over the
 | |
|   // inserted code, doing constant propagation and dead code elimination as we
 | |
|   // go.
 | |
|   simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC);
 | |
|   simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC);
 | |
| 
 | |
|   NumCompletelyUnrolledAndJammed += CompletelyUnroll;
 | |
|   ++NumUnrolledAndJammed;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // We shouldn't have done anything to break loop simplify form or LCSSA.
 | |
|   Loop *OuterL = L->getParentLoop();
 | |
|   Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop);
 | |
|   assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
 | |
|   if (!CompletelyUnroll)
 | |
|     assert(L->isLoopSimplifyForm());
 | |
|   assert(SubLoop->isLoopSimplifyForm());
 | |
|   assert(DT->verify());
 | |
| #endif
 | |
| 
 | |
|   // Update LoopInfo if the loop is completely removed.
 | |
|   if (CompletelyUnroll)
 | |
|     LI->erase(L);
 | |
| 
 | |
|   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
 | |
|                           : LoopUnrollResult::PartiallyUnrolled;
 | |
| }
 | |
| 
 | |
| static bool getLoadsAndStores(BasicBlockSet &Blocks,
 | |
|                               SmallVector<Value *, 4> &MemInstr) {
 | |
|   // Scan the BBs and collect legal loads and stores.
 | |
|   // Returns false if non-simple loads/stores are found.
 | |
|   for (BasicBlock *BB : Blocks) {
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
 | |
|         if (!Ld->isSimple())
 | |
|           return false;
 | |
|         MemInstr.push_back(&I);
 | |
|       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
 | |
|         if (!St->isSimple())
 | |
|           return false;
 | |
|         MemInstr.push_back(&I);
 | |
|       } else if (I.mayReadOrWriteMemory()) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool checkDependencies(SmallVector<Value *, 4> &Earlier,
 | |
|                               SmallVector<Value *, 4> &Later,
 | |
|                               unsigned LoopDepth, bool InnerLoop,
 | |
|                               DependenceInfo &DI) {
 | |
|   // Use DA to check for dependencies between loads and stores that make unroll
 | |
|   // and jam invalid
 | |
|   for (Value *I : Earlier) {
 | |
|     for (Value *J : Later) {
 | |
|       Instruction *Src = cast<Instruction>(I);
 | |
|       Instruction *Dst = cast<Instruction>(J);
 | |
|       if (Src == Dst)
 | |
|         continue;
 | |
|       // Ignore Input dependencies.
 | |
|       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
 | |
|         continue;
 | |
| 
 | |
|       // Track dependencies, and if we find them take a conservative approach
 | |
|       // by allowing only = or < (not >), altough some > would be safe
 | |
|       // (depending upon unroll width).
 | |
|       // For the inner loop, we need to disallow any (> <) dependencies
 | |
|       // FIXME: Allow > so long as distance is less than unroll width
 | |
|       if (auto D = DI.depends(Src, Dst, true)) {
 | |
|         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
 | |
| 
 | |
|         if (D->isConfused()) {
 | |
|           LLVM_DEBUG(dbgs() << "  Confused dependency between:\n"
 | |
|                             << "  " << *Src << "\n"
 | |
|                             << "  " << *Dst << "\n");
 | |
|           return false;
 | |
|         }
 | |
|         if (!InnerLoop) {
 | |
|           if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) {
 | |
|             LLVM_DEBUG(dbgs() << "  > dependency between:\n"
 | |
|                               << "  " << *Src << "\n"
 | |
|                               << "  " << *Dst << "\n");
 | |
|             return false;
 | |
|           }
 | |
|         } else {
 | |
|           assert(LoopDepth + 1 <= D->getLevels());
 | |
|           if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT &&
 | |
|               D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) {
 | |
|             LLVM_DEBUG(dbgs() << "  < > dependency between:\n"
 | |
|                               << "  " << *Src << "\n"
 | |
|                               << "  " << *Dst << "\n");
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool checkDependencies(Loop *L, BasicBlockSet &ForeBlocks,
 | |
|                               BasicBlockSet &SubLoopBlocks,
 | |
|                               BasicBlockSet &AftBlocks, DependenceInfo &DI) {
 | |
|   // Get all loads/store pairs for each blocks
 | |
|   SmallVector<Value *, 4> ForeMemInstr;
 | |
|   SmallVector<Value *, 4> SubLoopMemInstr;
 | |
|   SmallVector<Value *, 4> AftMemInstr;
 | |
|   if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) ||
 | |
|       !getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) ||
 | |
|       !getLoadsAndStores(AftBlocks, AftMemInstr))
 | |
|     return false;
 | |
| 
 | |
|   // Check for dependencies between any blocks that may change order
 | |
|   unsigned LoopDepth = L->getLoopDepth();
 | |
|   return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false,
 | |
|                            DI) &&
 | |
|          checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) &&
 | |
|          checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false,
 | |
|                            DI) &&
 | |
|          checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true,
 | |
|                            DI);
 | |
| }
 | |
| 
 | |
| bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
 | |
|                                 DependenceInfo &DI) {
 | |
|   /* We currently handle outer loops like this:
 | |
|         |
 | |
|     ForeFirst    <----\    }
 | |
|      Blocks           |    } ForeBlocks
 | |
|     ForeLast          |    }
 | |
|         |             |
 | |
|     SubLoopFirst  <\  |    }
 | |
|      Blocks        |  |    } SubLoopBlocks
 | |
|     SubLoopLast   -/  |    }
 | |
|         |             |
 | |
|     AftFirst          |    }
 | |
|      Blocks           |    } AftBlocks
 | |
|     AftLast     ------/    }
 | |
|         |
 | |
| 
 | |
|     There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
 | |
|     and AftBlocks, providing that there is one edge from Fores to SubLoops,
 | |
|     one edge from SubLoops to Afts and a single outer loop exit (from Afts).
 | |
|     In practice we currently limit Aft blocks to a single block, and limit
 | |
|     things further in the profitablility checks of the unroll and jam pass.
 | |
| 
 | |
|     Because of the way we rearrange basic blocks, we also require that
 | |
|     the Fore blocks on all unrolled iterations are safe to move before the
 | |
|     SubLoop blocks of all iterations. So we require that the phi node looping
 | |
|     operands of ForeHeader can be moved to at least the end of ForeEnd, so that
 | |
|     we can arrange cloned Fore Blocks before the subloop and match up Phi's
 | |
|     correctly.
 | |
| 
 | |
|     i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2.
 | |
|     It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2.
 | |
| 
 | |
|     There are then a number of checks along the lines of no calls, no
 | |
|     exceptions, inner loop IV is consistent, etc. Note that for loops requiring
 | |
|     runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
 | |
|     UnrollAndJamLoop if the trip count cannot be easily calculated.
 | |
|   */
 | |
| 
 | |
|   if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1)
 | |
|     return false;
 | |
|   Loop *SubLoop = L->getSubLoops()[0];
 | |
|   if (!SubLoop->isLoopSimplifyForm())
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   BasicBlock *Exit = L->getExitingBlock();
 | |
|   BasicBlock *SubLoopHeader = SubLoop->getHeader();
 | |
|   BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
 | |
|   BasicBlock *SubLoopExit = SubLoop->getExitingBlock();
 | |
| 
 | |
|   if (Latch != Exit)
 | |
|     return false;
 | |
|   if (SubLoopLatch != SubLoopExit)
 | |
|     return false;
 | |
| 
 | |
|   if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Split blocks into Fore/SubLoop/Aft based on dominators
 | |
|   BasicBlockSet SubLoopBlocks;
 | |
|   BasicBlockSet ForeBlocks;
 | |
|   BasicBlockSet AftBlocks;
 | |
|   if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks,
 | |
|                                 AftBlocks, &DT)) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Aft blocks may need to move instructions to fore blocks, which becomes more
 | |
|   // difficult if there are multiple (potentially conditionally executed)
 | |
|   // blocks. For now we just exclude loops with multiple aft blocks.
 | |
|   if (AftBlocks.size() != 1) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
 | |
|                          "multiple blocks after the loop\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check inner loop backedge count is consistent on all iterations of the
 | |
|   // outer loop
 | |
|   if (!hasIterationCountInvariantInParent(SubLoop, SE)) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
 | |
|                          "not consistent on each iteration\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check the loop safety info for exceptions.
 | |
|   LoopSafetyInfo LSI;
 | |
|   LSI.computeLoopSafetyInfo(L);
 | |
|   if (LSI.anyBlockMayThrow()) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We've ruled out the easy stuff and now need to check that there are no
 | |
|   // interdependencies which may prevent us from moving the:
 | |
|   //  ForeBlocks before Subloop and AftBlocks.
 | |
|   //  Subloop before AftBlocks.
 | |
|   //  ForeBlock phi operands before the subloop
 | |
| 
 | |
|   // Make sure we can move all instructions we need to before the subloop
 | |
|   if (!processHeaderPhiOperands(
 | |
|           Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
 | |
|             if (SubLoop->contains(I->getParent()))
 | |
|               return false;
 | |
|             if (AftBlocks.count(I->getParent())) {
 | |
|               // If we hit a phi node in afts we know we are done (probably
 | |
|               // LCSSA)
 | |
|               if (isa<PHINode>(I))
 | |
|                 return false;
 | |
|               // Can't move instructions with side effects or memory
 | |
|               // reads/writes
 | |
|               if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
 | |
|                 return false;
 | |
|             }
 | |
|             // Keep going
 | |
|             return true;
 | |
|           })) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
 | |
|                          "instructions after subloop to before it\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check for memory dependencies which prohibit the unrolling we are doing.
 | |
|   // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
 | |
|   // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
 | |
|   if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |