710 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			710 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines common loop utility functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MustExecute.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DomTreeUpdater.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-utils"
 | |
| 
 | |
| bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
 | |
|                                    bool PreserveLCSSA) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // We re-use a vector for the in-loop predecesosrs.
 | |
|   SmallVector<BasicBlock *, 4> InLoopPredecessors;
 | |
| 
 | |
|   auto RewriteExit = [&](BasicBlock *BB) {
 | |
|     assert(InLoopPredecessors.empty() &&
 | |
|            "Must start with an empty predecessors list!");
 | |
|     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
 | |
| 
 | |
|     // See if there are any non-loop predecessors of this exit block and
 | |
|     // keep track of the in-loop predecessors.
 | |
|     bool IsDedicatedExit = true;
 | |
|     for (auto *PredBB : predecessors(BB))
 | |
|       if (L->contains(PredBB)) {
 | |
|         if (isa<IndirectBrInst>(PredBB->getTerminator()))
 | |
|           // We cannot rewrite exiting edges from an indirectbr.
 | |
|           return false;
 | |
| 
 | |
|         InLoopPredecessors.push_back(PredBB);
 | |
|       } else {
 | |
|         IsDedicatedExit = false;
 | |
|       }
 | |
| 
 | |
|     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
 | |
| 
 | |
|     // Nothing to do if this is already a dedicated exit.
 | |
|     if (IsDedicatedExit)
 | |
|       return false;
 | |
| 
 | |
|     auto *NewExitBB = SplitBlockPredecessors(
 | |
|         BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
 | |
| 
 | |
|     if (!NewExitBB)
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
 | |
|                  << *L << "\n");
 | |
|     else
 | |
|       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
 | |
|                         << NewExitBB->getName() << "\n");
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // Walk the exit blocks directly rather than building up a data structure for
 | |
|   // them, but only visit each one once.
 | |
|   SmallPtrSet<BasicBlock *, 4> Visited;
 | |
|   for (auto *BB : L->blocks())
 | |
|     for (auto *SuccBB : successors(BB)) {
 | |
|       // We're looking for exit blocks so skip in-loop successors.
 | |
|       if (L->contains(SuccBB))
 | |
|         continue;
 | |
| 
 | |
|       // Visit each exit block exactly once.
 | |
|       if (!Visited.insert(SuccBB).second)
 | |
|         continue;
 | |
| 
 | |
|       Changed |= RewriteExit(SuccBB);
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Returns the instructions that use values defined in the loop.
 | |
| SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
 | |
|   SmallVector<Instruction *, 8> UsedOutside;
 | |
| 
 | |
|   for (auto *Block : L->getBlocks())
 | |
|     // FIXME: I believe that this could use copy_if if the Inst reference could
 | |
|     // be adapted into a pointer.
 | |
|     for (auto &Inst : *Block) {
 | |
|       auto Users = Inst.users();
 | |
|       if (any_of(Users, [&](User *U) {
 | |
|             auto *Use = cast<Instruction>(U);
 | |
|             return !L->contains(Use->getParent());
 | |
|           }))
 | |
|         UsedOutside.push_back(&Inst);
 | |
|     }
 | |
| 
 | |
|   return UsedOutside;
 | |
| }
 | |
| 
 | |
| void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
 | |
|   // By definition, all loop passes need the LoopInfo analysis and the
 | |
|   // Dominator tree it depends on. Because they all participate in the loop
 | |
|   // pass manager, they must also preserve these.
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addPreserved<LoopInfoWrapperPass>();
 | |
| 
 | |
|   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
 | |
|   // here because users shouldn't directly get them from this header.
 | |
|   extern char &LoopSimplifyID;
 | |
|   extern char &LCSSAID;
 | |
|   AU.addRequiredID(LoopSimplifyID);
 | |
|   AU.addPreservedID(LoopSimplifyID);
 | |
|   AU.addRequiredID(LCSSAID);
 | |
|   AU.addPreservedID(LCSSAID);
 | |
|   // This is used in the LPPassManager to perform LCSSA verification on passes
 | |
|   // which preserve lcssa form
 | |
|   AU.addRequired<LCSSAVerificationPass>();
 | |
|   AU.addPreserved<LCSSAVerificationPass>();
 | |
| 
 | |
|   // Loop passes are designed to run inside of a loop pass manager which means
 | |
|   // that any function analyses they require must be required by the first loop
 | |
|   // pass in the manager (so that it is computed before the loop pass manager
 | |
|   // runs) and preserved by all loop pasess in the manager. To make this
 | |
|   // reasonably robust, the set needed for most loop passes is maintained here.
 | |
|   // If your loop pass requires an analysis not listed here, you will need to
 | |
|   // carefully audit the loop pass manager nesting structure that results.
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<BasicAAWrapperPass>();
 | |
|   AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|   AU.addPreserved<SCEVAAWrapperPass>();
 | |
|   AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|   AU.addPreserved<ScalarEvolutionWrapperPass>();
 | |
| }
 | |
| 
 | |
| /// Manually defined generic "LoopPass" dependency initialization. This is used
 | |
| /// to initialize the exact set of passes from above in \c
 | |
| /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
 | |
| /// with:
 | |
| ///
 | |
| ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| ///
 | |
| /// As-if "LoopPass" were a pass.
 | |
| void llvm::initializeLoopPassPass(PassRegistry &Registry) {
 | |
|   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| }
 | |
| 
 | |
| /// Find string metadata for loop
 | |
| ///
 | |
| /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
 | |
| /// operand or null otherwise.  If the string metadata is not found return
 | |
| /// Optional's not-a-value.
 | |
| Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
 | |
|                                                             StringRef Name) {
 | |
|   MDNode *LoopID = TheLoop->getLoopID();
 | |
|   // Return none if LoopID is false.
 | |
|   if (!LoopID)
 | |
|     return None;
 | |
| 
 | |
|   // First operand should refer to the loop id itself.
 | |
|   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | |
|   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | |
| 
 | |
|   // Iterate over LoopID operands and look for MDString Metadata
 | |
|   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | |
|     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|     if (!MD)
 | |
|       continue;
 | |
|     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|     if (!S)
 | |
|       continue;
 | |
|     // Return true if MDString holds expected MetaData.
 | |
|     if (Name.equals(S->getString()))
 | |
|       switch (MD->getNumOperands()) {
 | |
|       case 1:
 | |
|         return nullptr;
 | |
|       case 2:
 | |
|         return &MD->getOperand(1);
 | |
|       default:
 | |
|         llvm_unreachable("loop metadata has 0 or 1 operand");
 | |
|       }
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Does a BFS from a given node to all of its children inside a given loop.
 | |
| /// The returned vector of nodes includes the starting point.
 | |
| SmallVector<DomTreeNode *, 16>
 | |
| llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
 | |
|   SmallVector<DomTreeNode *, 16> Worklist;
 | |
|   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
 | |
|     // Only include subregions in the top level loop.
 | |
|     BasicBlock *BB = DTN->getBlock();
 | |
|     if (CurLoop->contains(BB))
 | |
|       Worklist.push_back(DTN);
 | |
|   };
 | |
| 
 | |
|   AddRegionToWorklist(N);
 | |
| 
 | |
|   for (size_t I = 0; I < Worklist.size(); I++)
 | |
|     for (DomTreeNode *Child : Worklist[I]->getChildren())
 | |
|       AddRegionToWorklist(Child);
 | |
| 
 | |
|   return Worklist;
 | |
| }
 | |
| 
 | |
| void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
 | |
|                           ScalarEvolution *SE = nullptr,
 | |
|                           LoopInfo *LI = nullptr) {
 | |
|   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
 | |
|   auto *Preheader = L->getLoopPreheader();
 | |
|   assert(Preheader && "Preheader should exist!");
 | |
| 
 | |
|   // Now that we know the removal is safe, remove the loop by changing the
 | |
|   // branch from the preheader to go to the single exit block.
 | |
|   //
 | |
|   // Because we're deleting a large chunk of code at once, the sequence in which
 | |
|   // we remove things is very important to avoid invalidation issues.
 | |
| 
 | |
|   // Tell ScalarEvolution that the loop is deleted. Do this before
 | |
|   // deleting the loop so that ScalarEvolution can look at the loop
 | |
|   // to determine what it needs to clean up.
 | |
|   if (SE)
 | |
|     SE->forgetLoop(L);
 | |
| 
 | |
|   auto *ExitBlock = L->getUniqueExitBlock();
 | |
|   assert(ExitBlock && "Should have a unique exit block!");
 | |
|   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
 | |
| 
 | |
|   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
 | |
|   assert(OldBr && "Preheader must end with a branch");
 | |
|   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
 | |
|   // Connect the preheader to the exit block. Keep the old edge to the header
 | |
|   // around to perform the dominator tree update in two separate steps
 | |
|   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
 | |
|   // preheader -> header.
 | |
|   //
 | |
|   //
 | |
|   // 0.  Preheader          1.  Preheader           2.  Preheader
 | |
|   //        |                    |   |                   |
 | |
|   //        V                    |   V                   |
 | |
|   //      Header <--\            | Header <--\           | Header <--\
 | |
|   //       |  |     |            |  |  |     |           |  |  |     |
 | |
|   //       |  V     |            |  |  V     |           |  |  V     |
 | |
|   //       | Body --/            |  | Body --/           |  | Body --/
 | |
|   //       V                     V  V                    V  V
 | |
|   //      Exit                   Exit                    Exit
 | |
|   //
 | |
|   // By doing this is two separate steps we can perform the dominator tree
 | |
|   // update without using the batch update API.
 | |
|   //
 | |
|   // Even when the loop is never executed, we cannot remove the edge from the
 | |
|   // source block to the exit block. Consider the case where the unexecuted loop
 | |
|   // branches back to an outer loop. If we deleted the loop and removed the edge
 | |
|   // coming to this inner loop, this will break the outer loop structure (by
 | |
|   // deleting the backedge of the outer loop). If the outer loop is indeed a
 | |
|   // non-loop, it will be deleted in a future iteration of loop deletion pass.
 | |
|   IRBuilder<> Builder(OldBr);
 | |
|   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
 | |
|   // Remove the old branch. The conditional branch becomes a new terminator.
 | |
|   OldBr->eraseFromParent();
 | |
| 
 | |
|   // Rewrite phis in the exit block to get their inputs from the Preheader
 | |
|   // instead of the exiting block.
 | |
|   for (PHINode &P : ExitBlock->phis()) {
 | |
|     // Set the zero'th element of Phi to be from the preheader and remove all
 | |
|     // other incoming values. Given the loop has dedicated exits, all other
 | |
|     // incoming values must be from the exiting blocks.
 | |
|     int PredIndex = 0;
 | |
|     P.setIncomingBlock(PredIndex, Preheader);
 | |
|     // Removes all incoming values from all other exiting blocks (including
 | |
|     // duplicate values from an exiting block).
 | |
|     // Nuke all entries except the zero'th entry which is the preheader entry.
 | |
|     // NOTE! We need to remove Incoming Values in the reverse order as done
 | |
|     // below, to keep the indices valid for deletion (removeIncomingValues
 | |
|     // updates getNumIncomingValues and shifts all values down into the operand
 | |
|     // being deleted).
 | |
|     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
 | |
|       P.removeIncomingValue(e - i, false);
 | |
| 
 | |
|     assert((P.getNumIncomingValues() == 1 &&
 | |
|             P.getIncomingBlock(PredIndex) == Preheader) &&
 | |
|            "Should have exactly one value and that's from the preheader!");
 | |
|   }
 | |
| 
 | |
|   // Disconnect the loop body by branching directly to its exit.
 | |
|   Builder.SetInsertPoint(Preheader->getTerminator());
 | |
|   Builder.CreateBr(ExitBlock);
 | |
|   // Remove the old branch.
 | |
|   Preheader->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
 | |
|   if (DT) {
 | |
|     // Update the dominator tree by informing it about the new edge from the
 | |
|     // preheader to the exit.
 | |
|     DTU.insertEdge(Preheader, ExitBlock);
 | |
|     // Inform the dominator tree about the removed edge.
 | |
|     DTU.deleteEdge(Preheader, L->getHeader());
 | |
|   }
 | |
| 
 | |
|   // Given LCSSA form is satisfied, we should not have users of instructions
 | |
|   // within the dead loop outside of the loop. However, LCSSA doesn't take
 | |
|   // unreachable uses into account. We handle them here.
 | |
|   // We could do it after drop all references (in this case all users in the
 | |
|   // loop will be already eliminated and we have less work to do but according
 | |
|   // to API doc of User::dropAllReferences only valid operation after dropping
 | |
|   // references, is deletion. So let's substitute all usages of
 | |
|   // instruction from the loop with undef value of corresponding type first.
 | |
|   for (auto *Block : L->blocks())
 | |
|     for (Instruction &I : *Block) {
 | |
|       auto *Undef = UndefValue::get(I.getType());
 | |
|       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
 | |
|         Use &U = *UI;
 | |
|         ++UI;
 | |
|         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
 | |
|           if (L->contains(Usr->getParent()))
 | |
|             continue;
 | |
|         // If we have a DT then we can check that uses outside a loop only in
 | |
|         // unreachable block.
 | |
|         if (DT)
 | |
|           assert(!DT->isReachableFromEntry(U) &&
 | |
|                  "Unexpected user in reachable block");
 | |
|         U.set(Undef);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Remove the block from the reference counting scheme, so that we can
 | |
|   // delete it freely later.
 | |
|   for (auto *Block : L->blocks())
 | |
|     Block->dropAllReferences();
 | |
| 
 | |
|   if (LI) {
 | |
|     // Erase the instructions and the blocks without having to worry
 | |
|     // about ordering because we already dropped the references.
 | |
|     // NOTE: This iteration is safe because erasing the block does not remove
 | |
|     // its entry from the loop's block list.  We do that in the next section.
 | |
|     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
 | |
|          LpI != LpE; ++LpI)
 | |
|       (*LpI)->eraseFromParent();
 | |
| 
 | |
|     // Finally, the blocks from loopinfo.  This has to happen late because
 | |
|     // otherwise our loop iterators won't work.
 | |
| 
 | |
|     SmallPtrSet<BasicBlock *, 8> blocks;
 | |
|     blocks.insert(L->block_begin(), L->block_end());
 | |
|     for (BasicBlock *BB : blocks)
 | |
|       LI->removeBlock(BB);
 | |
| 
 | |
|     // The last step is to update LoopInfo now that we've eliminated this loop.
 | |
|     LI->erase(L);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
 | |
|   // Only support loops with a unique exiting block, and a latch.
 | |
|   if (!L->getExitingBlock())
 | |
|     return None;
 | |
| 
 | |
|   // Get the branch weights for the loop's backedge.
 | |
|   BranchInst *LatchBR =
 | |
|       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
 | |
|   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
 | |
|     return None;
 | |
| 
 | |
|   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
 | |
|           LatchBR->getSuccessor(1) == L->getHeader()) &&
 | |
|          "At least one edge out of the latch must go to the header");
 | |
| 
 | |
|   // To estimate the number of times the loop body was executed, we want to
 | |
|   // know the number of times the backedge was taken, vs. the number of times
 | |
|   // we exited the loop.
 | |
|   uint64_t TrueVal, FalseVal;
 | |
|   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
 | |
|     return None;
 | |
| 
 | |
|   if (!TrueVal || !FalseVal)
 | |
|     return 0;
 | |
| 
 | |
|   // Divide the count of the backedge by the count of the edge exiting the loop,
 | |
|   // rounding to nearest.
 | |
|   if (LatchBR->getSuccessor(0) == L->getHeader())
 | |
|     return (TrueVal + (FalseVal / 2)) / FalseVal;
 | |
|   else
 | |
|     return (FalseVal + (TrueVal / 2)) / TrueVal;
 | |
| }
 | |
| 
 | |
| bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
 | |
|                                               ScalarEvolution &SE) {
 | |
|   Loop *OuterL = InnerLoop->getParentLoop();
 | |
|   if (!OuterL)
 | |
|     return true;
 | |
| 
 | |
|   // Get the backedge taken count for the inner loop
 | |
|   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | |
|   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
 | |
|   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
 | |
|       !InnerLoopBECountSC->getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   // Get whether count is invariant to the outer loop
 | |
|   ScalarEvolution::LoopDisposition LD =
 | |
|       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
 | |
|   if (LD != ScalarEvolution::LoopInvariant)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Adds a 'fast' flag to floating point operations.
 | |
| static Value *addFastMathFlag(Value *V) {
 | |
|   if (isa<FPMathOperator>(V)) {
 | |
|     FastMathFlags Flags;
 | |
|     Flags.setFast();
 | |
|     cast<Instruction>(V)->setFastMathFlags(Flags);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
 | |
|                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
 | |
|                             Value *Left, Value *Right) {
 | |
|   CmpInst::Predicate P = CmpInst::ICMP_NE;
 | |
|   switch (RK) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown min/max recurrence kind");
 | |
|   case RecurrenceDescriptor::MRK_UIntMin:
 | |
|     P = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_UIntMax:
 | |
|     P = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_SIntMin:
 | |
|     P = CmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_SIntMax:
 | |
|     P = CmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_FloatMin:
 | |
|     P = CmpInst::FCMP_OLT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_FloatMax:
 | |
|     P = CmpInst::FCMP_OGT;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We only match FP sequences that are 'fast', so we can unconditionally
 | |
|   // set it on any generated instructions.
 | |
|   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|   FastMathFlags FMF;
 | |
|   FMF.setFast();
 | |
|   Builder.setFastMathFlags(FMF);
 | |
| 
 | |
|   Value *Cmp;
 | |
|   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
 | |
|       RK == RecurrenceDescriptor::MRK_FloatMax)
 | |
|     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
 | |
|   else
 | |
|     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | |
| 
 | |
|   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | |
|   return Select;
 | |
| }
 | |
| 
 | |
| // Helper to generate an ordered reduction.
 | |
| Value *
 | |
| llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
 | |
|                           unsigned Op,
 | |
|                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
 | |
|                           ArrayRef<Value *> RedOps) {
 | |
|   unsigned VF = Src->getType()->getVectorNumElements();
 | |
| 
 | |
|   // Extract and apply reduction ops in ascending order:
 | |
|   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
 | |
|   Value *Result = Acc;
 | |
|   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
 | |
|     Value *Ext =
 | |
|         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
 | |
| 
 | |
|     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | |
|       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
 | |
|                                    "bin.rdx");
 | |
|     } else {
 | |
|       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
 | |
|              "Invalid min/max");
 | |
|       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
 | |
|     }
 | |
| 
 | |
|     if (!RedOps.empty())
 | |
|       propagateIRFlags(Result, RedOps);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Helper to generate a log2 shuffle reduction.
 | |
| Value *
 | |
| llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
 | |
|                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
 | |
|                           ArrayRef<Value *> RedOps) {
 | |
|   unsigned VF = Src->getType()->getVectorNumElements();
 | |
|   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
 | |
|   // and vector ops, reducing the set of values being computed by half each
 | |
|   // round.
 | |
|   assert(isPowerOf2_32(VF) &&
 | |
|          "Reduction emission only supported for pow2 vectors!");
 | |
|   Value *TmpVec = Src;
 | |
|   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
 | |
|   for (unsigned i = VF; i != 1; i >>= 1) {
 | |
|     // Move the upper half of the vector to the lower half.
 | |
|     for (unsigned j = 0; j != i / 2; ++j)
 | |
|       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
 | |
| 
 | |
|     // Fill the rest of the mask with undef.
 | |
|     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
 | |
|               UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|     Value *Shuf = Builder.CreateShuffleVector(
 | |
|         TmpVec, UndefValue::get(TmpVec->getType()),
 | |
|         ConstantVector::get(ShuffleMask), "rdx.shuf");
 | |
| 
 | |
|     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | |
|       // Floating point operations had to be 'fast' to enable the reduction.
 | |
|       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
 | |
|                                                    TmpVec, Shuf, "bin.rdx"));
 | |
|     } else {
 | |
|       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
 | |
|              "Invalid min/max");
 | |
|       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
 | |
|     }
 | |
|     if (!RedOps.empty())
 | |
|       propagateIRFlags(TmpVec, RedOps);
 | |
|   }
 | |
|   // The result is in the first element of the vector.
 | |
|   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | |
| }
 | |
| 
 | |
| /// Create a simple vector reduction specified by an opcode and some
 | |
| /// flags (if generating min/max reductions).
 | |
| Value *llvm::createSimpleTargetReduction(
 | |
|     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
 | |
|     Value *Src, TargetTransformInfo::ReductionFlags Flags,
 | |
|     ArrayRef<Value *> RedOps) {
 | |
|   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
 | |
| 
 | |
|   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
 | |
|   std::function<Value *()> BuildFunc;
 | |
|   using RD = RecurrenceDescriptor;
 | |
|   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
 | |
|   // TODO: Support creating ordered reductions.
 | |
|   FastMathFlags FMFFast;
 | |
|   FMFFast.setFast();
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|     BuildFunc = [&]() {
 | |
|       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
 | |
|       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
 | |
|       return Rdx;
 | |
|     };
 | |
|     break;
 | |
|   case Instruction::FMul:
 | |
|     BuildFunc = [&]() {
 | |
|       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
 | |
|       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
 | |
|       return Rdx;
 | |
|     };
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     if (Flags.IsMaxOp) {
 | |
|       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
 | |
|       BuildFunc = [&]() {
 | |
|         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
 | |
|       };
 | |
|     } else {
 | |
|       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
 | |
|       BuildFunc = [&]() {
 | |
|         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
 | |
|       };
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     if (Flags.IsMaxOp) {
 | |
|       MinMaxKind = RD::MRK_FloatMax;
 | |
|       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
 | |
|     } else {
 | |
|       MinMaxKind = RD::MRK_FloatMin;
 | |
|       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled opcode");
 | |
|     break;
 | |
|   }
 | |
|   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
 | |
|     return BuildFunc();
 | |
|   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
 | |
| }
 | |
| 
 | |
| /// Create a vector reduction using a given recurrence descriptor.
 | |
| Value *llvm::createTargetReduction(IRBuilder<> &B,
 | |
|                                    const TargetTransformInfo *TTI,
 | |
|                                    RecurrenceDescriptor &Desc, Value *Src,
 | |
|                                    bool NoNaN) {
 | |
|   // TODO: Support in-order reductions based on the recurrence descriptor.
 | |
|   using RD = RecurrenceDescriptor;
 | |
|   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
 | |
|   TargetTransformInfo::ReductionFlags Flags;
 | |
|   Flags.NoNaN = NoNaN;
 | |
|   switch (RecKind) {
 | |
|   case RD::RK_FloatAdd:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
 | |
|   case RD::RK_FloatMult:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
 | |
|   case RD::RK_IntegerAdd:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
 | |
|   case RD::RK_IntegerMult:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
 | |
|   case RD::RK_IntegerAnd:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
 | |
|   case RD::RK_IntegerOr:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
 | |
|   case RD::RK_IntegerXor:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
 | |
|   case RD::RK_IntegerMinMax: {
 | |
|     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
 | |
|     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
 | |
|     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
 | |
|   }
 | |
|   case RD::RK_FloatMinMax: {
 | |
|     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled RecKind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
 | |
|   auto *VecOp = dyn_cast<Instruction>(I);
 | |
|   if (!VecOp)
 | |
|     return;
 | |
|   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
 | |
|                                             : dyn_cast<Instruction>(OpValue);
 | |
|   if (!Intersection)
 | |
|     return;
 | |
|   const unsigned Opcode = Intersection->getOpcode();
 | |
|   VecOp->copyIRFlags(Intersection);
 | |
|   for (auto *V : VL) {
 | |
|     auto *Instr = dyn_cast<Instruction>(V);
 | |
|     if (!Instr)
 | |
|       continue;
 | |
|     if (OpValue == nullptr || Opcode == Instr->getOpcode())
 | |
|       VecOp->andIRFlags(V);
 | |
|   }
 | |
| }
 |