851 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			851 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the PredicateInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/PredicateInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/IR/AssemblyAnnotationWriter.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/DebugCounter.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Transforms/Utils.h"
 | |
| #include <algorithm>
 | |
| #define DEBUG_TYPE "predicateinfo"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| using namespace llvm::PredicateInfoClasses;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
 | |
|                       "PredicateInfo Printer", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
 | |
|                     "PredicateInfo Printer", false, false)
 | |
| static cl::opt<bool> VerifyPredicateInfo(
 | |
|     "verify-predicateinfo", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Verify PredicateInfo in legacy printer pass."));
 | |
| DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
 | |
|               "Controls which variables are renamed with predicateinfo");
 | |
| 
 | |
| namespace {
 | |
| // Given a predicate info that is a type of branching terminator, get the
 | |
| // branching block.
 | |
| const BasicBlock *getBranchBlock(const PredicateBase *PB) {
 | |
|   assert(isa<PredicateWithEdge>(PB) &&
 | |
|          "Only branches and switches should have PHIOnly defs that "
 | |
|          "require branch blocks.");
 | |
|   return cast<PredicateWithEdge>(PB)->From;
 | |
| }
 | |
| 
 | |
| // Given a predicate info that is a type of branching terminator, get the
 | |
| // branching terminator.
 | |
| static Instruction *getBranchTerminator(const PredicateBase *PB) {
 | |
|   assert(isa<PredicateWithEdge>(PB) &&
 | |
|          "Not a predicate info type we know how to get a terminator from.");
 | |
|   return cast<PredicateWithEdge>(PB)->From->getTerminator();
 | |
| }
 | |
| 
 | |
| // Given a predicate info that is a type of branching terminator, get the
 | |
| // edge this predicate info represents
 | |
| const std::pair<BasicBlock *, BasicBlock *>
 | |
| getBlockEdge(const PredicateBase *PB) {
 | |
|   assert(isa<PredicateWithEdge>(PB) &&
 | |
|          "Not a predicate info type we know how to get an edge from.");
 | |
|   const auto *PEdge = cast<PredicateWithEdge>(PB);
 | |
|   return std::make_pair(PEdge->From, PEdge->To);
 | |
| }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| namespace PredicateInfoClasses {
 | |
| enum LocalNum {
 | |
|   // Operations that must appear first in the block.
 | |
|   LN_First,
 | |
|   // Operations that are somewhere in the middle of the block, and are sorted on
 | |
|   // demand.
 | |
|   LN_Middle,
 | |
|   // Operations that must appear last in a block, like successor phi node uses.
 | |
|   LN_Last
 | |
| };
 | |
| 
 | |
| // Associate global and local DFS info with defs and uses, so we can sort them
 | |
| // into a global domination ordering.
 | |
| struct ValueDFS {
 | |
|   int DFSIn = 0;
 | |
|   int DFSOut = 0;
 | |
|   unsigned int LocalNum = LN_Middle;
 | |
|   // Only one of Def or Use will be set.
 | |
|   Value *Def = nullptr;
 | |
|   Use *U = nullptr;
 | |
|   // Neither PInfo nor EdgeOnly participate in the ordering
 | |
|   PredicateBase *PInfo = nullptr;
 | |
|   bool EdgeOnly = false;
 | |
| };
 | |
| 
 | |
| // Perform a strict weak ordering on instructions and arguments.
 | |
| static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
 | |
|                              const Value *B) {
 | |
|   auto *ArgA = dyn_cast_or_null<Argument>(A);
 | |
|   auto *ArgB = dyn_cast_or_null<Argument>(B);
 | |
|   if (ArgA && !ArgB)
 | |
|     return true;
 | |
|   if (ArgB && !ArgA)
 | |
|     return false;
 | |
|   if (ArgA && ArgB)
 | |
|     return ArgA->getArgNo() < ArgB->getArgNo();
 | |
|   return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
 | |
| }
 | |
| 
 | |
| // This compares ValueDFS structures, creating OrderedBasicBlocks where
 | |
| // necessary to compare uses/defs in the same block.  Doing so allows us to walk
 | |
| // the minimum number of instructions necessary to compute our def/use ordering.
 | |
| struct ValueDFS_Compare {
 | |
|   OrderedInstructions &OI;
 | |
|   ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {}
 | |
| 
 | |
|   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
 | |
|     if (&A == &B)
 | |
|       return false;
 | |
|     // The only case we can't directly compare them is when they in the same
 | |
|     // block, and both have localnum == middle.  In that case, we have to use
 | |
|     // comesbefore to see what the real ordering is, because they are in the
 | |
|     // same basic block.
 | |
| 
 | |
|     bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
 | |
| 
 | |
|     // We want to put the def that will get used for a given set of phi uses,
 | |
|     // before those phi uses.
 | |
|     // So we sort by edge, then by def.
 | |
|     // Note that only phi nodes uses and defs can come last.
 | |
|     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
 | |
|       return comparePHIRelated(A, B);
 | |
| 
 | |
|     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
 | |
|       return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
 | |
|              std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
 | |
|     return localComesBefore(A, B);
 | |
|   }
 | |
| 
 | |
|   // For a phi use, or a non-materialized def, return the edge it represents.
 | |
|   const std::pair<BasicBlock *, BasicBlock *>
 | |
|   getBlockEdge(const ValueDFS &VD) const {
 | |
|     if (!VD.Def && VD.U) {
 | |
|       auto *PHI = cast<PHINode>(VD.U->getUser());
 | |
|       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
 | |
|     }
 | |
|     // This is really a non-materialized def.
 | |
|     return ::getBlockEdge(VD.PInfo);
 | |
|   }
 | |
| 
 | |
|   // For two phi related values, return the ordering.
 | |
|   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
 | |
|     auto &ABlockEdge = getBlockEdge(A);
 | |
|     auto &BBlockEdge = getBlockEdge(B);
 | |
|     // Now sort by block edge and then defs before uses.
 | |
|     return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
 | |
|   }
 | |
| 
 | |
|   // Get the definition of an instruction that occurs in the middle of a block.
 | |
|   Value *getMiddleDef(const ValueDFS &VD) const {
 | |
|     if (VD.Def)
 | |
|       return VD.Def;
 | |
|     // It's possible for the defs and uses to be null.  For branches, the local
 | |
|     // numbering will say the placed predicaeinfos should go first (IE
 | |
|     // LN_beginning), so we won't be in this function. For assumes, we will end
 | |
|     // up here, beause we need to order the def we will place relative to the
 | |
|     // assume.  So for the purpose of ordering, we pretend the def is the assume
 | |
|     // because that is where we will insert the info.
 | |
|     if (!VD.U) {
 | |
|       assert(VD.PInfo &&
 | |
|              "No def, no use, and no predicateinfo should not occur");
 | |
|       assert(isa<PredicateAssume>(VD.PInfo) &&
 | |
|              "Middle of block should only occur for assumes");
 | |
|       return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Return either the Def, if it's not null, or the user of the Use, if the def
 | |
|   // is null.
 | |
|   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
 | |
|     if (Def)
 | |
|       return cast<Instruction>(Def);
 | |
|     return cast<Instruction>(U->getUser());
 | |
|   }
 | |
| 
 | |
|   // This performs the necessary local basic block ordering checks to tell
 | |
|   // whether A comes before B, where both are in the same basic block.
 | |
|   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
 | |
|     auto *ADef = getMiddleDef(A);
 | |
|     auto *BDef = getMiddleDef(B);
 | |
| 
 | |
|     // See if we have real values or uses. If we have real values, we are
 | |
|     // guaranteed they are instructions or arguments. No matter what, we are
 | |
|     // guaranteed they are in the same block if they are instructions.
 | |
|     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
 | |
|     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
 | |
| 
 | |
|     if (ArgA || ArgB)
 | |
|       return valueComesBefore(OI, ArgA, ArgB);
 | |
| 
 | |
|     auto *AInst = getDefOrUser(ADef, A.U);
 | |
|     auto *BInst = getDefOrUser(BDef, B.U);
 | |
|     return valueComesBefore(OI, AInst, BInst);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace PredicateInfoClasses
 | |
| 
 | |
| bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
 | |
|                                    const ValueDFS &VDUse) const {
 | |
|   if (Stack.empty())
 | |
|     return false;
 | |
|   // If it's a phi only use, make sure it's for this phi node edge, and that the
 | |
|   // use is in a phi node.  If it's anything else, and the top of the stack is
 | |
|   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
 | |
|   // the defs they must go with so that we can know it's time to pop the stack
 | |
|   // when we hit the end of the phi uses for a given def.
 | |
|   if (Stack.back().EdgeOnly) {
 | |
|     if (!VDUse.U)
 | |
|       return false;
 | |
|     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
 | |
|     if (!PHI)
 | |
|       return false;
 | |
|     // Check edge
 | |
|     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
 | |
|     if (EdgePred != getBranchBlock(Stack.back().PInfo))
 | |
|       return false;
 | |
| 
 | |
|     // Use dominates, which knows how to handle edge dominance.
 | |
|     return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
 | |
|   }
 | |
| 
 | |
|   return (VDUse.DFSIn >= Stack.back().DFSIn &&
 | |
|           VDUse.DFSOut <= Stack.back().DFSOut);
 | |
| }
 | |
| 
 | |
| void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
 | |
|                                           const ValueDFS &VD) {
 | |
|   while (!Stack.empty() && !stackIsInScope(Stack, VD))
 | |
|     Stack.pop_back();
 | |
| }
 | |
| 
 | |
| // Convert the uses of Op into a vector of uses, associating global and local
 | |
| // DFS info with each one.
 | |
| void PredicateInfo::convertUsesToDFSOrdered(
 | |
|     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
 | |
|   for (auto &U : Op->uses()) {
 | |
|     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
 | |
|       ValueDFS VD;
 | |
|       // Put the phi node uses in the incoming block.
 | |
|       BasicBlock *IBlock;
 | |
|       if (auto *PN = dyn_cast<PHINode>(I)) {
 | |
|         IBlock = PN->getIncomingBlock(U);
 | |
|         // Make phi node users appear last in the incoming block
 | |
|         // they are from.
 | |
|         VD.LocalNum = LN_Last;
 | |
|       } else {
 | |
|         // If it's not a phi node use, it is somewhere in the middle of the
 | |
|         // block.
 | |
|         IBlock = I->getParent();
 | |
|         VD.LocalNum = LN_Middle;
 | |
|       }
 | |
|       DomTreeNode *DomNode = DT.getNode(IBlock);
 | |
|       // It's possible our use is in an unreachable block. Skip it if so.
 | |
|       if (!DomNode)
 | |
|         continue;
 | |
|       VD.DFSIn = DomNode->getDFSNumIn();
 | |
|       VD.DFSOut = DomNode->getDFSNumOut();
 | |
|       VD.U = &U;
 | |
|       DFSOrderedSet.push_back(VD);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Collect relevant operations from Comparison that we may want to insert copies
 | |
| // for.
 | |
| void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
 | |
|   auto *Op0 = Comparison->getOperand(0);
 | |
|   auto *Op1 = Comparison->getOperand(1);
 | |
|   if (Op0 == Op1)
 | |
|     return;
 | |
|   CmpOperands.push_back(Comparison);
 | |
|   // Only want real values, not constants.  Additionally, operands with one use
 | |
|   // are only being used in the comparison, which means they will not be useful
 | |
|   // for us to consider for predicateinfo.
 | |
|   //
 | |
|   if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
 | |
|     CmpOperands.push_back(Op0);
 | |
|   if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
 | |
|     CmpOperands.push_back(Op1);
 | |
| }
 | |
| 
 | |
| // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
 | |
| void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
 | |
|                                PredicateBase *PB) {
 | |
|   OpsToRename.insert(Op);
 | |
|   auto &OperandInfo = getOrCreateValueInfo(Op);
 | |
|   AllInfos.push_back(PB);
 | |
|   OperandInfo.Infos.push_back(PB);
 | |
| }
 | |
| 
 | |
| // Process an assume instruction and place relevant operations we want to rename
 | |
| // into OpsToRename.
 | |
| void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
 | |
|                                   SmallPtrSetImpl<Value *> &OpsToRename) {
 | |
|   // See if we have a comparison we support
 | |
|   SmallVector<Value *, 8> CmpOperands;
 | |
|   SmallVector<Value *, 2> ConditionsToProcess;
 | |
|   CmpInst::Predicate Pred;
 | |
|   Value *Operand = II->getOperand(0);
 | |
|   if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
 | |
|               m_Cmp(Pred, m_Value(), m_Value()))
 | |
|           .match(II->getOperand(0))) {
 | |
|     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
 | |
|     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
 | |
|     ConditionsToProcess.push_back(Operand);
 | |
|   } else if (isa<CmpInst>(Operand)) {
 | |
| 
 | |
|     ConditionsToProcess.push_back(Operand);
 | |
|   }
 | |
|   for (auto Cond : ConditionsToProcess) {
 | |
|     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
 | |
|       collectCmpOps(Cmp, CmpOperands);
 | |
|       // Now add our copy infos for our operands
 | |
|       for (auto *Op : CmpOperands) {
 | |
|         auto *PA = new PredicateAssume(Op, II, Cmp);
 | |
|         addInfoFor(OpsToRename, Op, PA);
 | |
|       }
 | |
|       CmpOperands.clear();
 | |
|     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
 | |
|       // Otherwise, it should be an AND.
 | |
|       assert(BinOp->getOpcode() == Instruction::And &&
 | |
|              "Should have been an AND");
 | |
|       auto *PA = new PredicateAssume(BinOp, II, BinOp);
 | |
|       addInfoFor(OpsToRename, BinOp, PA);
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown type of condition");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Process a block terminating branch, and place relevant operations to be
 | |
| // renamed into OpsToRename.
 | |
| void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
 | |
|                                   SmallPtrSetImpl<Value *> &OpsToRename) {
 | |
|   BasicBlock *FirstBB = BI->getSuccessor(0);
 | |
|   BasicBlock *SecondBB = BI->getSuccessor(1);
 | |
|   SmallVector<BasicBlock *, 2> SuccsToProcess;
 | |
|   SuccsToProcess.push_back(FirstBB);
 | |
|   SuccsToProcess.push_back(SecondBB);
 | |
|   SmallVector<Value *, 2> ConditionsToProcess;
 | |
| 
 | |
|   auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
 | |
|     for (auto *Succ : SuccsToProcess) {
 | |
|       // Don't try to insert on a self-edge. This is mainly because we will
 | |
|       // eliminate during renaming anyway.
 | |
|       if (Succ == BranchBB)
 | |
|         continue;
 | |
|       bool TakenEdge = (Succ == FirstBB);
 | |
|       // For and, only insert on the true edge
 | |
|       // For or, only insert on the false edge
 | |
|       if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
 | |
|         continue;
 | |
|       PredicateBase *PB =
 | |
|           new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
 | |
|       addInfoFor(OpsToRename, Op, PB);
 | |
|       if (!Succ->getSinglePredecessor())
 | |
|         EdgeUsesOnly.insert({BranchBB, Succ});
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Match combinations of conditions.
 | |
|   CmpInst::Predicate Pred;
 | |
|   bool isAnd = false;
 | |
|   bool isOr = false;
 | |
|   SmallVector<Value *, 8> CmpOperands;
 | |
|   if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
 | |
|                                       m_Cmp(Pred, m_Value(), m_Value()))) ||
 | |
|       match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
 | |
|                                      m_Cmp(Pred, m_Value(), m_Value())))) {
 | |
|     auto *BinOp = cast<BinaryOperator>(BI->getCondition());
 | |
|     if (BinOp->getOpcode() == Instruction::And)
 | |
|       isAnd = true;
 | |
|     else if (BinOp->getOpcode() == Instruction::Or)
 | |
|       isOr = true;
 | |
|     ConditionsToProcess.push_back(BinOp->getOperand(0));
 | |
|     ConditionsToProcess.push_back(BinOp->getOperand(1));
 | |
|     ConditionsToProcess.push_back(BI->getCondition());
 | |
|   } else if (isa<CmpInst>(BI->getCondition())) {
 | |
|     ConditionsToProcess.push_back(BI->getCondition());
 | |
|   }
 | |
|   for (auto Cond : ConditionsToProcess) {
 | |
|     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
 | |
|       collectCmpOps(Cmp, CmpOperands);
 | |
|       // Now add our copy infos for our operands
 | |
|       for (auto *Op : CmpOperands)
 | |
|         InsertHelper(Op, isAnd, isOr, Cmp);
 | |
|     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
 | |
|       // This must be an AND or an OR.
 | |
|       assert((BinOp->getOpcode() == Instruction::And ||
 | |
|               BinOp->getOpcode() == Instruction::Or) &&
 | |
|              "Should have been an AND or an OR");
 | |
|       // The actual value of the binop is not subject to the same restrictions
 | |
|       // as the comparison. It's either true or false on the true/false branch.
 | |
|       InsertHelper(BinOp, false, false, BinOp);
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown type of condition");
 | |
|     }
 | |
|     CmpOperands.clear();
 | |
|   }
 | |
| }
 | |
| // Process a block terminating switch, and place relevant operations to be
 | |
| // renamed into OpsToRename.
 | |
| void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
 | |
|                                   SmallPtrSetImpl<Value *> &OpsToRename) {
 | |
|   Value *Op = SI->getCondition();
 | |
|   if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
 | |
|     return;
 | |
| 
 | |
|   // Remember how many outgoing edges there are to every successor.
 | |
|   SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
 | |
|   for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|     BasicBlock *TargetBlock = SI->getSuccessor(i);
 | |
|     ++SwitchEdges[TargetBlock];
 | |
|   }
 | |
| 
 | |
|   // Now propagate info for each case value
 | |
|   for (auto C : SI->cases()) {
 | |
|     BasicBlock *TargetBlock = C.getCaseSuccessor();
 | |
|     if (SwitchEdges.lookup(TargetBlock) == 1) {
 | |
|       PredicateSwitch *PS = new PredicateSwitch(
 | |
|           Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
 | |
|       addInfoFor(OpsToRename, Op, PS);
 | |
|       if (!TargetBlock->getSinglePredecessor())
 | |
|         EdgeUsesOnly.insert({BranchBB, TargetBlock});
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Build predicate info for our function
 | |
| void PredicateInfo::buildPredicateInfo() {
 | |
|   DT.updateDFSNumbers();
 | |
|   // Collect operands to rename from all conditional branch terminators, as well
 | |
|   // as assume statements.
 | |
|   SmallPtrSet<Value *, 8> OpsToRename;
 | |
|   for (auto DTN : depth_first(DT.getRootNode())) {
 | |
|     BasicBlock *BranchBB = DTN->getBlock();
 | |
|     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
 | |
|       if (!BI->isConditional())
 | |
|         continue;
 | |
|       // Can't insert conditional information if they all go to the same place.
 | |
|       if (BI->getSuccessor(0) == BI->getSuccessor(1))
 | |
|         continue;
 | |
|       processBranch(BI, BranchBB, OpsToRename);
 | |
|     } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
 | |
|       processSwitch(SI, BranchBB, OpsToRename);
 | |
|     }
 | |
|   }
 | |
|   for (auto &Assume : AC.assumptions()) {
 | |
|     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
 | |
|       processAssume(II, II->getParent(), OpsToRename);
 | |
|   }
 | |
|   // Now rename all our operations.
 | |
|   renameUses(OpsToRename);
 | |
| }
 | |
| 
 | |
| // Create a ssa_copy declaration with custom mangling, because
 | |
| // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
 | |
| // all unnamed types get mangled to the same string. We use the pointer
 | |
| // to the type as name here, as it guarantees unique names for different
 | |
| // types and we remove the declarations when destroying PredicateInfo.
 | |
| // It is a workaround for PR38117, because solving it in a fully general way is
 | |
| // tricky (FIXME).
 | |
| static Function *getCopyDeclaration(Module *M, Type *Ty) {
 | |
|   std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
 | |
|   return cast<Function>(M->getOrInsertFunction(
 | |
|       Name, getType(M->getContext(), Intrinsic::ssa_copy, Ty)));
 | |
| }
 | |
| 
 | |
| // Given the renaming stack, make all the operands currently on the stack real
 | |
| // by inserting them into the IR.  Return the last operation's value.
 | |
| Value *PredicateInfo::materializeStack(unsigned int &Counter,
 | |
|                                        ValueDFSStack &RenameStack,
 | |
|                                        Value *OrigOp) {
 | |
|   // Find the first thing we have to materialize
 | |
|   auto RevIter = RenameStack.rbegin();
 | |
|   for (; RevIter != RenameStack.rend(); ++RevIter)
 | |
|     if (RevIter->Def)
 | |
|       break;
 | |
| 
 | |
|   size_t Start = RevIter - RenameStack.rbegin();
 | |
|   // The maximum number of things we should be trying to materialize at once
 | |
|   // right now is 4, depending on if we had an assume, a branch, and both used
 | |
|   // and of conditions.
 | |
|   for (auto RenameIter = RenameStack.end() - Start;
 | |
|        RenameIter != RenameStack.end(); ++RenameIter) {
 | |
|     auto *Op =
 | |
|         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
 | |
|     ValueDFS &Result = *RenameIter;
 | |
|     auto *ValInfo = Result.PInfo;
 | |
|     // For edge predicates, we can just place the operand in the block before
 | |
|     // the terminator.  For assume, we have to place it right before the assume
 | |
|     // to ensure we dominate all of our uses.  Always insert right before the
 | |
|     // relevant instruction (terminator, assume), so that we insert in proper
 | |
|     // order in the case of multiple predicateinfo in the same block.
 | |
|     if (isa<PredicateWithEdge>(ValInfo)) {
 | |
|       IRBuilder<> B(getBranchTerminator(ValInfo));
 | |
|       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
 | |
|       if (IF->user_begin() == IF->user_end())
 | |
|         CreatedDeclarations.insert(IF);
 | |
|       CallInst *PIC =
 | |
|           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
 | |
|       PredicateMap.insert({PIC, ValInfo});
 | |
|       Result.Def = PIC;
 | |
|     } else {
 | |
|       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
 | |
|       assert(PAssume &&
 | |
|              "Should not have gotten here without it being an assume");
 | |
|       IRBuilder<> B(PAssume->AssumeInst);
 | |
|       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
 | |
|       if (IF->user_begin() == IF->user_end())
 | |
|         CreatedDeclarations.insert(IF);
 | |
|       CallInst *PIC = B.CreateCall(IF, Op);
 | |
|       PredicateMap.insert({PIC, ValInfo});
 | |
|       Result.Def = PIC;
 | |
|     }
 | |
|   }
 | |
|   return RenameStack.back().Def;
 | |
| }
 | |
| 
 | |
| // Instead of the standard SSA renaming algorithm, which is O(Number of
 | |
| // instructions), and walks the entire dominator tree, we walk only the defs +
 | |
| // uses.  The standard SSA renaming algorithm does not really rely on the
 | |
| // dominator tree except to order the stack push/pops of the renaming stacks, so
 | |
| // that defs end up getting pushed before hitting the correct uses.  This does
 | |
| // not require the dominator tree, only the *order* of the dominator tree. The
 | |
| // complete and correct ordering of the defs and uses, in dominator tree is
 | |
| // contained in the DFS numbering of the dominator tree. So we sort the defs and
 | |
| // uses into the DFS ordering, and then just use the renaming stack as per
 | |
| // normal, pushing when we hit a def (which is a predicateinfo instruction),
 | |
| // popping when we are out of the dfs scope for that def, and replacing any uses
 | |
| // with top of stack if it exists.  In order to handle liveness without
 | |
| // propagating liveness info, we don't actually insert the predicateinfo
 | |
| // instruction def until we see a use that it would dominate.  Once we see such
 | |
| // a use, we materialize the predicateinfo instruction in the right place and
 | |
| // use it.
 | |
| //
 | |
| // TODO: Use this algorithm to perform fast single-variable renaming in
 | |
| // promotememtoreg and memoryssa.
 | |
| void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) {
 | |
|   // Sort OpsToRename since we are going to iterate it.
 | |
|   SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end());
 | |
|   auto Comparator = [&](const Value *A, const Value *B) {
 | |
|     return valueComesBefore(OI, A, B);
 | |
|   };
 | |
|   llvm::sort(OpsToRename, Comparator);
 | |
|   ValueDFS_Compare Compare(OI);
 | |
|   // Compute liveness, and rename in O(uses) per Op.
 | |
|   for (auto *Op : OpsToRename) {
 | |
|     LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
 | |
|     unsigned Counter = 0;
 | |
|     SmallVector<ValueDFS, 16> OrderedUses;
 | |
|     const auto &ValueInfo = getValueInfo(Op);
 | |
|     // Insert the possible copies into the def/use list.
 | |
|     // They will become real copies if we find a real use for them, and never
 | |
|     // created otherwise.
 | |
|     for (auto &PossibleCopy : ValueInfo.Infos) {
 | |
|       ValueDFS VD;
 | |
|       // Determine where we are going to place the copy by the copy type.
 | |
|       // The predicate info for branches always come first, they will get
 | |
|       // materialized in the split block at the top of the block.
 | |
|       // The predicate info for assumes will be somewhere in the middle,
 | |
|       // it will get materialized in front of the assume.
 | |
|       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
 | |
|         VD.LocalNum = LN_Middle;
 | |
|         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
 | |
|         if (!DomNode)
 | |
|           continue;
 | |
|         VD.DFSIn = DomNode->getDFSNumIn();
 | |
|         VD.DFSOut = DomNode->getDFSNumOut();
 | |
|         VD.PInfo = PossibleCopy;
 | |
|         OrderedUses.push_back(VD);
 | |
|       } else if (isa<PredicateWithEdge>(PossibleCopy)) {
 | |
|         // If we can only do phi uses, we treat it like it's in the branch
 | |
|         // block, and handle it specially. We know that it goes last, and only
 | |
|         // dominate phi uses.
 | |
|         auto BlockEdge = getBlockEdge(PossibleCopy);
 | |
|         if (EdgeUsesOnly.count(BlockEdge)) {
 | |
|           VD.LocalNum = LN_Last;
 | |
|           auto *DomNode = DT.getNode(BlockEdge.first);
 | |
|           if (DomNode) {
 | |
|             VD.DFSIn = DomNode->getDFSNumIn();
 | |
|             VD.DFSOut = DomNode->getDFSNumOut();
 | |
|             VD.PInfo = PossibleCopy;
 | |
|             VD.EdgeOnly = true;
 | |
|             OrderedUses.push_back(VD);
 | |
|           }
 | |
|         } else {
 | |
|           // Otherwise, we are in the split block (even though we perform
 | |
|           // insertion in the branch block).
 | |
|           // Insert a possible copy at the split block and before the branch.
 | |
|           VD.LocalNum = LN_First;
 | |
|           auto *DomNode = DT.getNode(BlockEdge.second);
 | |
|           if (DomNode) {
 | |
|             VD.DFSIn = DomNode->getDFSNumIn();
 | |
|             VD.DFSOut = DomNode->getDFSNumOut();
 | |
|             VD.PInfo = PossibleCopy;
 | |
|             OrderedUses.push_back(VD);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     convertUsesToDFSOrdered(Op, OrderedUses);
 | |
|     // Here we require a stable sort because we do not bother to try to
 | |
|     // assign an order to the operands the uses represent. Thus, two
 | |
|     // uses in the same instruction do not have a strict sort order
 | |
|     // currently and will be considered equal. We could get rid of the
 | |
|     // stable sort by creating one if we wanted.
 | |
|     std::stable_sort(OrderedUses.begin(), OrderedUses.end(), Compare);
 | |
|     SmallVector<ValueDFS, 8> RenameStack;
 | |
|     // For each use, sorted into dfs order, push values and replaces uses with
 | |
|     // top of stack, which will represent the reaching def.
 | |
|     for (auto &VD : OrderedUses) {
 | |
|       // We currently do not materialize copy over copy, but we should decide if
 | |
|       // we want to.
 | |
|       bool PossibleCopy = VD.PInfo != nullptr;
 | |
|       if (RenameStack.empty()) {
 | |
|         LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
 | |
|       } else {
 | |
|         LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
 | |
|                           << RenameStack.back().DFSIn << ","
 | |
|                           << RenameStack.back().DFSOut << ")\n");
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
 | |
|                         << VD.DFSOut << ")\n");
 | |
| 
 | |
|       bool ShouldPush = (VD.Def || PossibleCopy);
 | |
|       bool OutOfScope = !stackIsInScope(RenameStack, VD);
 | |
|       if (OutOfScope || ShouldPush) {
 | |
|         // Sync to our current scope.
 | |
|         popStackUntilDFSScope(RenameStack, VD);
 | |
|         if (ShouldPush) {
 | |
|           RenameStack.push_back(VD);
 | |
|         }
 | |
|       }
 | |
|       // If we get to this point, and the stack is empty we must have a use
 | |
|       // with no renaming needed, just skip it.
 | |
|       if (RenameStack.empty())
 | |
|         continue;
 | |
|       // Skip values, only want to rename the uses
 | |
|       if (VD.Def || PossibleCopy)
 | |
|         continue;
 | |
|       if (!DebugCounter::shouldExecute(RenameCounter)) {
 | |
|         LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
 | |
|         continue;
 | |
|       }
 | |
|       ValueDFS &Result = RenameStack.back();
 | |
| 
 | |
|       // If the possible copy dominates something, materialize our stack up to
 | |
|       // this point. This ensures every comparison that affects our operation
 | |
|       // ends up with predicateinfo.
 | |
|       if (!Result.Def)
 | |
|         Result.Def = materializeStack(Counter, RenameStack, Op);
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
 | |
|                         << *VD.U->get() << " in " << *(VD.U->getUser())
 | |
|                         << "\n");
 | |
|       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
 | |
|              "Predicateinfo def should have dominated this use");
 | |
|       VD.U->set(Result.Def);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
 | |
|   auto OIN = ValueInfoNums.find(Operand);
 | |
|   if (OIN == ValueInfoNums.end()) {
 | |
|     // This will grow it
 | |
|     ValueInfos.resize(ValueInfos.size() + 1);
 | |
|     // This will use the new size and give us a 0 based number of the info
 | |
|     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
 | |
|     assert(InsertResult.second && "Value info number already existed?");
 | |
|     return ValueInfos[InsertResult.first->second];
 | |
|   }
 | |
|   return ValueInfos[OIN->second];
 | |
| }
 | |
| 
 | |
| const PredicateInfo::ValueInfo &
 | |
| PredicateInfo::getValueInfo(Value *Operand) const {
 | |
|   auto OINI = ValueInfoNums.lookup(Operand);
 | |
|   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
 | |
|   assert(OINI < ValueInfos.size() &&
 | |
|          "Value Info Number greater than size of Value Info Table");
 | |
|   return ValueInfos[OINI];
 | |
| }
 | |
| 
 | |
| PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
 | |
|                              AssumptionCache &AC)
 | |
|     : F(F), DT(DT), AC(AC), OI(&DT) {
 | |
|   // Push an empty operand info so that we can detect 0 as not finding one
 | |
|   ValueInfos.resize(1);
 | |
|   buildPredicateInfo();
 | |
| }
 | |
| 
 | |
| // Remove all declarations we created . The PredicateInfo consumers are
 | |
| // responsible for remove the ssa_copy calls created.
 | |
| PredicateInfo::~PredicateInfo() {
 | |
|   // Collect function pointers in set first, as SmallSet uses a SmallVector
 | |
|   // internally and we have to remove the asserting value handles first.
 | |
|   SmallPtrSet<Function *, 20> FunctionPtrs;
 | |
|   for (auto &F : CreatedDeclarations)
 | |
|     FunctionPtrs.insert(&*F);
 | |
|   CreatedDeclarations.clear();
 | |
| 
 | |
|   for (Function *F : FunctionPtrs) {
 | |
|     assert(F->user_begin() == F->user_end() &&
 | |
|            "PredicateInfo consumer did not remove all SSA copies.");
 | |
|     F->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PredicateInfo::verifyPredicateInfo() const {}
 | |
| 
 | |
| char PredicateInfoPrinterLegacyPass::ID = 0;
 | |
| 
 | |
| PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
 | |
|     : FunctionPass(ID) {
 | |
|   initializePredicateInfoPrinterLegacyPassPass(
 | |
|       *PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
| }
 | |
| 
 | |
| // Replace ssa_copy calls created by PredicateInfo with their operand.
 | |
| static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
 | |
|   for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     const auto *PI = PredInfo.getPredicateInfoFor(Inst);
 | |
|     auto *II = dyn_cast<IntrinsicInst>(Inst);
 | |
|     if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
 | |
|       continue;
 | |
| 
 | |
|     Inst->replaceAllUsesWith(II->getOperand(0));
 | |
|     Inst->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
 | |
|   PredInfo->print(dbgs());
 | |
|   if (VerifyPredicateInfo)
 | |
|     PredInfo->verifyPredicateInfo();
 | |
| 
 | |
|   replaceCreatedSSACopys(*PredInfo, F);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
 | |
|                                                 FunctionAnalysisManager &AM) {
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | |
|   OS << "PredicateInfo for function: " << F.getName() << "\n";
 | |
|   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
 | |
|   PredInfo->print(OS);
 | |
| 
 | |
|   replaceCreatedSSACopys(*PredInfo, F);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| /// An assembly annotator class to print PredicateInfo information in
 | |
| /// comments.
 | |
| class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
 | |
|   friend class PredicateInfo;
 | |
|   const PredicateInfo *PredInfo;
 | |
| 
 | |
| public:
 | |
|   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
 | |
| 
 | |
|   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
 | |
|                                         formatted_raw_ostream &OS) {}
 | |
| 
 | |
|   virtual void emitInstructionAnnot(const Instruction *I,
 | |
|                                     formatted_raw_ostream &OS) {
 | |
|     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
 | |
|       OS << "; Has predicate info\n";
 | |
|       if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
 | |
|         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
 | |
|            << " Comparison:" << *PB->Condition << " Edge: [";
 | |
|         PB->From->printAsOperand(OS);
 | |
|         OS << ",";
 | |
|         PB->To->printAsOperand(OS);
 | |
|         OS << "] }\n";
 | |
|       } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
 | |
|         OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
 | |
|            << " Switch:" << *PS->Switch << " Edge: [";
 | |
|         PS->From->printAsOperand(OS);
 | |
|         OS << ",";
 | |
|         PS->To->printAsOperand(OS);
 | |
|         OS << "] }\n";
 | |
|       } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
 | |
|         OS << "; assume predicate info {"
 | |
|            << " Comparison:" << *PA->Condition << " }\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| void PredicateInfo::print(raw_ostream &OS) const {
 | |
|   PredicateInfoAnnotatedWriter Writer(this);
 | |
|   F.print(OS, &Writer);
 | |
| }
 | |
| 
 | |
| void PredicateInfo::dump() const {
 | |
|   PredicateInfoAnnotatedWriter Writer(this);
 | |
|   F.print(dbgs(), &Writer);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
 | |
|                                                  FunctionAnalysisManager &AM) {
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | |
|   make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| }
 |