192 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			192 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SSAUpdaterBulk class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
 | |
| #include "llvm/Analysis/IteratedDominanceFrontier.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ssaupdaterbulk"
 | |
| 
 | |
| /// Helper function for finding a block which should have a value for the given
 | |
| /// user. For PHI-nodes this block is the corresponding predecessor, for other
 | |
| /// instructions it's their parent block.
 | |
| static BasicBlock *getUserBB(Use *U) {
 | |
|   auto *User = cast<Instruction>(U->getUser());
 | |
| 
 | |
|   if (auto *UserPN = dyn_cast<PHINode>(User))
 | |
|     return UserPN->getIncomingBlock(*U);
 | |
|   else
 | |
|     return User->getParent();
 | |
| }
 | |
| 
 | |
| /// Add a new variable to the SSA rewriter. This needs to be called before
 | |
| /// AddAvailableValue or AddUse calls.
 | |
| unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) {
 | |
|   unsigned Var = Rewrites.size();
 | |
|   LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = "
 | |
|                     << *Ty << ", Name = " << Name << "\n");
 | |
|   RewriteInfo RI(Name, Ty);
 | |
|   Rewrites.push_back(RI);
 | |
|   return Var;
 | |
| }
 | |
| 
 | |
| /// Indicate that a rewritten value is available in the specified block with the
 | |
| /// specified value.
 | |
| void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
 | |
|   assert(Var < Rewrites.size() && "Variable not found!");
 | |
|   LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var
 | |
|                     << ": added new available value" << *V << " in "
 | |
|                     << BB->getName() << "\n");
 | |
|   Rewrites[Var].Defines[BB] = V;
 | |
| }
 | |
| 
 | |
| /// Record a use of the symbolic value. This use will be updated with a
 | |
| /// rewritten value when RewriteAllUses is called.
 | |
| void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
 | |
|   assert(Var < Rewrites.size() && "Variable not found!");
 | |
|   LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get()
 | |
|                     << " in " << getUserBB(U)->getName() << "\n");
 | |
|   Rewrites[Var].Uses.push_back(U);
 | |
| }
 | |
| 
 | |
| /// Return true if the SSAUpdater already has a value for the specified variable
 | |
| /// in the specified block.
 | |
| bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) {
 | |
|   return (Var < Rewrites.size()) ? Rewrites[Var].Defines.count(BB) : false;
 | |
| }
 | |
| 
 | |
| // Compute value at the given block BB. We either should already know it, or we
 | |
| // should be able to recursively reach it going up dominator tree.
 | |
| Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
 | |
|                                       DominatorTree *DT) {
 | |
|   if (!R.Defines.count(BB)) {
 | |
|     if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
 | |
|       BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
 | |
|       Value *V = computeValueAt(IDom, R, DT);
 | |
|       R.Defines[BB] = V;
 | |
|     } else
 | |
|       R.Defines[BB] = UndefValue::get(R.Ty);
 | |
|   }
 | |
|   return R.Defines[BB];
 | |
| }
 | |
| 
 | |
| /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
 | |
| /// This is basically a subgraph limited by DefBlocks and UsingBlocks.
 | |
| static void
 | |
| ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
 | |
|                     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
 | |
|                     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks,
 | |
|                     PredIteratorCache &PredCache) {
 | |
|   // To determine liveness, we must iterate through the predecessors of blocks
 | |
|   // where the def is live.  Blocks are added to the worklist if we need to
 | |
|   // check their predecessors.  Start with all the using blocks.
 | |
|   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
 | |
|                                                     UsingBlocks.end());
 | |
| 
 | |
|   // Now that we have a set of blocks where the phi is live-in, recursively add
 | |
|   // their predecessors until we find the full region the value is live.
 | |
|   while (!LiveInBlockWorklist.empty()) {
 | |
|     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
 | |
| 
 | |
|     // The block really is live in here, insert it into the set.  If already in
 | |
|     // the set, then it has already been processed.
 | |
|     if (!LiveInBlocks.insert(BB).second)
 | |
|       continue;
 | |
| 
 | |
|     // Since the value is live into BB, it is either defined in a predecessor or
 | |
|     // live into it to.  Add the preds to the worklist unless they are a
 | |
|     // defining block.
 | |
|     for (BasicBlock *P : PredCache.get(BB)) {
 | |
|       // The value is not live into a predecessor if it defines the value.
 | |
|       if (DefBlocks.count(P))
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise it is, add to the worklist.
 | |
|       LiveInBlockWorklist.push_back(P);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Perform all the necessary updates, including new PHI-nodes insertion and the
 | |
| /// requested uses update.
 | |
| void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
 | |
|                                     SmallVectorImpl<PHINode *> *InsertedPHIs) {
 | |
|   for (auto &R : Rewrites) {
 | |
|     // Compute locations for new phi-nodes.
 | |
|     // For that we need to initialize DefBlocks from definitions in R.Defines,
 | |
|     // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
 | |
|     // this set for computing iterated dominance frontier (IDF).
 | |
|     // The IDF blocks are the blocks where we need to insert new phi-nodes.
 | |
|     ForwardIDFCalculator IDF(*DT);
 | |
|     LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size()
 | |
|                       << " use(s)\n");
 | |
| 
 | |
|     SmallPtrSet<BasicBlock *, 2> DefBlocks;
 | |
|     for (auto &Def : R.Defines)
 | |
|       DefBlocks.insert(Def.first);
 | |
|     IDF.setDefiningBlocks(DefBlocks);
 | |
| 
 | |
|     SmallPtrSet<BasicBlock *, 2> UsingBlocks;
 | |
|     for (Use *U : R.Uses)
 | |
|       UsingBlocks.insert(getUserBB(U));
 | |
| 
 | |
|     SmallVector<BasicBlock *, 32> IDFBlocks;
 | |
|     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
 | |
|     ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache);
 | |
|     IDF.resetLiveInBlocks();
 | |
|     IDF.setLiveInBlocks(LiveInBlocks);
 | |
|     IDF.calculate(IDFBlocks);
 | |
| 
 | |
|     // We've computed IDF, now insert new phi-nodes there.
 | |
|     SmallVector<PHINode *, 4> InsertedPHIsForVar;
 | |
|     for (auto *FrontierBB : IDFBlocks) {
 | |
|       IRBuilder<> B(FrontierBB, FrontierBB->begin());
 | |
|       PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
 | |
|       R.Defines[FrontierBB] = PN;
 | |
|       InsertedPHIsForVar.push_back(PN);
 | |
|       if (InsertedPHIs)
 | |
|         InsertedPHIs->push_back(PN);
 | |
|     }
 | |
| 
 | |
|     // Fill in arguments of the inserted PHIs.
 | |
|     for (auto *PN : InsertedPHIsForVar) {
 | |
|       BasicBlock *PBB = PN->getParent();
 | |
|       for (BasicBlock *Pred : PredCache.get(PBB))
 | |
|         PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
 | |
|     }
 | |
| 
 | |
|     // Rewrite actual uses with the inserted definitions.
 | |
|     SmallPtrSet<Use *, 4> ProcessedUses;
 | |
|     for (Use *U : R.Uses) {
 | |
|       if (!ProcessedUses.insert(U).second)
 | |
|         continue;
 | |
|       Value *V = computeValueAt(getUserBB(U), R, DT);
 | |
|       Value *OldVal = U->get();
 | |
|       assert(OldVal && "Invalid use!");
 | |
|       // Notify that users of the existing value that it is being replaced.
 | |
|       if (OldVal != V && OldVal->hasValueHandle())
 | |
|         ValueHandleBase::ValueIsRAUWd(OldVal, V);
 | |
|       LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V
 | |
|                         << "\n");
 | |
|       U->set(V);
 | |
|     }
 | |
|   }
 | |
| }
 |