502 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| #include "llvm/Transforms/Utils/VNCoercion.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| #define DEBUG_TYPE "vncoerce"
 | |
| namespace llvm {
 | |
| namespace VNCoercion {
 | |
| 
 | |
| /// Return true if coerceAvailableValueToLoadType will succeed.
 | |
| bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
 | |
|                                      const DataLayout &DL) {
 | |
|   // If the loaded or stored value is an first class array or struct, don't try
 | |
|   // to transform them.  We need to be able to bitcast to integer.
 | |
|   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
 | |
|       StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy())
 | |
|     return false;
 | |
| 
 | |
|   uint64_t StoreSize = DL.getTypeSizeInBits(StoredVal->getType());
 | |
| 
 | |
|   // The store size must be byte-aligned to support future type casts.
 | |
|   if (llvm::alignTo(StoreSize, 8) != StoreSize)
 | |
|     return false;
 | |
| 
 | |
|   // The store has to be at least as big as the load.
 | |
|   if (StoreSize < DL.getTypeSizeInBits(LoadTy))
 | |
|     return false;
 | |
| 
 | |
|   // Don't coerce non-integral pointers to integers or vice versa.
 | |
|   if (DL.isNonIntegralPointerType(StoredVal->getType()) !=
 | |
|       DL.isNonIntegralPointerType(LoadTy))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <class T, class HelperClass>
 | |
| static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
 | |
|                                                HelperClass &Helper,
 | |
|                                                const DataLayout &DL) {
 | |
|   assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
 | |
|          "precondition violation - materialization can't fail");
 | |
|   if (auto *C = dyn_cast<Constant>(StoredVal))
 | |
|     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
 | |
|       StoredVal = FoldedStoredVal;
 | |
| 
 | |
|   // If this is already the right type, just return it.
 | |
|   Type *StoredValTy = StoredVal->getType();
 | |
| 
 | |
|   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
 | |
|   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
 | |
| 
 | |
|   // If the store and reload are the same size, we can always reuse it.
 | |
|   if (StoredValSize == LoadedValSize) {
 | |
|     // Pointer to Pointer -> use bitcast.
 | |
|     if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
 | |
|       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
 | |
|     } else {
 | |
|       // Convert source pointers to integers, which can be bitcast.
 | |
|       if (StoredValTy->isPtrOrPtrVectorTy()) {
 | |
|         StoredValTy = DL.getIntPtrType(StoredValTy);
 | |
|         StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
 | |
|       }
 | |
| 
 | |
|       Type *TypeToCastTo = LoadedTy;
 | |
|       if (TypeToCastTo->isPtrOrPtrVectorTy())
 | |
|         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
 | |
| 
 | |
|       if (StoredValTy != TypeToCastTo)
 | |
|         StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
 | |
| 
 | |
|       // Cast to pointer if the load needs a pointer type.
 | |
|       if (LoadedTy->isPtrOrPtrVectorTy())
 | |
|         StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
 | |
|     }
 | |
| 
 | |
|     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
 | |
|       if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
 | |
|         StoredVal = FoldedStoredVal;
 | |
| 
 | |
|     return StoredVal;
 | |
|   }
 | |
|   // If the loaded value is smaller than the available value, then we can
 | |
|   // extract out a piece from it.  If the available value is too small, then we
 | |
|   // can't do anything.
 | |
|   assert(StoredValSize >= LoadedValSize &&
 | |
|          "canCoerceMustAliasedValueToLoad fail");
 | |
| 
 | |
|   // Convert source pointers to integers, which can be manipulated.
 | |
|   if (StoredValTy->isPtrOrPtrVectorTy()) {
 | |
|     StoredValTy = DL.getIntPtrType(StoredValTy);
 | |
|     StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
 | |
|   }
 | |
| 
 | |
|   // Convert vectors and fp to integer, which can be manipulated.
 | |
|   if (!StoredValTy->isIntegerTy()) {
 | |
|     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
 | |
|     StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
 | |
|   }
 | |
| 
 | |
|   // If this is a big-endian system, we need to shift the value down to the low
 | |
|   // bits so that a truncate will work.
 | |
|   if (DL.isBigEndian()) {
 | |
|     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
 | |
|                         DL.getTypeStoreSizeInBits(LoadedTy);
 | |
|     StoredVal = Helper.CreateLShr(
 | |
|         StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
 | |
|   }
 | |
| 
 | |
|   // Truncate the integer to the right size now.
 | |
|   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
 | |
|   StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
 | |
| 
 | |
|   if (LoadedTy != NewIntTy) {
 | |
|     // If the result is a pointer, inttoptr.
 | |
|     if (LoadedTy->isPtrOrPtrVectorTy())
 | |
|       StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
 | |
|     else
 | |
|       // Otherwise, bitcast.
 | |
|       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
 | |
|   }
 | |
| 
 | |
|   if (auto *C = dyn_cast<Constant>(StoredVal))
 | |
|     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
 | |
|       StoredVal = FoldedStoredVal;
 | |
| 
 | |
|   return StoredVal;
 | |
| }
 | |
| 
 | |
| /// If we saw a store of a value to memory, and
 | |
| /// then a load from a must-aliased pointer of a different type, try to coerce
 | |
| /// the stored value.  LoadedTy is the type of the load we want to replace.
 | |
| /// IRB is IRBuilder used to insert new instructions.
 | |
| ///
 | |
| /// If we can't do it, return null.
 | |
| Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
 | |
|                                       IRBuilder<> &IRB, const DataLayout &DL) {
 | |
|   return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
 | |
| }
 | |
| 
 | |
| /// This function is called when we have a memdep query of a load that ends up
 | |
| /// being a clobbering memory write (store, memset, memcpy, memmove).  This
 | |
| /// means that the write *may* provide bits used by the load but we can't be
 | |
| /// sure because the pointers don't must-alias.
 | |
| ///
 | |
| /// Check this case to see if there is anything more we can do before we give
 | |
| /// up.  This returns -1 if we have to give up, or a byte number in the stored
 | |
| /// value of the piece that feeds the load.
 | |
| static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
 | |
|                                           Value *WritePtr,
 | |
|                                           uint64_t WriteSizeInBits,
 | |
|                                           const DataLayout &DL) {
 | |
|   // If the loaded or stored value is a first class array or struct, don't try
 | |
|   // to transform them.  We need to be able to bitcast to integer.
 | |
|   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
 | |
|     return -1;
 | |
| 
 | |
|   int64_t StoreOffset = 0, LoadOffset = 0;
 | |
|   Value *StoreBase =
 | |
|       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
 | |
|   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
 | |
|   if (StoreBase != LoadBase)
 | |
|     return -1;
 | |
| 
 | |
|   // If the load and store are to the exact same address, they should have been
 | |
|   // a must alias.  AA must have gotten confused.
 | |
|   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
 | |
|   // to a load from the base of the memset.
 | |
| 
 | |
|   // If the load and store don't overlap at all, the store doesn't provide
 | |
|   // anything to the load.  In this case, they really don't alias at all, AA
 | |
|   // must have gotten confused.
 | |
|   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
 | |
| 
 | |
|   if ((WriteSizeInBits & 7) | (LoadSize & 7))
 | |
|     return -1;
 | |
|   uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
 | |
|   LoadSize /= 8;
 | |
| 
 | |
|   bool isAAFailure = false;
 | |
|   if (StoreOffset < LoadOffset)
 | |
|     isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
 | |
|   else
 | |
|     isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
 | |
| 
 | |
|   if (isAAFailure)
 | |
|     return -1;
 | |
| 
 | |
|   // If the Load isn't completely contained within the stored bits, we don't
 | |
|   // have all the bits to feed it.  We could do something crazy in the future
 | |
|   // (issue a smaller load then merge the bits in) but this seems unlikely to be
 | |
|   // valuable.
 | |
|   if (StoreOffset > LoadOffset ||
 | |
|       StoreOffset + StoreSize < LoadOffset + LoadSize)
 | |
|     return -1;
 | |
| 
 | |
|   // Okay, we can do this transformation.  Return the number of bytes into the
 | |
|   // store that the load is.
 | |
|   return LoadOffset - StoreOffset;
 | |
| }
 | |
| 
 | |
| /// This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering store.
 | |
| int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
 | |
|                                    StoreInst *DepSI, const DataLayout &DL) {
 | |
|   // Cannot handle reading from store of first-class aggregate yet.
 | |
|   if (DepSI->getValueOperand()->getType()->isStructTy() ||
 | |
|       DepSI->getValueOperand()->getType()->isArrayTy())
 | |
|     return -1;
 | |
| 
 | |
|   Value *StorePtr = DepSI->getPointerOperand();
 | |
|   uint64_t StoreSize =
 | |
|       DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
 | |
|   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
 | |
|                                         DL);
 | |
| }
 | |
| 
 | |
| /// This function is called when we have a
 | |
| /// memdep query of a load that ends up being clobbered by another load.  See if
 | |
| /// the other load can feed into the second load.
 | |
| int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
 | |
|                                   const DataLayout &DL) {
 | |
|   // Cannot handle reading from store of first-class aggregate yet.
 | |
|   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
 | |
|     return -1;
 | |
| 
 | |
|   Value *DepPtr = DepLI->getPointerOperand();
 | |
|   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
 | |
|   int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
 | |
|   if (R != -1)
 | |
|     return R;
 | |
| 
 | |
|   // If we have a load/load clobber an DepLI can be widened to cover this load,
 | |
|   // then we should widen it!
 | |
|   int64_t LoadOffs = 0;
 | |
|   const Value *LoadBase =
 | |
|       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
 | |
|   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
 | |
| 
 | |
|   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
 | |
|       LoadBase, LoadOffs, LoadSize, DepLI);
 | |
|   if (Size == 0)
 | |
|     return -1;
 | |
| 
 | |
|   // Check non-obvious conditions enforced by MDA which we rely on for being
 | |
|   // able to materialize this potentially available value
 | |
|   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
 | |
|   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
 | |
| 
 | |
|   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
 | |
| }
 | |
| 
 | |
| int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
 | |
|                                      MemIntrinsic *MI, const DataLayout &DL) {
 | |
|   // If the mem operation is a non-constant size, we can't handle it.
 | |
|   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   if (!SizeCst)
 | |
|     return -1;
 | |
|   uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
 | |
| 
 | |
|   // If this is memset, we just need to see if the offset is valid in the size
 | |
|   // of the memset..
 | |
|   if (MI->getIntrinsicID() == Intrinsic::memset)
 | |
|     return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
 | |
|                                           MemSizeInBits, DL);
 | |
| 
 | |
|   // If we have a memcpy/memmove, the only case we can handle is if this is a
 | |
|   // copy from constant memory.  In that case, we can read directly from the
 | |
|   // constant memory.
 | |
|   MemTransferInst *MTI = cast<MemTransferInst>(MI);
 | |
| 
 | |
|   Constant *Src = dyn_cast<Constant>(MTI->getSource());
 | |
|   if (!Src)
 | |
|     return -1;
 | |
| 
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
 | |
|   if (!GV || !GV->isConstant())
 | |
|     return -1;
 | |
| 
 | |
|   // See if the access is within the bounds of the transfer.
 | |
|   int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
 | |
|                                               MemSizeInBits, DL);
 | |
|   if (Offset == -1)
 | |
|     return Offset;
 | |
| 
 | |
|   unsigned AS = Src->getType()->getPointerAddressSpace();
 | |
|   // Otherwise, see if we can constant fold a load from the constant with the
 | |
|   // offset applied as appropriate.
 | |
|   Src =
 | |
|       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
 | |
|   Constant *OffsetCst =
 | |
|       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | |
|   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
 | |
|                                        OffsetCst);
 | |
|   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
 | |
|   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
 | |
|     return Offset;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| template <class T, class HelperClass>
 | |
| static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
 | |
|                                      HelperClass &Helper,
 | |
|                                      const DataLayout &DL) {
 | |
|   LLVMContext &Ctx = SrcVal->getType()->getContext();
 | |
| 
 | |
|   // If two pointers are in the same address space, they have the same size,
 | |
|   // so we don't need to do any truncation, etc. This avoids introducing
 | |
|   // ptrtoint instructions for pointers that may be non-integral.
 | |
|   if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
 | |
|       cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
 | |
|           cast<PointerType>(LoadTy)->getAddressSpace()) {
 | |
|     return SrcVal;
 | |
|   }
 | |
| 
 | |
|   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
 | |
|   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
 | |
|   // Compute which bits of the stored value are being used by the load.  Convert
 | |
|   // to an integer type to start with.
 | |
|   if (SrcVal->getType()->isPtrOrPtrVectorTy())
 | |
|     SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
 | |
|   if (!SrcVal->getType()->isIntegerTy())
 | |
|     SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
 | |
| 
 | |
|   // Shift the bits to the least significant depending on endianness.
 | |
|   unsigned ShiftAmt;
 | |
|   if (DL.isLittleEndian())
 | |
|     ShiftAmt = Offset * 8;
 | |
|   else
 | |
|     ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
 | |
|   if (ShiftAmt)
 | |
|     SrcVal = Helper.CreateLShr(SrcVal,
 | |
|                                ConstantInt::get(SrcVal->getType(), ShiftAmt));
 | |
| 
 | |
|   if (LoadSize != StoreSize)
 | |
|     SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
 | |
|                                          IntegerType::get(Ctx, LoadSize * 8));
 | |
|   return SrcVal;
 | |
| }
 | |
| 
 | |
| /// This function is called when we have a memdep query of a load that ends up
 | |
| /// being a clobbering store.  This means that the store provides bits used by
 | |
| /// the load but the pointers don't must-alias.  Check this case to see if
 | |
| /// there is anything more we can do before we give up.
 | |
| Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
 | |
|                             Instruction *InsertPt, const DataLayout &DL) {
 | |
| 
 | |
|   IRBuilder<> Builder(InsertPt);
 | |
|   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
 | |
|   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
 | |
| }
 | |
| 
 | |
| Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
 | |
|                                        Type *LoadTy, const DataLayout &DL) {
 | |
|   ConstantFolder F;
 | |
|   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
 | |
|   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
 | |
| }
 | |
| 
 | |
| /// This function is called when we have a memdep query of a load that ends up
 | |
| /// being a clobbering load.  This means that the load *may* provide bits used
 | |
| /// by the load but we can't be sure because the pointers don't must-alias.
 | |
| /// Check this case to see if there is anything more we can do before we give
 | |
| /// up.
 | |
| Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
 | |
|                            Instruction *InsertPt, const DataLayout &DL) {
 | |
|   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
 | |
|   // widen SrcVal out to a larger load.
 | |
|   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
 | |
|   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
 | |
|   if (Offset + LoadSize > SrcValStoreSize) {
 | |
|     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
 | |
|     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
 | |
|     // If we have a load/load clobber an DepLI can be widened to cover this
 | |
|     // load, then we should widen it to the next power of 2 size big enough!
 | |
|     unsigned NewLoadSize = Offset + LoadSize;
 | |
|     if (!isPowerOf2_32(NewLoadSize))
 | |
|       NewLoadSize = NextPowerOf2(NewLoadSize);
 | |
| 
 | |
|     Value *PtrVal = SrcVal->getPointerOperand();
 | |
|     // Insert the new load after the old load.  This ensures that subsequent
 | |
|     // memdep queries will find the new load.  We can't easily remove the old
 | |
|     // load completely because it is already in the value numbering table.
 | |
|     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
 | |
|     Type *DestPTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
 | |
|     DestPTy =
 | |
|         PointerType::get(DestPTy, PtrVal->getType()->getPointerAddressSpace());
 | |
|     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
 | |
|     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
 | |
|     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
 | |
|     NewLoad->takeName(SrcVal);
 | |
|     NewLoad->setAlignment(SrcVal->getAlignment());
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
 | |
| 
 | |
|     // Replace uses of the original load with the wider load.  On a big endian
 | |
|     // system, we need to shift down to get the relevant bits.
 | |
|     Value *RV = NewLoad;
 | |
|     if (DL.isBigEndian())
 | |
|       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
 | |
|     RV = Builder.CreateTrunc(RV, SrcVal->getType());
 | |
|     SrcVal->replaceAllUsesWith(RV);
 | |
| 
 | |
|     SrcVal = NewLoad;
 | |
|   }
 | |
| 
 | |
|   return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
 | |
| }
 | |
| 
 | |
| Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
 | |
|                                       Type *LoadTy, const DataLayout &DL) {
 | |
|   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
 | |
|   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
 | |
|   if (Offset + LoadSize > SrcValStoreSize)
 | |
|     return nullptr;
 | |
|   return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
 | |
| }
 | |
| 
 | |
| template <class T, class HelperClass>
 | |
| T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
 | |
|                                 Type *LoadTy, HelperClass &Helper,
 | |
|                                 const DataLayout &DL) {
 | |
|   LLVMContext &Ctx = LoadTy->getContext();
 | |
|   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
 | |
| 
 | |
|   // We know that this method is only called when the mem transfer fully
 | |
|   // provides the bits for the load.
 | |
|   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
 | |
|     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
 | |
|     // independently of what the offset is.
 | |
|     T *Val = cast<T>(MSI->getValue());
 | |
|     if (LoadSize != 1)
 | |
|       Val =
 | |
|           Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
 | |
|     T *OneElt = Val;
 | |
| 
 | |
|     // Splat the value out to the right number of bits.
 | |
|     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
 | |
|       // If we can double the number of bytes set, do it.
 | |
|       if (NumBytesSet * 2 <= LoadSize) {
 | |
|         T *ShVal = Helper.CreateShl(
 | |
|             Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
 | |
|         Val = Helper.CreateOr(Val, ShVal);
 | |
|         NumBytesSet <<= 1;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise insert one byte at a time.
 | |
|       T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
 | |
|       Val = Helper.CreateOr(OneElt, ShVal);
 | |
|       ++NumBytesSet;
 | |
|     }
 | |
| 
 | |
|     return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is a memcpy/memmove from a constant global.
 | |
|   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
 | |
|   Constant *Src = cast<Constant>(MTI->getSource());
 | |
|   unsigned AS = Src->getType()->getPointerAddressSpace();
 | |
| 
 | |
|   // Otherwise, see if we can constant fold a load from the constant with the
 | |
|   // offset applied as appropriate.
 | |
|   Src =
 | |
|       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
 | |
|   Constant *OffsetCst =
 | |
|       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | |
|   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
 | |
|                                        OffsetCst);
 | |
|   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
 | |
|   return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
 | |
| }
 | |
| 
 | |
| /// This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering mem intrinsic.
 | |
| Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
 | |
|                               Type *LoadTy, Instruction *InsertPt,
 | |
|                               const DataLayout &DL) {
 | |
|   IRBuilder<> Builder(InsertPt);
 | |
|   return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
 | |
|                                                           LoadTy, Builder, DL);
 | |
| }
 | |
| 
 | |
| Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
 | |
|                                          Type *LoadTy, const DataLayout &DL) {
 | |
|   // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
 | |
|   // constant is when it's a memset of a non-constant.
 | |
|   if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
 | |
|     if (!isa<Constant>(MSI->getValue()))
 | |
|       return nullptr;
 | |
|   ConstantFolder F;
 | |
|   return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
 | |
|                                                                 LoadTy, F, DL);
 | |
| }
 | |
| } // namespace VNCoercion
 | |
| } // namespace llvm
 |