1144 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1144 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the MapValue function, which is shared by various parts of
 | |
| // the lib/Transforms/Utils library.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalObject.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <cassert>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Out of line method to get vtable etc for class.
 | |
| void ValueMapTypeRemapper::anchor() {}
 | |
| void ValueMaterializer::anchor() {}
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// A basic block used in a BlockAddress whose function body is not yet
 | |
| /// materialized.
 | |
| struct DelayedBasicBlock {
 | |
|   BasicBlock *OldBB;
 | |
|   std::unique_ptr<BasicBlock> TempBB;
 | |
| 
 | |
|   DelayedBasicBlock(const BlockAddress &Old)
 | |
|       : OldBB(Old.getBasicBlock()),
 | |
|         TempBB(BasicBlock::Create(Old.getContext())) {}
 | |
| };
 | |
| 
 | |
| struct WorklistEntry {
 | |
|   enum EntryKind {
 | |
|     MapGlobalInit,
 | |
|     MapAppendingVar,
 | |
|     MapGlobalAliasee,
 | |
|     RemapFunction
 | |
|   };
 | |
|   struct GVInitTy {
 | |
|     GlobalVariable *GV;
 | |
|     Constant *Init;
 | |
|   };
 | |
|   struct AppendingGVTy {
 | |
|     GlobalVariable *GV;
 | |
|     Constant *InitPrefix;
 | |
|   };
 | |
|   struct GlobalAliaseeTy {
 | |
|     GlobalAlias *GA;
 | |
|     Constant *Aliasee;
 | |
|   };
 | |
| 
 | |
|   unsigned Kind : 2;
 | |
|   unsigned MCID : 29;
 | |
|   unsigned AppendingGVIsOldCtorDtor : 1;
 | |
|   unsigned AppendingGVNumNewMembers;
 | |
|   union {
 | |
|     GVInitTy GVInit;
 | |
|     AppendingGVTy AppendingGV;
 | |
|     GlobalAliaseeTy GlobalAliasee;
 | |
|     Function *RemapF;
 | |
|   } Data;
 | |
| };
 | |
| 
 | |
| struct MappingContext {
 | |
|   ValueToValueMapTy *VM;
 | |
|   ValueMaterializer *Materializer = nullptr;
 | |
| 
 | |
|   /// Construct a MappingContext with a value map and materializer.
 | |
|   explicit MappingContext(ValueToValueMapTy &VM,
 | |
|                           ValueMaterializer *Materializer = nullptr)
 | |
|       : VM(&VM), Materializer(Materializer) {}
 | |
| };
 | |
| 
 | |
| class Mapper {
 | |
|   friend class MDNodeMapper;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DenseSet<GlobalValue *> AlreadyScheduled;
 | |
| #endif
 | |
| 
 | |
|   RemapFlags Flags;
 | |
|   ValueMapTypeRemapper *TypeMapper;
 | |
|   unsigned CurrentMCID = 0;
 | |
|   SmallVector<MappingContext, 2> MCs;
 | |
|   SmallVector<WorklistEntry, 4> Worklist;
 | |
|   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
 | |
|   SmallVector<Constant *, 16> AppendingInits;
 | |
| 
 | |
| public:
 | |
|   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
 | |
|          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
 | |
|       : Flags(Flags), TypeMapper(TypeMapper),
 | |
|         MCs(1, MappingContext(VM, Materializer)) {}
 | |
| 
 | |
|   /// ValueMapper should explicitly call \a flush() before destruction.
 | |
|   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
 | |
| 
 | |
|   bool hasWorkToDo() const { return !Worklist.empty(); }
 | |
| 
 | |
|   unsigned
 | |
|   registerAlternateMappingContext(ValueToValueMapTy &VM,
 | |
|                                   ValueMaterializer *Materializer = nullptr) {
 | |
|     MCs.push_back(MappingContext(VM, Materializer));
 | |
|     return MCs.size() - 1;
 | |
|   }
 | |
| 
 | |
|   void addFlags(RemapFlags Flags);
 | |
| 
 | |
|   void remapGlobalObjectMetadata(GlobalObject &GO);
 | |
| 
 | |
|   Value *mapValue(const Value *V);
 | |
|   void remapInstruction(Instruction *I);
 | |
|   void remapFunction(Function &F);
 | |
| 
 | |
|   Constant *mapConstant(const Constant *C) {
 | |
|     return cast_or_null<Constant>(mapValue(C));
 | |
|   }
 | |
| 
 | |
|   /// Map metadata.
 | |
|   ///
 | |
|   /// Find the mapping for MD.  Guarantees that the return will be resolved
 | |
|   /// (not an MDNode, or MDNode::isResolved() returns true).
 | |
|   Metadata *mapMetadata(const Metadata *MD);
 | |
| 
 | |
|   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
 | |
|                                     unsigned MCID);
 | |
|   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
 | |
|                                     bool IsOldCtorDtor,
 | |
|                                     ArrayRef<Constant *> NewMembers,
 | |
|                                     unsigned MCID);
 | |
|   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
 | |
|                                 unsigned MCID);
 | |
|   void scheduleRemapFunction(Function &F, unsigned MCID);
 | |
| 
 | |
|   void flush();
 | |
| 
 | |
| private:
 | |
|   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
 | |
|   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
 | |
|                             bool IsOldCtorDtor,
 | |
|                             ArrayRef<Constant *> NewMembers);
 | |
|   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
 | |
|   void remapFunction(Function &F, ValueToValueMapTy &VM);
 | |
| 
 | |
|   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
 | |
|   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
 | |
| 
 | |
|   Value *mapBlockAddress(const BlockAddress &BA);
 | |
| 
 | |
|   /// Map metadata that doesn't require visiting operands.
 | |
|   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
 | |
| 
 | |
|   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
 | |
|   Metadata *mapToSelf(const Metadata *MD);
 | |
| };
 | |
| 
 | |
| class MDNodeMapper {
 | |
|   Mapper &M;
 | |
| 
 | |
|   /// Data about a node in \a UniquedGraph.
 | |
|   struct Data {
 | |
|     bool HasChanged = false;
 | |
|     unsigned ID = std::numeric_limits<unsigned>::max();
 | |
|     TempMDNode Placeholder;
 | |
|   };
 | |
| 
 | |
|   /// A graph of uniqued nodes.
 | |
|   struct UniquedGraph {
 | |
|     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
 | |
|     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
 | |
| 
 | |
|     /// Propagate changed operands through the post-order traversal.
 | |
|     ///
 | |
|     /// Iteratively update \a Data::HasChanged for each node based on \a
 | |
|     /// Data::HasChanged of its operands, until fixed point.
 | |
|     void propagateChanges();
 | |
| 
 | |
|     /// Get a forward reference to a node to use as an operand.
 | |
|     Metadata &getFwdReference(MDNode &Op);
 | |
|   };
 | |
| 
 | |
|   /// Worklist of distinct nodes whose operands need to be remapped.
 | |
|   SmallVector<MDNode *, 16> DistinctWorklist;
 | |
| 
 | |
|   // Storage for a UniquedGraph.
 | |
|   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
 | |
|   SmallVector<MDNode *, 16> POTStorage;
 | |
| 
 | |
| public:
 | |
|   MDNodeMapper(Mapper &M) : M(M) {}
 | |
| 
 | |
|   /// Map a metadata node (and its transitive operands).
 | |
|   ///
 | |
|   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
 | |
|   /// algorithm handles distinct nodes and uniqued node subgraphs using
 | |
|   /// different strategies.
 | |
|   ///
 | |
|   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
 | |
|   /// using \a mapDistinctNode().  Their mapping can always be computed
 | |
|   /// immediately without visiting operands, even if their operands change.
 | |
|   ///
 | |
|   /// The mapping for uniqued nodes depends on whether their operands change.
 | |
|   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
 | |
|   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
 | |
|   /// added to \a DistinctWorklist with \a mapDistinctNode().
 | |
|   ///
 | |
|   /// After mapping \c N itself, this function remaps the operands of the
 | |
|   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
 | |
|   /// N has been mapped.
 | |
|   Metadata *map(const MDNode &N);
 | |
| 
 | |
| private:
 | |
|   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
 | |
|   ///
 | |
|   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
 | |
|   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
 | |
|   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
 | |
|   /// operands uses the identity mapping.
 | |
|   ///
 | |
|   /// The algorithm works as follows:
 | |
|   ///
 | |
|   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
 | |
|   ///     save the post-order traversal in the given \a UniquedGraph, tracking
 | |
|   ///     nodes' operands change.
 | |
|   ///
 | |
|   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
 | |
|   ///     through the \a UniquedGraph until fixed point, following the rule
 | |
|   ///     that if a node changes, any node that references must also change.
 | |
|   ///
 | |
|   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
 | |
|   ///     (referencing new operands) where necessary.
 | |
|   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
 | |
| 
 | |
|   /// Try to map the operand of an \a MDNode.
 | |
|   ///
 | |
|   /// If \c Op is already mapped, return the mapping.  If it's not an \a
 | |
|   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
 | |
|   /// return the result of \a mapDistinctNode().
 | |
|   ///
 | |
|   /// \return None if \c Op is an unmapped uniqued \a MDNode.
 | |
|   /// \post getMappedOp(Op) only returns None if this returns None.
 | |
|   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
 | |
| 
 | |
|   /// Map a distinct node.
 | |
|   ///
 | |
|   /// Return the mapping for the distinct node \c N, saving the result in \a
 | |
|   /// DistinctWorklist for later remapping.
 | |
|   ///
 | |
|   /// \pre \c N is not yet mapped.
 | |
|   /// \pre \c N.isDistinct().
 | |
|   MDNode *mapDistinctNode(const MDNode &N);
 | |
| 
 | |
|   /// Get a previously mapped node.
 | |
|   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
 | |
| 
 | |
|   /// Create a post-order traversal of an unmapped uniqued node subgraph.
 | |
|   ///
 | |
|   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
 | |
|   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
 | |
|   /// metadata that has already been mapped will not be part of the POT.
 | |
|   ///
 | |
|   /// Each node that has a changed operand from outside the graph (e.g., a
 | |
|   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
 | |
|   /// is marked with \a Data::HasChanged.
 | |
|   ///
 | |
|   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
 | |
|   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
 | |
|   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
 | |
|   /// to change because of operands outside the graph.
 | |
|   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
 | |
| 
 | |
|   /// Visit the operands of a uniqued node in the POT.
 | |
|   ///
 | |
|   /// Visit the operands in the range from \c I to \c E, returning the first
 | |
|   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
 | |
|   /// where to continue the loop through the operands.
 | |
|   ///
 | |
|   /// This sets \c HasChanged if any of the visited operands change.
 | |
|   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
 | |
|                         MDNode::op_iterator E, bool &HasChanged);
 | |
| 
 | |
|   /// Map all the nodes in the given uniqued graph.
 | |
|   ///
 | |
|   /// This visits all the nodes in \c G in post-order, using the identity
 | |
|   /// mapping or creating a new node depending on \a Data::HasChanged.
 | |
|   ///
 | |
|   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
 | |
|   /// their operands outside of \c G.
 | |
|   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
 | |
|   /// operands have changed.
 | |
|   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
 | |
|   void mapNodesInPOT(UniquedGraph &G);
 | |
| 
 | |
|   /// Remap a node's operands using the given functor.
 | |
|   ///
 | |
|   /// Iterate through the operands of \c N and update them in place using \c
 | |
|   /// mapOperand.
 | |
|   ///
 | |
|   /// \pre N.isDistinct() or N.isTemporary().
 | |
|   template <class OperandMapper>
 | |
|   void remapOperands(MDNode &N, OperandMapper mapOperand);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| Value *Mapper::mapValue(const Value *V) {
 | |
|   ValueToValueMapTy::iterator I = getVM().find(V);
 | |
| 
 | |
|   // If the value already exists in the map, use it.
 | |
|   if (I != getVM().end()) {
 | |
|     assert(I->second && "Unexpected null mapping");
 | |
|     return I->second;
 | |
|   }
 | |
| 
 | |
|   // If we have a materializer and it can materialize a value, use that.
 | |
|   if (auto *Materializer = getMaterializer()) {
 | |
|     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
 | |
|       getVM()[V] = NewV;
 | |
|       return NewV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Global values do not need to be seeded into the VM if they
 | |
|   // are using the identity mapping.
 | |
|   if (isa<GlobalValue>(V)) {
 | |
|     if (Flags & RF_NullMapMissingGlobalValues)
 | |
|       return nullptr;
 | |
|     return getVM()[V] = const_cast<Value *>(V);
 | |
|   }
 | |
| 
 | |
|   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | |
|     // Inline asm may need *type* remapping.
 | |
|     FunctionType *NewTy = IA->getFunctionType();
 | |
|     if (TypeMapper) {
 | |
|       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
 | |
| 
 | |
|       if (NewTy != IA->getFunctionType())
 | |
|         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
 | |
|                            IA->hasSideEffects(), IA->isAlignStack());
 | |
|     }
 | |
| 
 | |
|     return getVM()[V] = const_cast<Value *>(V);
 | |
|   }
 | |
| 
 | |
|   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
 | |
|     const Metadata *MD = MDV->getMetadata();
 | |
| 
 | |
|     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
 | |
|       // Look through to grab the local value.
 | |
|       if (Value *LV = mapValue(LAM->getValue())) {
 | |
|         if (V == LAM->getValue())
 | |
|           return const_cast<Value *>(V);
 | |
|         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
 | |
|       }
 | |
| 
 | |
|       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
 | |
|       // ensures metadata operands only reference defined SSA values.
 | |
|       return (Flags & RF_IgnoreMissingLocals)
 | |
|                  ? nullptr
 | |
|                  : MetadataAsValue::get(V->getContext(),
 | |
|                                         MDTuple::get(V->getContext(), None));
 | |
|     }
 | |
| 
 | |
|     // If this is a module-level metadata and we know that nothing at the module
 | |
|     // level is changing, then use an identity mapping.
 | |
|     if (Flags & RF_NoModuleLevelChanges)
 | |
|       return getVM()[V] = const_cast<Value *>(V);
 | |
| 
 | |
|     // Map the metadata and turn it into a value.
 | |
|     auto *MappedMD = mapMetadata(MD);
 | |
|     if (MD == MappedMD)
 | |
|       return getVM()[V] = const_cast<Value *>(V);
 | |
|     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
 | |
|   }
 | |
| 
 | |
|   // Okay, this either must be a constant (which may or may not be mappable) or
 | |
|   // is something that is not in the mapping table.
 | |
|   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
 | |
|   if (!C)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
 | |
|     return mapBlockAddress(*BA);
 | |
| 
 | |
|   auto mapValueOrNull = [this](Value *V) {
 | |
|     auto Mapped = mapValue(V);
 | |
|     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
 | |
|            "Unexpected null mapping for constant operand without "
 | |
|            "NullMapMissingGlobalValues flag");
 | |
|     return Mapped;
 | |
|   };
 | |
| 
 | |
|   // Otherwise, we have some other constant to remap.  Start by checking to see
 | |
|   // if all operands have an identity remapping.
 | |
|   unsigned OpNo = 0, NumOperands = C->getNumOperands();
 | |
|   Value *Mapped = nullptr;
 | |
|   for (; OpNo != NumOperands; ++OpNo) {
 | |
|     Value *Op = C->getOperand(OpNo);
 | |
|     Mapped = mapValueOrNull(Op);
 | |
|     if (!Mapped)
 | |
|       return nullptr;
 | |
|     if (Mapped != Op)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // See if the type mapper wants to remap the type as well.
 | |
|   Type *NewTy = C->getType();
 | |
|   if (TypeMapper)
 | |
|     NewTy = TypeMapper->remapType(NewTy);
 | |
| 
 | |
|   // If the result type and all operands match up, then just insert an identity
 | |
|   // mapping.
 | |
|   if (OpNo == NumOperands && NewTy == C->getType())
 | |
|     return getVM()[V] = C;
 | |
| 
 | |
|   // Okay, we need to create a new constant.  We've already processed some or
 | |
|   // all of the operands, set them all up now.
 | |
|   SmallVector<Constant*, 8> Ops;
 | |
|   Ops.reserve(NumOperands);
 | |
|   for (unsigned j = 0; j != OpNo; ++j)
 | |
|     Ops.push_back(cast<Constant>(C->getOperand(j)));
 | |
| 
 | |
|   // If one of the operands mismatch, push it and the other mapped operands.
 | |
|   if (OpNo != NumOperands) {
 | |
|     Ops.push_back(cast<Constant>(Mapped));
 | |
| 
 | |
|     // Map the rest of the operands that aren't processed yet.
 | |
|     for (++OpNo; OpNo != NumOperands; ++OpNo) {
 | |
|       Mapped = mapValueOrNull(C->getOperand(OpNo));
 | |
|       if (!Mapped)
 | |
|         return nullptr;
 | |
|       Ops.push_back(cast<Constant>(Mapped));
 | |
|     }
 | |
|   }
 | |
|   Type *NewSrcTy = nullptr;
 | |
|   if (TypeMapper)
 | |
|     if (auto *GEPO = dyn_cast<GEPOperator>(C))
 | |
|       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
 | |
|   if (isa<ConstantArray>(C))
 | |
|     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
 | |
|   if (isa<ConstantStruct>(C))
 | |
|     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
 | |
|   if (isa<ConstantVector>(C))
 | |
|     return getVM()[V] = ConstantVector::get(Ops);
 | |
|   // If this is a no-operand constant, it must be because the type was remapped.
 | |
|   if (isa<UndefValue>(C))
 | |
|     return getVM()[V] = UndefValue::get(NewTy);
 | |
|   if (isa<ConstantAggregateZero>(C))
 | |
|     return getVM()[V] = ConstantAggregateZero::get(NewTy);
 | |
|   assert(isa<ConstantPointerNull>(C));
 | |
|   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
 | |
| }
 | |
| 
 | |
| Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
 | |
|   Function *F = cast<Function>(mapValue(BA.getFunction()));
 | |
| 
 | |
|   // F may not have materialized its initializer.  In that case, create a
 | |
|   // dummy basic block for now, and replace it once we've materialized all
 | |
|   // the initializers.
 | |
|   BasicBlock *BB;
 | |
|   if (F->empty()) {
 | |
|     DelayedBBs.push_back(DelayedBasicBlock(BA));
 | |
|     BB = DelayedBBs.back().TempBB.get();
 | |
|   } else {
 | |
|     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
 | |
|   }
 | |
| 
 | |
|   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
 | |
| }
 | |
| 
 | |
| Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
 | |
|   getVM().MD()[Key].reset(Val);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| Metadata *Mapper::mapToSelf(const Metadata *MD) {
 | |
|   return mapToMetadata(MD, const_cast<Metadata *>(MD));
 | |
| }
 | |
| 
 | |
| Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
 | |
|   if (!Op)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
 | |
| #ifndef NDEBUG
 | |
|     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
 | |
|       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
 | |
|               M.getVM().getMappedMD(Op)) &&
 | |
|              "Expected Value to be memoized");
 | |
|     else
 | |
|       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
 | |
|              "Expected result to be memoized");
 | |
| #endif
 | |
|     return *MappedOp;
 | |
|   }
 | |
| 
 | |
|   const MDNode &N = *cast<MDNode>(Op);
 | |
|   if (N.isDistinct())
 | |
|     return mapDistinctNode(N);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Metadata *cloneOrBuildODR(const MDNode &N) {
 | |
|   auto *CT = dyn_cast<DICompositeType>(&N);
 | |
|   // If ODR type uniquing is enabled, we would have uniqued composite types
 | |
|   // with identifiers during bitcode reading, so we can just use CT.
 | |
|   if (CT && CT->getContext().isODRUniquingDebugTypes() &&
 | |
|       CT->getIdentifier() != "")
 | |
|     return const_cast<DICompositeType *>(CT);
 | |
|   return MDNode::replaceWithDistinct(N.clone());
 | |
| }
 | |
| 
 | |
| MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
 | |
|   assert(N.isDistinct() && "Expected a distinct node");
 | |
|   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
 | |
|   DistinctWorklist.push_back(
 | |
|       cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
 | |
|                        ? M.mapToSelf(&N)
 | |
|                        : M.mapToMetadata(&N, cloneOrBuildODR(N))));
 | |
|   return DistinctWorklist.back();
 | |
| }
 | |
| 
 | |
| static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
 | |
|                                                   Value *MappedV) {
 | |
|   if (CMD.getValue() == MappedV)
 | |
|     return const_cast<ConstantAsMetadata *>(&CMD);
 | |
|   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
 | |
| }
 | |
| 
 | |
| Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
 | |
|   if (!Op)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
 | |
|     return *MappedOp;
 | |
| 
 | |
|   if (isa<MDString>(Op))
 | |
|     return const_cast<Metadata *>(Op);
 | |
| 
 | |
|   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
 | |
|     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
 | |
|   auto Where = Info.find(&Op);
 | |
|   assert(Where != Info.end() && "Expected a valid reference");
 | |
| 
 | |
|   auto &OpD = Where->second;
 | |
|   if (!OpD.HasChanged)
 | |
|     return Op;
 | |
| 
 | |
|   // Lazily construct a temporary node.
 | |
|   if (!OpD.Placeholder)
 | |
|     OpD.Placeholder = Op.clone();
 | |
| 
 | |
|   return *OpD.Placeholder;
 | |
| }
 | |
| 
 | |
| template <class OperandMapper>
 | |
| void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
 | |
|   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
 | |
|   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
 | |
|     Metadata *Old = N.getOperand(I);
 | |
|     Metadata *New = mapOperand(Old);
 | |
| 
 | |
|     if (Old != New)
 | |
|       N.replaceOperandWith(I, New);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// An entry in the worklist for the post-order traversal.
 | |
| struct POTWorklistEntry {
 | |
|   MDNode *N;              ///< Current node.
 | |
|   MDNode::op_iterator Op; ///< Current operand of \c N.
 | |
| 
 | |
|   /// Keep a flag of whether operands have changed in the worklist to avoid
 | |
|   /// hitting the map in \a UniquedGraph.
 | |
|   bool HasChanged = false;
 | |
| 
 | |
|   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
 | |
|   assert(G.Info.empty() && "Expected a fresh traversal");
 | |
|   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
 | |
| 
 | |
|   // Construct a post-order traversal of the uniqued subgraph under FirstN.
 | |
|   bool AnyChanges = false;
 | |
|   SmallVector<POTWorklistEntry, 16> Worklist;
 | |
|   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
 | |
|   (void)G.Info[&FirstN];
 | |
|   while (!Worklist.empty()) {
 | |
|     // Start or continue the traversal through the this node's operands.
 | |
|     auto &WE = Worklist.back();
 | |
|     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
 | |
|       // Push a new node to traverse first.
 | |
|       Worklist.push_back(POTWorklistEntry(*N));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Push the node onto the POT.
 | |
|     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
 | |
|     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
 | |
|     auto &D = G.Info[WE.N];
 | |
|     AnyChanges |= D.HasChanged = WE.HasChanged;
 | |
|     D.ID = G.POT.size();
 | |
|     G.POT.push_back(WE.N);
 | |
| 
 | |
|     // Pop the node off the worklist.
 | |
|     Worklist.pop_back();
 | |
|   }
 | |
|   return AnyChanges;
 | |
| }
 | |
| 
 | |
| MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
 | |
|                                     MDNode::op_iterator E, bool &HasChanged) {
 | |
|   while (I != E) {
 | |
|     Metadata *Op = *I++; // Increment even on early return.
 | |
|     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
 | |
|       // Check if the operand changes.
 | |
|       HasChanged |= Op != *MappedOp;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // A uniqued metadata node.
 | |
|     MDNode &OpN = *cast<MDNode>(Op);
 | |
|     assert(OpN.isUniqued() &&
 | |
|            "Only uniqued operands cannot be mapped immediately");
 | |
|     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
 | |
|       return &OpN; // This is a new one.  Return it.
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void MDNodeMapper::UniquedGraph::propagateChanges() {
 | |
|   bool AnyChanges;
 | |
|   do {
 | |
|     AnyChanges = false;
 | |
|     for (MDNode *N : POT) {
 | |
|       auto &D = Info[N];
 | |
|       if (D.HasChanged)
 | |
|         continue;
 | |
| 
 | |
|       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
 | |
|             auto Where = Info.find(Op);
 | |
|             return Where != Info.end() && Where->second.HasChanged;
 | |
|           }))
 | |
|         continue;
 | |
| 
 | |
|       AnyChanges = D.HasChanged = true;
 | |
|     }
 | |
|   } while (AnyChanges);
 | |
| }
 | |
| 
 | |
| void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
 | |
|   // Construct uniqued nodes, building forward references as necessary.
 | |
|   SmallVector<MDNode *, 16> CyclicNodes;
 | |
|   for (auto *N : G.POT) {
 | |
|     auto &D = G.Info[N];
 | |
|     if (!D.HasChanged) {
 | |
|       // The node hasn't changed.
 | |
|       M.mapToSelf(N);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Remember whether this node had a placeholder.
 | |
|     bool HadPlaceholder(D.Placeholder);
 | |
| 
 | |
|     // Clone the uniqued node and remap the operands.
 | |
|     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
 | |
|     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
 | |
|       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
 | |
|         return *MappedOp;
 | |
|       (void)D;
 | |
|       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
 | |
|       return &G.getFwdReference(*cast<MDNode>(Old));
 | |
|     });
 | |
| 
 | |
|     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
 | |
|     M.mapToMetadata(N, NewN);
 | |
| 
 | |
|     // Nodes that were referenced out of order in the POT are involved in a
 | |
|     // uniquing cycle.
 | |
|     if (HadPlaceholder)
 | |
|       CyclicNodes.push_back(NewN);
 | |
|   }
 | |
| 
 | |
|   // Resolve cycles.
 | |
|   for (auto *N : CyclicNodes)
 | |
|     if (!N->isResolved())
 | |
|       N->resolveCycles();
 | |
| }
 | |
| 
 | |
| Metadata *MDNodeMapper::map(const MDNode &N) {
 | |
|   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
 | |
|   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
 | |
|          "MDNodeMapper::map assumes module-level changes");
 | |
| 
 | |
|   // Require resolved nodes whenever metadata might be remapped.
 | |
|   assert(N.isResolved() && "Unexpected unresolved node");
 | |
| 
 | |
|   Metadata *MappedN =
 | |
|       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
 | |
|   while (!DistinctWorklist.empty())
 | |
|     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
 | |
|       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
 | |
|         return *MappedOp;
 | |
|       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
 | |
|     });
 | |
|   return MappedN;
 | |
| }
 | |
| 
 | |
| Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
 | |
|   assert(FirstN.isUniqued() && "Expected uniqued node");
 | |
| 
 | |
|   // Create a post-order traversal of uniqued nodes under FirstN.
 | |
|   UniquedGraph G;
 | |
|   if (!createPOT(G, FirstN)) {
 | |
|     // Return early if no nodes have changed.
 | |
|     for (const MDNode *N : G.POT)
 | |
|       M.mapToSelf(N);
 | |
|     return &const_cast<MDNode &>(FirstN);
 | |
|   }
 | |
| 
 | |
|   // Update graph with all nodes that have changed.
 | |
|   G.propagateChanges();
 | |
| 
 | |
|   // Map all the nodes in the graph.
 | |
|   mapNodesInPOT(G);
 | |
| 
 | |
|   // Return the original node, remapped.
 | |
|   return *getMappedOp(&FirstN);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct MapMetadataDisabler {
 | |
|   ValueToValueMapTy &VM;
 | |
| 
 | |
|   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
 | |
|     VM.disableMapMetadata();
 | |
|   }
 | |
| 
 | |
|   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
 | |
|   // If the value already exists in the map, use it.
 | |
|   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
 | |
|     return *NewMD;
 | |
| 
 | |
|   if (isa<MDString>(MD))
 | |
|     return const_cast<Metadata *>(MD);
 | |
| 
 | |
|   // This is a module-level metadata.  If nothing at the module level is
 | |
|   // changing, use an identity mapping.
 | |
|   if ((Flags & RF_NoModuleLevelChanges))
 | |
|     return const_cast<Metadata *>(MD);
 | |
| 
 | |
|   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
 | |
|     // Disallow recursion into metadata mapping through mapValue.
 | |
|     MapMetadataDisabler MMD(getVM());
 | |
| 
 | |
|     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
 | |
|     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
 | |
|     // reference is destructed.  These aren't super common, so the extra
 | |
|     // indirection isn't that expensive.
 | |
|     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
 | |
|   }
 | |
| 
 | |
|   assert(isa<MDNode>(MD) && "Expected a metadata node");
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Metadata *Mapper::mapMetadata(const Metadata *MD) {
 | |
|   assert(MD && "Expected valid metadata");
 | |
|   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
 | |
| 
 | |
|   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
 | |
|     return *NewMD;
 | |
| 
 | |
|   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
 | |
| }
 | |
| 
 | |
| void Mapper::flush() {
 | |
|   // Flush out the worklist of global values.
 | |
|   while (!Worklist.empty()) {
 | |
|     WorklistEntry E = Worklist.pop_back_val();
 | |
|     CurrentMCID = E.MCID;
 | |
|     switch (E.Kind) {
 | |
|     case WorklistEntry::MapGlobalInit:
 | |
|       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
 | |
|       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
 | |
|       break;
 | |
|     case WorklistEntry::MapAppendingVar: {
 | |
|       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
 | |
|       mapAppendingVariable(*E.Data.AppendingGV.GV,
 | |
|                            E.Data.AppendingGV.InitPrefix,
 | |
|                            E.AppendingGVIsOldCtorDtor,
 | |
|                            makeArrayRef(AppendingInits).slice(PrefixSize));
 | |
|       AppendingInits.resize(PrefixSize);
 | |
|       break;
 | |
|     }
 | |
|     case WorklistEntry::MapGlobalAliasee:
 | |
|       E.Data.GlobalAliasee.GA->setAliasee(
 | |
|           mapConstant(E.Data.GlobalAliasee.Aliasee));
 | |
|       break;
 | |
|     case WorklistEntry::RemapFunction:
 | |
|       remapFunction(*E.Data.RemapF);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   CurrentMCID = 0;
 | |
| 
 | |
|   // Finish logic for block addresses now that all global values have been
 | |
|   // handled.
 | |
|   while (!DelayedBBs.empty()) {
 | |
|     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
 | |
|     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
 | |
|     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Mapper::remapInstruction(Instruction *I) {
 | |
|   // Remap operands.
 | |
|   for (Use &Op : I->operands()) {
 | |
|     Value *V = mapValue(Op);
 | |
|     // If we aren't ignoring missing entries, assert that something happened.
 | |
|     if (V)
 | |
|       Op = V;
 | |
|     else
 | |
|       assert((Flags & RF_IgnoreMissingLocals) &&
 | |
|              "Referenced value not in value map!");
 | |
|   }
 | |
| 
 | |
|   // Remap phi nodes' incoming blocks.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *V = mapValue(PN->getIncomingBlock(i));
 | |
|       // If we aren't ignoring missing entries, assert that something happened.
 | |
|       if (V)
 | |
|         PN->setIncomingBlock(i, cast<BasicBlock>(V));
 | |
|       else
 | |
|         assert((Flags & RF_IgnoreMissingLocals) &&
 | |
|                "Referenced block not in value map!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remap attached metadata.
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | |
|   I->getAllMetadata(MDs);
 | |
|   for (const auto &MI : MDs) {
 | |
|     MDNode *Old = MI.second;
 | |
|     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
 | |
|     if (New != Old)
 | |
|       I->setMetadata(MI.first, New);
 | |
|   }
 | |
| 
 | |
|   if (!TypeMapper)
 | |
|     return;
 | |
| 
 | |
|   // If the instruction's type is being remapped, do so now.
 | |
|   if (auto CS = CallSite(I)) {
 | |
|     SmallVector<Type *, 3> Tys;
 | |
|     FunctionType *FTy = CS.getFunctionType();
 | |
|     Tys.reserve(FTy->getNumParams());
 | |
|     for (Type *Ty : FTy->params())
 | |
|       Tys.push_back(TypeMapper->remapType(Ty));
 | |
|     CS.mutateFunctionType(FunctionType::get(
 | |
|         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
 | |
|     return;
 | |
|   }
 | |
|   if (auto *AI = dyn_cast<AllocaInst>(I))
 | |
|     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
 | |
|   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|     GEP->setSourceElementType(
 | |
|         TypeMapper->remapType(GEP->getSourceElementType()));
 | |
|     GEP->setResultElementType(
 | |
|         TypeMapper->remapType(GEP->getResultElementType()));
 | |
|   }
 | |
|   I->mutateType(TypeMapper->remapType(I->getType()));
 | |
| }
 | |
| 
 | |
| void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
 | |
|   GO.getAllMetadata(MDs);
 | |
|   GO.clearMetadata();
 | |
|   for (const auto &I : MDs)
 | |
|     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
 | |
| }
 | |
| 
 | |
| void Mapper::remapFunction(Function &F) {
 | |
|   // Remap the operands.
 | |
|   for (Use &Op : F.operands())
 | |
|     if (Op)
 | |
|       Op = mapValue(Op);
 | |
| 
 | |
|   // Remap the metadata attachments.
 | |
|   remapGlobalObjectMetadata(F);
 | |
| 
 | |
|   // Remap the argument types.
 | |
|   if (TypeMapper)
 | |
|     for (Argument &A : F.args())
 | |
|       A.mutateType(TypeMapper->remapType(A.getType()));
 | |
| 
 | |
|   // Remap the instructions.
 | |
|   for (BasicBlock &BB : F)
 | |
|     for (Instruction &I : BB)
 | |
|       remapInstruction(&I);
 | |
| }
 | |
| 
 | |
| void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
 | |
|                                   bool IsOldCtorDtor,
 | |
|                                   ArrayRef<Constant *> NewMembers) {
 | |
|   SmallVector<Constant *, 16> Elements;
 | |
|   if (InitPrefix) {
 | |
|     unsigned NumElements =
 | |
|         cast<ArrayType>(InitPrefix->getType())->getNumElements();
 | |
|     for (unsigned I = 0; I != NumElements; ++I)
 | |
|       Elements.push_back(InitPrefix->getAggregateElement(I));
 | |
|   }
 | |
| 
 | |
|   PointerType *VoidPtrTy;
 | |
|   Type *EltTy;
 | |
|   if (IsOldCtorDtor) {
 | |
|     // FIXME: This upgrade is done during linking to support the C API.  See
 | |
|     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
 | |
|     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
 | |
|     auto &ST = *cast<StructType>(NewMembers.front()->getType());
 | |
|     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
 | |
|     EltTy = StructType::get(GV.getContext(), Tys, false);
 | |
|   }
 | |
| 
 | |
|   for (auto *V : NewMembers) {
 | |
|     Constant *NewV;
 | |
|     if (IsOldCtorDtor) {
 | |
|       auto *S = cast<ConstantStruct>(V);
 | |
|       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
 | |
|       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
 | |
|       Constant *Null = Constant::getNullValue(VoidPtrTy);
 | |
|       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
 | |
|     } else {
 | |
|       NewV = cast_or_null<Constant>(mapValue(V));
 | |
|     }
 | |
|     Elements.push_back(NewV);
 | |
|   }
 | |
| 
 | |
|   GV.setInitializer(ConstantArray::get(
 | |
|       cast<ArrayType>(GV.getType()->getElementType()), Elements));
 | |
| }
 | |
| 
 | |
| void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
 | |
|                                           unsigned MCID) {
 | |
|   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
 | |
|   assert(MCID < MCs.size() && "Invalid mapping context");
 | |
| 
 | |
|   WorklistEntry WE;
 | |
|   WE.Kind = WorklistEntry::MapGlobalInit;
 | |
|   WE.MCID = MCID;
 | |
|   WE.Data.GVInit.GV = &GV;
 | |
|   WE.Data.GVInit.Init = &Init;
 | |
|   Worklist.push_back(WE);
 | |
| }
 | |
| 
 | |
| void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
 | |
|                                           Constant *InitPrefix,
 | |
|                                           bool IsOldCtorDtor,
 | |
|                                           ArrayRef<Constant *> NewMembers,
 | |
|                                           unsigned MCID) {
 | |
|   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
 | |
|   assert(MCID < MCs.size() && "Invalid mapping context");
 | |
| 
 | |
|   WorklistEntry WE;
 | |
|   WE.Kind = WorklistEntry::MapAppendingVar;
 | |
|   WE.MCID = MCID;
 | |
|   WE.Data.AppendingGV.GV = &GV;
 | |
|   WE.Data.AppendingGV.InitPrefix = InitPrefix;
 | |
|   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
 | |
|   WE.AppendingGVNumNewMembers = NewMembers.size();
 | |
|   Worklist.push_back(WE);
 | |
|   AppendingInits.append(NewMembers.begin(), NewMembers.end());
 | |
| }
 | |
| 
 | |
| void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
 | |
|                                       unsigned MCID) {
 | |
|   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
 | |
|   assert(MCID < MCs.size() && "Invalid mapping context");
 | |
| 
 | |
|   WorklistEntry WE;
 | |
|   WE.Kind = WorklistEntry::MapGlobalAliasee;
 | |
|   WE.MCID = MCID;
 | |
|   WE.Data.GlobalAliasee.GA = &GA;
 | |
|   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
 | |
|   Worklist.push_back(WE);
 | |
| }
 | |
| 
 | |
| void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
 | |
|   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
 | |
|   assert(MCID < MCs.size() && "Invalid mapping context");
 | |
| 
 | |
|   WorklistEntry WE;
 | |
|   WE.Kind = WorklistEntry::RemapFunction;
 | |
|   WE.MCID = MCID;
 | |
|   WE.Data.RemapF = &F;
 | |
|   Worklist.push_back(WE);
 | |
| }
 | |
| 
 | |
| void Mapper::addFlags(RemapFlags Flags) {
 | |
|   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
 | |
|   this->Flags = this->Flags | Flags;
 | |
| }
 | |
| 
 | |
| static Mapper *getAsMapper(void *pImpl) {
 | |
|   return reinterpret_cast<Mapper *>(pImpl);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class FlushingMapper {
 | |
|   Mapper &M;
 | |
| 
 | |
| public:
 | |
|   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
 | |
|     assert(!M.hasWorkToDo() && "Expected to be flushed");
 | |
|   }
 | |
| 
 | |
|   ~FlushingMapper() { M.flush(); }
 | |
| 
 | |
|   Mapper *operator->() const { return &M; }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
 | |
|                          ValueMapTypeRemapper *TypeMapper,
 | |
|                          ValueMaterializer *Materializer)
 | |
|     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
 | |
| 
 | |
| ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
 | |
| 
 | |
| unsigned
 | |
| ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
 | |
|                                              ValueMaterializer *Materializer) {
 | |
|   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
 | |
| }
 | |
| 
 | |
| void ValueMapper::addFlags(RemapFlags Flags) {
 | |
|   FlushingMapper(pImpl)->addFlags(Flags);
 | |
| }
 | |
| 
 | |
| Value *ValueMapper::mapValue(const Value &V) {
 | |
|   return FlushingMapper(pImpl)->mapValue(&V);
 | |
| }
 | |
| 
 | |
| Constant *ValueMapper::mapConstant(const Constant &C) {
 | |
|   return cast_or_null<Constant>(mapValue(C));
 | |
| }
 | |
| 
 | |
| Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
 | |
|   return FlushingMapper(pImpl)->mapMetadata(&MD);
 | |
| }
 | |
| 
 | |
| MDNode *ValueMapper::mapMDNode(const MDNode &N) {
 | |
|   return cast_or_null<MDNode>(mapMetadata(N));
 | |
| }
 | |
| 
 | |
| void ValueMapper::remapInstruction(Instruction &I) {
 | |
|   FlushingMapper(pImpl)->remapInstruction(&I);
 | |
| }
 | |
| 
 | |
| void ValueMapper::remapFunction(Function &F) {
 | |
|   FlushingMapper(pImpl)->remapFunction(F);
 | |
| }
 | |
| 
 | |
| void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
 | |
|                                                Constant &Init,
 | |
|                                                unsigned MCID) {
 | |
|   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
 | |
| }
 | |
| 
 | |
| void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
 | |
|                                                Constant *InitPrefix,
 | |
|                                                bool IsOldCtorDtor,
 | |
|                                                ArrayRef<Constant *> NewMembers,
 | |
|                                                unsigned MCID) {
 | |
|   getAsMapper(pImpl)->scheduleMapAppendingVariable(
 | |
|       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
 | |
| }
 | |
| 
 | |
| void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
 | |
|                                            unsigned MCID) {
 | |
|   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
 | |
| }
 | |
| 
 | |
| void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
 | |
|   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
 | |
| }
 |