7284 lines
		
	
	
		
			294 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7284 lines
		
	
	
		
			294 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
 | |
| // and generates target-independent LLVM-IR.
 | |
| // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
 | |
| // of instructions in order to estimate the profitability of vectorization.
 | |
| //
 | |
| // The loop vectorizer combines consecutive loop iterations into a single
 | |
| // 'wide' iteration. After this transformation the index is incremented
 | |
| // by the SIMD vector width, and not by one.
 | |
| //
 | |
| // This pass has three parts:
 | |
| // 1. The main loop pass that drives the different parts.
 | |
| // 2. LoopVectorizationLegality - A unit that checks for the legality
 | |
| //    of the vectorization.
 | |
| // 3. InnerLoopVectorizer - A unit that performs the actual
 | |
| //    widening of instructions.
 | |
| // 4. LoopVectorizationCostModel - A unit that checks for the profitability
 | |
| //    of vectorization. It decides on the optimal vector width, which
 | |
| //    can be one, if vectorization is not profitable.
 | |
| //
 | |
| // There is a development effort going on to migrate loop vectorizer to the
 | |
| // VPlan infrastructure and to introduce outer loop vectorization support (see
 | |
| // docs/Proposal/VectorizationPlan.rst and
 | |
| // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
 | |
| // purpose, we temporarily introduced the VPlan-native vectorization path: an
 | |
| // alternative vectorization path that is natively implemented on top of the
 | |
| // VPlan infrastructure. See EnableVPlanNativePath for enabling.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The reduction-variable vectorization is based on the paper:
 | |
| //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
 | |
| //
 | |
| // Variable uniformity checks are inspired by:
 | |
| //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
 | |
| //
 | |
| // The interleaved access vectorization is based on the paper:
 | |
| //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
 | |
| //  Data for SIMD
 | |
| //
 | |
| // Other ideas/concepts are from:
 | |
| //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
 | |
| //
 | |
| //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
 | |
| //  Vectorizing Compilers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Vectorize/LoopVectorize.h"
 | |
| #include "LoopVectorizationPlanner.h"
 | |
| #include "VPRecipeBuilder.h"
 | |
| #include "VPlanHCFGBuilder.h"
 | |
| #include "VPlanHCFGTransforms.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseMapInfo.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/DemandedBits.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/LoopAccessAnalysis.h"
 | |
| #include "llvm/Analysis/LoopAnalysisManager.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/LoopSimplify.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/LoopVersioning.h"
 | |
| #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define LV_NAME "loop-vectorize"
 | |
| #define DEBUG_TYPE LV_NAME
 | |
| 
 | |
| STATISTIC(LoopsVectorized, "Number of loops vectorized");
 | |
| STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
 | |
| 
 | |
| /// Loops with a known constant trip count below this number are vectorized only
 | |
| /// if no scalar iteration overheads are incurred.
 | |
| static cl::opt<unsigned> TinyTripCountVectorThreshold(
 | |
|     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
 | |
|     cl::desc("Loops with a constant trip count that is smaller than this "
 | |
|              "value are vectorized only if no scalar iteration overheads "
 | |
|              "are incurred."));
 | |
| 
 | |
| static cl::opt<bool> MaximizeBandwidth(
 | |
|     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Maximize bandwidth when selecting vectorization factor which "
 | |
|              "will be determined by the smallest type in loop."));
 | |
| 
 | |
| static cl::opt<bool> EnableInterleavedMemAccesses(
 | |
|     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
 | |
| 
 | |
| /// We don't interleave loops with a known constant trip count below this
 | |
| /// number.
 | |
| static const unsigned TinyTripCountInterleaveThreshold = 128;
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetNumScalarRegs(
 | |
|     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's number of scalar registers."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetNumVectorRegs(
 | |
|     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's number of vector registers."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
 | |
|     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's max interleave factor for "
 | |
|              "scalar loops."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
 | |
|     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's max interleave factor for "
 | |
|              "vectorized loops."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetInstructionCost(
 | |
|     "force-target-instruction-cost", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's expected cost for "
 | |
|              "an instruction to a single constant value. Mostly "
 | |
|              "useful for getting consistent testing."));
 | |
| 
 | |
| static cl::opt<unsigned> SmallLoopCost(
 | |
|     "small-loop-cost", cl::init(20), cl::Hidden,
 | |
|     cl::desc(
 | |
|         "The cost of a loop that is considered 'small' by the interleaver."));
 | |
| 
 | |
| static cl::opt<bool> LoopVectorizeWithBlockFrequency(
 | |
|     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Enable the use of the block frequency analysis to access PGO "
 | |
|              "heuristics minimizing code growth in cold regions and being more "
 | |
|              "aggressive in hot regions."));
 | |
| 
 | |
| // Runtime interleave loops for load/store throughput.
 | |
| static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
 | |
|     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
 | |
|     cl::desc(
 | |
|         "Enable runtime interleaving until load/store ports are saturated"));
 | |
| 
 | |
| /// The number of stores in a loop that are allowed to need predication.
 | |
| static cl::opt<unsigned> NumberOfStoresToPredicate(
 | |
|     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
 | |
|     cl::desc("Max number of stores to be predicated behind an if."));
 | |
| 
 | |
| static cl::opt<bool> EnableIndVarRegisterHeur(
 | |
|     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Count the induction variable only once when interleaving"));
 | |
| 
 | |
| static cl::opt<bool> EnableCondStoresVectorization(
 | |
|     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Enable if predication of stores during vectorization."));
 | |
| 
 | |
| static cl::opt<unsigned> MaxNestedScalarReductionIC(
 | |
|     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
 | |
|     cl::desc("The maximum interleave count to use when interleaving a scalar "
 | |
|              "reduction in a nested loop."));
 | |
| 
 | |
| cl::opt<bool> EnableVPlanNativePath(
 | |
|     "enable-vplan-native-path", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Enable VPlan-native vectorization path with "
 | |
|              "support for outer loop vectorization."));
 | |
| 
 | |
| // This flag enables the stress testing of the VPlan H-CFG construction in the
 | |
| // VPlan-native vectorization path. It must be used in conjuction with
 | |
| // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
 | |
| // verification of the H-CFGs built.
 | |
| static cl::opt<bool> VPlanBuildStressTest(
 | |
|     "vplan-build-stress-test", cl::init(false), cl::Hidden,
 | |
|     cl::desc(
 | |
|         "Build VPlan for every supported loop nest in the function and bail "
 | |
|         "out right after the build (stress test the VPlan H-CFG construction "
 | |
|         "in the VPlan-native vectorization path)."));
 | |
| 
 | |
| /// A helper function for converting Scalar types to vector types.
 | |
| /// If the incoming type is void, we return void. If the VF is 1, we return
 | |
| /// the scalar type.
 | |
| static Type *ToVectorTy(Type *Scalar, unsigned VF) {
 | |
|   if (Scalar->isVoidTy() || VF == 1)
 | |
|     return Scalar;
 | |
|   return VectorType::get(Scalar, VF);
 | |
| }
 | |
| 
 | |
| /// A helper function that returns the type of loaded or stored value.
 | |
| static Type *getMemInstValueType(Value *I) {
 | |
|   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
 | |
|          "Expected Load or Store instruction");
 | |
|   if (auto *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->getType();
 | |
|   return cast<StoreInst>(I)->getValueOperand()->getType();
 | |
| }
 | |
| 
 | |
| /// A helper function that returns true if the given type is irregular. The
 | |
| /// type is irregular if its allocated size doesn't equal the store size of an
 | |
| /// element of the corresponding vector type at the given vectorization factor.
 | |
| static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
 | |
|   // Determine if an array of VF elements of type Ty is "bitcast compatible"
 | |
|   // with a <VF x Ty> vector.
 | |
|   if (VF > 1) {
 | |
|     auto *VectorTy = VectorType::get(Ty, VF);
 | |
|     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
 | |
|   }
 | |
| 
 | |
|   // If the vectorization factor is one, we just check if an array of type Ty
 | |
|   // requires padding between elements.
 | |
|   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
 | |
| }
 | |
| 
 | |
| /// A helper function that returns the reciprocal of the block probability of
 | |
| /// predicated blocks. If we return X, we are assuming the predicated block
 | |
| /// will execute once for every X iterations of the loop header.
 | |
| ///
 | |
| /// TODO: We should use actual block probability here, if available. Currently,
 | |
| ///       we always assume predicated blocks have a 50% chance of executing.
 | |
| static unsigned getReciprocalPredBlockProb() { return 2; }
 | |
| 
 | |
| /// A helper function that adds a 'fast' flag to floating-point operations.
 | |
| static Value *addFastMathFlag(Value *V) {
 | |
|   if (isa<FPMathOperator>(V)) {
 | |
|     FastMathFlags Flags;
 | |
|     Flags.setFast();
 | |
|     cast<Instruction>(V)->setFastMathFlags(Flags);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// A helper function that returns an integer or floating-point constant with
 | |
| /// value C.
 | |
| static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
 | |
|   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
 | |
|                            : ConstantFP::get(Ty, C);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// InnerLoopVectorizer vectorizes loops which contain only one basic
 | |
| /// block to a specified vectorization factor (VF).
 | |
| /// This class performs the widening of scalars into vectors, or multiple
 | |
| /// scalars. This class also implements the following features:
 | |
| /// * It inserts an epilogue loop for handling loops that don't have iteration
 | |
| ///   counts that are known to be a multiple of the vectorization factor.
 | |
| /// * It handles the code generation for reduction variables.
 | |
| /// * Scalarization (implementation using scalars) of un-vectorizable
 | |
| ///   instructions.
 | |
| /// InnerLoopVectorizer does not perform any vectorization-legality
 | |
| /// checks, and relies on the caller to check for the different legality
 | |
| /// aspects. The InnerLoopVectorizer relies on the
 | |
| /// LoopVectorizationLegality class to provide information about the induction
 | |
| /// and reduction variables that were found to a given vectorization factor.
 | |
| class InnerLoopVectorizer {
 | |
| public:
 | |
|   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
 | |
|                       LoopInfo *LI, DominatorTree *DT,
 | |
|                       const TargetLibraryInfo *TLI,
 | |
|                       const TargetTransformInfo *TTI, AssumptionCache *AC,
 | |
|                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
 | |
|                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
 | |
|                       LoopVectorizationCostModel *CM)
 | |
|       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
 | |
|         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
 | |
|         Builder(PSE.getSE()->getContext()),
 | |
|         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
 | |
|   virtual ~InnerLoopVectorizer() = default;
 | |
| 
 | |
|   /// Create a new empty loop. Unlink the old loop and connect the new one.
 | |
|   /// Return the pre-header block of the new loop.
 | |
|   BasicBlock *createVectorizedLoopSkeleton();
 | |
| 
 | |
|   /// Widen a single instruction within the innermost loop.
 | |
|   void widenInstruction(Instruction &I);
 | |
| 
 | |
|   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
 | |
|   void fixVectorizedLoop();
 | |
| 
 | |
|   // Return true if any runtime check is added.
 | |
|   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
 | |
| 
 | |
|   /// A type for vectorized values in the new loop. Each value from the
 | |
|   /// original loop, when vectorized, is represented by UF vector values in the
 | |
|   /// new unrolled loop, where UF is the unroll factor.
 | |
|   using VectorParts = SmallVector<Value *, 2>;
 | |
| 
 | |
|   /// Vectorize a single PHINode in a block. This method handles the induction
 | |
|   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
 | |
|   /// arbitrary length vectors.
 | |
|   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
 | |
| 
 | |
|   /// A helper function to scalarize a single Instruction in the innermost loop.
 | |
|   /// Generates a sequence of scalar instances for each lane between \p MinLane
 | |
|   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
 | |
|   /// inclusive..
 | |
|   void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
 | |
|                             bool IfPredicateInstr);
 | |
| 
 | |
|   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
 | |
|   /// is provided, the integer induction variable will first be truncated to
 | |
|   /// the corresponding type.
 | |
|   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
 | |
| 
 | |
|   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
 | |
|   /// vector or scalar value on-demand if one is not yet available. When
 | |
|   /// vectorizing a loop, we visit the definition of an instruction before its
 | |
|   /// uses. When visiting the definition, we either vectorize or scalarize the
 | |
|   /// instruction, creating an entry for it in the corresponding map. (In some
 | |
|   /// cases, such as induction variables, we will create both vector and scalar
 | |
|   /// entries.) Then, as we encounter uses of the definition, we derive values
 | |
|   /// for each scalar or vector use unless such a value is already available.
 | |
|   /// For example, if we scalarize a definition and one of its uses is vector,
 | |
|   /// we build the required vector on-demand with an insertelement sequence
 | |
|   /// when visiting the use. Otherwise, if the use is scalar, we can use the
 | |
|   /// existing scalar definition.
 | |
|   ///
 | |
|   /// Return a value in the new loop corresponding to \p V from the original
 | |
|   /// loop at unroll index \p Part. If the value has already been vectorized,
 | |
|   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
 | |
|   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
 | |
|   /// a new vector value on-demand by inserting the scalar values into a vector
 | |
|   /// with an insertelement sequence. If the value has been neither vectorized
 | |
|   /// nor scalarized, it must be loop invariant, so we simply broadcast the
 | |
|   /// value into a vector.
 | |
|   Value *getOrCreateVectorValue(Value *V, unsigned Part);
 | |
| 
 | |
|   /// Return a value in the new loop corresponding to \p V from the original
 | |
|   /// loop at unroll and vector indices \p Instance. If the value has been
 | |
|   /// vectorized but not scalarized, the necessary extractelement instruction
 | |
|   /// will be generated.
 | |
|   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
 | |
| 
 | |
|   /// Construct the vector value of a scalarized value \p V one lane at a time.
 | |
|   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
 | |
| 
 | |
|   /// Try to vectorize the interleaved access group that \p Instr belongs to.
 | |
|   void vectorizeInterleaveGroup(Instruction *Instr);
 | |
| 
 | |
|   /// Vectorize Load and Store instructions, optionally masking the vector
 | |
|   /// operations if \p BlockInMask is non-null.
 | |
|   void vectorizeMemoryInstruction(Instruction *Instr,
 | |
|                                   VectorParts *BlockInMask = nullptr);
 | |
| 
 | |
|   /// Set the debug location in the builder using the debug location in
 | |
|   /// the instruction.
 | |
|   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
 | |
| 
 | |
|   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
 | |
|   void fixNonInductionPHIs(void);
 | |
| 
 | |
| protected:
 | |
|   friend class LoopVectorizationPlanner;
 | |
| 
 | |
|   /// A small list of PHINodes.
 | |
|   using PhiVector = SmallVector<PHINode *, 4>;
 | |
| 
 | |
|   /// A type for scalarized values in the new loop. Each value from the
 | |
|   /// original loop, when scalarized, is represented by UF x VF scalar values
 | |
|   /// in the new unrolled loop, where UF is the unroll factor and VF is the
 | |
|   /// vectorization factor.
 | |
|   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
 | |
| 
 | |
|   /// Set up the values of the IVs correctly when exiting the vector loop.
 | |
|   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
 | |
|                     Value *CountRoundDown, Value *EndValue,
 | |
|                     BasicBlock *MiddleBlock);
 | |
| 
 | |
|   /// Create a new induction variable inside L.
 | |
|   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
 | |
|                                    Value *Step, Instruction *DL);
 | |
| 
 | |
|   /// Handle all cross-iteration phis in the header.
 | |
|   void fixCrossIterationPHIs();
 | |
| 
 | |
|   /// Fix a first-order recurrence. This is the second phase of vectorizing
 | |
|   /// this phi node.
 | |
|   void fixFirstOrderRecurrence(PHINode *Phi);
 | |
| 
 | |
|   /// Fix a reduction cross-iteration phi. This is the second phase of
 | |
|   /// vectorizing this phi node.
 | |
|   void fixReduction(PHINode *Phi);
 | |
| 
 | |
|   /// The Loop exit block may have single value PHI nodes with some
 | |
|   /// incoming value. While vectorizing we only handled real values
 | |
|   /// that were defined inside the loop and we should have one value for
 | |
|   /// each predecessor of its parent basic block. See PR14725.
 | |
|   void fixLCSSAPHIs();
 | |
| 
 | |
|   /// Iteratively sink the scalarized operands of a predicated instruction into
 | |
|   /// the block that was created for it.
 | |
|   void sinkScalarOperands(Instruction *PredInst);
 | |
| 
 | |
|   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
 | |
|   /// represented as.
 | |
|   void truncateToMinimalBitwidths();
 | |
| 
 | |
|   /// Insert the new loop to the loop hierarchy and pass manager
 | |
|   /// and update the analysis passes.
 | |
|   void updateAnalysis();
 | |
| 
 | |
|   /// Create a broadcast instruction. This method generates a broadcast
 | |
|   /// instruction (shuffle) for loop invariant values and for the induction
 | |
|   /// value. If this is the induction variable then we extend it to N, N+1, ...
 | |
|   /// this is needed because each iteration in the loop corresponds to a SIMD
 | |
|   /// element.
 | |
|   virtual Value *getBroadcastInstrs(Value *V);
 | |
| 
 | |
|   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
 | |
|   /// to each vector element of Val. The sequence starts at StartIndex.
 | |
|   /// \p Opcode is relevant for FP induction variable.
 | |
|   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
 | |
|                                Instruction::BinaryOps Opcode =
 | |
|                                Instruction::BinaryOpsEnd);
 | |
| 
 | |
|   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
 | |
|   /// variable on which to base the steps, \p Step is the size of the step, and
 | |
|   /// \p EntryVal is the value from the original loop that maps to the steps.
 | |
|   /// Note that \p EntryVal doesn't have to be an induction variable - it
 | |
|   /// can also be a truncate instruction.
 | |
|   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
 | |
|                         const InductionDescriptor &ID);
 | |
| 
 | |
|   /// Create a vector induction phi node based on an existing scalar one. \p
 | |
|   /// EntryVal is the value from the original loop that maps to the vector phi
 | |
|   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
 | |
|   /// truncate instruction, instead of widening the original IV, we widen a
 | |
|   /// version of the IV truncated to \p EntryVal's type.
 | |
|   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
 | |
|                                        Value *Step, Instruction *EntryVal);
 | |
| 
 | |
|   /// Returns true if an instruction \p I should be scalarized instead of
 | |
|   /// vectorized for the chosen vectorization factor.
 | |
|   bool shouldScalarizeInstruction(Instruction *I) const;
 | |
| 
 | |
|   /// Returns true if we should generate a scalar version of \p IV.
 | |
|   bool needsScalarInduction(Instruction *IV) const;
 | |
| 
 | |
|   /// If there is a cast involved in the induction variable \p ID, which should
 | |
|   /// be ignored in the vectorized loop body, this function records the
 | |
|   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
 | |
|   /// cast. We had already proved that the casted Phi is equal to the uncasted
 | |
|   /// Phi in the vectorized loop (under a runtime guard), and therefore
 | |
|   /// there is no need to vectorize the cast - the same value can be used in the
 | |
|   /// vector loop for both the Phi and the cast.
 | |
|   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
 | |
|   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
 | |
|   ///
 | |
|   /// \p EntryVal is the value from the original loop that maps to the vector
 | |
|   /// phi node and is used to distinguish what is the IV currently being
 | |
|   /// processed - original one (if \p EntryVal is a phi corresponding to the
 | |
|   /// original IV) or the "newly-created" one based on the proof mentioned above
 | |
|   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
 | |
|   /// latter case \p EntryVal is a TruncInst and we must not record anything for
 | |
|   /// that IV, but it's error-prone to expect callers of this routine to care
 | |
|   /// about that, hence this explicit parameter.
 | |
|   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
 | |
|                                              const Instruction *EntryVal,
 | |
|                                              Value *VectorLoopValue,
 | |
|                                              unsigned Part,
 | |
|                                              unsigned Lane = UINT_MAX);
 | |
| 
 | |
|   /// Generate a shuffle sequence that will reverse the vector Vec.
 | |
|   virtual Value *reverseVector(Value *Vec);
 | |
| 
 | |
|   /// Returns (and creates if needed) the original loop trip count.
 | |
|   Value *getOrCreateTripCount(Loop *NewLoop);
 | |
| 
 | |
|   /// Returns (and creates if needed) the trip count of the widened loop.
 | |
|   Value *getOrCreateVectorTripCount(Loop *NewLoop);
 | |
| 
 | |
|   /// Returns a bitcasted value to the requested vector type.
 | |
|   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
 | |
|   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
 | |
|                                 const DataLayout &DL);
 | |
| 
 | |
|   /// Emit a bypass check to see if the vector trip count is zero, including if
 | |
|   /// it overflows.
 | |
|   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
 | |
| 
 | |
|   /// Emit a bypass check to see if all of the SCEV assumptions we've
 | |
|   /// had to make are correct.
 | |
|   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
 | |
| 
 | |
|   /// Emit bypass checks to check any memory assumptions we may have made.
 | |
|   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
 | |
| 
 | |
|   /// Compute the transformed value of Index at offset StartValue using step
 | |
|   /// StepValue.
 | |
|   /// For integer induction, returns StartValue + Index * StepValue.
 | |
|   /// For pointer induction, returns StartValue[Index * StepValue].
 | |
|   /// FIXME: The newly created binary instructions should contain nsw/nuw
 | |
|   /// flags, which can be found from the original scalar operations.
 | |
|   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
 | |
|                               const DataLayout &DL,
 | |
|                               const InductionDescriptor &ID) const;
 | |
| 
 | |
|   /// Add additional metadata to \p To that was not present on \p Orig.
 | |
|   ///
 | |
|   /// Currently this is used to add the noalias annotations based on the
 | |
|   /// inserted memchecks.  Use this for instructions that are *cloned* into the
 | |
|   /// vector loop.
 | |
|   void addNewMetadata(Instruction *To, const Instruction *Orig);
 | |
| 
 | |
|   /// Add metadata from one instruction to another.
 | |
|   ///
 | |
|   /// This includes both the original MDs from \p From and additional ones (\see
 | |
|   /// addNewMetadata).  Use this for *newly created* instructions in the vector
 | |
|   /// loop.
 | |
|   void addMetadata(Instruction *To, Instruction *From);
 | |
| 
 | |
|   /// Similar to the previous function but it adds the metadata to a
 | |
|   /// vector of instructions.
 | |
|   void addMetadata(ArrayRef<Value *> To, Instruction *From);
 | |
| 
 | |
|   /// The original loop.
 | |
|   Loop *OrigLoop;
 | |
| 
 | |
|   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
 | |
|   /// dynamic knowledge to simplify SCEV expressions and converts them to a
 | |
|   /// more usable form.
 | |
|   PredicatedScalarEvolution &PSE;
 | |
| 
 | |
|   /// Loop Info.
 | |
|   LoopInfo *LI;
 | |
| 
 | |
|   /// Dominator Tree.
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   /// Alias Analysis.
 | |
|   AliasAnalysis *AA;
 | |
| 
 | |
|   /// Target Library Info.
 | |
|   const TargetLibraryInfo *TLI;
 | |
| 
 | |
|   /// Target Transform Info.
 | |
|   const TargetTransformInfo *TTI;
 | |
| 
 | |
|   /// Assumption Cache.
 | |
|   AssumptionCache *AC;
 | |
| 
 | |
|   /// Interface to emit optimization remarks.
 | |
|   OptimizationRemarkEmitter *ORE;
 | |
| 
 | |
|   /// LoopVersioning.  It's only set up (non-null) if memchecks were
 | |
|   /// used.
 | |
|   ///
 | |
|   /// This is currently only used to add no-alias metadata based on the
 | |
|   /// memchecks.  The actually versioning is performed manually.
 | |
|   std::unique_ptr<LoopVersioning> LVer;
 | |
| 
 | |
|   /// The vectorization SIMD factor to use. Each vector will have this many
 | |
|   /// vector elements.
 | |
|   unsigned VF;
 | |
| 
 | |
|   /// The vectorization unroll factor to use. Each scalar is vectorized to this
 | |
|   /// many different vector instructions.
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// The builder that we use
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
|   // --- Vectorization state ---
 | |
| 
 | |
|   /// The vector-loop preheader.
 | |
|   BasicBlock *LoopVectorPreHeader;
 | |
| 
 | |
|   /// The scalar-loop preheader.
 | |
|   BasicBlock *LoopScalarPreHeader;
 | |
| 
 | |
|   /// Middle Block between the vector and the scalar.
 | |
|   BasicBlock *LoopMiddleBlock;
 | |
| 
 | |
|   /// The ExitBlock of the scalar loop.
 | |
|   BasicBlock *LoopExitBlock;
 | |
| 
 | |
|   /// The vector loop body.
 | |
|   BasicBlock *LoopVectorBody;
 | |
| 
 | |
|   /// The scalar loop body.
 | |
|   BasicBlock *LoopScalarBody;
 | |
| 
 | |
|   /// A list of all bypass blocks. The first block is the entry of the loop.
 | |
|   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
 | |
| 
 | |
|   /// The new Induction variable which was added to the new block.
 | |
|   PHINode *Induction = nullptr;
 | |
| 
 | |
|   /// The induction variable of the old basic block.
 | |
|   PHINode *OldInduction = nullptr;
 | |
| 
 | |
|   /// Maps values from the original loop to their corresponding values in the
 | |
|   /// vectorized loop. A key value can map to either vector values, scalar
 | |
|   /// values or both kinds of values, depending on whether the key was
 | |
|   /// vectorized and scalarized.
 | |
|   VectorizerValueMap VectorLoopValueMap;
 | |
| 
 | |
|   /// Store instructions that were predicated.
 | |
|   SmallVector<Instruction *, 4> PredicatedInstructions;
 | |
| 
 | |
|   /// Trip count of the original loop.
 | |
|   Value *TripCount = nullptr;
 | |
| 
 | |
|   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
 | |
|   Value *VectorTripCount = nullptr;
 | |
| 
 | |
|   /// The legality analysis.
 | |
|   LoopVectorizationLegality *Legal;
 | |
| 
 | |
|   /// The profitablity analysis.
 | |
|   LoopVectorizationCostModel *Cost;
 | |
| 
 | |
|   // Record whether runtime checks are added.
 | |
|   bool AddedSafetyChecks = false;
 | |
| 
 | |
|   // Holds the end values for each induction variable. We save the end values
 | |
|   // so we can later fix-up the external users of the induction variables.
 | |
|   DenseMap<PHINode *, Value *> IVEndValues;
 | |
| 
 | |
|   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
 | |
|   // fixed up at the end of vector code generation.
 | |
|   SmallVector<PHINode *, 8> OrigPHIsToFix;
 | |
| };
 | |
| 
 | |
| class InnerLoopUnroller : public InnerLoopVectorizer {
 | |
| public:
 | |
|   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
 | |
|                     LoopInfo *LI, DominatorTree *DT,
 | |
|                     const TargetLibraryInfo *TLI,
 | |
|                     const TargetTransformInfo *TTI, AssumptionCache *AC,
 | |
|                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
 | |
|                     LoopVectorizationLegality *LVL,
 | |
|                     LoopVectorizationCostModel *CM)
 | |
|       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
 | |
|                             UnrollFactor, LVL, CM) {}
 | |
| 
 | |
| private:
 | |
|   Value *getBroadcastInstrs(Value *V) override;
 | |
|   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
 | |
|                        Instruction::BinaryOps Opcode =
 | |
|                        Instruction::BinaryOpsEnd) override;
 | |
|   Value *reverseVector(Value *Vec) override;
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| /// Look for a meaningful debug location on the instruction or it's
 | |
| /// operands.
 | |
| static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
 | |
|   if (!I)
 | |
|     return I;
 | |
| 
 | |
|   DebugLoc Empty;
 | |
|   if (I->getDebugLoc() != Empty)
 | |
|     return I;
 | |
| 
 | |
|   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
 | |
|     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
 | |
|       if (OpInst->getDebugLoc() != Empty)
 | |
|         return OpInst;
 | |
|   }
 | |
| 
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
 | |
|   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
 | |
|     const DILocation *DIL = Inst->getDebugLoc();
 | |
|     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
 | |
|         !isa<DbgInfoIntrinsic>(Inst))
 | |
|       B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
 | |
|     else
 | |
|       B.SetCurrentDebugLocation(DIL);
 | |
|   } else
 | |
|     B.SetCurrentDebugLocation(DebugLoc());
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// \return string containing a file name and a line # for the given loop.
 | |
| static std::string getDebugLocString(const Loop *L) {
 | |
|   std::string Result;
 | |
|   if (L) {
 | |
|     raw_string_ostream OS(Result);
 | |
|     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
 | |
|       LoopDbgLoc.print(OS);
 | |
|     else
 | |
|       // Just print the module name.
 | |
|       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
 | |
|     OS.flush();
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void InnerLoopVectorizer::addNewMetadata(Instruction *To,
 | |
|                                          const Instruction *Orig) {
 | |
|   // If the loop was versioned with memchecks, add the corresponding no-alias
 | |
|   // metadata.
 | |
|   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
 | |
|     LVer->annotateInstWithNoAlias(To, Orig);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::addMetadata(Instruction *To,
 | |
|                                       Instruction *From) {
 | |
|   propagateMetadata(To, From);
 | |
|   addNewMetadata(To, From);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
 | |
|                                       Instruction *From) {
 | |
|   for (Value *V : To) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|       addMetadata(I, From);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void emitMissedWarning(Function *F, Loop *L,
 | |
|                               const LoopVectorizeHints &LH,
 | |
|                               OptimizationRemarkEmitter *ORE) {
 | |
|   LH.emitRemarkWithHints();
 | |
| 
 | |
|   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
 | |
|     if (LH.getWidth() != 1)
 | |
|       ORE->emit(DiagnosticInfoOptimizationFailure(
 | |
|                     DEBUG_TYPE, "FailedRequestedVectorization",
 | |
|                     L->getStartLoc(), L->getHeader())
 | |
|                 << "loop not vectorized: "
 | |
|                 << "failed explicitly specified loop vectorization");
 | |
|     else if (LH.getInterleave() != 1)
 | |
|       ORE->emit(DiagnosticInfoOptimizationFailure(
 | |
|                     DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
 | |
|                     L->getHeader())
 | |
|                 << "loop not interleaved: "
 | |
|                 << "failed explicitly specified loop interleaving");
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// LoopVectorizationCostModel - estimates the expected speedups due to
 | |
| /// vectorization.
 | |
| /// In many cases vectorization is not profitable. This can happen because of
 | |
| /// a number of reasons. In this class we mainly attempt to predict the
 | |
| /// expected speedup/slowdowns due to the supported instruction set. We use the
 | |
| /// TargetTransformInfo to query the different backends for the cost of
 | |
| /// different operations.
 | |
| class LoopVectorizationCostModel {
 | |
| public:
 | |
|   LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
 | |
|                              LoopInfo *LI, LoopVectorizationLegality *Legal,
 | |
|                              const TargetTransformInfo &TTI,
 | |
|                              const TargetLibraryInfo *TLI, DemandedBits *DB,
 | |
|                              AssumptionCache *AC,
 | |
|                              OptimizationRemarkEmitter *ORE, const Function *F,
 | |
|                              const LoopVectorizeHints *Hints,
 | |
|                              InterleavedAccessInfo &IAI)
 | |
|       : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
 | |
|     AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {}
 | |
| 
 | |
|   /// \return An upper bound for the vectorization factor, or None if
 | |
|   /// vectorization should be avoided up front.
 | |
|   Optional<unsigned> computeMaxVF(bool OptForSize);
 | |
| 
 | |
|   /// \return The most profitable vectorization factor and the cost of that VF.
 | |
|   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
 | |
|   /// then this vectorization factor will be selected if vectorization is
 | |
|   /// possible.
 | |
|   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
 | |
| 
 | |
|   /// Setup cost-based decisions for user vectorization factor.
 | |
|   void selectUserVectorizationFactor(unsigned UserVF) {
 | |
|     collectUniformsAndScalars(UserVF);
 | |
|     collectInstsToScalarize(UserVF);
 | |
|   }
 | |
| 
 | |
|   /// \return The size (in bits) of the smallest and widest types in the code
 | |
|   /// that needs to be vectorized. We ignore values that remain scalar such as
 | |
|   /// 64 bit loop indices.
 | |
|   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
 | |
| 
 | |
|   /// \return The desired interleave count.
 | |
|   /// If interleave count has been specified by metadata it will be returned.
 | |
|   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
 | |
|   /// are the selected vectorization factor and the cost of the selected VF.
 | |
|   unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
 | |
|                                  unsigned LoopCost);
 | |
| 
 | |
|   /// Memory access instruction may be vectorized in more than one way.
 | |
|   /// Form of instruction after vectorization depends on cost.
 | |
|   /// This function takes cost-based decisions for Load/Store instructions
 | |
|   /// and collects them in a map. This decisions map is used for building
 | |
|   /// the lists of loop-uniform and loop-scalar instructions.
 | |
|   /// The calculated cost is saved with widening decision in order to
 | |
|   /// avoid redundant calculations.
 | |
|   void setCostBasedWideningDecision(unsigned VF);
 | |
| 
 | |
|   /// A struct that represents some properties of the register usage
 | |
|   /// of a loop.
 | |
|   struct RegisterUsage {
 | |
|     /// Holds the number of loop invariant values that are used in the loop.
 | |
|     unsigned LoopInvariantRegs;
 | |
| 
 | |
|     /// Holds the maximum number of concurrent live intervals in the loop.
 | |
|     unsigned MaxLocalUsers;
 | |
|   };
 | |
| 
 | |
|   /// \return Returns information about the register usages of the loop for the
 | |
|   /// given vectorization factors.
 | |
|   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
 | |
| 
 | |
|   /// Collect values we want to ignore in the cost model.
 | |
|   void collectValuesToIgnore();
 | |
| 
 | |
|   /// \returns The smallest bitwidth each instruction can be represented with.
 | |
|   /// The vector equivalents of these instructions should be truncated to this
 | |
|   /// type.
 | |
|   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
 | |
|     return MinBWs;
 | |
|   }
 | |
| 
 | |
|   /// \returns True if it is more profitable to scalarize instruction \p I for
 | |
|   /// vectorization factor \p VF.
 | |
|   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
 | |
|     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
 | |
| 
 | |
|     // Cost model is not run in the VPlan-native path - return conservative
 | |
|     // result until this changes.
 | |
|     if (EnableVPlanNativePath)
 | |
|       return false;
 | |
| 
 | |
|     auto Scalars = InstsToScalarize.find(VF);
 | |
|     assert(Scalars != InstsToScalarize.end() &&
 | |
|            "VF not yet analyzed for scalarization profitability");
 | |
|     return Scalars->second.find(I) != Scalars->second.end();
 | |
|   }
 | |
| 
 | |
|   /// Returns true if \p I is known to be uniform after vectorization.
 | |
|   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
 | |
|     if (VF == 1)
 | |
|       return true;
 | |
| 
 | |
|     // Cost model is not run in the VPlan-native path - return conservative
 | |
|     // result until this changes.
 | |
|     if (EnableVPlanNativePath)
 | |
|       return false;
 | |
| 
 | |
|     auto UniformsPerVF = Uniforms.find(VF);
 | |
|     assert(UniformsPerVF != Uniforms.end() &&
 | |
|            "VF not yet analyzed for uniformity");
 | |
|     return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
 | |
|   }
 | |
| 
 | |
|   /// Returns true if \p I is known to be scalar after vectorization.
 | |
|   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
 | |
|     if (VF == 1)
 | |
|       return true;
 | |
| 
 | |
|     // Cost model is not run in the VPlan-native path - return conservative
 | |
|     // result until this changes.
 | |
|     if (EnableVPlanNativePath)
 | |
|       return false;
 | |
| 
 | |
|     auto ScalarsPerVF = Scalars.find(VF);
 | |
|     assert(ScalarsPerVF != Scalars.end() &&
 | |
|            "Scalar values are not calculated for VF");
 | |
|     return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
 | |
|   }
 | |
| 
 | |
|   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
 | |
|   /// for vectorization factor \p VF.
 | |
|   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
 | |
|     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
 | |
|            !isProfitableToScalarize(I, VF) &&
 | |
|            !isScalarAfterVectorization(I, VF);
 | |
|   }
 | |
| 
 | |
|   /// Decision that was taken during cost calculation for memory instruction.
 | |
|   enum InstWidening {
 | |
|     CM_Unknown,
 | |
|     CM_Widen,         // For consecutive accesses with stride +1.
 | |
|     CM_Widen_Reverse, // For consecutive accesses with stride -1.
 | |
|     CM_Interleave,
 | |
|     CM_GatherScatter,
 | |
|     CM_Scalarize
 | |
|   };
 | |
| 
 | |
|   /// Save vectorization decision \p W and \p Cost taken by the cost model for
 | |
|   /// instruction \p I and vector width \p VF.
 | |
|   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
 | |
|                            unsigned Cost) {
 | |
|     assert(VF >= 2 && "Expected VF >=2");
 | |
|     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
 | |
|   }
 | |
| 
 | |
|   /// Save vectorization decision \p W and \p Cost taken by the cost model for
 | |
|   /// interleaving group \p Grp and vector width \p VF.
 | |
|   void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
 | |
|                            InstWidening W, unsigned Cost) {
 | |
|     assert(VF >= 2 && "Expected VF >=2");
 | |
|     /// Broadcast this decicion to all instructions inside the group.
 | |
|     /// But the cost will be assigned to one instruction only.
 | |
|     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
 | |
|       if (auto *I = Grp->getMember(i)) {
 | |
|         if (Grp->getInsertPos() == I)
 | |
|           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
 | |
|         else
 | |
|           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Return the cost model decision for the given instruction \p I and vector
 | |
|   /// width \p VF. Return CM_Unknown if this instruction did not pass
 | |
|   /// through the cost modeling.
 | |
|   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
 | |
|     assert(VF >= 2 && "Expected VF >=2");
 | |
| 
 | |
|     // Cost model is not run in the VPlan-native path - return conservative
 | |
|     // result until this changes.
 | |
|     if (EnableVPlanNativePath)
 | |
|       return CM_GatherScatter;
 | |
| 
 | |
|     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
 | |
|     auto Itr = WideningDecisions.find(InstOnVF);
 | |
|     if (Itr == WideningDecisions.end())
 | |
|       return CM_Unknown;
 | |
|     return Itr->second.first;
 | |
|   }
 | |
| 
 | |
|   /// Return the vectorization cost for the given instruction \p I and vector
 | |
|   /// width \p VF.
 | |
|   unsigned getWideningCost(Instruction *I, unsigned VF) {
 | |
|     assert(VF >= 2 && "Expected VF >=2");
 | |
|     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
 | |
|     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
 | |
|            "The cost is not calculated");
 | |
|     return WideningDecisions[InstOnVF].second;
 | |
|   }
 | |
| 
 | |
|   /// Return True if instruction \p I is an optimizable truncate whose operand
 | |
|   /// is an induction variable. Such a truncate will be removed by adding a new
 | |
|   /// induction variable with the destination type.
 | |
|   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
 | |
|     // If the instruction is not a truncate, return false.
 | |
|     auto *Trunc = dyn_cast<TruncInst>(I);
 | |
|     if (!Trunc)
 | |
|       return false;
 | |
| 
 | |
|     // Get the source and destination types of the truncate.
 | |
|     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
 | |
|     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
 | |
| 
 | |
|     // If the truncate is free for the given types, return false. Replacing a
 | |
|     // free truncate with an induction variable would add an induction variable
 | |
|     // update instruction to each iteration of the loop. We exclude from this
 | |
|     // check the primary induction variable since it will need an update
 | |
|     // instruction regardless.
 | |
|     Value *Op = Trunc->getOperand(0);
 | |
|     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
 | |
|       return false;
 | |
| 
 | |
|     // If the truncated value is not an induction variable, return false.
 | |
|     return Legal->isInductionPhi(Op);
 | |
|   }
 | |
| 
 | |
|   /// Collects the instructions to scalarize for each predicated instruction in
 | |
|   /// the loop.
 | |
|   void collectInstsToScalarize(unsigned VF);
 | |
| 
 | |
|   /// Collect Uniform and Scalar values for the given \p VF.
 | |
|   /// The sets depend on CM decision for Load/Store instructions
 | |
|   /// that may be vectorized as interleave, gather-scatter or scalarized.
 | |
|   void collectUniformsAndScalars(unsigned VF) {
 | |
|     // Do the analysis once.
 | |
|     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
 | |
|       return;
 | |
|     setCostBasedWideningDecision(VF);
 | |
|     collectLoopUniforms(VF);
 | |
|     collectLoopScalars(VF);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the target machine supports masked store operation
 | |
|   /// for the given \p DataType and kind of access to \p Ptr.
 | |
|   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
 | |
|     return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the target machine supports masked load operation
 | |
|   /// for the given \p DataType and kind of access to \p Ptr.
 | |
|   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
 | |
|     return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the target machine supports masked scatter operation
 | |
|   /// for the given \p DataType.
 | |
|   bool isLegalMaskedScatter(Type *DataType) {
 | |
|     return TTI.isLegalMaskedScatter(DataType);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the target machine supports masked gather operation
 | |
|   /// for the given \p DataType.
 | |
|   bool isLegalMaskedGather(Type *DataType) {
 | |
|     return TTI.isLegalMaskedGather(DataType);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if the target machine can represent \p V as a masked gather
 | |
|   /// or scatter operation.
 | |
|   bool isLegalGatherOrScatter(Value *V) {
 | |
|     bool LI = isa<LoadInst>(V);
 | |
|     bool SI = isa<StoreInst>(V);
 | |
|     if (!LI && !SI)
 | |
|       return false;
 | |
|     auto *Ty = getMemInstValueType(V);
 | |
|     return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
 | |
|   }
 | |
| 
 | |
|   /// Returns true if \p I is an instruction that will be scalarized with
 | |
|   /// predication. Such instructions include conditional stores and
 | |
|   /// instructions that may divide by zero.
 | |
|   /// If a non-zero VF has been calculated, we check if I will be scalarized
 | |
|   /// predication for that VF.
 | |
|   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
 | |
| 
 | |
|   // Returns true if \p I is an instruction that will be predicated either
 | |
|   // through scalar predication or masked load/store or masked gather/scatter.
 | |
|   // Superset of instructions that return true for isScalarWithPredication.
 | |
|   bool isPredicatedInst(Instruction *I) {
 | |
|     if (!Legal->blockNeedsPredication(I->getParent()))
 | |
|       return false;
 | |
|     // Loads and stores that need some form of masked operation are predicated
 | |
|     // instructions.
 | |
|     if (isa<LoadInst>(I) || isa<StoreInst>(I))
 | |
|       return Legal->isMaskRequired(I);
 | |
|     return isScalarWithPredication(I);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if \p I is a memory instruction with consecutive memory
 | |
|   /// access that can be widened.
 | |
|   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
 | |
| 
 | |
|   /// Check if \p Instr belongs to any interleaved access group.
 | |
|   bool isAccessInterleaved(Instruction *Instr) {
 | |
|     return InterleaveInfo.isInterleaved(Instr);
 | |
|   }
 | |
| 
 | |
|   /// Get the interleaved access group that \p Instr belongs to.
 | |
|   const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
 | |
|     return InterleaveInfo.getInterleaveGroup(Instr);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if an interleaved group requires a scalar iteration
 | |
|   /// to handle accesses with gaps.
 | |
|   bool requiresScalarEpilogue() const {
 | |
|     return InterleaveInfo.requiresScalarEpilogue();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   unsigned NumPredStores = 0;
 | |
| 
 | |
|   /// \return An upper bound for the vectorization factor, larger than zero.
 | |
|   /// One is returned if vectorization should best be avoided due to cost.
 | |
|   unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
 | |
| 
 | |
|   /// The vectorization cost is a combination of the cost itself and a boolean
 | |
|   /// indicating whether any of the contributing operations will actually
 | |
|   /// operate on
 | |
|   /// vector values after type legalization in the backend. If this latter value
 | |
|   /// is
 | |
|   /// false, then all operations will be scalarized (i.e. no vectorization has
 | |
|   /// actually taken place).
 | |
|   using VectorizationCostTy = std::pair<unsigned, bool>;
 | |
| 
 | |
|   /// Returns the expected execution cost. The unit of the cost does
 | |
|   /// not matter because we use the 'cost' units to compare different
 | |
|   /// vector widths. The cost that is returned is *not* normalized by
 | |
|   /// the factor width.
 | |
|   VectorizationCostTy expectedCost(unsigned VF);
 | |
| 
 | |
|   /// Returns the execution time cost of an instruction for a given vector
 | |
|   /// width. Vector width of one means scalar.
 | |
|   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// The cost-computation logic from getInstructionCost which provides
 | |
|   /// the vector type as an output parameter.
 | |
|   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
 | |
| 
 | |
|   /// Calculate vectorization cost of memory instruction \p I.
 | |
|   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// The cost computation for scalarized memory instruction.
 | |
|   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// The cost computation for interleaving group of memory instructions.
 | |
|   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// The cost computation for Gather/Scatter instruction.
 | |
|   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// The cost computation for widening instruction \p I with consecutive
 | |
|   /// memory access.
 | |
|   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
 | |
|   /// Load: scalar load + broadcast.
 | |
|   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
 | |
|   /// element)
 | |
|   /// TODO: Test the extra cost of the extract when loop variant value stored.
 | |
|   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// Returns whether the instruction is a load or store and will be a emitted
 | |
|   /// as a vector operation.
 | |
|   bool isConsecutiveLoadOrStore(Instruction *I);
 | |
| 
 | |
|   /// Returns true if an artificially high cost for emulated masked memrefs
 | |
|   /// should be used.
 | |
|   bool useEmulatedMaskMemRefHack(Instruction *I);
 | |
| 
 | |
|   /// Create an analysis remark that explains why vectorization failed
 | |
|   ///
 | |
|   /// \p RemarkName is the identifier for the remark.  \return the remark object
 | |
|   /// that can be streamed to.
 | |
|   OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
 | |
|     return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
 | |
|                                   RemarkName, TheLoop);
 | |
|   }
 | |
| 
 | |
|   /// Map of scalar integer values to the smallest bitwidth they can be legally
 | |
|   /// represented as. The vector equivalents of these values should be truncated
 | |
|   /// to this type.
 | |
|   MapVector<Instruction *, uint64_t> MinBWs;
 | |
| 
 | |
|   /// A type representing the costs for instructions if they were to be
 | |
|   /// scalarized rather than vectorized. The entries are Instruction-Cost
 | |
|   /// pairs.
 | |
|   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
 | |
| 
 | |
|   /// A set containing all BasicBlocks that are known to present after
 | |
|   /// vectorization as a predicated block.
 | |
|   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
 | |
| 
 | |
|   /// A map holding scalar costs for different vectorization factors. The
 | |
|   /// presence of a cost for an instruction in the mapping indicates that the
 | |
|   /// instruction will be scalarized when vectorizing with the associated
 | |
|   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
 | |
|   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
 | |
| 
 | |
|   /// Holds the instructions known to be uniform after vectorization.
 | |
|   /// The data is collected per VF.
 | |
|   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
 | |
| 
 | |
|   /// Holds the instructions known to be scalar after vectorization.
 | |
|   /// The data is collected per VF.
 | |
|   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
 | |
| 
 | |
|   /// Holds the instructions (address computations) that are forced to be
 | |
|   /// scalarized.
 | |
|   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
 | |
| 
 | |
|   /// Returns the expected difference in cost from scalarizing the expression
 | |
|   /// feeding a predicated instruction \p PredInst. The instructions to
 | |
|   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
 | |
|   /// non-negative return value implies the expression will be scalarized.
 | |
|   /// Currently, only single-use chains are considered for scalarization.
 | |
|   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
 | |
|                               unsigned VF);
 | |
| 
 | |
|   /// Collect the instructions that are uniform after vectorization. An
 | |
|   /// instruction is uniform if we represent it with a single scalar value in
 | |
|   /// the vectorized loop corresponding to each vector iteration. Examples of
 | |
|   /// uniform instructions include pointer operands of consecutive or
 | |
|   /// interleaved memory accesses. Note that although uniformity implies an
 | |
|   /// instruction will be scalar, the reverse is not true. In general, a
 | |
|   /// scalarized instruction will be represented by VF scalar values in the
 | |
|   /// vectorized loop, each corresponding to an iteration of the original
 | |
|   /// scalar loop.
 | |
|   void collectLoopUniforms(unsigned VF);
 | |
| 
 | |
|   /// Collect the instructions that are scalar after vectorization. An
 | |
|   /// instruction is scalar if it is known to be uniform or will be scalarized
 | |
|   /// during vectorization. Non-uniform scalarized instructions will be
 | |
|   /// represented by VF values in the vectorized loop, each corresponding to an
 | |
|   /// iteration of the original scalar loop.
 | |
|   void collectLoopScalars(unsigned VF);
 | |
| 
 | |
|   /// Keeps cost model vectorization decision and cost for instructions.
 | |
|   /// Right now it is used for memory instructions only.
 | |
|   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
 | |
|                                 std::pair<InstWidening, unsigned>>;
 | |
| 
 | |
|   DecisionList WideningDecisions;
 | |
| 
 | |
| public:
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
| 
 | |
|   /// Predicated scalar evolution analysis.
 | |
|   PredicatedScalarEvolution &PSE;
 | |
| 
 | |
|   /// Loop Info analysis.
 | |
|   LoopInfo *LI;
 | |
| 
 | |
|   /// Vectorization legality.
 | |
|   LoopVectorizationLegality *Legal;
 | |
| 
 | |
|   /// Vector target information.
 | |
|   const TargetTransformInfo &TTI;
 | |
| 
 | |
|   /// Target Library Info.
 | |
|   const TargetLibraryInfo *TLI;
 | |
| 
 | |
|   /// Demanded bits analysis.
 | |
|   DemandedBits *DB;
 | |
| 
 | |
|   /// Assumption cache.
 | |
|   AssumptionCache *AC;
 | |
| 
 | |
|   /// Interface to emit optimization remarks.
 | |
|   OptimizationRemarkEmitter *ORE;
 | |
| 
 | |
|   const Function *TheFunction;
 | |
| 
 | |
|   /// Loop Vectorize Hint.
 | |
|   const LoopVectorizeHints *Hints;
 | |
| 
 | |
|   /// The interleave access information contains groups of interleaved accesses
 | |
|   /// with the same stride and close to each other.
 | |
|   InterleavedAccessInfo &InterleaveInfo;
 | |
| 
 | |
|   /// Values to ignore in the cost model.
 | |
|   SmallPtrSet<const Value *, 16> ValuesToIgnore;
 | |
| 
 | |
|   /// Values to ignore in the cost model when VF > 1.
 | |
|   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| // Return true if \p OuterLp is an outer loop annotated with hints for explicit
 | |
| // vectorization. The loop needs to be annotated with #pragma omp simd
 | |
| // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
 | |
| // vector length information is not provided, vectorization is not considered
 | |
| // explicit. Interleave hints are not allowed either. These limitations will be
 | |
| // relaxed in the future.
 | |
| // Please, note that we are currently forced to abuse the pragma 'clang
 | |
| // vectorize' semantics. This pragma provides *auto-vectorization hints*
 | |
| // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
 | |
| // provides *explicit vectorization hints* (LV can bypass legal checks and
 | |
| // assume that vectorization is legal). However, both hints are implemented
 | |
| // using the same metadata (llvm.loop.vectorize, processed by
 | |
| // LoopVectorizeHints). This will be fixed in the future when the native IR
 | |
| // representation for pragma 'omp simd' is introduced.
 | |
| static bool isExplicitVecOuterLoop(Loop *OuterLp,
 | |
|                                    OptimizationRemarkEmitter *ORE) {
 | |
|   assert(!OuterLp->empty() && "This is not an outer loop");
 | |
|   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
 | |
| 
 | |
|   // Only outer loops with an explicit vectorization hint are supported.
 | |
|   // Unannotated outer loops are ignored.
 | |
|   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
 | |
|     return false;
 | |
| 
 | |
|   Function *Fn = OuterLp->getHeader()->getParent();
 | |
|   if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Hints.getWidth()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n");
 | |
|     emitMissedWarning(Fn, OuterLp, Hints, ORE);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Hints.getInterleave() > 1) {
 | |
|     // TODO: Interleave support is future work.
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
 | |
|                          "outer loops.\n");
 | |
|     emitMissedWarning(Fn, OuterLp, Hints, ORE);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void collectSupportedLoops(Loop &L, LoopInfo *LI,
 | |
|                                   OptimizationRemarkEmitter *ORE,
 | |
|                                   SmallVectorImpl<Loop *> &V) {
 | |
|   // Collect inner loops and outer loops without irreducible control flow. For
 | |
|   // now, only collect outer loops that have explicit vectorization hints. If we
 | |
|   // are stress testing the VPlan H-CFG construction, we collect the outermost
 | |
|   // loop of every loop nest.
 | |
|   if (L.empty() || VPlanBuildStressTest ||
 | |
|       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
 | |
|     LoopBlocksRPO RPOT(&L);
 | |
|     RPOT.perform(LI);
 | |
|     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
 | |
|       V.push_back(&L);
 | |
|       // TODO: Collect inner loops inside marked outer loops in case
 | |
|       // vectorization fails for the outer loop. Do not invoke
 | |
|       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
 | |
|       // already known to be reducible. We can use an inherited attribute for
 | |
|       // that.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   for (Loop *InnerL : L)
 | |
|     collectSupportedLoops(*InnerL, LI, ORE, V);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// The LoopVectorize Pass.
 | |
| struct LoopVectorize : public FunctionPass {
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   LoopVectorizePass Impl;
 | |
| 
 | |
|   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
 | |
|       : FunctionPass(ID) {
 | |
|     Impl.DisableUnrolling = NoUnrolling;
 | |
|     Impl.AlwaysVectorize = AlwaysVectorize;
 | |
|     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
| 
 | |
|     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
 | |
|     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | |
|     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
 | |
|     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
 | |
|     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
 | |
|     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | |
| 
 | |
|     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
 | |
|         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
 | |
| 
 | |
|     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
 | |
|                         GetLAA, *ORE);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<BlockFrequencyInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<LoopAccessLegacyAnalysis>();
 | |
|     AU.addRequired<DemandedBitsWrapperPass>();
 | |
|     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | |
| 
 | |
|     // We currently do not preserve loopinfo/dominator analyses with outer loop
 | |
|     // vectorization. Until this is addressed, mark these analyses as preserved
 | |
|     // only for non-VPlan-native path.
 | |
|     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
 | |
|     if (!EnableVPlanNativePath) {
 | |
|       AU.addPreserved<LoopInfoWrapperPass>();
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     AU.addPreserved<BasicAAWrapperPass>();
 | |
|     AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
 | |
| // LoopVectorizationCostModel and LoopVectorizationPlanner.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
 | |
|   // We need to place the broadcast of invariant variables outside the loop,
 | |
|   // but only if it's proven safe to do so. Else, broadcast will be inside
 | |
|   // vector loop body.
 | |
|   Instruction *Instr = dyn_cast<Instruction>(V);
 | |
|   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
 | |
|                      (!Instr ||
 | |
|                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
 | |
|   // Place the code for broadcasting invariant variables in the new preheader.
 | |
|   IRBuilder<>::InsertPointGuard Guard(Builder);
 | |
|   if (SafeToHoist)
 | |
|     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 | |
| 
 | |
|   // Broadcast the scalar into all locations in the vector.
 | |
|   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
 | |
| 
 | |
|   return Shuf;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
 | |
|     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
 | |
|   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
 | |
|          "Expected either an induction phi-node or a truncate of it!");
 | |
|   Value *Start = II.getStartValue();
 | |
| 
 | |
|   // Construct the initial value of the vector IV in the vector loop preheader
 | |
|   auto CurrIP = Builder.saveIP();
 | |
|   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 | |
|   if (isa<TruncInst>(EntryVal)) {
 | |
|     assert(Start->getType()->isIntegerTy() &&
 | |
|            "Truncation requires an integer type");
 | |
|     auto *TruncType = cast<IntegerType>(EntryVal->getType());
 | |
|     Step = Builder.CreateTrunc(Step, TruncType);
 | |
|     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
 | |
|   }
 | |
|   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
 | |
|   Value *SteppedStart =
 | |
|       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
 | |
| 
 | |
|   // We create vector phi nodes for both integer and floating-point induction
 | |
|   // variables. Here, we determine the kind of arithmetic we will perform.
 | |
|   Instruction::BinaryOps AddOp;
 | |
|   Instruction::BinaryOps MulOp;
 | |
|   if (Step->getType()->isIntegerTy()) {
 | |
|     AddOp = Instruction::Add;
 | |
|     MulOp = Instruction::Mul;
 | |
|   } else {
 | |
|     AddOp = II.getInductionOpcode();
 | |
|     MulOp = Instruction::FMul;
 | |
|   }
 | |
| 
 | |
|   // Multiply the vectorization factor by the step using integer or
 | |
|   // floating-point arithmetic as appropriate.
 | |
|   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
 | |
|   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
 | |
| 
 | |
|   // Create a vector splat to use in the induction update.
 | |
|   //
 | |
|   // FIXME: If the step is non-constant, we create the vector splat with
 | |
|   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
 | |
|   //        handle a constant vector splat.
 | |
|   Value *SplatVF = isa<Constant>(Mul)
 | |
|                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
 | |
|                        : Builder.CreateVectorSplat(VF, Mul);
 | |
|   Builder.restoreIP(CurrIP);
 | |
| 
 | |
|   // We may need to add the step a number of times, depending on the unroll
 | |
|   // factor. The last of those goes into the PHI.
 | |
|   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
 | |
|                                     &*LoopVectorBody->getFirstInsertionPt());
 | |
|   VecInd->setDebugLoc(EntryVal->getDebugLoc());
 | |
|   Instruction *LastInduction = VecInd;
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
 | |
| 
 | |
|     if (isa<TruncInst>(EntryVal))
 | |
|       addMetadata(LastInduction, EntryVal);
 | |
|     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
 | |
| 
 | |
|     LastInduction = cast<Instruction>(addFastMathFlag(
 | |
|         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
 | |
|     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
 | |
|   }
 | |
| 
 | |
|   // Move the last step to the end of the latch block. This ensures consistent
 | |
|   // placement of all induction updates.
 | |
|   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
 | |
|   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
 | |
|   auto *ICmp = cast<Instruction>(Br->getCondition());
 | |
|   LastInduction->moveBefore(ICmp);
 | |
|   LastInduction->setName("vec.ind.next");
 | |
| 
 | |
|   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
 | |
|   VecInd->addIncoming(LastInduction, LoopVectorLatch);
 | |
| }
 | |
| 
 | |
| bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
 | |
|   return Cost->isScalarAfterVectorization(I, VF) ||
 | |
|          Cost->isProfitableToScalarize(I, VF);
 | |
| }
 | |
| 
 | |
| bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
 | |
|   if (shouldScalarizeInstruction(IV))
 | |
|     return true;
 | |
|   auto isScalarInst = [&](User *U) -> bool {
 | |
|     auto *I = cast<Instruction>(U);
 | |
|     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
 | |
|   };
 | |
|   return llvm::any_of(IV->users(), isScalarInst);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
 | |
|     const InductionDescriptor &ID, const Instruction *EntryVal,
 | |
|     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
 | |
|   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
 | |
|          "Expected either an induction phi-node or a truncate of it!");
 | |
| 
 | |
|   // This induction variable is not the phi from the original loop but the
 | |
|   // newly-created IV based on the proof that casted Phi is equal to the
 | |
|   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
 | |
|   // re-uses the same InductionDescriptor that original IV uses but we don't
 | |
|   // have to do any recording in this case - that is done when original IV is
 | |
|   // processed.
 | |
|   if (isa<TruncInst>(EntryVal))
 | |
|     return;
 | |
| 
 | |
|   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
 | |
|   if (Casts.empty())
 | |
|     return;
 | |
|   // Only the first Cast instruction in the Casts vector is of interest.
 | |
|   // The rest of the Casts (if exist) have no uses outside the
 | |
|   // induction update chain itself.
 | |
|   Instruction *CastInst = *Casts.begin();
 | |
|   if (Lane < UINT_MAX)
 | |
|     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
 | |
|   else
 | |
|     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
 | |
|   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
 | |
|          "Primary induction variable must have an integer type");
 | |
| 
 | |
|   auto II = Legal->getInductionVars()->find(IV);
 | |
|   assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
 | |
| 
 | |
|   auto ID = II->second;
 | |
|   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
 | |
| 
 | |
|   // The scalar value to broadcast. This will be derived from the canonical
 | |
|   // induction variable.
 | |
|   Value *ScalarIV = nullptr;
 | |
| 
 | |
|   // The value from the original loop to which we are mapping the new induction
 | |
|   // variable.
 | |
|   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
 | |
| 
 | |
|   // True if we have vectorized the induction variable.
 | |
|   auto VectorizedIV = false;
 | |
| 
 | |
|   // Determine if we want a scalar version of the induction variable. This is
 | |
|   // true if the induction variable itself is not widened, or if it has at
 | |
|   // least one user in the loop that is not widened.
 | |
|   auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
 | |
| 
 | |
|   // Generate code for the induction step. Note that induction steps are
 | |
|   // required to be loop-invariant
 | |
|   assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
 | |
|          "Induction step should be loop invariant");
 | |
|   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
 | |
|   Value *Step = nullptr;
 | |
|   if (PSE.getSE()->isSCEVable(IV->getType())) {
 | |
|     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
 | |
|     Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
 | |
|                              LoopVectorPreHeader->getTerminator());
 | |
|   } else {
 | |
|     Step = cast<SCEVUnknown>(ID.getStep())->getValue();
 | |
|   }
 | |
| 
 | |
|   // Try to create a new independent vector induction variable. If we can't
 | |
|   // create the phi node, we will splat the scalar induction variable in each
 | |
|   // loop iteration.
 | |
|   if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
 | |
|     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
 | |
|     VectorizedIV = true;
 | |
|   }
 | |
| 
 | |
|   // If we haven't yet vectorized the induction variable, or if we will create
 | |
|   // a scalar one, we need to define the scalar induction variable and step
 | |
|   // values. If we were given a truncation type, truncate the canonical
 | |
|   // induction variable and step. Otherwise, derive these values from the
 | |
|   // induction descriptor.
 | |
|   if (!VectorizedIV || NeedsScalarIV) {
 | |
|     ScalarIV = Induction;
 | |
|     if (IV != OldInduction) {
 | |
|       ScalarIV = IV->getType()->isIntegerTy()
 | |
|                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
 | |
|                      : Builder.CreateCast(Instruction::SIToFP, Induction,
 | |
|                                           IV->getType());
 | |
|       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
 | |
|       ScalarIV->setName("offset.idx");
 | |
|     }
 | |
|     if (Trunc) {
 | |
|       auto *TruncType = cast<IntegerType>(Trunc->getType());
 | |
|       assert(Step->getType()->isIntegerTy() &&
 | |
|              "Truncation requires an integer step");
 | |
|       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
 | |
|       Step = Builder.CreateTrunc(Step, TruncType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we haven't yet vectorized the induction variable, splat the scalar
 | |
|   // induction variable, and build the necessary step vectors.
 | |
|   // TODO: Don't do it unless the vectorized IV is really required.
 | |
|   if (!VectorizedIV) {
 | |
|     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *EntryPart =
 | |
|           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
 | |
|       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
 | |
|       if (Trunc)
 | |
|         addMetadata(EntryPart, Trunc);
 | |
|       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If an induction variable is only used for counting loop iterations or
 | |
|   // calculating addresses, it doesn't need to be widened. Create scalar steps
 | |
|   // that can be used by instructions we will later scalarize. Note that the
 | |
|   // addition of the scalar steps will not increase the number of instructions
 | |
|   // in the loop in the common case prior to InstCombine. We will be trading
 | |
|   // one vector extract for each scalar step.
 | |
|   if (NeedsScalarIV)
 | |
|     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
 | |
|                                           Instruction::BinaryOps BinOp) {
 | |
|   // Create and check the types.
 | |
|   assert(Val->getType()->isVectorTy() && "Must be a vector");
 | |
|   int VLen = Val->getType()->getVectorNumElements();
 | |
| 
 | |
|   Type *STy = Val->getType()->getScalarType();
 | |
|   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
 | |
|          "Induction Step must be an integer or FP");
 | |
|   assert(Step->getType() == STy && "Step has wrong type");
 | |
| 
 | |
|   SmallVector<Constant *, 8> Indices;
 | |
| 
 | |
|   if (STy->isIntegerTy()) {
 | |
|     // Create a vector of consecutive numbers from zero to VF.
 | |
|     for (int i = 0; i < VLen; ++i)
 | |
|       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
 | |
| 
 | |
|     // Add the consecutive indices to the vector value.
 | |
|     Constant *Cv = ConstantVector::get(Indices);
 | |
|     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
 | |
|     Step = Builder.CreateVectorSplat(VLen, Step);
 | |
|     assert(Step->getType() == Val->getType() && "Invalid step vec");
 | |
|     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
 | |
|     // which can be found from the original scalar operations.
 | |
|     Step = Builder.CreateMul(Cv, Step);
 | |
|     return Builder.CreateAdd(Val, Step, "induction");
 | |
|   }
 | |
| 
 | |
|   // Floating point induction.
 | |
|   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
 | |
|          "Binary Opcode should be specified for FP induction");
 | |
|   // Create a vector of consecutive numbers from zero to VF.
 | |
|   for (int i = 0; i < VLen; ++i)
 | |
|     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
 | |
| 
 | |
|   // Add the consecutive indices to the vector value.
 | |
|   Constant *Cv = ConstantVector::get(Indices);
 | |
| 
 | |
|   Step = Builder.CreateVectorSplat(VLen, Step);
 | |
| 
 | |
|   // Floating point operations had to be 'fast' to enable the induction.
 | |
|   FastMathFlags Flags;
 | |
|   Flags.setFast();
 | |
| 
 | |
|   Value *MulOp = Builder.CreateFMul(Cv, Step);
 | |
|   if (isa<Instruction>(MulOp))
 | |
|     // Have to check, MulOp may be a constant
 | |
|     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
 | |
| 
 | |
|   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
 | |
|   if (isa<Instruction>(BOp))
 | |
|     cast<Instruction>(BOp)->setFastMathFlags(Flags);
 | |
|   return BOp;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
 | |
|                                            Instruction *EntryVal,
 | |
|                                            const InductionDescriptor &ID) {
 | |
|   // We shouldn't have to build scalar steps if we aren't vectorizing.
 | |
|   assert(VF > 1 && "VF should be greater than one");
 | |
| 
 | |
|   // Get the value type and ensure it and the step have the same integer type.
 | |
|   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
 | |
|   assert(ScalarIVTy == Step->getType() &&
 | |
|          "Val and Step should have the same type");
 | |
| 
 | |
|   // We build scalar steps for both integer and floating-point induction
 | |
|   // variables. Here, we determine the kind of arithmetic we will perform.
 | |
|   Instruction::BinaryOps AddOp;
 | |
|   Instruction::BinaryOps MulOp;
 | |
|   if (ScalarIVTy->isIntegerTy()) {
 | |
|     AddOp = Instruction::Add;
 | |
|     MulOp = Instruction::Mul;
 | |
|   } else {
 | |
|     AddOp = ID.getInductionOpcode();
 | |
|     MulOp = Instruction::FMul;
 | |
|   }
 | |
| 
 | |
|   // Determine the number of scalars we need to generate for each unroll
 | |
|   // iteration. If EntryVal is uniform, we only need to generate the first
 | |
|   // lane. Otherwise, we generate all VF values.
 | |
|   unsigned Lanes =
 | |
|       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
 | |
|                                                                          : VF;
 | |
|   // Compute the scalar steps and save the results in VectorLoopValueMap.
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
 | |
|       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
 | |
|       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
 | |
|       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
 | |
|       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
 | |
|       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
 | |
|   assert(V != Induction && "The new induction variable should not be used.");
 | |
|   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
 | |
|   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
 | |
| 
 | |
|   // If we have a stride that is replaced by one, do it here. Defer this for
 | |
|   // the VPlan-native path until we start running Legal checks in that path.
 | |
|   if (!EnableVPlanNativePath && Legal->hasStride(V))
 | |
|     V = ConstantInt::get(V->getType(), 1);
 | |
| 
 | |
|   // If we have a vector mapped to this value, return it.
 | |
|   if (VectorLoopValueMap.hasVectorValue(V, Part))
 | |
|     return VectorLoopValueMap.getVectorValue(V, Part);
 | |
| 
 | |
|   // If the value has not been vectorized, check if it has been scalarized
 | |
|   // instead. If it has been scalarized, and we actually need the value in
 | |
|   // vector form, we will construct the vector values on demand.
 | |
|   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
 | |
|     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
 | |
| 
 | |
|     // If we've scalarized a value, that value should be an instruction.
 | |
|     auto *I = cast<Instruction>(V);
 | |
| 
 | |
|     // If we aren't vectorizing, we can just copy the scalar map values over to
 | |
|     // the vector map.
 | |
|     if (VF == 1) {
 | |
|       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
 | |
|       return ScalarValue;
 | |
|     }
 | |
| 
 | |
|     // Get the last scalar instruction we generated for V and Part. If the value
 | |
|     // is known to be uniform after vectorization, this corresponds to lane zero
 | |
|     // of the Part unroll iteration. Otherwise, the last instruction is the one
 | |
|     // we created for the last vector lane of the Part unroll iteration.
 | |
|     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
 | |
|     auto *LastInst = cast<Instruction>(
 | |
|         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
 | |
| 
 | |
|     // Set the insert point after the last scalarized instruction. This ensures
 | |
|     // the insertelement sequence will directly follow the scalar definitions.
 | |
|     auto OldIP = Builder.saveIP();
 | |
|     auto NewIP = std::next(BasicBlock::iterator(LastInst));
 | |
|     Builder.SetInsertPoint(&*NewIP);
 | |
| 
 | |
|     // However, if we are vectorizing, we need to construct the vector values.
 | |
|     // If the value is known to be uniform after vectorization, we can just
 | |
|     // broadcast the scalar value corresponding to lane zero for each unroll
 | |
|     // iteration. Otherwise, we construct the vector values using insertelement
 | |
|     // instructions. Since the resulting vectors are stored in
 | |
|     // VectorLoopValueMap, we will only generate the insertelements once.
 | |
|     Value *VectorValue = nullptr;
 | |
|     if (Cost->isUniformAfterVectorization(I, VF)) {
 | |
|       VectorValue = getBroadcastInstrs(ScalarValue);
 | |
|       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
 | |
|     } else {
 | |
|       // Initialize packing with insertelements to start from undef.
 | |
|       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
 | |
|       VectorLoopValueMap.setVectorValue(V, Part, Undef);
 | |
|       for (unsigned Lane = 0; Lane < VF; ++Lane)
 | |
|         packScalarIntoVectorValue(V, {Part, Lane});
 | |
|       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
 | |
|     }
 | |
|     Builder.restoreIP(OldIP);
 | |
|     return VectorValue;
 | |
|   }
 | |
| 
 | |
|   // If this scalar is unknown, assume that it is a constant or that it is
 | |
|   // loop invariant. Broadcast V and save the value for future uses.
 | |
|   Value *B = getBroadcastInstrs(V);
 | |
|   VectorLoopValueMap.setVectorValue(V, Part, B);
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| Value *
 | |
| InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
 | |
|                                             const VPIteration &Instance) {
 | |
|   // If the value is not an instruction contained in the loop, it should
 | |
|   // already be scalar.
 | |
|   if (OrigLoop->isLoopInvariant(V))
 | |
|     return V;
 | |
| 
 | |
|   assert(Instance.Lane > 0
 | |
|              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
 | |
|              : true && "Uniform values only have lane zero");
 | |
| 
 | |
|   // If the value from the original loop has not been vectorized, it is
 | |
|   // represented by UF x VF scalar values in the new loop. Return the requested
 | |
|   // scalar value.
 | |
|   if (VectorLoopValueMap.hasScalarValue(V, Instance))
 | |
|     return VectorLoopValueMap.getScalarValue(V, Instance);
 | |
| 
 | |
|   // If the value has not been scalarized, get its entry in VectorLoopValueMap
 | |
|   // for the given unroll part. If this entry is not a vector type (i.e., the
 | |
|   // vectorization factor is one), there is no need to generate an
 | |
|   // extractelement instruction.
 | |
|   auto *U = getOrCreateVectorValue(V, Instance.Part);
 | |
|   if (!U->getType()->isVectorTy()) {
 | |
|     assert(VF == 1 && "Value not scalarized has non-vector type");
 | |
|     return U;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the value from the original loop has been vectorized and is
 | |
|   // represented by UF vector values. Extract and return the requested scalar
 | |
|   // value from the appropriate vector lane.
 | |
|   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::packScalarIntoVectorValue(
 | |
|     Value *V, const VPIteration &Instance) {
 | |
|   assert(V != Induction && "The new induction variable should not be used.");
 | |
|   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
 | |
|   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
 | |
| 
 | |
|   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
 | |
|   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
 | |
|   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
 | |
|                                             Builder.getInt32(Instance.Lane));
 | |
|   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
 | |
|   assert(Vec->getType()->isVectorTy() && "Invalid type");
 | |
|   SmallVector<Constant *, 8> ShuffleMask;
 | |
|   for (unsigned i = 0; i < VF; ++i)
 | |
|     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
 | |
| 
 | |
|   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
 | |
|                                      ConstantVector::get(ShuffleMask),
 | |
|                                      "reverse");
 | |
| }
 | |
| 
 | |
| // Try to vectorize the interleave group that \p Instr belongs to.
 | |
| //
 | |
| // E.g. Translate following interleaved load group (factor = 3):
 | |
| //   for (i = 0; i < N; i+=3) {
 | |
| //     R = Pic[i];             // Member of index 0
 | |
| //     G = Pic[i+1];           // Member of index 1
 | |
| //     B = Pic[i+2];           // Member of index 2
 | |
| //     ... // do something to R, G, B
 | |
| //   }
 | |
| // To:
 | |
| //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
 | |
| //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
 | |
| //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
 | |
| //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
 | |
| //
 | |
| // Or translate following interleaved store group (factor = 3):
 | |
| //   for (i = 0; i < N; i+=3) {
 | |
| //     ... do something to R, G, B
 | |
| //     Pic[i]   = R;           // Member of index 0
 | |
| //     Pic[i+1] = G;           // Member of index 1
 | |
| //     Pic[i+2] = B;           // Member of index 2
 | |
| //   }
 | |
| // To:
 | |
| //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
 | |
| //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
 | |
| //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
 | |
| //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
 | |
| //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
 | |
| void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
 | |
|   const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr);
 | |
|   assert(Group && "Fail to get an interleaved access group.");
 | |
| 
 | |
|   // Skip if current instruction is not the insert position.
 | |
|   if (Instr != Group->getInsertPos())
 | |
|     return;
 | |
| 
 | |
|   const DataLayout &DL = Instr->getModule()->getDataLayout();
 | |
|   Value *Ptr = getLoadStorePointerOperand(Instr);
 | |
| 
 | |
|   // Prepare for the vector type of the interleaved load/store.
 | |
|   Type *ScalarTy = getMemInstValueType(Instr);
 | |
|   unsigned InterleaveFactor = Group->getFactor();
 | |
|   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
 | |
|   Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr));
 | |
| 
 | |
|   // Prepare for the new pointers.
 | |
|   setDebugLocFromInst(Builder, Ptr);
 | |
|   SmallVector<Value *, 2> NewPtrs;
 | |
|   unsigned Index = Group->getIndex(Instr);
 | |
| 
 | |
|   // If the group is reverse, adjust the index to refer to the last vector lane
 | |
|   // instead of the first. We adjust the index from the first vector lane,
 | |
|   // rather than directly getting the pointer for lane VF - 1, because the
 | |
|   // pointer operand of the interleaved access is supposed to be uniform. For
 | |
|   // uniform instructions, we're only required to generate a value for the
 | |
|   // first vector lane in each unroll iteration.
 | |
|   if (Group->isReverse())
 | |
|     Index += (VF - 1) * Group->getFactor();
 | |
| 
 | |
|   bool InBounds = false;
 | |
|   if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
 | |
|     InBounds = gep->isInBounds();
 | |
| 
 | |
|   for (unsigned Part = 0; Part < UF; Part++) {
 | |
|     Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
 | |
| 
 | |
|     // Notice current instruction could be any index. Need to adjust the address
 | |
|     // to the member of index 0.
 | |
|     //
 | |
|     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
 | |
|     //       b = A[i];       // Member of index 0
 | |
|     // Current pointer is pointed to A[i+1], adjust it to A[i].
 | |
|     //
 | |
|     // E.g.  A[i+1] = a;     // Member of index 1
 | |
|     //       A[i]   = b;     // Member of index 0
 | |
|     //       A[i+2] = c;     // Member of index 2 (Current instruction)
 | |
|     // Current pointer is pointed to A[i+2], adjust it to A[i].
 | |
|     NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
 | |
|     if (InBounds)
 | |
|       cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true);
 | |
| 
 | |
|     // Cast to the vector pointer type.
 | |
|     NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
 | |
|   }
 | |
| 
 | |
|   setDebugLocFromInst(Builder, Instr);
 | |
|   Value *UndefVec = UndefValue::get(VecTy);
 | |
| 
 | |
|   // Vectorize the interleaved load group.
 | |
|   if (isa<LoadInst>(Instr)) {
 | |
|     // For each unroll part, create a wide load for the group.
 | |
|     SmallVector<Value *, 2> NewLoads;
 | |
|     for (unsigned Part = 0; Part < UF; Part++) {
 | |
|       auto *NewLoad = Builder.CreateAlignedLoad(
 | |
|           NewPtrs[Part], Group->getAlignment(), "wide.vec");
 | |
|       Group->addMetadata(NewLoad);
 | |
|       NewLoads.push_back(NewLoad);
 | |
|     }
 | |
| 
 | |
|     // For each member in the group, shuffle out the appropriate data from the
 | |
|     // wide loads.
 | |
|     for (unsigned I = 0; I < InterleaveFactor; ++I) {
 | |
|       Instruction *Member = Group->getMember(I);
 | |
| 
 | |
|       // Skip the gaps in the group.
 | |
|       if (!Member)
 | |
|         continue;
 | |
| 
 | |
|       Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
 | |
|       for (unsigned Part = 0; Part < UF; Part++) {
 | |
|         Value *StridedVec = Builder.CreateShuffleVector(
 | |
|             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
 | |
| 
 | |
|         // If this member has different type, cast the result type.
 | |
|         if (Member->getType() != ScalarTy) {
 | |
|           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
 | |
|           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
 | |
|         }
 | |
| 
 | |
|         if (Group->isReverse())
 | |
|           StridedVec = reverseVector(StridedVec);
 | |
| 
 | |
|         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The sub vector type for current instruction.
 | |
|   VectorType *SubVT = VectorType::get(ScalarTy, VF);
 | |
| 
 | |
|   // Vectorize the interleaved store group.
 | |
|   for (unsigned Part = 0; Part < UF; Part++) {
 | |
|     // Collect the stored vector from each member.
 | |
|     SmallVector<Value *, 4> StoredVecs;
 | |
|     for (unsigned i = 0; i < InterleaveFactor; i++) {
 | |
|       // Interleaved store group doesn't allow a gap, so each index has a member
 | |
|       Instruction *Member = Group->getMember(i);
 | |
|       assert(Member && "Fail to get a member from an interleaved store group");
 | |
| 
 | |
|       Value *StoredVec = getOrCreateVectorValue(
 | |
|           cast<StoreInst>(Member)->getValueOperand(), Part);
 | |
|       if (Group->isReverse())
 | |
|         StoredVec = reverseVector(StoredVec);
 | |
| 
 | |
|       // If this member has different type, cast it to a unified type.
 | |
| 
 | |
|       if (StoredVec->getType() != SubVT)
 | |
|         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
 | |
| 
 | |
|       StoredVecs.push_back(StoredVec);
 | |
|     }
 | |
| 
 | |
|     // Concatenate all vectors into a wide vector.
 | |
|     Value *WideVec = concatenateVectors(Builder, StoredVecs);
 | |
| 
 | |
|     // Interleave the elements in the wide vector.
 | |
|     Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
 | |
|     Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
 | |
|                                               "interleaved.vec");
 | |
| 
 | |
|     Instruction *NewStoreInstr =
 | |
|         Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
 | |
| 
 | |
|     Group->addMetadata(NewStoreInstr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
 | |
|                                                      VectorParts *BlockInMask) {
 | |
|   // Attempt to issue a wide load.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(Instr);
 | |
|   StoreInst *SI = dyn_cast<StoreInst>(Instr);
 | |
| 
 | |
|   assert((LI || SI) && "Invalid Load/Store instruction");
 | |
| 
 | |
|   LoopVectorizationCostModel::InstWidening Decision =
 | |
|       Cost->getWideningDecision(Instr, VF);
 | |
|   assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
 | |
|          "CM decision should be taken at this point");
 | |
|   if (Decision == LoopVectorizationCostModel::CM_Interleave)
 | |
|     return vectorizeInterleaveGroup(Instr);
 | |
| 
 | |
|   Type *ScalarDataTy = getMemInstValueType(Instr);
 | |
|   Type *DataTy = VectorType::get(ScalarDataTy, VF);
 | |
|   Value *Ptr = getLoadStorePointerOperand(Instr);
 | |
|   unsigned Alignment = getLoadStoreAlignment(Instr);
 | |
|   // An alignment of 0 means target abi alignment. We need to use the scalar's
 | |
|   // target abi alignment in such a case.
 | |
|   const DataLayout &DL = Instr->getModule()->getDataLayout();
 | |
|   if (!Alignment)
 | |
|     Alignment = DL.getABITypeAlignment(ScalarDataTy);
 | |
|   unsigned AddressSpace = getLoadStoreAddressSpace(Instr);
 | |
| 
 | |
|   // Determine if the pointer operand of the access is either consecutive or
 | |
|   // reverse consecutive.
 | |
|   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
 | |
|   bool ConsecutiveStride =
 | |
|       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
 | |
|   bool CreateGatherScatter =
 | |
|       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
 | |
| 
 | |
|   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
 | |
|   // gather/scatter. Otherwise Decision should have been to Scalarize.
 | |
|   assert((ConsecutiveStride || CreateGatherScatter) &&
 | |
|          "The instruction should be scalarized");
 | |
| 
 | |
|   // Handle consecutive loads/stores.
 | |
|   if (ConsecutiveStride)
 | |
|     Ptr = getOrCreateScalarValue(Ptr, {0, 0});
 | |
| 
 | |
|   VectorParts Mask;
 | |
|   bool isMaskRequired = BlockInMask;
 | |
|   if (isMaskRequired)
 | |
|     Mask = *BlockInMask;
 | |
| 
 | |
|   bool InBounds = false;
 | |
|   if (auto *gep = dyn_cast<GetElementPtrInst>(
 | |
|           getLoadStorePointerOperand(Instr)->stripPointerCasts()))
 | |
|     InBounds = gep->isInBounds();
 | |
| 
 | |
|   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
 | |
|     // Calculate the pointer for the specific unroll-part.
 | |
|     GetElementPtrInst *PartPtr = nullptr;
 | |
| 
 | |
|     if (Reverse) {
 | |
|       // If the address is consecutive but reversed, then the
 | |
|       // wide store needs to start at the last vector element.
 | |
|       PartPtr = cast<GetElementPtrInst>(
 | |
|           Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)));
 | |
|       PartPtr->setIsInBounds(InBounds);
 | |
|       PartPtr = cast<GetElementPtrInst>(
 | |
|           Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)));
 | |
|       PartPtr->setIsInBounds(InBounds);
 | |
|       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
 | |
|         Mask[Part] = reverseVector(Mask[Part]);
 | |
|     } else {
 | |
|       PartPtr = cast<GetElementPtrInst>(
 | |
|           Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)));
 | |
|       PartPtr->setIsInBounds(InBounds);
 | |
|     }
 | |
| 
 | |
|     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
 | |
|   };
 | |
| 
 | |
|   // Handle Stores:
 | |
|   if (SI) {
 | |
|     setDebugLocFromInst(Builder, SI);
 | |
| 
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Instruction *NewSI = nullptr;
 | |
|       Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
 | |
|       if (CreateGatherScatter) {
 | |
|         Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
 | |
|         Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
 | |
|         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
 | |
|                                             MaskPart);
 | |
|       } else {
 | |
|         if (Reverse) {
 | |
|           // If we store to reverse consecutive memory locations, then we need
 | |
|           // to reverse the order of elements in the stored value.
 | |
|           StoredVal = reverseVector(StoredVal);
 | |
|           // We don't want to update the value in the map as it might be used in
 | |
|           // another expression. So don't call resetVectorValue(StoredVal).
 | |
|         }
 | |
|         auto *VecPtr = CreateVecPtr(Part, Ptr);
 | |
|         if (isMaskRequired)
 | |
|           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
 | |
|                                             Mask[Part]);
 | |
|         else
 | |
|           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
 | |
|       }
 | |
|       addMetadata(NewSI, SI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle loads.
 | |
|   assert(LI && "Must have a load instruction");
 | |
|   setDebugLocFromInst(Builder, LI);
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     Value *NewLI;
 | |
|     if (CreateGatherScatter) {
 | |
|       Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
 | |
|       Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
 | |
|       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
 | |
|                                          nullptr, "wide.masked.gather");
 | |
|       addMetadata(NewLI, LI);
 | |
|     } else {
 | |
|       auto *VecPtr = CreateVecPtr(Part, Ptr);
 | |
|       if (isMaskRequired)
 | |
|         NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
 | |
|                                          UndefValue::get(DataTy),
 | |
|                                          "wide.masked.load");
 | |
|       else
 | |
|         NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
 | |
| 
 | |
|       // Add metadata to the load, but setVectorValue to the reverse shuffle.
 | |
|       addMetadata(NewLI, LI);
 | |
|       if (Reverse)
 | |
|         NewLI = reverseVector(NewLI);
 | |
|     }
 | |
|     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
 | |
|                                                const VPIteration &Instance,
 | |
|                                                bool IfPredicateInstr) {
 | |
|   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
 | |
| 
 | |
|   setDebugLocFromInst(Builder, Instr);
 | |
| 
 | |
|   // Does this instruction return a value ?
 | |
|   bool IsVoidRetTy = Instr->getType()->isVoidTy();
 | |
| 
 | |
|   Instruction *Cloned = Instr->clone();
 | |
|   if (!IsVoidRetTy)
 | |
|     Cloned->setName(Instr->getName() + ".cloned");
 | |
| 
 | |
|   // Replace the operands of the cloned instructions with their scalar
 | |
|   // equivalents in the new loop.
 | |
|   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|     auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
 | |
|     Cloned->setOperand(op, NewOp);
 | |
|   }
 | |
|   addNewMetadata(Cloned, Instr);
 | |
| 
 | |
|   // Place the cloned scalar in the new loop.
 | |
|   Builder.Insert(Cloned);
 | |
| 
 | |
|   // Add the cloned scalar to the scalar map entry.
 | |
|   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
 | |
| 
 | |
|   // If we just cloned a new assumption, add it the assumption cache.
 | |
|   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
 | |
|     if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|       AC->registerAssumption(II);
 | |
| 
 | |
|   // End if-block.
 | |
|   if (IfPredicateInstr)
 | |
|     PredicatedInstructions.push_back(Cloned);
 | |
| }
 | |
| 
 | |
| PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
 | |
|                                                       Value *End, Value *Step,
 | |
|                                                       Instruction *DL) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   // As we're just creating this loop, it's possible no latch exists
 | |
|   // yet. If so, use the header as this will be a single block loop.
 | |
|   if (!Latch)
 | |
|     Latch = Header;
 | |
| 
 | |
|   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
 | |
|   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
 | |
|   setDebugLocFromInst(Builder, OldInst);
 | |
|   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
 | |
| 
 | |
|   Builder.SetInsertPoint(Latch->getTerminator());
 | |
|   setDebugLocFromInst(Builder, OldInst);
 | |
| 
 | |
|   // Create i+1 and fill the PHINode.
 | |
|   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
 | |
|   Induction->addIncoming(Start, L->getLoopPreheader());
 | |
|   Induction->addIncoming(Next, Latch);
 | |
|   // Create the compare.
 | |
|   Value *ICmp = Builder.CreateICmpEQ(Next, End);
 | |
|   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
 | |
| 
 | |
|   // Now we have two terminators. Remove the old one from the block.
 | |
|   Latch->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   return Induction;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
 | |
|   if (TripCount)
 | |
|     return TripCount;
 | |
| 
 | |
|   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
 | |
|   // Find the loop boundaries.
 | |
|   ScalarEvolution *SE = PSE.getSE();
 | |
|   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
 | |
|   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
 | |
|          "Invalid loop count");
 | |
| 
 | |
|   Type *IdxTy = Legal->getWidestInductionType();
 | |
|   assert(IdxTy && "No type for induction");
 | |
| 
 | |
|   // The exit count might have the type of i64 while the phi is i32. This can
 | |
|   // happen if we have an induction variable that is sign extended before the
 | |
|   // compare. The only way that we get a backedge taken count is that the
 | |
|   // induction variable was signed and as such will not overflow. In such a case
 | |
|   // truncation is legal.
 | |
|   if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
 | |
|       IdxTy->getPrimitiveSizeInBits())
 | |
|     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
 | |
|   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
 | |
| 
 | |
|   // Get the total trip count from the count by adding 1.
 | |
|   const SCEV *ExitCount = SE->getAddExpr(
 | |
|       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
 | |
| 
 | |
|   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | |
| 
 | |
|   // Expand the trip count and place the new instructions in the preheader.
 | |
|   // Notice that the pre-header does not change, only the loop body.
 | |
|   SCEVExpander Exp(*SE, DL, "induction");
 | |
| 
 | |
|   // Count holds the overall loop count (N).
 | |
|   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
 | |
|                                 L->getLoopPreheader()->getTerminator());
 | |
| 
 | |
|   if (TripCount->getType()->isPointerTy())
 | |
|     TripCount =
 | |
|         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
 | |
|                                     L->getLoopPreheader()->getTerminator());
 | |
| 
 | |
|   return TripCount;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
 | |
|   if (VectorTripCount)
 | |
|     return VectorTripCount;
 | |
| 
 | |
|   Value *TC = getOrCreateTripCount(L);
 | |
|   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
 | |
| 
 | |
|   // Now we need to generate the expression for the part of the loop that the
 | |
|   // vectorized body will execute. This is equal to N - (N % Step) if scalar
 | |
|   // iterations are not required for correctness, or N - Step, otherwise. Step
 | |
|   // is equal to the vectorization factor (number of SIMD elements) times the
 | |
|   // unroll factor (number of SIMD instructions).
 | |
|   Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
 | |
|   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
 | |
| 
 | |
|   // If there is a non-reversed interleaved group that may speculatively access
 | |
|   // memory out-of-bounds, we need to ensure that there will be at least one
 | |
|   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
 | |
|   // the trip count, we set the remainder to be equal to the step. If the step
 | |
|   // does not evenly divide the trip count, no adjustment is necessary since
 | |
|   // there will already be scalar iterations. Note that the minimum iterations
 | |
|   // check ensures that N >= Step.
 | |
|   if (VF > 1 && Cost->requiresScalarEpilogue()) {
 | |
|     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
 | |
|     R = Builder.CreateSelect(IsZero, Step, R);
 | |
|   }
 | |
| 
 | |
|   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
 | |
| 
 | |
|   return VectorTripCount;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
 | |
|                                                    const DataLayout &DL) {
 | |
|   // Verify that V is a vector type with same number of elements as DstVTy.
 | |
|   unsigned VF = DstVTy->getNumElements();
 | |
|   VectorType *SrcVecTy = cast<VectorType>(V->getType());
 | |
|   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
 | |
|   Type *SrcElemTy = SrcVecTy->getElementType();
 | |
|   Type *DstElemTy = DstVTy->getElementType();
 | |
|   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
 | |
|          "Vector elements must have same size");
 | |
| 
 | |
|   // Do a direct cast if element types are castable.
 | |
|   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
 | |
|     return Builder.CreateBitOrPointerCast(V, DstVTy);
 | |
|   }
 | |
|   // V cannot be directly casted to desired vector type.
 | |
|   // May happen when V is a floating point vector but DstVTy is a vector of
 | |
|   // pointers or vice-versa. Handle this using a two-step bitcast using an
 | |
|   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
 | |
|   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
 | |
|          "Only one type should be a pointer type");
 | |
|   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
 | |
|          "Only one type should be a floating point type");
 | |
|   Type *IntTy =
 | |
|       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
 | |
|   VectorType *VecIntTy = VectorType::get(IntTy, VF);
 | |
|   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
 | |
|   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
 | |
|                                                          BasicBlock *Bypass) {
 | |
|   Value *Count = getOrCreateTripCount(L);
 | |
|   BasicBlock *BB = L->getLoopPreheader();
 | |
|   IRBuilder<> Builder(BB->getTerminator());
 | |
| 
 | |
|   // Generate code to check if the loop's trip count is less than VF * UF, or
 | |
|   // equal to it in case a scalar epilogue is required; this implies that the
 | |
|   // vector trip count is zero. This check also covers the case where adding one
 | |
|   // to the backedge-taken count overflowed leading to an incorrect trip count
 | |
|   // of zero. In this case we will also jump to the scalar loop.
 | |
|   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
 | |
|                                           : ICmpInst::ICMP_ULT;
 | |
|   Value *CheckMinIters = Builder.CreateICmp(
 | |
|       P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
 | |
| 
 | |
|   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
 | |
|   // Update dominator tree immediately if the generated block is a
 | |
|   // LoopBypassBlock because SCEV expansions to generate loop bypass
 | |
|   // checks may query it before the current function is finished.
 | |
|   DT->addNewBlock(NewBB, BB);
 | |
|   if (L->getParentLoop())
 | |
|     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
 | |
|   ReplaceInstWithInst(BB->getTerminator(),
 | |
|                       BranchInst::Create(Bypass, NewBB, CheckMinIters));
 | |
|   LoopBypassBlocks.push_back(BB);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
 | |
|   BasicBlock *BB = L->getLoopPreheader();
 | |
| 
 | |
|   // Generate the code to check that the SCEV assumptions that we made.
 | |
|   // We want the new basic block to start at the first instruction in a
 | |
|   // sequence of instructions that form a check.
 | |
|   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
 | |
|                    "scev.check");
 | |
|   Value *SCEVCheck =
 | |
|       Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
 | |
| 
 | |
|   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
 | |
|     if (C->isZero())
 | |
|       return;
 | |
| 
 | |
|   // Create a new block containing the stride check.
 | |
|   BB->setName("vector.scevcheck");
 | |
|   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
 | |
|   // Update dominator tree immediately if the generated block is a
 | |
|   // LoopBypassBlock because SCEV expansions to generate loop bypass
 | |
|   // checks may query it before the current function is finished.
 | |
|   DT->addNewBlock(NewBB, BB);
 | |
|   if (L->getParentLoop())
 | |
|     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
 | |
|   ReplaceInstWithInst(BB->getTerminator(),
 | |
|                       BranchInst::Create(Bypass, NewBB, SCEVCheck));
 | |
|   LoopBypassBlocks.push_back(BB);
 | |
|   AddedSafetyChecks = true;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
 | |
|   // VPlan-native path does not do any analysis for runtime checks currently.
 | |
|   if (EnableVPlanNativePath)
 | |
|     return;
 | |
| 
 | |
|   BasicBlock *BB = L->getLoopPreheader();
 | |
| 
 | |
|   // Generate the code that checks in runtime if arrays overlap. We put the
 | |
|   // checks into a separate block to make the more common case of few elements
 | |
|   // faster.
 | |
|   Instruction *FirstCheckInst;
 | |
|   Instruction *MemRuntimeCheck;
 | |
|   std::tie(FirstCheckInst, MemRuntimeCheck) =
 | |
|       Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
 | |
|   if (!MemRuntimeCheck)
 | |
|     return;
 | |
| 
 | |
|   // Create a new block containing the memory check.
 | |
|   BB->setName("vector.memcheck");
 | |
|   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
 | |
|   // Update dominator tree immediately if the generated block is a
 | |
|   // LoopBypassBlock because SCEV expansions to generate loop bypass
 | |
|   // checks may query it before the current function is finished.
 | |
|   DT->addNewBlock(NewBB, BB);
 | |
|   if (L->getParentLoop())
 | |
|     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
 | |
|   ReplaceInstWithInst(BB->getTerminator(),
 | |
|                       BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
 | |
|   LoopBypassBlocks.push_back(BB);
 | |
|   AddedSafetyChecks = true;
 | |
| 
 | |
|   // We currently don't use LoopVersioning for the actual loop cloning but we
 | |
|   // still use it to add the noalias metadata.
 | |
|   LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
 | |
|                                            PSE.getSE());
 | |
|   LVer->prepareNoAliasMetadata();
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::emitTransformedIndex(
 | |
|     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
 | |
|     const InductionDescriptor &ID) const {
 | |
| 
 | |
|   SCEVExpander Exp(*SE, DL, "induction");
 | |
|   auto Step = ID.getStep();
 | |
|   auto StartValue = ID.getStartValue();
 | |
|   assert(Index->getType() == Step->getType() &&
 | |
|          "Index type does not match StepValue type");
 | |
| 
 | |
|   // Note: the IR at this point is broken. We cannot use SE to create any new
 | |
|   // SCEV and then expand it, hoping that SCEV's simplification will give us
 | |
|   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
 | |
|   // lead to various SCEV crashes. So all we can do is to use builder and rely
 | |
|   // on InstCombine for future simplifications. Here we handle some trivial
 | |
|   // cases only.
 | |
|   auto CreateAdd = [&B](Value *X, Value *Y) {
 | |
|     assert(X->getType() == Y->getType() && "Types don't match!");
 | |
|     if (auto *CX = dyn_cast<ConstantInt>(X))
 | |
|       if (CX->isZero())
 | |
|         return Y;
 | |
|     if (auto *CY = dyn_cast<ConstantInt>(Y))
 | |
|       if (CY->isZero())
 | |
|         return X;
 | |
|     return B.CreateAdd(X, Y);
 | |
|   };
 | |
| 
 | |
|   auto CreateMul = [&B](Value *X, Value *Y) {
 | |
|     assert(X->getType() == Y->getType() && "Types don't match!");
 | |
|     if (auto *CX = dyn_cast<ConstantInt>(X))
 | |
|       if (CX->isOne())
 | |
|         return Y;
 | |
|     if (auto *CY = dyn_cast<ConstantInt>(Y))
 | |
|       if (CY->isOne())
 | |
|         return X;
 | |
|     return B.CreateMul(X, Y);
 | |
|   };
 | |
| 
 | |
|   switch (ID.getKind()) {
 | |
|   case InductionDescriptor::IK_IntInduction: {
 | |
|     assert(Index->getType() == StartValue->getType() &&
 | |
|            "Index type does not match StartValue type");
 | |
|     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
 | |
|       return B.CreateSub(StartValue, Index);
 | |
|     auto *Offset = CreateMul(
 | |
|         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
 | |
|     return CreateAdd(StartValue, Offset);
 | |
|   }
 | |
|   case InductionDescriptor::IK_PtrInduction: {
 | |
|     assert(isa<SCEVConstant>(Step) &&
 | |
|            "Expected constant step for pointer induction");
 | |
|     return B.CreateGEP(
 | |
|         nullptr, StartValue,
 | |
|         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
 | |
|                                            &*B.GetInsertPoint())));
 | |
|   }
 | |
|   case InductionDescriptor::IK_FpInduction: {
 | |
|     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
 | |
|     auto InductionBinOp = ID.getInductionBinOp();
 | |
|     assert(InductionBinOp &&
 | |
|            (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | |
|             InductionBinOp->getOpcode() == Instruction::FSub) &&
 | |
|            "Original bin op should be defined for FP induction");
 | |
| 
 | |
|     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
 | |
| 
 | |
|     // Floating point operations had to be 'fast' to enable the induction.
 | |
|     FastMathFlags Flags;
 | |
|     Flags.setFast();
 | |
| 
 | |
|     Value *MulExp = B.CreateFMul(StepValue, Index);
 | |
|     if (isa<Instruction>(MulExp))
 | |
|       // We have to check, the MulExp may be a constant.
 | |
|       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
 | |
| 
 | |
|     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
 | |
|                                "induction");
 | |
|     if (isa<Instruction>(BOp))
 | |
|       cast<Instruction>(BOp)->setFastMathFlags(Flags);
 | |
| 
 | |
|     return BOp;
 | |
|   }
 | |
|   case InductionDescriptor::IK_NoInduction:
 | |
|     return nullptr;
 | |
|   }
 | |
|   llvm_unreachable("invalid enum");
 | |
| }
 | |
| 
 | |
| BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
 | |
|   /*
 | |
|    In this function we generate a new loop. The new loop will contain
 | |
|    the vectorized instructions while the old loop will continue to run the
 | |
|    scalar remainder.
 | |
| 
 | |
|        [ ] <-- loop iteration number check.
 | |
|     /   |
 | |
|    /    v
 | |
|   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
 | |
|   |  /  |
 | |
|   | /   v
 | |
|   ||   [ ]     <-- vector pre header.
 | |
|   |/    |
 | |
|   |     v
 | |
|   |    [  ] \
 | |
|   |    [  ]_|   <-- vector loop.
 | |
|   |     |
 | |
|   |     v
 | |
|   |   -[ ]   <--- middle-block.
 | |
|   |  /  |
 | |
|   | /   v
 | |
|   -|- >[ ]     <--- new preheader.
 | |
|    |    |
 | |
|    |    v
 | |
|    |   [ ] \
 | |
|    |   [ ]_|   <-- old scalar loop to handle remainder.
 | |
|     \   |
 | |
|      \  v
 | |
|       >[ ]     <-- exit block.
 | |
|    ...
 | |
|    */
 | |
| 
 | |
|   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
 | |
|   BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
 | |
|   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
 | |
|   assert(VectorPH && "Invalid loop structure");
 | |
|   assert(ExitBlock && "Must have an exit block");
 | |
| 
 | |
|   // Some loops have a single integer induction variable, while other loops
 | |
|   // don't. One example is c++ iterators that often have multiple pointer
 | |
|   // induction variables. In the code below we also support a case where we
 | |
|   // don't have a single induction variable.
 | |
|   //
 | |
|   // We try to obtain an induction variable from the original loop as hard
 | |
|   // as possible. However if we don't find one that:
 | |
|   //   - is an integer
 | |
|   //   - counts from zero, stepping by one
 | |
|   //   - is the size of the widest induction variable type
 | |
|   // then we create a new one.
 | |
|   OldInduction = Legal->getPrimaryInduction();
 | |
|   Type *IdxTy = Legal->getWidestInductionType();
 | |
| 
 | |
|   // Split the single block loop into the two loop structure described above.
 | |
|   BasicBlock *VecBody =
 | |
|       VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
 | |
|   BasicBlock *MiddleBlock =
 | |
|       VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
 | |
|   BasicBlock *ScalarPH =
 | |
|       MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
 | |
| 
 | |
|   // Create and register the new vector loop.
 | |
|   Loop *Lp = LI->AllocateLoop();
 | |
|   Loop *ParentLoop = OrigLoop->getParentLoop();
 | |
| 
 | |
|   // Insert the new loop into the loop nest and register the new basic blocks
 | |
|   // before calling any utilities such as SCEV that require valid LoopInfo.
 | |
|   if (ParentLoop) {
 | |
|     ParentLoop->addChildLoop(Lp);
 | |
|     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
 | |
|     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
 | |
|   } else {
 | |
|     LI->addTopLevelLoop(Lp);
 | |
|   }
 | |
|   Lp->addBasicBlockToLoop(VecBody, *LI);
 | |
| 
 | |
|   // Find the loop boundaries.
 | |
|   Value *Count = getOrCreateTripCount(Lp);
 | |
| 
 | |
|   Value *StartIdx = ConstantInt::get(IdxTy, 0);
 | |
| 
 | |
|   // Now, compare the new count to zero. If it is zero skip the vector loop and
 | |
|   // jump to the scalar loop. This check also covers the case where the
 | |
|   // backedge-taken count is uint##_max: adding one to it will overflow leading
 | |
|   // to an incorrect trip count of zero. In this (rare) case we will also jump
 | |
|   // to the scalar loop.
 | |
|   emitMinimumIterationCountCheck(Lp, ScalarPH);
 | |
| 
 | |
|   // Generate the code to check any assumptions that we've made for SCEV
 | |
|   // expressions.
 | |
|   emitSCEVChecks(Lp, ScalarPH);
 | |
| 
 | |
|   // Generate the code that checks in runtime if arrays overlap. We put the
 | |
|   // checks into a separate block to make the more common case of few elements
 | |
|   // faster.
 | |
|   emitMemRuntimeChecks(Lp, ScalarPH);
 | |
| 
 | |
|   // Generate the induction variable.
 | |
|   // The loop step is equal to the vectorization factor (num of SIMD elements)
 | |
|   // times the unroll factor (num of SIMD instructions).
 | |
|   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
 | |
|   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
 | |
|   Induction =
 | |
|       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
 | |
|                               getDebugLocFromInstOrOperands(OldInduction));
 | |
| 
 | |
|   // We are going to resume the execution of the scalar loop.
 | |
|   // Go over all of the induction variables that we found and fix the
 | |
|   // PHIs that are left in the scalar version of the loop.
 | |
|   // The starting values of PHI nodes depend on the counter of the last
 | |
|   // iteration in the vectorized loop.
 | |
|   // If we come from a bypass edge then we need to start from the original
 | |
|   // start value.
 | |
| 
 | |
|   // This variable saves the new starting index for the scalar loop. It is used
 | |
|   // to test if there are any tail iterations left once the vector loop has
 | |
|   // completed.
 | |
|   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
 | |
|   for (auto &InductionEntry : *List) {
 | |
|     PHINode *OrigPhi = InductionEntry.first;
 | |
|     InductionDescriptor II = InductionEntry.second;
 | |
| 
 | |
|     // Create phi nodes to merge from the  backedge-taken check block.
 | |
|     PHINode *BCResumeVal = PHINode::Create(
 | |
|         OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
 | |
|     // Copy original phi DL over to the new one.
 | |
|     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
 | |
|     Value *&EndValue = IVEndValues[OrigPhi];
 | |
|     if (OrigPhi == OldInduction) {
 | |
|       // We know what the end value is.
 | |
|       EndValue = CountRoundDown;
 | |
|     } else {
 | |
|       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
 | |
|       Type *StepType = II.getStep()->getType();
 | |
|       Instruction::CastOps CastOp =
 | |
|         CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
 | |
|       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
 | |
|       const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
 | |
|       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
 | |
|       EndValue->setName("ind.end");
 | |
|     }
 | |
| 
 | |
|     // The new PHI merges the original incoming value, in case of a bypass,
 | |
|     // or the value at the end of the vectorized loop.
 | |
|     BCResumeVal->addIncoming(EndValue, MiddleBlock);
 | |
| 
 | |
|     // Fix the scalar body counter (PHI node).
 | |
|     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
 | |
| 
 | |
|     // The old induction's phi node in the scalar body needs the truncated
 | |
|     // value.
 | |
|     for (BasicBlock *BB : LoopBypassBlocks)
 | |
|       BCResumeVal->addIncoming(II.getStartValue(), BB);
 | |
|     OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
 | |
|   }
 | |
| 
 | |
|   // Add a check in the middle block to see if we have completed
 | |
|   // all of the iterations in the first vector loop.
 | |
|   // If (N - N%VF) == N, then we *don't* need to run the remainder.
 | |
|   Value *CmpN =
 | |
|       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
 | |
|                       CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
 | |
|   ReplaceInstWithInst(MiddleBlock->getTerminator(),
 | |
|                       BranchInst::Create(ExitBlock, ScalarPH, CmpN));
 | |
| 
 | |
|   // Get ready to start creating new instructions into the vectorized body.
 | |
|   Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
 | |
| 
 | |
|   // Save the state.
 | |
|   LoopVectorPreHeader = Lp->getLoopPreheader();
 | |
|   LoopScalarPreHeader = ScalarPH;
 | |
|   LoopMiddleBlock = MiddleBlock;
 | |
|   LoopExitBlock = ExitBlock;
 | |
|   LoopVectorBody = VecBody;
 | |
|   LoopScalarBody = OldBasicBlock;
 | |
| 
 | |
|   // Keep all loop hints from the original loop on the vector loop (we'll
 | |
|   // replace the vectorizer-specific hints below).
 | |
|   if (MDNode *LID = OrigLoop->getLoopID())
 | |
|     Lp->setLoopID(LID);
 | |
| 
 | |
|   LoopVectorizeHints Hints(Lp, true, *ORE);
 | |
|   Hints.setAlreadyVectorized();
 | |
| 
 | |
|   return LoopVectorPreHeader;
 | |
| }
 | |
| 
 | |
| // Fix up external users of the induction variable. At this point, we are
 | |
| // in LCSSA form, with all external PHIs that use the IV having one input value,
 | |
| // coming from the remainder loop. We need those PHIs to also have a correct
 | |
| // value for the IV when arriving directly from the middle block.
 | |
| void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
 | |
|                                        const InductionDescriptor &II,
 | |
|                                        Value *CountRoundDown, Value *EndValue,
 | |
|                                        BasicBlock *MiddleBlock) {
 | |
|   // There are two kinds of external IV usages - those that use the value
 | |
|   // computed in the last iteration (the PHI) and those that use the penultimate
 | |
|   // value (the value that feeds into the phi from the loop latch).
 | |
|   // We allow both, but they, obviously, have different values.
 | |
| 
 | |
|   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
 | |
| 
 | |
|   DenseMap<Value *, Value *> MissingVals;
 | |
| 
 | |
|   // An external user of the last iteration's value should see the value that
 | |
|   // the remainder loop uses to initialize its own IV.
 | |
|   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
 | |
|   for (User *U : PostInc->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
|     if (!OrigLoop->contains(UI)) {
 | |
|       assert(isa<PHINode>(UI) && "Expected LCSSA form");
 | |
|       MissingVals[UI] = EndValue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // An external user of the penultimate value need to see EndValue - Step.
 | |
|   // The simplest way to get this is to recompute it from the constituent SCEVs,
 | |
|   // that is Start + (Step * (CRD - 1)).
 | |
|   for (User *U : OrigPhi->users()) {
 | |
|     auto *UI = cast<Instruction>(U);
 | |
|     if (!OrigLoop->contains(UI)) {
 | |
|       const DataLayout &DL =
 | |
|           OrigLoop->getHeader()->getModule()->getDataLayout();
 | |
|       assert(isa<PHINode>(UI) && "Expected LCSSA form");
 | |
| 
 | |
|       IRBuilder<> B(MiddleBlock->getTerminator());
 | |
|       Value *CountMinusOne = B.CreateSub(
 | |
|           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
 | |
|       Value *CMO =
 | |
|           !II.getStep()->getType()->isIntegerTy()
 | |
|               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
 | |
|                              II.getStep()->getType())
 | |
|               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
 | |
|       CMO->setName("cast.cmo");
 | |
|       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
 | |
|       Escape->setName("ind.escape");
 | |
|       MissingVals[UI] = Escape;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto &I : MissingVals) {
 | |
|     PHINode *PHI = cast<PHINode>(I.first);
 | |
|     // One corner case we have to handle is two IVs "chasing" each-other,
 | |
|     // that is %IV2 = phi [...], [ %IV1, %latch ]
 | |
|     // In this case, if IV1 has an external use, we need to avoid adding both
 | |
|     // "last value of IV1" and "penultimate value of IV2". So, verify that we
 | |
|     // don't already have an incoming value for the middle block.
 | |
|     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
 | |
|       PHI->addIncoming(I.second, MiddleBlock);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct CSEDenseMapInfo {
 | |
|   static bool canHandle(const Instruction *I) {
 | |
|     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
 | |
|            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
 | |
|   }
 | |
| 
 | |
|   static inline Instruction *getEmptyKey() {
 | |
|     return DenseMapInfo<Instruction *>::getEmptyKey();
 | |
|   }
 | |
| 
 | |
|   static inline Instruction *getTombstoneKey() {
 | |
|     return DenseMapInfo<Instruction *>::getTombstoneKey();
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const Instruction *I) {
 | |
|     assert(canHandle(I) && "Unknown instruction!");
 | |
|     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
 | |
|                                                            I->value_op_end()));
 | |
|   }
 | |
| 
 | |
|   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
 | |
|     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
 | |
|         LHS == getTombstoneKey() || RHS == getTombstoneKey())
 | |
|       return LHS == RHS;
 | |
|     return LHS->isIdenticalTo(RHS);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| ///Perform cse of induction variable instructions.
 | |
| static void cse(BasicBlock *BB) {
 | |
|   // Perform simple cse.
 | |
|   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|     Instruction *In = &*I++;
 | |
| 
 | |
|     if (!CSEDenseMapInfo::canHandle(In))
 | |
|       continue;
 | |
| 
 | |
|     // Check if we can replace this instruction with any of the
 | |
|     // visited instructions.
 | |
|     if (Instruction *V = CSEMap.lookup(In)) {
 | |
|       In->replaceAllUsesWith(V);
 | |
|       In->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     CSEMap[In] = In;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Estimate the overhead of scalarizing an instruction. This is a
 | |
| /// convenience wrapper for the type-based getScalarizationOverhead API.
 | |
| static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
 | |
|                                          const TargetTransformInfo &TTI) {
 | |
|   if (VF == 1)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Cost = 0;
 | |
|   Type *RetTy = ToVectorTy(I->getType(), VF);
 | |
|   if (!RetTy->isVoidTy() &&
 | |
|       (!isa<LoadInst>(I) ||
 | |
|        !TTI.supportsEfficientVectorElementLoadStore()))
 | |
|     Cost += TTI.getScalarizationOverhead(RetTy, true, false);
 | |
| 
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|     SmallVector<const Value *, 4> Operands(CI->arg_operands());
 | |
|     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
 | |
|   }
 | |
|   else if (!isa<StoreInst>(I) ||
 | |
|            !TTI.supportsEfficientVectorElementLoadStore()) {
 | |
|     SmallVector<const Value *, 4> Operands(I->operand_values());
 | |
|     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| // Estimate cost of a call instruction CI if it were vectorized with factor VF.
 | |
| // Return the cost of the instruction, including scalarization overhead if it's
 | |
| // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
 | |
| // i.e. either vector version isn't available, or is too expensive.
 | |
| static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
 | |
|                                   const TargetTransformInfo &TTI,
 | |
|                                   const TargetLibraryInfo *TLI,
 | |
|                                   bool &NeedToScalarize) {
 | |
|   Function *F = CI->getCalledFunction();
 | |
|   StringRef FnName = CI->getCalledFunction()->getName();
 | |
|   Type *ScalarRetTy = CI->getType();
 | |
|   SmallVector<Type *, 4> Tys, ScalarTys;
 | |
|   for (auto &ArgOp : CI->arg_operands())
 | |
|     ScalarTys.push_back(ArgOp->getType());
 | |
| 
 | |
|   // Estimate cost of scalarized vector call. The source operands are assumed
 | |
|   // to be vectors, so we need to extract individual elements from there,
 | |
|   // execute VF scalar calls, and then gather the result into the vector return
 | |
|   // value.
 | |
|   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
 | |
|   if (VF == 1)
 | |
|     return ScalarCallCost;
 | |
| 
 | |
|   // Compute corresponding vector type for return value and arguments.
 | |
|   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
 | |
|   for (Type *ScalarTy : ScalarTys)
 | |
|     Tys.push_back(ToVectorTy(ScalarTy, VF));
 | |
| 
 | |
|   // Compute costs of unpacking argument values for the scalar calls and
 | |
|   // packing the return values to a vector.
 | |
|   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
 | |
| 
 | |
|   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
 | |
| 
 | |
|   // If we can't emit a vector call for this function, then the currently found
 | |
|   // cost is the cost we need to return.
 | |
|   NeedToScalarize = true;
 | |
|   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
 | |
|     return Cost;
 | |
| 
 | |
|   // If the corresponding vector cost is cheaper, return its cost.
 | |
|   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
 | |
|   if (VectorCallCost < Cost) {
 | |
|     NeedToScalarize = false;
 | |
|     return VectorCallCost;
 | |
|   }
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| // Estimate cost of an intrinsic call instruction CI if it were vectorized with
 | |
| // factor VF.  Return the cost of the instruction, including scalarization
 | |
| // overhead if it's needed.
 | |
| static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
 | |
|                                        const TargetTransformInfo &TTI,
 | |
|                                        const TargetLibraryInfo *TLI) {
 | |
|   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
|   assert(ID && "Expected intrinsic call!");
 | |
| 
 | |
|   FastMathFlags FMF;
 | |
|   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
 | |
|     FMF = FPMO->getFastMathFlags();
 | |
| 
 | |
|   SmallVector<Value *, 4> Operands(CI->arg_operands());
 | |
|   return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
 | |
| }
 | |
| 
 | |
| static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
 | |
|   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
 | |
|   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
 | |
|   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
 | |
| }
 | |
| static Type *largestIntegerVectorType(Type *T1, Type *T2) {
 | |
|   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
 | |
|   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
 | |
|   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::truncateToMinimalBitwidths() {
 | |
|   // For every instruction `I` in MinBWs, truncate the operands, create a
 | |
|   // truncated version of `I` and reextend its result. InstCombine runs
 | |
|   // later and will remove any ext/trunc pairs.
 | |
|   SmallPtrSet<Value *, 4> Erased;
 | |
|   for (const auto &KV : Cost->getMinimalBitwidths()) {
 | |
|     // If the value wasn't vectorized, we must maintain the original scalar
 | |
|     // type. The absence of the value from VectorLoopValueMap indicates that it
 | |
|     // wasn't vectorized.
 | |
|     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
 | |
|       continue;
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *I = getOrCreateVectorValue(KV.first, Part);
 | |
|       if (Erased.find(I) != Erased.end() || I->use_empty() ||
 | |
|           !isa<Instruction>(I))
 | |
|         continue;
 | |
|       Type *OriginalTy = I->getType();
 | |
|       Type *ScalarTruncatedTy =
 | |
|           IntegerType::get(OriginalTy->getContext(), KV.second);
 | |
|       Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
 | |
|                                           OriginalTy->getVectorNumElements());
 | |
|       if (TruncatedTy == OriginalTy)
 | |
|         continue;
 | |
| 
 | |
|       IRBuilder<> B(cast<Instruction>(I));
 | |
|       auto ShrinkOperand = [&](Value *V) -> Value * {
 | |
|         if (auto *ZI = dyn_cast<ZExtInst>(V))
 | |
|           if (ZI->getSrcTy() == TruncatedTy)
 | |
|             return ZI->getOperand(0);
 | |
|         return B.CreateZExtOrTrunc(V, TruncatedTy);
 | |
|       };
 | |
| 
 | |
|       // The actual instruction modification depends on the instruction type,
 | |
|       // unfortunately.
 | |
|       Value *NewI = nullptr;
 | |
|       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
 | |
|                              ShrinkOperand(BO->getOperand(1)));
 | |
| 
 | |
|         // Any wrapping introduced by shrinking this operation shouldn't be
 | |
|         // considered undefined behavior. So, we can't unconditionally copy
 | |
|         // arithmetic wrapping flags to NewI.
 | |
|         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
 | |
|       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
 | |
|         NewI =
 | |
|             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
 | |
|                          ShrinkOperand(CI->getOperand(1)));
 | |
|       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
 | |
|         NewI = B.CreateSelect(SI->getCondition(),
 | |
|                               ShrinkOperand(SI->getTrueValue()),
 | |
|                               ShrinkOperand(SI->getFalseValue()));
 | |
|       } else if (auto *CI = dyn_cast<CastInst>(I)) {
 | |
|         switch (CI->getOpcode()) {
 | |
|         default:
 | |
|           llvm_unreachable("Unhandled cast!");
 | |
|         case Instruction::Trunc:
 | |
|           NewI = ShrinkOperand(CI->getOperand(0));
 | |
|           break;
 | |
|         case Instruction::SExt:
 | |
|           NewI = B.CreateSExtOrTrunc(
 | |
|               CI->getOperand(0),
 | |
|               smallestIntegerVectorType(OriginalTy, TruncatedTy));
 | |
|           break;
 | |
|         case Instruction::ZExt:
 | |
|           NewI = B.CreateZExtOrTrunc(
 | |
|               CI->getOperand(0),
 | |
|               smallestIntegerVectorType(OriginalTy, TruncatedTy));
 | |
|           break;
 | |
|         }
 | |
|       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|         auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
 | |
|         auto *O0 = B.CreateZExtOrTrunc(
 | |
|             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
 | |
|         auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
 | |
|         auto *O1 = B.CreateZExtOrTrunc(
 | |
|             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
 | |
| 
 | |
|         NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
 | |
|       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
 | |
|         // Don't do anything with the operands, just extend the result.
 | |
|         continue;
 | |
|       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|         auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
 | |
|         auto *O0 = B.CreateZExtOrTrunc(
 | |
|             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
 | |
|         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
 | |
|         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
 | |
|         auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
 | |
|         auto *O0 = B.CreateZExtOrTrunc(
 | |
|             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
 | |
|         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
 | |
|       } else {
 | |
|         // If we don't know what to do, be conservative and don't do anything.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Lastly, extend the result.
 | |
|       NewI->takeName(cast<Instruction>(I));
 | |
|       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
 | |
|       I->replaceAllUsesWith(Res);
 | |
|       cast<Instruction>(I)->eraseFromParent();
 | |
|       Erased.insert(I);
 | |
|       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We'll have created a bunch of ZExts that are now parentless. Clean up.
 | |
|   for (const auto &KV : Cost->getMinimalBitwidths()) {
 | |
|     // If the value wasn't vectorized, we must maintain the original scalar
 | |
|     // type. The absence of the value from VectorLoopValueMap indicates that it
 | |
|     // wasn't vectorized.
 | |
|     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
 | |
|       continue;
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *I = getOrCreateVectorValue(KV.first, Part);
 | |
|       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
 | |
|       if (Inst && Inst->use_empty()) {
 | |
|         Value *NewI = Inst->getOperand(0);
 | |
|         Inst->eraseFromParent();
 | |
|         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixVectorizedLoop() {
 | |
|   // Insert truncates and extends for any truncated instructions as hints to
 | |
|   // InstCombine.
 | |
|   if (VF > 1)
 | |
|     truncateToMinimalBitwidths();
 | |
| 
 | |
|   // Fix widened non-induction PHIs by setting up the PHI operands.
 | |
|   if (OrigPHIsToFix.size()) {
 | |
|     assert(EnableVPlanNativePath &&
 | |
|            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
 | |
|     fixNonInductionPHIs();
 | |
|   }
 | |
| 
 | |
|   // At this point every instruction in the original loop is widened to a
 | |
|   // vector form. Now we need to fix the recurrences in the loop. These PHI
 | |
|   // nodes are currently empty because we did not want to introduce cycles.
 | |
|   // This is the second stage of vectorizing recurrences.
 | |
|   fixCrossIterationPHIs();
 | |
| 
 | |
|   // Update the dominator tree.
 | |
|   //
 | |
|   // FIXME: After creating the structure of the new loop, the dominator tree is
 | |
|   //        no longer up-to-date, and it remains that way until we update it
 | |
|   //        here. An out-of-date dominator tree is problematic for SCEV,
 | |
|   //        because SCEVExpander uses it to guide code generation. The
 | |
|   //        vectorizer use SCEVExpanders in several places. Instead, we should
 | |
|   //        keep the dominator tree up-to-date as we go.
 | |
|   updateAnalysis();
 | |
| 
 | |
|   // Fix-up external users of the induction variables.
 | |
|   for (auto &Entry : *Legal->getInductionVars())
 | |
|     fixupIVUsers(Entry.first, Entry.second,
 | |
|                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
 | |
|                  IVEndValues[Entry.first], LoopMiddleBlock);
 | |
| 
 | |
|   fixLCSSAPHIs();
 | |
|   for (Instruction *PI : PredicatedInstructions)
 | |
|     sinkScalarOperands(&*PI);
 | |
| 
 | |
|   // Remove redundant induction instructions.
 | |
|   cse(LoopVectorBody);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixCrossIterationPHIs() {
 | |
|   // In order to support recurrences we need to be able to vectorize Phi nodes.
 | |
|   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
 | |
|   // stage #2: We now need to fix the recurrences by adding incoming edges to
 | |
|   // the currently empty PHI nodes. At this point every instruction in the
 | |
|   // original loop is widened to a vector form so we can use them to construct
 | |
|   // the incoming edges.
 | |
|   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
 | |
|     // Handle first-order recurrences and reductions that need to be fixed.
 | |
|     if (Legal->isFirstOrderRecurrence(&Phi))
 | |
|       fixFirstOrderRecurrence(&Phi);
 | |
|     else if (Legal->isReductionVariable(&Phi))
 | |
|       fixReduction(&Phi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
 | |
|   // This is the second phase of vectorizing first-order recurrences. An
 | |
|   // overview of the transformation is described below. Suppose we have the
 | |
|   // following loop.
 | |
|   //
 | |
|   //   for (int i = 0; i < n; ++i)
 | |
|   //     b[i] = a[i] - a[i - 1];
 | |
|   //
 | |
|   // There is a first-order recurrence on "a". For this loop, the shorthand
 | |
|   // scalar IR looks like:
 | |
|   //
 | |
|   //   scalar.ph:
 | |
|   //     s_init = a[-1]
 | |
|   //     br scalar.body
 | |
|   //
 | |
|   //   scalar.body:
 | |
|   //     i = phi [0, scalar.ph], [i+1, scalar.body]
 | |
|   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
 | |
|   //     s2 = a[i]
 | |
|   //     b[i] = s2 - s1
 | |
|   //     br cond, scalar.body, ...
 | |
|   //
 | |
|   // In this example, s1 is a recurrence because it's value depends on the
 | |
|   // previous iteration. In the first phase of vectorization, we created a
 | |
|   // temporary value for s1. We now complete the vectorization and produce the
 | |
|   // shorthand vector IR shown below (for VF = 4, UF = 1).
 | |
|   //
 | |
|   //   vector.ph:
 | |
|   //     v_init = vector(..., ..., ..., a[-1])
 | |
|   //     br vector.body
 | |
|   //
 | |
|   //   vector.body
 | |
|   //     i = phi [0, vector.ph], [i+4, vector.body]
 | |
|   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
 | |
|   //     v2 = a[i, i+1, i+2, i+3];
 | |
|   //     v3 = vector(v1(3), v2(0, 1, 2))
 | |
|   //     b[i, i+1, i+2, i+3] = v2 - v3
 | |
|   //     br cond, vector.body, middle.block
 | |
|   //
 | |
|   //   middle.block:
 | |
|   //     x = v2(3)
 | |
|   //     br scalar.ph
 | |
|   //
 | |
|   //   scalar.ph:
 | |
|   //     s_init = phi [x, middle.block], [a[-1], otherwise]
 | |
|   //     br scalar.body
 | |
|   //
 | |
|   // After execution completes the vector loop, we extract the next value of
 | |
|   // the recurrence (x) to use as the initial value in the scalar loop.
 | |
| 
 | |
|   // Get the original loop preheader and single loop latch.
 | |
|   auto *Preheader = OrigLoop->getLoopPreheader();
 | |
|   auto *Latch = OrigLoop->getLoopLatch();
 | |
| 
 | |
|   // Get the initial and previous values of the scalar recurrence.
 | |
|   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
 | |
|   auto *Previous = Phi->getIncomingValueForBlock(Latch);
 | |
| 
 | |
|   // Create a vector from the initial value.
 | |
|   auto *VectorInit = ScalarInit;
 | |
|   if (VF > 1) {
 | |
|     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 | |
|     VectorInit = Builder.CreateInsertElement(
 | |
|         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
 | |
|         Builder.getInt32(VF - 1), "vector.recur.init");
 | |
|   }
 | |
| 
 | |
|   // We constructed a temporary phi node in the first phase of vectorization.
 | |
|   // This phi node will eventually be deleted.
 | |
|   Builder.SetInsertPoint(
 | |
|       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
 | |
| 
 | |
|   // Create a phi node for the new recurrence. The current value will either be
 | |
|   // the initial value inserted into a vector or loop-varying vector value.
 | |
|   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
 | |
|   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
 | |
| 
 | |
|   // Get the vectorized previous value of the last part UF - 1. It appears last
 | |
|   // among all unrolled iterations, due to the order of their construction.
 | |
|   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
 | |
| 
 | |
|   // Set the insertion point after the previous value if it is an instruction.
 | |
|   // Note that the previous value may have been constant-folded so it is not
 | |
|   // guaranteed to be an instruction in the vector loop. Also, if the previous
 | |
|   // value is a phi node, we should insert after all the phi nodes to avoid
 | |
|   // breaking basic block verification.
 | |
|   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
 | |
|       isa<PHINode>(PreviousLastPart))
 | |
|     Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
 | |
|   else
 | |
|     Builder.SetInsertPoint(
 | |
|         &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
 | |
| 
 | |
|   // We will construct a vector for the recurrence by combining the values for
 | |
|   // the current and previous iterations. This is the required shuffle mask.
 | |
|   SmallVector<Constant *, 8> ShuffleMask(VF);
 | |
|   ShuffleMask[0] = Builder.getInt32(VF - 1);
 | |
|   for (unsigned I = 1; I < VF; ++I)
 | |
|     ShuffleMask[I] = Builder.getInt32(I + VF - 1);
 | |
| 
 | |
|   // The vector from which to take the initial value for the current iteration
 | |
|   // (actual or unrolled). Initially, this is the vector phi node.
 | |
|   Value *Incoming = VecPhi;
 | |
| 
 | |
|   // Shuffle the current and previous vector and update the vector parts.
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
 | |
|     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
 | |
|     auto *Shuffle =
 | |
|         VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
 | |
|                                              ConstantVector::get(ShuffleMask))
 | |
|                : Incoming;
 | |
|     PhiPart->replaceAllUsesWith(Shuffle);
 | |
|     cast<Instruction>(PhiPart)->eraseFromParent();
 | |
|     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
 | |
|     Incoming = PreviousPart;
 | |
|   }
 | |
| 
 | |
|   // Fix the latch value of the new recurrence in the vector loop.
 | |
|   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
 | |
| 
 | |
|   // Extract the last vector element in the middle block. This will be the
 | |
|   // initial value for the recurrence when jumping to the scalar loop.
 | |
|   auto *ExtractForScalar = Incoming;
 | |
|   if (VF > 1) {
 | |
|     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
 | |
|     ExtractForScalar = Builder.CreateExtractElement(
 | |
|         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
 | |
|   }
 | |
|   // Extract the second last element in the middle block if the
 | |
|   // Phi is used outside the loop. We need to extract the phi itself
 | |
|   // and not the last element (the phi update in the current iteration). This
 | |
|   // will be the value when jumping to the exit block from the LoopMiddleBlock,
 | |
|   // when the scalar loop is not run at all.
 | |
|   Value *ExtractForPhiUsedOutsideLoop = nullptr;
 | |
|   if (VF > 1)
 | |
|     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
 | |
|         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
 | |
|   // When loop is unrolled without vectorizing, initialize
 | |
|   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
 | |
|   // `Incoming`. This is analogous to the vectorized case above: extracting the
 | |
|   // second last element when VF > 1.
 | |
|   else if (UF > 1)
 | |
|     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
 | |
| 
 | |
|   // Fix the initial value of the original recurrence in the scalar loop.
 | |
|   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
 | |
|   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
 | |
|   for (auto *BB : predecessors(LoopScalarPreHeader)) {
 | |
|     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
 | |
|     Start->addIncoming(Incoming, BB);
 | |
|   }
 | |
| 
 | |
|   Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
 | |
|   Phi->setName("scalar.recur");
 | |
| 
 | |
|   // Finally, fix users of the recurrence outside the loop. The users will need
 | |
|   // either the last value of the scalar recurrence or the last value of the
 | |
|   // vector recurrence we extracted in the middle block. Since the loop is in
 | |
|   // LCSSA form, we just need to find all the phi nodes for the original scalar
 | |
|   // recurrence in the exit block, and then add an edge for the middle block.
 | |
|   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
 | |
|     if (LCSSAPhi.getIncomingValue(0) == Phi) {
 | |
|       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
 | |
|   Constant *Zero = Builder.getInt32(0);
 | |
| 
 | |
|   // Get it's reduction variable descriptor.
 | |
|   assert(Legal->isReductionVariable(Phi) &&
 | |
|          "Unable to find the reduction variable");
 | |
|   RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
 | |
| 
 | |
|   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
 | |
|   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
 | |
|   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
 | |
|   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
 | |
|     RdxDesc.getMinMaxRecurrenceKind();
 | |
|   setDebugLocFromInst(Builder, ReductionStartValue);
 | |
| 
 | |
|   // We need to generate a reduction vector from the incoming scalar.
 | |
|   // To do so, we need to generate the 'identity' vector and override
 | |
|   // one of the elements with the incoming scalar reduction. We need
 | |
|   // to do it in the vector-loop preheader.
 | |
|   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 | |
| 
 | |
|   // This is the vector-clone of the value that leaves the loop.
 | |
|   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
 | |
| 
 | |
|   // Find the reduction identity variable. Zero for addition, or, xor,
 | |
|   // one for multiplication, -1 for And.
 | |
|   Value *Identity;
 | |
|   Value *VectorStart;
 | |
|   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
 | |
|       RK == RecurrenceDescriptor::RK_FloatMinMax) {
 | |
|     // MinMax reduction have the start value as their identify.
 | |
|     if (VF == 1) {
 | |
|       VectorStart = Identity = ReductionStartValue;
 | |
|     } else {
 | |
|       VectorStart = Identity =
 | |
|         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
 | |
|     }
 | |
|   } else {
 | |
|     // Handle other reduction kinds:
 | |
|     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
 | |
|         RK, VecTy->getScalarType());
 | |
|     if (VF == 1) {
 | |
|       Identity = Iden;
 | |
|       // This vector is the Identity vector where the first element is the
 | |
|       // incoming scalar reduction.
 | |
|       VectorStart = ReductionStartValue;
 | |
|     } else {
 | |
|       Identity = ConstantVector::getSplat(VF, Iden);
 | |
| 
 | |
|       // This vector is the Identity vector where the first element is the
 | |
|       // incoming scalar reduction.
 | |
|       VectorStart =
 | |
|         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fix the vector-loop phi.
 | |
| 
 | |
|   // Reductions do not have to start at zero. They can start with
 | |
|   // any loop invariant values.
 | |
|   BasicBlock *Latch = OrigLoop->getLoopLatch();
 | |
|   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
 | |
|     Value *Val = getOrCreateVectorValue(LoopVal, Part);
 | |
|     // Make sure to add the reduction stat value only to the
 | |
|     // first unroll part.
 | |
|     Value *StartVal = (Part == 0) ? VectorStart : Identity;
 | |
|     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
 | |
|     cast<PHINode>(VecRdxPhi)
 | |
|       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
 | |
|   }
 | |
| 
 | |
|   // Before each round, move the insertion point right between
 | |
|   // the PHIs and the values we are going to write.
 | |
|   // This allows us to write both PHINodes and the extractelement
 | |
|   // instructions.
 | |
|   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
 | |
| 
 | |
|   setDebugLocFromInst(Builder, LoopExitInst);
 | |
| 
 | |
|   // If the vector reduction can be performed in a smaller type, we truncate
 | |
|   // then extend the loop exit value to enable InstCombine to evaluate the
 | |
|   // entire expression in the smaller type.
 | |
|   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
 | |
|     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
 | |
|     Builder.SetInsertPoint(
 | |
|         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
 | |
|     VectorParts RdxParts(UF);
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
 | |
|       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
 | |
|       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
 | |
|                                         : Builder.CreateZExt(Trunc, VecTy);
 | |
|       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
 | |
|            UI != RdxParts[Part]->user_end();)
 | |
|         if (*UI != Trunc) {
 | |
|           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
 | |
|           RdxParts[Part] = Extnd;
 | |
|         } else {
 | |
|           ++UI;
 | |
|         }
 | |
|     }
 | |
|     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
 | |
|       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reduce all of the unrolled parts into a single vector.
 | |
|   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
 | |
|   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
 | |
|   setDebugLocFromInst(Builder, ReducedPartRdx);
 | |
|   for (unsigned Part = 1; Part < UF; ++Part) {
 | |
|     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
 | |
|     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
 | |
|       // Floating point operations had to be 'fast' to enable the reduction.
 | |
|       ReducedPartRdx = addFastMathFlag(
 | |
|           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
 | |
|                               ReducedPartRdx, "bin.rdx"));
 | |
|     else
 | |
|       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
 | |
|                                       RdxPart);
 | |
|   }
 | |
| 
 | |
|   if (VF > 1) {
 | |
|     bool NoNaN = Legal->hasFunNoNaNAttr();
 | |
|     ReducedPartRdx =
 | |
|         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
 | |
|     // If the reduction can be performed in a smaller type, we need to extend
 | |
|     // the reduction to the wider type before we branch to the original loop.
 | |
|     if (Phi->getType() != RdxDesc.getRecurrenceType())
 | |
|       ReducedPartRdx =
 | |
|         RdxDesc.isSigned()
 | |
|         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
 | |
|         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
 | |
|   }
 | |
| 
 | |
|   // Create a phi node that merges control-flow from the backedge-taken check
 | |
|   // block and the middle block.
 | |
|   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
 | |
|                                         LoopScalarPreHeader->getTerminator());
 | |
|   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
 | |
|   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
 | |
| 
 | |
|   // Now, we need to fix the users of the reduction variable
 | |
|   // inside and outside of the scalar remainder loop.
 | |
|   // We know that the loop is in LCSSA form. We need to update the
 | |
|   // PHI nodes in the exit blocks.
 | |
|   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
 | |
|     // All PHINodes need to have a single entry edge, or two if
 | |
|     // we already fixed them.
 | |
|     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
 | |
| 
 | |
|     // We found a reduction value exit-PHI. Update it with the
 | |
|     // incoming bypass edge.
 | |
|     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
 | |
|       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
 | |
|   } // end of the LCSSA phi scan.
 | |
| 
 | |
|     // Fix the scalar loop reduction variable with the incoming reduction sum
 | |
|     // from the vector body and from the backedge value.
 | |
|   int IncomingEdgeBlockIdx =
 | |
|     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
 | |
|   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
 | |
|   // Pick the other block.
 | |
|   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
 | |
|   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
 | |
|   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixLCSSAPHIs() {
 | |
|   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
 | |
|     if (LCSSAPhi.getNumIncomingValues() == 1) {
 | |
|       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
 | |
|       // Non-instruction incoming values will have only one value.
 | |
|       unsigned LastLane = 0;
 | |
|       if (isa<Instruction>(IncomingValue)) 
 | |
|           LastLane = Cost->isUniformAfterVectorization(
 | |
|                          cast<Instruction>(IncomingValue), VF)
 | |
|                          ? 0
 | |
|                          : VF - 1;
 | |
|       // Can be a loop invariant incoming value or the last scalar value to be
 | |
|       // extracted from the vectorized loop.
 | |
|       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
 | |
|       Value *lastIncomingValue =
 | |
|           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
 | |
|       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
 | |
|   // The basic block and loop containing the predicated instruction.
 | |
|   auto *PredBB = PredInst->getParent();
 | |
|   auto *VectorLoop = LI->getLoopFor(PredBB);
 | |
| 
 | |
|   // Initialize a worklist with the operands of the predicated instruction.
 | |
|   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
 | |
| 
 | |
|   // Holds instructions that we need to analyze again. An instruction may be
 | |
|   // reanalyzed if we don't yet know if we can sink it or not.
 | |
|   SmallVector<Instruction *, 8> InstsToReanalyze;
 | |
| 
 | |
|   // Returns true if a given use occurs in the predicated block. Phi nodes use
 | |
|   // their operands in their corresponding predecessor blocks.
 | |
|   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
 | |
|     auto *I = cast<Instruction>(U.getUser());
 | |
|     BasicBlock *BB = I->getParent();
 | |
|     if (auto *Phi = dyn_cast<PHINode>(I))
 | |
|       BB = Phi->getIncomingBlock(
 | |
|           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
 | |
|     return BB == PredBB;
 | |
|   };
 | |
| 
 | |
|   // Iteratively sink the scalarized operands of the predicated instruction
 | |
|   // into the block we created for it. When an instruction is sunk, it's
 | |
|   // operands are then added to the worklist. The algorithm ends after one pass
 | |
|   // through the worklist doesn't sink a single instruction.
 | |
|   bool Changed;
 | |
|   do {
 | |
|     // Add the instructions that need to be reanalyzed to the worklist, and
 | |
|     // reset the changed indicator.
 | |
|     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
 | |
|     InstsToReanalyze.clear();
 | |
|     Changed = false;
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
 | |
| 
 | |
|       // We can't sink an instruction if it is a phi node, is already in the
 | |
|       // predicated block, is not in the loop, or may have side effects.
 | |
|       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
 | |
|           !VectorLoop->contains(I) || I->mayHaveSideEffects())
 | |
|         continue;
 | |
| 
 | |
|       // It's legal to sink the instruction if all its uses occur in the
 | |
|       // predicated block. Otherwise, there's nothing to do yet, and we may
 | |
|       // need to reanalyze the instruction.
 | |
|       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
 | |
|         InstsToReanalyze.push_back(I);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Move the instruction to the beginning of the predicated block, and add
 | |
|       // it's operands to the worklist.
 | |
|       I->moveBefore(&*PredBB->getFirstInsertionPt());
 | |
|       Worklist.insert(I->op_begin(), I->op_end());
 | |
| 
 | |
|       // The sinking may have enabled other instructions to be sunk, so we will
 | |
|       // need to iterate.
 | |
|       Changed = true;
 | |
|     }
 | |
|   } while (Changed);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixNonInductionPHIs() {
 | |
|   for (PHINode *OrigPhi : OrigPHIsToFix) {
 | |
|     PHINode *NewPhi =
 | |
|         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
 | |
|     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
 | |
| 
 | |
|     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
 | |
|         predecessors(OrigPhi->getParent()));
 | |
|     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
 | |
|         predecessors(NewPhi->getParent()));
 | |
|     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
 | |
|            "Scalar and Vector BB should have the same number of predecessors");
 | |
| 
 | |
|     // The insertion point in Builder may be invalidated by the time we get
 | |
|     // here. Force the Builder insertion point to something valid so that we do
 | |
|     // not run into issues during insertion point restore in
 | |
|     // getOrCreateVectorValue calls below.
 | |
|     Builder.SetInsertPoint(NewPhi);
 | |
| 
 | |
|     // The predecessor order is preserved and we can rely on mapping between
 | |
|     // scalar and vector block predecessors.
 | |
|     for (unsigned i = 0; i < NumIncomingValues; ++i) {
 | |
|       BasicBlock *NewPredBB = VectorBBPredecessors[i];
 | |
| 
 | |
|       // When looking up the new scalar/vector values to fix up, use incoming
 | |
|       // values from original phi.
 | |
|       Value *ScIncV =
 | |
|           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
 | |
| 
 | |
|       // Scalar incoming value may need a broadcast
 | |
|       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
 | |
|       NewPhi->addIncoming(NewIncV, NewPredBB);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
 | |
|                                               unsigned VF) {
 | |
|   PHINode *P = cast<PHINode>(PN);
 | |
|   if (EnableVPlanNativePath) {
 | |
|     // Currently we enter here in the VPlan-native path for non-induction
 | |
|     // PHIs where all control flow is uniform. We simply widen these PHIs.
 | |
|     // Create a vector phi with no operands - the vector phi operands will be
 | |
|     // set at the end of vector code generation.
 | |
|     Type *VecTy =
 | |
|         (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
 | |
|     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
 | |
|     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
 | |
|     OrigPHIsToFix.push_back(P);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(PN->getParent() == OrigLoop->getHeader() &&
 | |
|          "Non-header phis should have been handled elsewhere");
 | |
| 
 | |
|   // In order to support recurrences we need to be able to vectorize Phi nodes.
 | |
|   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
 | |
|   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
 | |
|   // this value when we vectorize all of the instructions that use the PHI.
 | |
|   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       // This is phase one of vectorizing PHIs.
 | |
|       Type *VecTy =
 | |
|           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
 | |
|       Value *EntryPart = PHINode::Create(
 | |
|           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
 | |
|       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   setDebugLocFromInst(Builder, P);
 | |
| 
 | |
|   // This PHINode must be an induction variable.
 | |
|   // Make sure that we know about it.
 | |
|   assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
 | |
| 
 | |
|   InductionDescriptor II = Legal->getInductionVars()->lookup(P);
 | |
|   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
 | |
| 
 | |
|   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
 | |
|   // which can be found from the original scalar operations.
 | |
|   switch (II.getKind()) {
 | |
|   case InductionDescriptor::IK_NoInduction:
 | |
|     llvm_unreachable("Unknown induction");
 | |
|   case InductionDescriptor::IK_IntInduction:
 | |
|   case InductionDescriptor::IK_FpInduction:
 | |
|     llvm_unreachable("Integer/fp induction is handled elsewhere.");
 | |
|   case InductionDescriptor::IK_PtrInduction: {
 | |
|     // Handle the pointer induction variable case.
 | |
|     assert(P->getType()->isPointerTy() && "Unexpected type.");
 | |
|     // This is the normalized GEP that starts counting at zero.
 | |
|     Value *PtrInd = Induction;
 | |
|     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
 | |
|     // Determine the number of scalars we need to generate for each unroll
 | |
|     // iteration. If the instruction is uniform, we only need to generate the
 | |
|     // first lane. Otherwise, we generate all VF values.
 | |
|     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
 | |
|     // These are the scalar results. Notice that we don't generate vector GEPs
 | |
|     // because scalar GEPs result in better code.
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
 | |
|         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
 | |
|         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
 | |
|         Value *SclrGep =
 | |
|             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
 | |
|         SclrGep->setName("next.gep");
 | |
|         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// A helper function for checking whether an integer division-related
 | |
| /// instruction may divide by zero (in which case it must be predicated if
 | |
| /// executed conditionally in the scalar code).
 | |
| /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
 | |
| /// Non-zero divisors that are non compile-time constants will not be
 | |
| /// converted into multiplication, so we will still end up scalarizing
 | |
| /// the division, but can do so w/o predication.
 | |
| static bool mayDivideByZero(Instruction &I) {
 | |
|   assert((I.getOpcode() == Instruction::UDiv ||
 | |
|           I.getOpcode() == Instruction::SDiv ||
 | |
|           I.getOpcode() == Instruction::URem ||
 | |
|           I.getOpcode() == Instruction::SRem) &&
 | |
|          "Unexpected instruction");
 | |
|   Value *Divisor = I.getOperand(1);
 | |
|   auto *CInt = dyn_cast<ConstantInt>(Divisor);
 | |
|   return !CInt || CInt->isZero();
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::widenInstruction(Instruction &I) {
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Br:
 | |
|   case Instruction::PHI:
 | |
|     llvm_unreachable("This instruction is handled by a different recipe.");
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // Construct a vector GEP by widening the operands of the scalar GEP as
 | |
|     // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
 | |
|     // results in a vector of pointers when at least one operand of the GEP
 | |
|     // is vector-typed. Thus, to keep the representation compact, we only use
 | |
|     // vector-typed operands for loop-varying values.
 | |
|     auto *GEP = cast<GetElementPtrInst>(&I);
 | |
| 
 | |
|     if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
 | |
|       // If we are vectorizing, but the GEP has only loop-invariant operands,
 | |
|       // the GEP we build (by only using vector-typed operands for
 | |
|       // loop-varying values) would be a scalar pointer. Thus, to ensure we
 | |
|       // produce a vector of pointers, we need to either arbitrarily pick an
 | |
|       // operand to broadcast, or broadcast a clone of the original GEP.
 | |
|       // Here, we broadcast a clone of the original.
 | |
|       //
 | |
|       // TODO: If at some point we decide to scalarize instructions having
 | |
|       //       loop-invariant operands, this special case will no longer be
 | |
|       //       required. We would add the scalarization decision to
 | |
|       //       collectLoopScalars() and teach getVectorValue() to broadcast
 | |
|       //       the lane-zero scalar value.
 | |
|       auto *Clone = Builder.Insert(GEP->clone());
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
 | |
|         VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
 | |
|         addMetadata(EntryPart, GEP);
 | |
|       }
 | |
|     } else {
 | |
|       // If the GEP has at least one loop-varying operand, we are sure to
 | |
|       // produce a vector of pointers. But if we are only unrolling, we want
 | |
|       // to produce a scalar GEP for each unroll part. Thus, the GEP we
 | |
|       // produce with the code below will be scalar (if VF == 1) or vector
 | |
|       // (otherwise). Note that for the unroll-only case, we still maintain
 | |
|       // values in the vector mapping with initVector, as we do for other
 | |
|       // instructions.
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         // The pointer operand of the new GEP. If it's loop-invariant, we
 | |
|         // won't broadcast it.
 | |
|         auto *Ptr =
 | |
|             OrigLoop->isLoopInvariant(GEP->getPointerOperand())
 | |
|                 ? GEP->getPointerOperand()
 | |
|                 : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
 | |
| 
 | |
|         // Collect all the indices for the new GEP. If any index is
 | |
|         // loop-invariant, we won't broadcast it.
 | |
|         SmallVector<Value *, 4> Indices;
 | |
|         for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
 | |
|           if (OrigLoop->isLoopInvariant(U.get()))
 | |
|             Indices.push_back(U.get());
 | |
|           else
 | |
|             Indices.push_back(getOrCreateVectorValue(U.get(), Part));
 | |
|         }
 | |
| 
 | |
|         // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
 | |
|         // but it should be a vector, otherwise.
 | |
|         auto *NewGEP = GEP->isInBounds()
 | |
|                            ? Builder.CreateInBoundsGEP(Ptr, Indices)
 | |
|                            : Builder.CreateGEP(Ptr, Indices);
 | |
|         assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
 | |
|                "NewGEP is not a pointer vector");
 | |
|         VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
 | |
|         addMetadata(NewGEP, GEP);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     // Just widen binops.
 | |
|     auto *BinOp = cast<BinaryOperator>(&I);
 | |
|     setDebugLocFromInst(Builder, BinOp);
 | |
| 
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
 | |
|       Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
 | |
|       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
 | |
| 
 | |
|       if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
 | |
|         VecOp->copyIRFlags(BinOp);
 | |
| 
 | |
|       // Use this vector value for all users of the original instruction.
 | |
|       VectorLoopValueMap.setVectorValue(&I, Part, V);
 | |
|       addMetadata(V, BinOp);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     // Widen selects.
 | |
|     // If the selector is loop invariant we can create a select
 | |
|     // instruction with a scalar condition. Otherwise, use vector-select.
 | |
|     auto *SE = PSE.getSE();
 | |
|     bool InvariantCond =
 | |
|         SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
 | |
|     setDebugLocFromInst(Builder, &I);
 | |
| 
 | |
|     // The condition can be loop invariant  but still defined inside the
 | |
|     // loop. This means that we can't just use the original 'cond' value.
 | |
|     // We have to take the 'vectorized' value and pick the first lane.
 | |
|     // Instcombine will make this a no-op.
 | |
| 
 | |
|     auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
 | |
| 
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
 | |
|       Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
 | |
|       Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
 | |
|       Value *Sel =
 | |
|           Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
 | |
|       VectorLoopValueMap.setVectorValue(&I, Part, Sel);
 | |
|       addMetadata(Sel, &I);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: {
 | |
|     // Widen compares. Generate vector compares.
 | |
|     bool FCmp = (I.getOpcode() == Instruction::FCmp);
 | |
|     auto *Cmp = dyn_cast<CmpInst>(&I);
 | |
|     setDebugLocFromInst(Builder, Cmp);
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
 | |
|       Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
 | |
|       Value *C = nullptr;
 | |
|       if (FCmp) {
 | |
|         // Propagate fast math flags.
 | |
|         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|         Builder.setFastMathFlags(Cmp->getFastMathFlags());
 | |
|         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
 | |
|       } else {
 | |
|         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
 | |
|       }
 | |
|       VectorLoopValueMap.setVectorValue(&I, Part, C);
 | |
|       addMetadata(C, &I);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast: {
 | |
|     auto *CI = dyn_cast<CastInst>(&I);
 | |
|     setDebugLocFromInst(Builder, CI);
 | |
| 
 | |
|     /// Vectorize casts.
 | |
|     Type *DestTy =
 | |
|         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
 | |
| 
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
 | |
|       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
 | |
|       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
 | |
|       addMetadata(Cast, &I);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Call: {
 | |
|     // Ignore dbg intrinsics.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       break;
 | |
|     setDebugLocFromInst(Builder, &I);
 | |
| 
 | |
|     Module *M = I.getParent()->getParent()->getParent();
 | |
|     auto *CI = cast<CallInst>(&I);
 | |
| 
 | |
|     StringRef FnName = CI->getCalledFunction()->getName();
 | |
|     Function *F = CI->getCalledFunction();
 | |
|     Type *RetTy = ToVectorTy(CI->getType(), VF);
 | |
|     SmallVector<Type *, 4> Tys;
 | |
|     for (Value *ArgOperand : CI->arg_operands())
 | |
|       Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
 | |
| 
 | |
|     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
| 
 | |
|     // The flag shows whether we use Intrinsic or a usual Call for vectorized
 | |
|     // version of the instruction.
 | |
|     // Is it beneficial to perform intrinsic call compared to lib call?
 | |
|     bool NeedToScalarize;
 | |
|     unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
 | |
|     bool UseVectorIntrinsic =
 | |
|         ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
 | |
|     assert((UseVectorIntrinsic || !NeedToScalarize) &&
 | |
|            "Instruction should be scalarized elsewhere.");
 | |
| 
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       SmallVector<Value *, 4> Args;
 | |
|       for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
 | |
|         Value *Arg = CI->getArgOperand(i);
 | |
|         // Some intrinsics have a scalar argument - don't replace it with a
 | |
|         // vector.
 | |
|         if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
 | |
|           Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
 | |
|         Args.push_back(Arg);
 | |
|       }
 | |
| 
 | |
|       Function *VectorF;
 | |
|       if (UseVectorIntrinsic) {
 | |
|         // Use vector version of the intrinsic.
 | |
|         Type *TysForDecl[] = {CI->getType()};
 | |
|         if (VF > 1)
 | |
|           TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
 | |
|         VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
 | |
|       } else {
 | |
|         // Use vector version of the library call.
 | |
|         StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
 | |
|         assert(!VFnName.empty() && "Vector function name is empty.");
 | |
|         VectorF = M->getFunction(VFnName);
 | |
|         if (!VectorF) {
 | |
|           // Generate a declaration
 | |
|           FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
 | |
|           VectorF =
 | |
|               Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
 | |
|           VectorF->copyAttributesFrom(F);
 | |
|         }
 | |
|       }
 | |
|       assert(VectorF && "Can't create vector function.");
 | |
| 
 | |
|       SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|       CI->getOperandBundlesAsDefs(OpBundles);
 | |
|       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
 | |
| 
 | |
|       if (isa<FPMathOperator>(V))
 | |
|         V->copyFastMathFlags(CI);
 | |
| 
 | |
|       VectorLoopValueMap.setVectorValue(&I, Part, V);
 | |
|       addMetadata(V, &I);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // This instruction is not vectorized by simple widening.
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
 | |
|     llvm_unreachable("Unhandled instruction!");
 | |
|   } // end of switch.
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::updateAnalysis() {
 | |
|   // Forget the original basic block.
 | |
|   PSE.getSE()->forgetLoop(OrigLoop);
 | |
| 
 | |
|   // DT is not kept up-to-date for outer loop vectorization
 | |
|   if (EnableVPlanNativePath)
 | |
|     return;
 | |
| 
 | |
|   // Update the dominator tree information.
 | |
|   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
 | |
|          "Entry does not dominate exit.");
 | |
| 
 | |
|   DT->addNewBlock(LoopMiddleBlock,
 | |
|                   LI->getLoopFor(LoopVectorBody)->getLoopLatch());
 | |
|   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
 | |
|   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
 | |
|   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
 | |
|   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
 | |
| }
 | |
| 
 | |
| void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
 | |
|   // We should not collect Scalars more than once per VF. Right now, this
 | |
|   // function is called from collectUniformsAndScalars(), which already does
 | |
|   // this check. Collecting Scalars for VF=1 does not make any sense.
 | |
|   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
 | |
|          "This function should not be visited twice for the same VF");
 | |
| 
 | |
|   SmallSetVector<Instruction *, 8> Worklist;
 | |
| 
 | |
|   // These sets are used to seed the analysis with pointers used by memory
 | |
|   // accesses that will remain scalar.
 | |
|   SmallSetVector<Instruction *, 8> ScalarPtrs;
 | |
|   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
 | |
| 
 | |
|   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
 | |
|   // The pointer operands of loads and stores will be scalar as long as the
 | |
|   // memory access is not a gather or scatter operation. The value operand of a
 | |
|   // store will remain scalar if the store is scalarized.
 | |
|   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
 | |
|     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
 | |
|     assert(WideningDecision != CM_Unknown &&
 | |
|            "Widening decision should be ready at this moment");
 | |
|     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
 | |
|       if (Ptr == Store->getValueOperand())
 | |
|         return WideningDecision == CM_Scalarize;
 | |
|     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
 | |
|            "Ptr is neither a value or pointer operand");
 | |
|     return WideningDecision != CM_GatherScatter;
 | |
|   };
 | |
| 
 | |
|   // A helper that returns true if the given value is a bitcast or
 | |
|   // getelementptr instruction contained in the loop.
 | |
|   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
 | |
|     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
 | |
|             isa<GetElementPtrInst>(V)) &&
 | |
|            !TheLoop->isLoopInvariant(V);
 | |
|   };
 | |
| 
 | |
|   // A helper that evaluates a memory access's use of a pointer. If the use
 | |
|   // will be a scalar use, and the pointer is only used by memory accesses, we
 | |
|   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
 | |
|   // PossibleNonScalarPtrs.
 | |
|   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
 | |
|     // We only care about bitcast and getelementptr instructions contained in
 | |
|     // the loop.
 | |
|     if (!isLoopVaryingBitCastOrGEP(Ptr))
 | |
|       return;
 | |
| 
 | |
|     // If the pointer has already been identified as scalar (e.g., if it was
 | |
|     // also identified as uniform), there's nothing to do.
 | |
|     auto *I = cast<Instruction>(Ptr);
 | |
|     if (Worklist.count(I))
 | |
|       return;
 | |
| 
 | |
|     // If the use of the pointer will be a scalar use, and all users of the
 | |
|     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
 | |
|     // place the pointer in PossibleNonScalarPtrs.
 | |
|     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
 | |
|           return isa<LoadInst>(U) || isa<StoreInst>(U);
 | |
|         }))
 | |
|       ScalarPtrs.insert(I);
 | |
|     else
 | |
|       PossibleNonScalarPtrs.insert(I);
 | |
|   };
 | |
| 
 | |
|   // We seed the scalars analysis with three classes of instructions: (1)
 | |
|   // instructions marked uniform-after-vectorization, (2) bitcast and
 | |
|   // getelementptr instructions used by memory accesses requiring a scalar use,
 | |
|   // and (3) pointer induction variables and their update instructions (we
 | |
|   // currently only scalarize these).
 | |
|   //
 | |
|   // (1) Add to the worklist all instructions that have been identified as
 | |
|   // uniform-after-vectorization.
 | |
|   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
 | |
| 
 | |
|   // (2) Add to the worklist all bitcast and getelementptr instructions used by
 | |
|   // memory accesses requiring a scalar use. The pointer operands of loads and
 | |
|   // stores will be scalar as long as the memory accesses is not a gather or
 | |
|   // scatter operation. The value operand of a store will remain scalar if the
 | |
|   // store is scalarized.
 | |
|   for (auto *BB : TheLoop->blocks())
 | |
|     for (auto &I : *BB) {
 | |
|       if (auto *Load = dyn_cast<LoadInst>(&I)) {
 | |
|         evaluatePtrUse(Load, Load->getPointerOperand());
 | |
|       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
 | |
|         evaluatePtrUse(Store, Store->getPointerOperand());
 | |
|         evaluatePtrUse(Store, Store->getValueOperand());
 | |
|       }
 | |
|     }
 | |
|   for (auto *I : ScalarPtrs)
 | |
|     if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
 | |
|       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
 | |
|       Worklist.insert(I);
 | |
|     }
 | |
| 
 | |
|   // (3) Add to the worklist all pointer induction variables and their update
 | |
|   // instructions.
 | |
|   //
 | |
|   // TODO: Once we are able to vectorize pointer induction variables we should
 | |
|   //       no longer insert them into the worklist here.
 | |
|   auto *Latch = TheLoop->getLoopLatch();
 | |
|   for (auto &Induction : *Legal->getInductionVars()) {
 | |
|     auto *Ind = Induction.first;
 | |
|     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
 | |
|     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
 | |
|       continue;
 | |
|     Worklist.insert(Ind);
 | |
|     Worklist.insert(IndUpdate);
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
 | |
|                       << "\n");
 | |
|   }
 | |
| 
 | |
|   // Insert the forced scalars.
 | |
|   // FIXME: Currently widenPHIInstruction() often creates a dead vector
 | |
|   // induction variable when the PHI user is scalarized.
 | |
|   auto ForcedScalar = ForcedScalars.find(VF);
 | |
|   if (ForcedScalar != ForcedScalars.end())
 | |
|     for (auto *I : ForcedScalar->second)
 | |
|       Worklist.insert(I);
 | |
| 
 | |
|   // Expand the worklist by looking through any bitcasts and getelementptr
 | |
|   // instructions we've already identified as scalar. This is similar to the
 | |
|   // expansion step in collectLoopUniforms(); however, here we're only
 | |
|   // expanding to include additional bitcasts and getelementptr instructions.
 | |
|   unsigned Idx = 0;
 | |
|   while (Idx != Worklist.size()) {
 | |
|     Instruction *Dst = Worklist[Idx++];
 | |
|     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
 | |
|       continue;
 | |
|     auto *Src = cast<Instruction>(Dst->getOperand(0));
 | |
|     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
 | |
|           auto *J = cast<Instruction>(U);
 | |
|           return !TheLoop->contains(J) || Worklist.count(J) ||
 | |
|                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
 | |
|                   isScalarUse(J, Src));
 | |
|         })) {
 | |
|       Worklist.insert(Src);
 | |
|       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // An induction variable will remain scalar if all users of the induction
 | |
|   // variable and induction variable update remain scalar.
 | |
|   for (auto &Induction : *Legal->getInductionVars()) {
 | |
|     auto *Ind = Induction.first;
 | |
|     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
 | |
| 
 | |
|     // We already considered pointer induction variables, so there's no reason
 | |
|     // to look at their users again.
 | |
|     //
 | |
|     // TODO: Once we are able to vectorize pointer induction variables we
 | |
|     //       should no longer skip over them here.
 | |
|     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
 | |
|       continue;
 | |
| 
 | |
|     // Determine if all users of the induction variable are scalar after
 | |
|     // vectorization.
 | |
|     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
 | |
|       auto *I = cast<Instruction>(U);
 | |
|       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
 | |
|     });
 | |
|     if (!ScalarInd)
 | |
|       continue;
 | |
| 
 | |
|     // Determine if all users of the induction variable update instruction are
 | |
|     // scalar after vectorization.
 | |
|     auto ScalarIndUpdate =
 | |
|         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
 | |
|           auto *I = cast<Instruction>(U);
 | |
|           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
 | |
|         });
 | |
|     if (!ScalarIndUpdate)
 | |
|       continue;
 | |
| 
 | |
|     // The induction variable and its update instruction will remain scalar.
 | |
|     Worklist.insert(Ind);
 | |
|     Worklist.insert(IndUpdate);
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
 | |
|                       << "\n");
 | |
|   }
 | |
| 
 | |
|   Scalars[VF].insert(Worklist.begin(), Worklist.end());
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
 | |
|   if (!Legal->blockNeedsPredication(I->getParent()))
 | |
|     return false;
 | |
|   switch(I->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case Instruction::Load:
 | |
|   case Instruction::Store: {
 | |
|     if (!Legal->isMaskRequired(I))
 | |
|       return false;
 | |
|     auto *Ptr = getLoadStorePointerOperand(I);
 | |
|     auto *Ty = getMemInstValueType(I);
 | |
|     // We have already decided how to vectorize this instruction, get that
 | |
|     // result.
 | |
|     if (VF > 1) {
 | |
|       InstWidening WideningDecision = getWideningDecision(I, VF);
 | |
|       assert(WideningDecision != CM_Unknown &&
 | |
|              "Widening decision should be ready at this moment");
 | |
|       return WideningDecision == CM_Scalarize;
 | |
|     }
 | |
|     return isa<LoadInst>(I) ?
 | |
|         !(isLegalMaskedLoad(Ty, Ptr)  || isLegalMaskedGather(Ty))
 | |
|       : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
 | |
|   }
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|     return mayDivideByZero(*I);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
 | |
|                                                                unsigned VF) {
 | |
|   // Get and ensure we have a valid memory instruction.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(I);
 | |
|   StoreInst *SI = dyn_cast<StoreInst>(I);
 | |
|   assert((LI || SI) && "Invalid memory instruction");
 | |
| 
 | |
|   auto *Ptr = getLoadStorePointerOperand(I);
 | |
| 
 | |
|   // In order to be widened, the pointer should be consecutive, first of all.
 | |
|   if (!Legal->isConsecutivePtr(Ptr))
 | |
|     return false;
 | |
| 
 | |
|   // If the instruction is a store located in a predicated block, it will be
 | |
|   // scalarized.
 | |
|   if (isScalarWithPredication(I))
 | |
|     return false;
 | |
| 
 | |
|   // If the instruction's allocated size doesn't equal it's type size, it
 | |
|   // requires padding and will be scalarized.
 | |
|   auto &DL = I->getModule()->getDataLayout();
 | |
|   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
 | |
|   if (hasIrregularType(ScalarTy, DL, VF))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
 | |
|   // We should not collect Uniforms more than once per VF. Right now,
 | |
|   // this function is called from collectUniformsAndScalars(), which
 | |
|   // already does this check. Collecting Uniforms for VF=1 does not make any
 | |
|   // sense.
 | |
| 
 | |
|   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
 | |
|          "This function should not be visited twice for the same VF");
 | |
| 
 | |
|   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
 | |
|   // not analyze again.  Uniforms.count(VF) will return 1.
 | |
|   Uniforms[VF].clear();
 | |
| 
 | |
|   // We now know that the loop is vectorizable!
 | |
|   // Collect instructions inside the loop that will remain uniform after
 | |
|   // vectorization.
 | |
| 
 | |
|   // Global values, params and instructions outside of current loop are out of
 | |
|   // scope.
 | |
|   auto isOutOfScope = [&](Value *V) -> bool {
 | |
|     Instruction *I = dyn_cast<Instruction>(V);
 | |
|     return (!I || !TheLoop->contains(I));
 | |
|   };
 | |
| 
 | |
|   SetVector<Instruction *> Worklist;
 | |
|   BasicBlock *Latch = TheLoop->getLoopLatch();
 | |
| 
 | |
|   // Start with the conditional branch. If the branch condition is an
 | |
|   // instruction contained in the loop that is only used by the branch, it is
 | |
|   // uniform.
 | |
|   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
 | |
|   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
 | |
|     Worklist.insert(Cmp);
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
 | |
|   }
 | |
| 
 | |
|   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
 | |
|   // are pointers that are treated like consecutive pointers during
 | |
|   // vectorization. The pointer operands of interleaved accesses are an
 | |
|   // example.
 | |
|   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
 | |
| 
 | |
|   // Holds pointer operands of instructions that are possibly non-uniform.
 | |
|   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
 | |
| 
 | |
|   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
 | |
|     InstWidening WideningDecision = getWideningDecision(I, VF);
 | |
|     assert(WideningDecision != CM_Unknown &&
 | |
|            "Widening decision should be ready at this moment");
 | |
| 
 | |
|     return (WideningDecision == CM_Widen ||
 | |
|             WideningDecision == CM_Widen_Reverse ||
 | |
|             WideningDecision == CM_Interleave);
 | |
|   };
 | |
|   // Iterate over the instructions in the loop, and collect all
 | |
|   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
 | |
|   // that a consecutive-like pointer operand will be scalarized, we collect it
 | |
|   // in PossibleNonUniformPtrs instead. We use two sets here because a single
 | |
|   // getelementptr instruction can be used by both vectorized and scalarized
 | |
|   // memory instructions. For example, if a loop loads and stores from the same
 | |
|   // location, but the store is conditional, the store will be scalarized, and
 | |
|   // the getelementptr won't remain uniform.
 | |
|   for (auto *BB : TheLoop->blocks())
 | |
|     for (auto &I : *BB) {
 | |
|       // If there's no pointer operand, there's nothing to do.
 | |
|       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
 | |
|       if (!Ptr)
 | |
|         continue;
 | |
| 
 | |
|       // True if all users of Ptr are memory accesses that have Ptr as their
 | |
|       // pointer operand.
 | |
|       auto UsersAreMemAccesses =
 | |
|           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
 | |
|             return getLoadStorePointerOperand(U) == Ptr;
 | |
|           });
 | |
| 
 | |
|       // Ensure the memory instruction will not be scalarized or used by
 | |
|       // gather/scatter, making its pointer operand non-uniform. If the pointer
 | |
|       // operand is used by any instruction other than a memory access, we
 | |
|       // conservatively assume the pointer operand may be non-uniform.
 | |
|       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
 | |
|         PossibleNonUniformPtrs.insert(Ptr);
 | |
| 
 | |
|       // If the memory instruction will be vectorized and its pointer operand
 | |
|       // is consecutive-like, or interleaving - the pointer operand should
 | |
|       // remain uniform.
 | |
|       else
 | |
|         ConsecutiveLikePtrs.insert(Ptr);
 | |
|     }
 | |
| 
 | |
|   // Add to the Worklist all consecutive and consecutive-like pointers that
 | |
|   // aren't also identified as possibly non-uniform.
 | |
|   for (auto *V : ConsecutiveLikePtrs)
 | |
|     if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) {
 | |
|       LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
 | |
|       Worklist.insert(V);
 | |
|     }
 | |
| 
 | |
|   // Expand Worklist in topological order: whenever a new instruction
 | |
|   // is added , its users should be already inside Worklist.  It ensures
 | |
|   // a uniform instruction will only be used by uniform instructions.
 | |
|   unsigned idx = 0;
 | |
|   while (idx != Worklist.size()) {
 | |
|     Instruction *I = Worklist[idx++];
 | |
| 
 | |
|     for (auto OV : I->operand_values()) {
 | |
|       // isOutOfScope operands cannot be uniform instructions.
 | |
|       if (isOutOfScope(OV))
 | |
|         continue;
 | |
|       // First order recurrence Phi's should typically be considered
 | |
|       // non-uniform.
 | |
|       auto *OP = dyn_cast<PHINode>(OV);
 | |
|       if (OP && Legal->isFirstOrderRecurrence(OP))
 | |
|         continue;
 | |
|       // If all the users of the operand are uniform, then add the
 | |
|       // operand into the uniform worklist.
 | |
|       auto *OI = cast<Instruction>(OV);
 | |
|       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
 | |
|             auto *J = cast<Instruction>(U);
 | |
|             return Worklist.count(J) ||
 | |
|                    (OI == getLoadStorePointerOperand(J) &&
 | |
|                     isUniformDecision(J, VF));
 | |
|           })) {
 | |
|         Worklist.insert(OI);
 | |
|         LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns true if Ptr is the pointer operand of a memory access instruction
 | |
|   // I, and I is known to not require scalarization.
 | |
|   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
 | |
|     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
 | |
|   };
 | |
| 
 | |
|   // For an instruction to be added into Worklist above, all its users inside
 | |
|   // the loop should also be in Worklist. However, this condition cannot be
 | |
|   // true for phi nodes that form a cyclic dependence. We must process phi
 | |
|   // nodes separately. An induction variable will remain uniform if all users
 | |
|   // of the induction variable and induction variable update remain uniform.
 | |
|   // The code below handles both pointer and non-pointer induction variables.
 | |
|   for (auto &Induction : *Legal->getInductionVars()) {
 | |
|     auto *Ind = Induction.first;
 | |
|     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
 | |
| 
 | |
|     // Determine if all users of the induction variable are uniform after
 | |
|     // vectorization.
 | |
|     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
 | |
|       auto *I = cast<Instruction>(U);
 | |
|       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
 | |
|              isVectorizedMemAccessUse(I, Ind);
 | |
|     });
 | |
|     if (!UniformInd)
 | |
|       continue;
 | |
| 
 | |
|     // Determine if all users of the induction variable update instruction are
 | |
|     // uniform after vectorization.
 | |
|     auto UniformIndUpdate =
 | |
|         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
 | |
|           auto *I = cast<Instruction>(U);
 | |
|           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
 | |
|                  isVectorizedMemAccessUse(I, IndUpdate);
 | |
|         });
 | |
|     if (!UniformIndUpdate)
 | |
|       continue;
 | |
| 
 | |
|     // The induction variable and its update instruction will remain uniform.
 | |
|     Worklist.insert(Ind);
 | |
|     Worklist.insert(IndUpdate);
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate
 | |
|                       << "\n");
 | |
|   }
 | |
| 
 | |
|   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
 | |
| }
 | |
| 
 | |
| Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
 | |
|   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
 | |
|     // TODO: It may by useful to do since it's still likely to be dynamically
 | |
|     // uniform if the target can skip.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Not inserting runtime ptr check for divergent target");
 | |
| 
 | |
|     ORE->emit(
 | |
|       createMissedAnalysis("CantVersionLoopWithDivergentTarget")
 | |
|       << "runtime pointer checks needed. Not enabled for divergent target");
 | |
| 
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
 | |
|   if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
 | |
|     return computeFeasibleMaxVF(OptForSize, TC);
 | |
| 
 | |
|   if (Legal->getRuntimePointerChecking()->Need) {
 | |
|     ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
 | |
|               << "runtime pointer checks needed. Enable vectorization of this "
 | |
|                  "loop with '#pragma clang loop vectorize(enable)' when "
 | |
|                  "compiling with -Os/-Oz");
 | |
|     LLVM_DEBUG(
 | |
|         dbgs()
 | |
|         << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // If we optimize the program for size, avoid creating the tail loop.
 | |
|   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
 | |
| 
 | |
|   // If we don't know the precise trip count, don't try to vectorize.
 | |
|   if (TC < 2) {
 | |
|     ORE->emit(
 | |
|         createMissedAnalysis("UnknownLoopCountComplexCFG")
 | |
|         << "unable to calculate the loop count due to complex control flow");
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
 | |
| 
 | |
|   if (TC % MaxVF != 0) {
 | |
|     // If the trip count that we found modulo the vectorization factor is not
 | |
|     // zero then we require a tail.
 | |
|     // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
 | |
|     // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
 | |
|     //        smaller MaxVF that does not require a scalar epilog.
 | |
| 
 | |
|     ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
 | |
|               << "cannot optimize for size and vectorize at the "
 | |
|                  "same time. Enable vectorization of this loop "
 | |
|                  "with '#pragma clang loop vectorize(enable)' "
 | |
|                  "when compiling with -Os/-Oz");
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return MaxVF;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
 | |
|                                                  unsigned ConstTripCount) {
 | |
|   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
 | |
|   unsigned SmallestType, WidestType;
 | |
|   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
 | |
|   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
 | |
| 
 | |
|   // Get the maximum safe dependence distance in bits computed by LAA.
 | |
|   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
 | |
|   // the memory accesses that is most restrictive (involved in the smallest
 | |
|   // dependence distance).
 | |
|   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
 | |
| 
 | |
|   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
 | |
| 
 | |
|   unsigned MaxVectorSize = WidestRegister / WidestType;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
 | |
|                     << " / " << WidestType << " bits.\n");
 | |
|   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
 | |
|                     << WidestRegister << " bits.\n");
 | |
| 
 | |
|   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
 | |
|                                  " into one vector!");
 | |
|   if (MaxVectorSize == 0) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
 | |
|     MaxVectorSize = 1;
 | |
|     return MaxVectorSize;
 | |
|   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
 | |
|              isPowerOf2_32(ConstTripCount)) {
 | |
|     // We need to clamp the VF to be the ConstTripCount. There is no point in
 | |
|     // choosing a higher viable VF as done in the loop below.
 | |
|     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
 | |
|                       << ConstTripCount << "\n");
 | |
|     MaxVectorSize = ConstTripCount;
 | |
|     return MaxVectorSize;
 | |
|   }
 | |
| 
 | |
|   unsigned MaxVF = MaxVectorSize;
 | |
|   if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
 | |
|       (MaximizeBandwidth && !OptForSize)) {
 | |
|     // Collect all viable vectorization factors larger than the default MaxVF
 | |
|     // (i.e. MaxVectorSize).
 | |
|     SmallVector<unsigned, 8> VFs;
 | |
|     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
 | |
|     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
 | |
|       VFs.push_back(VS);
 | |
| 
 | |
|     // For each VF calculate its register usage.
 | |
|     auto RUs = calculateRegisterUsage(VFs);
 | |
| 
 | |
|     // Select the largest VF which doesn't require more registers than existing
 | |
|     // ones.
 | |
|     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
 | |
|     for (int i = RUs.size() - 1; i >= 0; --i) {
 | |
|       if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
 | |
|         MaxVF = VFs[i];
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
 | |
|       if (MaxVF < MinVF) {
 | |
|         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
 | |
|                           << ") with target's minimum: " << MinVF << '\n');
 | |
|         MaxVF = MinVF;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return MaxVF;
 | |
| }
 | |
| 
 | |
| VectorizationFactor
 | |
| LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
 | |
|   float Cost = expectedCost(1).first;
 | |
|   const float ScalarCost = Cost;
 | |
|   unsigned Width = 1;
 | |
|   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
 | |
| 
 | |
|   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
 | |
|   if (ForceVectorization && MaxVF > 1) {
 | |
|     // Ignore scalar width, because the user explicitly wants vectorization.
 | |
|     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
 | |
|     // evaluation.
 | |
|     Cost = std::numeric_limits<float>::max();
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 2; i <= MaxVF; i *= 2) {
 | |
|     // Notice that the vector loop needs to be executed less times, so
 | |
|     // we need to divide the cost of the vector loops by the width of
 | |
|     // the vector elements.
 | |
|     VectorizationCostTy C = expectedCost(i);
 | |
|     float VectorCost = C.first / (float)i;
 | |
|     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
 | |
|                       << " costs: " << (int)VectorCost << ".\n");
 | |
|     if (!C.second && !ForceVectorization) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "LV: Not considering vector loop of width " << i
 | |
|                  << " because it will not generate any vector instructions.\n");
 | |
|       continue;
 | |
|     }
 | |
|     if (VectorCost < Cost) {
 | |
|       Cost = VectorCost;
 | |
|       Width = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!EnableCondStoresVectorization && NumPredStores) {
 | |
|     ORE->emit(createMissedAnalysis("ConditionalStore")
 | |
|               << "store that is conditionally executed prevents vectorization");
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: No vectorization. There are conditional stores.\n");
 | |
|     Width = 1;
 | |
|     Cost = ScalarCost;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
 | |
|              << "LV: Vectorization seems to be not beneficial, "
 | |
|              << "but was forced by a user.\n");
 | |
|   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
 | |
|   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
 | |
|   return Factor;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, unsigned>
 | |
| LoopVectorizationCostModel::getSmallestAndWidestTypes() {
 | |
|   unsigned MinWidth = -1U;
 | |
|   unsigned MaxWidth = 8;
 | |
|   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
 | |
| 
 | |
|   // For each block.
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     // For each instruction in the loop.
 | |
|     for (Instruction &I : BB->instructionsWithoutDebug()) {
 | |
|       Type *T = I.getType();
 | |
| 
 | |
|       // Skip ignored values.
 | |
|       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
 | |
|         continue;
 | |
| 
 | |
|       // Only examine Loads, Stores and PHINodes.
 | |
|       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
 | |
|         continue;
 | |
| 
 | |
|       // Examine PHI nodes that are reduction variables. Update the type to
 | |
|       // account for the recurrence type.
 | |
|       if (auto *PN = dyn_cast<PHINode>(&I)) {
 | |
|         if (!Legal->isReductionVariable(PN))
 | |
|           continue;
 | |
|         RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
 | |
|         T = RdxDesc.getRecurrenceType();
 | |
|       }
 | |
| 
 | |
|       // Examine the stored values.
 | |
|       if (auto *ST = dyn_cast<StoreInst>(&I))
 | |
|         T = ST->getValueOperand()->getType();
 | |
| 
 | |
|       // Ignore loaded pointer types and stored pointer types that are not
 | |
|       // vectorizable.
 | |
|       //
 | |
|       // FIXME: The check here attempts to predict whether a load or store will
 | |
|       //        be vectorized. We only know this for certain after a VF has
 | |
|       //        been selected. Here, we assume that if an access can be
 | |
|       //        vectorized, it will be. We should also look at extending this
 | |
|       //        optimization to non-pointer types.
 | |
|       //
 | |
|       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
 | |
|           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
 | |
|         continue;
 | |
| 
 | |
|       MinWidth = std::min(MinWidth,
 | |
|                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
 | |
|       MaxWidth = std::max(MaxWidth,
 | |
|                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return {MinWidth, MaxWidth};
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
 | |
|                                                            unsigned VF,
 | |
|                                                            unsigned LoopCost) {
 | |
|   // -- The interleave heuristics --
 | |
|   // We interleave the loop in order to expose ILP and reduce the loop overhead.
 | |
|   // There are many micro-architectural considerations that we can't predict
 | |
|   // at this level. For example, frontend pressure (on decode or fetch) due to
 | |
|   // code size, or the number and capabilities of the execution ports.
 | |
|   //
 | |
|   // We use the following heuristics to select the interleave count:
 | |
|   // 1. If the code has reductions, then we interleave to break the cross
 | |
|   // iteration dependency.
 | |
|   // 2. If the loop is really small, then we interleave to reduce the loop
 | |
|   // overhead.
 | |
|   // 3. We don't interleave if we think that we will spill registers to memory
 | |
|   // due to the increased register pressure.
 | |
| 
 | |
|   // When we optimize for size, we don't interleave.
 | |
|   if (OptForSize)
 | |
|     return 1;
 | |
| 
 | |
|   // We used the distance for the interleave count.
 | |
|   if (Legal->getMaxSafeDepDistBytes() != -1U)
 | |
|     return 1;
 | |
| 
 | |
|   // Do not interleave loops with a relatively small trip count.
 | |
|   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
 | |
|   if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
 | |
|     return 1;
 | |
| 
 | |
|   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
 | |
|   LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
 | |
|                     << " registers\n");
 | |
| 
 | |
|   if (VF == 1) {
 | |
|     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
 | |
|       TargetNumRegisters = ForceTargetNumScalarRegs;
 | |
|   } else {
 | |
|     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
 | |
|       TargetNumRegisters = ForceTargetNumVectorRegs;
 | |
|   }
 | |
| 
 | |
|   RegisterUsage R = calculateRegisterUsage({VF})[0];
 | |
|   // We divide by these constants so assume that we have at least one
 | |
|   // instruction that uses at least one register.
 | |
|   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
 | |
| 
 | |
|   // We calculate the interleave count using the following formula.
 | |
|   // Subtract the number of loop invariants from the number of available
 | |
|   // registers. These registers are used by all of the interleaved instances.
 | |
|   // Next, divide the remaining registers by the number of registers that is
 | |
|   // required by the loop, in order to estimate how many parallel instances
 | |
|   // fit without causing spills. All of this is rounded down if necessary to be
 | |
|   // a power of two. We want power of two interleave count to simplify any
 | |
|   // addressing operations or alignment considerations.
 | |
|   unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
 | |
|                               R.MaxLocalUsers);
 | |
| 
 | |
|   // Don't count the induction variable as interleaved.
 | |
|   if (EnableIndVarRegisterHeur)
 | |
|     IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
 | |
|                        std::max(1U, (R.MaxLocalUsers - 1)));
 | |
| 
 | |
|   // Clamp the interleave ranges to reasonable counts.
 | |
|   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
 | |
| 
 | |
|   // Check if the user has overridden the max.
 | |
|   if (VF == 1) {
 | |
|     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
 | |
|       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
 | |
|   } else {
 | |
|     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
 | |
|       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
 | |
|   }
 | |
| 
 | |
|   // If we did not calculate the cost for VF (because the user selected the VF)
 | |
|   // then we calculate the cost of VF here.
 | |
|   if (LoopCost == 0)
 | |
|     LoopCost = expectedCost(VF).first;
 | |
| 
 | |
|   // Clamp the calculated IC to be between the 1 and the max interleave count
 | |
|   // that the target allows.
 | |
|   if (IC > MaxInterleaveCount)
 | |
|     IC = MaxInterleaveCount;
 | |
|   else if (IC < 1)
 | |
|     IC = 1;
 | |
| 
 | |
|   // Interleave if we vectorized this loop and there is a reduction that could
 | |
|   // benefit from interleaving.
 | |
|   if (VF > 1 && !Legal->getReductionVars()->empty()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
 | |
|     return IC;
 | |
|   }
 | |
| 
 | |
|   // Note that if we've already vectorized the loop we will have done the
 | |
|   // runtime check and so interleaving won't require further checks.
 | |
|   bool InterleavingRequiresRuntimePointerCheck =
 | |
|       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
 | |
| 
 | |
|   // We want to interleave small loops in order to reduce the loop overhead and
 | |
|   // potentially expose ILP opportunities.
 | |
|   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
 | |
|   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
 | |
|     // We assume that the cost overhead is 1 and we use the cost model
 | |
|     // to estimate the cost of the loop and interleave until the cost of the
 | |
|     // loop overhead is about 5% of the cost of the loop.
 | |
|     unsigned SmallIC =
 | |
|         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
 | |
| 
 | |
|     // Interleave until store/load ports (estimated by max interleave count) are
 | |
|     // saturated.
 | |
|     unsigned NumStores = Legal->getNumStores();
 | |
|     unsigned NumLoads = Legal->getNumLoads();
 | |
|     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
 | |
|     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
 | |
| 
 | |
|     // If we have a scalar reduction (vector reductions are already dealt with
 | |
|     // by this point), we can increase the critical path length if the loop
 | |
|     // we're interleaving is inside another loop. Limit, by default to 2, so the
 | |
|     // critical path only gets increased by one reduction operation.
 | |
|     if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
 | |
|       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
 | |
|       SmallIC = std::min(SmallIC, F);
 | |
|       StoresIC = std::min(StoresIC, F);
 | |
|       LoadsIC = std::min(LoadsIC, F);
 | |
|     }
 | |
| 
 | |
|     if (EnableLoadStoreRuntimeInterleave &&
 | |
|         std::max(StoresIC, LoadsIC) > SmallIC) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
 | |
|       return std::max(StoresIC, LoadsIC);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
 | |
|     return SmallIC;
 | |
|   }
 | |
| 
 | |
|   // Interleave if this is a large loop (small loops are already dealt with by
 | |
|   // this point) that could benefit from interleaving.
 | |
|   bool HasReductions = !Legal->getReductionVars()->empty();
 | |
|   if (TTI.enableAggressiveInterleaving(HasReductions)) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
 | |
|     return IC;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
 | |
| LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
 | |
|   // This function calculates the register usage by measuring the highest number
 | |
|   // of values that are alive at a single location. Obviously, this is a very
 | |
|   // rough estimation. We scan the loop in a topological order in order and
 | |
|   // assign a number to each instruction. We use RPO to ensure that defs are
 | |
|   // met before their users. We assume that each instruction that has in-loop
 | |
|   // users starts an interval. We record every time that an in-loop value is
 | |
|   // used, so we have a list of the first and last occurrences of each
 | |
|   // instruction. Next, we transpose this data structure into a multi map that
 | |
|   // holds the list of intervals that *end* at a specific location. This multi
 | |
|   // map allows us to perform a linear search. We scan the instructions linearly
 | |
|   // and record each time that a new interval starts, by placing it in a set.
 | |
|   // If we find this value in the multi-map then we remove it from the set.
 | |
|   // The max register usage is the maximum size of the set.
 | |
|   // We also search for instructions that are defined outside the loop, but are
 | |
|   // used inside the loop. We need this number separately from the max-interval
 | |
|   // usage number because when we unroll, loop-invariant values do not take
 | |
|   // more register.
 | |
|   LoopBlocksDFS DFS(TheLoop);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   RegisterUsage RU;
 | |
| 
 | |
|   // Each 'key' in the map opens a new interval. The values
 | |
|   // of the map are the index of the 'last seen' usage of the
 | |
|   // instruction that is the key.
 | |
|   using IntervalMap = DenseMap<Instruction *, unsigned>;
 | |
| 
 | |
|   // Maps instruction to its index.
 | |
|   SmallVector<Instruction *, 64> IdxToInstr;
 | |
|   // Marks the end of each interval.
 | |
|   IntervalMap EndPoint;
 | |
|   // Saves the list of instruction indices that are used in the loop.
 | |
|   SmallPtrSet<Instruction *, 8> Ends;
 | |
|   // Saves the list of values that are used in the loop but are
 | |
|   // defined outside the loop, such as arguments and constants.
 | |
|   SmallPtrSet<Value *, 8> LoopInvariants;
 | |
| 
 | |
|   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
 | |
|     for (Instruction &I : BB->instructionsWithoutDebug()) {
 | |
|       IdxToInstr.push_back(&I);
 | |
| 
 | |
|       // Save the end location of each USE.
 | |
|       for (Value *U : I.operands()) {
 | |
|         auto *Instr = dyn_cast<Instruction>(U);
 | |
| 
 | |
|         // Ignore non-instruction values such as arguments, constants, etc.
 | |
|         if (!Instr)
 | |
|           continue;
 | |
| 
 | |
|         // If this instruction is outside the loop then record it and continue.
 | |
|         if (!TheLoop->contains(Instr)) {
 | |
|           LoopInvariants.insert(Instr);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Overwrite previous end points.
 | |
|         EndPoint[Instr] = IdxToInstr.size();
 | |
|         Ends.insert(Instr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Saves the list of intervals that end with the index in 'key'.
 | |
|   using InstrList = SmallVector<Instruction *, 2>;
 | |
|   DenseMap<unsigned, InstrList> TransposeEnds;
 | |
| 
 | |
|   // Transpose the EndPoints to a list of values that end at each index.
 | |
|   for (auto &Interval : EndPoint)
 | |
|     TransposeEnds[Interval.second].push_back(Interval.first);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> OpenIntervals;
 | |
| 
 | |
|   // Get the size of the widest register.
 | |
|   unsigned MaxSafeDepDist = -1U;
 | |
|   if (Legal->getMaxSafeDepDistBytes() != -1U)
 | |
|     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
 | |
|   unsigned WidestRegister =
 | |
|       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
 | |
|   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
 | |
| 
 | |
|   SmallVector<RegisterUsage, 8> RUs(VFs.size());
 | |
|   SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
 | |
| 
 | |
|   // A lambda that gets the register usage for the given type and VF.
 | |
|   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
 | |
|     if (Ty->isTokenTy())
 | |
|       return 0U;
 | |
|     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
 | |
|     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
 | |
|   };
 | |
| 
 | |
|   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
 | |
|     Instruction *I = IdxToInstr[i];
 | |
| 
 | |
|     // Remove all of the instructions that end at this location.
 | |
|     InstrList &List = TransposeEnds[i];
 | |
|     for (Instruction *ToRemove : List)
 | |
|       OpenIntervals.erase(ToRemove);
 | |
| 
 | |
|     // Ignore instructions that are never used within the loop.
 | |
|     if (Ends.find(I) == Ends.end())
 | |
|       continue;
 | |
| 
 | |
|     // Skip ignored values.
 | |
|     if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
 | |
|       continue;
 | |
| 
 | |
|     // For each VF find the maximum usage of registers.
 | |
|     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
 | |
|       if (VFs[j] == 1) {
 | |
|         MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
 | |
|         continue;
 | |
|       }
 | |
|       collectUniformsAndScalars(VFs[j]);
 | |
|       // Count the number of live intervals.
 | |
|       unsigned RegUsage = 0;
 | |
|       for (auto Inst : OpenIntervals) {
 | |
|         // Skip ignored values for VF > 1.
 | |
|         if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() ||
 | |
|             isScalarAfterVectorization(Inst, VFs[j]))
 | |
|           continue;
 | |
|         RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
 | |
|       }
 | |
|       MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
 | |
|                       << OpenIntervals.size() << '\n');
 | |
| 
 | |
|     // Add the current instruction to the list of open intervals.
 | |
|     OpenIntervals.insert(I);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
 | |
|     unsigned Invariant = 0;
 | |
|     if (VFs[i] == 1)
 | |
|       Invariant = LoopInvariants.size();
 | |
|     else {
 | |
|       for (auto Inst : LoopInvariants)
 | |
|         Invariant += GetRegUsage(Inst->getType(), VFs[i]);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
 | |
|     LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
 | |
|     LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant
 | |
|                       << '\n');
 | |
| 
 | |
|     RU.LoopInvariantRegs = Invariant;
 | |
|     RU.MaxLocalUsers = MaxUsages[i];
 | |
|     RUs[i] = RU;
 | |
|   }
 | |
| 
 | |
|   return RUs;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
 | |
|   // TODO: Cost model for emulated masked load/store is completely
 | |
|   // broken. This hack guides the cost model to use an artificially
 | |
|   // high enough value to practically disable vectorization with such
 | |
|   // operations, except where previously deployed legality hack allowed
 | |
|   // using very low cost values. This is to avoid regressions coming simply
 | |
|   // from moving "masked load/store" check from legality to cost model.
 | |
|   // Masked Load/Gather emulation was previously never allowed.
 | |
|   // Limited number of Masked Store/Scatter emulation was allowed.
 | |
|   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
 | |
|   return isa<LoadInst>(I) ||
 | |
|          (isa<StoreInst>(I) &&
 | |
|           NumPredStores > NumberOfStoresToPredicate);
 | |
| }
 | |
| 
 | |
| void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
 | |
|   // If we aren't vectorizing the loop, or if we've already collected the
 | |
|   // instructions to scalarize, there's nothing to do. Collection may already
 | |
|   // have occurred if we have a user-selected VF and are now computing the
 | |
|   // expected cost for interleaving.
 | |
|   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
 | |
|     return;
 | |
| 
 | |
|   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
 | |
|   // not profitable to scalarize any instructions, the presence of VF in the
 | |
|   // map will indicate that we've analyzed it already.
 | |
|   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
 | |
| 
 | |
|   // Find all the instructions that are scalar with predication in the loop and
 | |
|   // determine if it would be better to not if-convert the blocks they are in.
 | |
|   // If so, we also record the instructions to scalarize.
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     if (!Legal->blockNeedsPredication(BB))
 | |
|       continue;
 | |
|     for (Instruction &I : *BB)
 | |
|       if (isScalarWithPredication(&I)) {
 | |
|         ScalarCostsTy ScalarCosts;
 | |
|         // Do not apply discount logic if hacked cost is needed
 | |
|         // for emulated masked memrefs.
 | |
|         if (!useEmulatedMaskMemRefHack(&I) &&
 | |
|             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
 | |
|           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
 | |
|         // Remember that BB will remain after vectorization.
 | |
|         PredicatedBBsAfterVectorization.insert(BB);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| int LoopVectorizationCostModel::computePredInstDiscount(
 | |
|     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
 | |
|     unsigned VF) {
 | |
|   assert(!isUniformAfterVectorization(PredInst, VF) &&
 | |
|          "Instruction marked uniform-after-vectorization will be predicated");
 | |
| 
 | |
|   // Initialize the discount to zero, meaning that the scalar version and the
 | |
|   // vector version cost the same.
 | |
|   int Discount = 0;
 | |
| 
 | |
|   // Holds instructions to analyze. The instructions we visit are mapped in
 | |
|   // ScalarCosts. Those instructions are the ones that would be scalarized if
 | |
|   // we find that the scalar version costs less.
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
| 
 | |
|   // Returns true if the given instruction can be scalarized.
 | |
|   auto canBeScalarized = [&](Instruction *I) -> bool {
 | |
|     // We only attempt to scalarize instructions forming a single-use chain
 | |
|     // from the original predicated block that would otherwise be vectorized.
 | |
|     // Although not strictly necessary, we give up on instructions we know will
 | |
|     // already be scalar to avoid traversing chains that are unlikely to be
 | |
|     // beneficial.
 | |
|     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
 | |
|         isScalarAfterVectorization(I, VF))
 | |
|       return false;
 | |
| 
 | |
|     // If the instruction is scalar with predication, it will be analyzed
 | |
|     // separately. We ignore it within the context of PredInst.
 | |
|     if (isScalarWithPredication(I))
 | |
|       return false;
 | |
| 
 | |
|     // If any of the instruction's operands are uniform after vectorization,
 | |
|     // the instruction cannot be scalarized. This prevents, for example, a
 | |
|     // masked load from being scalarized.
 | |
|     //
 | |
|     // We assume we will only emit a value for lane zero of an instruction
 | |
|     // marked uniform after vectorization, rather than VF identical values.
 | |
|     // Thus, if we scalarize an instruction that uses a uniform, we would
 | |
|     // create uses of values corresponding to the lanes we aren't emitting code
 | |
|     // for. This behavior can be changed by allowing getScalarValue to clone
 | |
|     // the lane zero values for uniforms rather than asserting.
 | |
|     for (Use &U : I->operands())
 | |
|       if (auto *J = dyn_cast<Instruction>(U.get()))
 | |
|         if (isUniformAfterVectorization(J, VF))
 | |
|           return false;
 | |
| 
 | |
|     // Otherwise, we can scalarize the instruction.
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // Returns true if an operand that cannot be scalarized must be extracted
 | |
|   // from a vector. We will account for this scalarization overhead below. Note
 | |
|   // that the non-void predicated instructions are placed in their own blocks,
 | |
|   // and their return values are inserted into vectors. Thus, an extract would
 | |
|   // still be required.
 | |
|   auto needsExtract = [&](Instruction *I) -> bool {
 | |
|     return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
 | |
|   };
 | |
| 
 | |
|   // Compute the expected cost discount from scalarizing the entire expression
 | |
|   // feeding the predicated instruction. We currently only consider expressions
 | |
|   // that are single-use instruction chains.
 | |
|   Worklist.push_back(PredInst);
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
| 
 | |
|     // If we've already analyzed the instruction, there's nothing to do.
 | |
|     if (ScalarCosts.find(I) != ScalarCosts.end())
 | |
|       continue;
 | |
| 
 | |
|     // Compute the cost of the vector instruction. Note that this cost already
 | |
|     // includes the scalarization overhead of the predicated instruction.
 | |
|     unsigned VectorCost = getInstructionCost(I, VF).first;
 | |
| 
 | |
|     // Compute the cost of the scalarized instruction. This cost is the cost of
 | |
|     // the instruction as if it wasn't if-converted and instead remained in the
 | |
|     // predicated block. We will scale this cost by block probability after
 | |
|     // computing the scalarization overhead.
 | |
|     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
 | |
| 
 | |
|     // Compute the scalarization overhead of needed insertelement instructions
 | |
|     // and phi nodes.
 | |
|     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
 | |
|       ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
 | |
|                                                  true, false);
 | |
|       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
 | |
|     }
 | |
| 
 | |
|     // Compute the scalarization overhead of needed extractelement
 | |
|     // instructions. For each of the instruction's operands, if the operand can
 | |
|     // be scalarized, add it to the worklist; otherwise, account for the
 | |
|     // overhead.
 | |
|     for (Use &U : I->operands())
 | |
|       if (auto *J = dyn_cast<Instruction>(U.get())) {
 | |
|         assert(VectorType::isValidElementType(J->getType()) &&
 | |
|                "Instruction has non-scalar type");
 | |
|         if (canBeScalarized(J))
 | |
|           Worklist.push_back(J);
 | |
|         else if (needsExtract(J))
 | |
|           ScalarCost += TTI.getScalarizationOverhead(
 | |
|                               ToVectorTy(J->getType(),VF), false, true);
 | |
|       }
 | |
| 
 | |
|     // Scale the total scalar cost by block probability.
 | |
|     ScalarCost /= getReciprocalPredBlockProb();
 | |
| 
 | |
|     // Compute the discount. A non-negative discount means the vector version
 | |
|     // of the instruction costs more, and scalarizing would be beneficial.
 | |
|     Discount += VectorCost - ScalarCost;
 | |
|     ScalarCosts[I] = ScalarCost;
 | |
|   }
 | |
| 
 | |
|   return Discount;
 | |
| }
 | |
| 
 | |
| LoopVectorizationCostModel::VectorizationCostTy
 | |
| LoopVectorizationCostModel::expectedCost(unsigned VF) {
 | |
|   VectorizationCostTy Cost;
 | |
| 
 | |
|   // For each block.
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     VectorizationCostTy BlockCost;
 | |
| 
 | |
|     // For each instruction in the old loop.
 | |
|     for (Instruction &I : BB->instructionsWithoutDebug()) {
 | |
|       // Skip ignored values.
 | |
|       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
 | |
|           (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
 | |
|         continue;
 | |
| 
 | |
|       VectorizationCostTy C = getInstructionCost(&I, VF);
 | |
| 
 | |
|       // Check if we should override the cost.
 | |
|       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
 | |
|         C.first = ForceTargetInstructionCost;
 | |
| 
 | |
|       BlockCost.first += C.first;
 | |
|       BlockCost.second |= C.second;
 | |
|       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
 | |
|                         << " for VF " << VF << " For instruction: " << I
 | |
|                         << '\n');
 | |
|     }
 | |
| 
 | |
|     // If we are vectorizing a predicated block, it will have been
 | |
|     // if-converted. This means that the block's instructions (aside from
 | |
|     // stores and instructions that may divide by zero) will now be
 | |
|     // unconditionally executed. For the scalar case, we may not always execute
 | |
|     // the predicated block. Thus, scale the block's cost by the probability of
 | |
|     // executing it.
 | |
|     if (VF == 1 && Legal->blockNeedsPredication(BB))
 | |
|       BlockCost.first /= getReciprocalPredBlockProb();
 | |
| 
 | |
|     Cost.first += BlockCost.first;
 | |
|     Cost.second |= BlockCost.second;
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| /// Gets Address Access SCEV after verifying that the access pattern
 | |
| /// is loop invariant except the induction variable dependence.
 | |
| ///
 | |
| /// This SCEV can be sent to the Target in order to estimate the address
 | |
| /// calculation cost.
 | |
| static const SCEV *getAddressAccessSCEV(
 | |
|               Value *Ptr,
 | |
|               LoopVectorizationLegality *Legal,
 | |
|               PredicatedScalarEvolution &PSE,
 | |
|               const Loop *TheLoop) {
 | |
| 
 | |
|   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!Gep)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We are looking for a gep with all loop invariant indices except for one
 | |
|   // which should be an induction variable.
 | |
|   auto SE = PSE.getSE();
 | |
|   unsigned NumOperands = Gep->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumOperands; ++i) {
 | |
|     Value *Opd = Gep->getOperand(i);
 | |
|     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
 | |
|         !Legal->isInductionVariable(Opd))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
 | |
|   return PSE.getSCEV(Ptr);
 | |
| }
 | |
| 
 | |
| static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
 | |
|   return Legal->hasStride(I->getOperand(0)) ||
 | |
|          Legal->hasStride(I->getOperand(1));
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
 | |
|                                                                  unsigned VF) {
 | |
|   Type *ValTy = getMemInstValueType(I);
 | |
|   auto SE = PSE.getSE();
 | |
| 
 | |
|   unsigned Alignment = getLoadStoreAlignment(I);
 | |
|   unsigned AS = getLoadStoreAddressSpace(I);
 | |
|   Value *Ptr = getLoadStorePointerOperand(I);
 | |
|   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
 | |
| 
 | |
|   // Figure out whether the access is strided and get the stride value
 | |
|   // if it's known in compile time
 | |
|   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
 | |
| 
 | |
|   // Get the cost of the scalar memory instruction and address computation.
 | |
|   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
 | |
| 
 | |
|   Cost += VF *
 | |
|           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
 | |
|                               AS, I);
 | |
| 
 | |
|   // Get the overhead of the extractelement and insertelement instructions
 | |
|   // we might create due to scalarization.
 | |
|   Cost += getScalarizationOverhead(I, VF, TTI);
 | |
| 
 | |
|   // If we have a predicated store, it may not be executed for each vector
 | |
|   // lane. Scale the cost by the probability of executing the predicated
 | |
|   // block.
 | |
|   if (isPredicatedInst(I)) {
 | |
|     Cost /= getReciprocalPredBlockProb();
 | |
| 
 | |
|     if (useEmulatedMaskMemRefHack(I))
 | |
|       // Artificially setting to a high enough value to practically disable
 | |
|       // vectorization with such operations.
 | |
|       Cost = 3000000;
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
 | |
|                                                              unsigned VF) {
 | |
|   Type *ValTy = getMemInstValueType(I);
 | |
|   Type *VectorTy = ToVectorTy(ValTy, VF);
 | |
|   unsigned Alignment = getLoadStoreAlignment(I);
 | |
|   Value *Ptr = getLoadStorePointerOperand(I);
 | |
|   unsigned AS = getLoadStoreAddressSpace(I);
 | |
|   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
 | |
| 
 | |
|   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
 | |
|          "Stride should be 1 or -1 for consecutive memory access");
 | |
|   unsigned Cost = 0;
 | |
|   if (Legal->isMaskRequired(I))
 | |
|     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
 | |
|   else
 | |
|     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
 | |
| 
 | |
|   bool Reverse = ConsecutiveStride < 0;
 | |
|   if (Reverse)
 | |
|     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
 | |
|                                                          unsigned VF) {
 | |
|   Type *ValTy = getMemInstValueType(I);
 | |
|   Type *VectorTy = ToVectorTy(ValTy, VF);
 | |
|   unsigned Alignment = getLoadStoreAlignment(I);
 | |
|   unsigned AS = getLoadStoreAddressSpace(I);
 | |
|   if (isa<LoadInst>(I)) {
 | |
|     return TTI.getAddressComputationCost(ValTy) +
 | |
|            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
 | |
|            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
 | |
|   }
 | |
|   StoreInst *SI = cast<StoreInst>(I);
 | |
| 
 | |
|   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
 | |
|   return TTI.getAddressComputationCost(ValTy) +
 | |
|          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
 | |
|          (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost(
 | |
|                                                Instruction::ExtractElement,
 | |
|                                                VectorTy, VF - 1));
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
 | |
|                                                           unsigned VF) {
 | |
|   Type *ValTy = getMemInstValueType(I);
 | |
|   Type *VectorTy = ToVectorTy(ValTy, VF);
 | |
|   unsigned Alignment = getLoadStoreAlignment(I);
 | |
|   Value *Ptr = getLoadStorePointerOperand(I);
 | |
| 
 | |
|   return TTI.getAddressComputationCost(VectorTy) +
 | |
|          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
 | |
|                                     Legal->isMaskRequired(I), Alignment);
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
 | |
|                                                             unsigned VF) {
 | |
|   Type *ValTy = getMemInstValueType(I);
 | |
|   Type *VectorTy = ToVectorTy(ValTy, VF);
 | |
|   unsigned AS = getLoadStoreAddressSpace(I);
 | |
| 
 | |
|   auto Group = getInterleavedAccessGroup(I);
 | |
|   assert(Group && "Fail to get an interleaved access group.");
 | |
| 
 | |
|   unsigned InterleaveFactor = Group->getFactor();
 | |
|   Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
 | |
| 
 | |
|   // Holds the indices of existing members in an interleaved load group.
 | |
|   // An interleaved store group doesn't need this as it doesn't allow gaps.
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   if (isa<LoadInst>(I)) {
 | |
|     for (unsigned i = 0; i < InterleaveFactor; i++)
 | |
|       if (Group->getMember(i))
 | |
|         Indices.push_back(i);
 | |
|   }
 | |
| 
 | |
|   // Calculate the cost of the whole interleaved group.
 | |
|   unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
 | |
|                                                  Group->getFactor(), Indices,
 | |
|                                                  Group->getAlignment(), AS);
 | |
| 
 | |
|   if (Group->isReverse())
 | |
|     Cost += Group->getNumMembers() *
 | |
|             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
 | |
|                                                               unsigned VF) {
 | |
|   // Calculate scalar cost only. Vectorization cost should be ready at this
 | |
|   // moment.
 | |
|   if (VF == 1) {
 | |
|     Type *ValTy = getMemInstValueType(I);
 | |
|     unsigned Alignment = getLoadStoreAlignment(I);
 | |
|     unsigned AS = getLoadStoreAddressSpace(I);
 | |
| 
 | |
|     return TTI.getAddressComputationCost(ValTy) +
 | |
|            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
 | |
|   }
 | |
|   return getWideningCost(I, VF);
 | |
| }
 | |
| 
 | |
| LoopVectorizationCostModel::VectorizationCostTy
 | |
| LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
 | |
|   // If we know that this instruction will remain uniform, check the cost of
 | |
|   // the scalar version.
 | |
|   if (isUniformAfterVectorization(I, VF))
 | |
|     VF = 1;
 | |
| 
 | |
|   if (VF > 1 && isProfitableToScalarize(I, VF))
 | |
|     return VectorizationCostTy(InstsToScalarize[VF][I], false);
 | |
| 
 | |
|   // Forced scalars do not have any scalarization overhead.
 | |
|   auto ForcedScalar = ForcedScalars.find(VF);
 | |
|   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
 | |
|     auto InstSet = ForcedScalar->second;
 | |
|     if (InstSet.find(I) != InstSet.end())
 | |
|       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
 | |
|   }
 | |
| 
 | |
|   Type *VectorTy;
 | |
|   unsigned C = getInstructionCost(I, VF, VectorTy);
 | |
| 
 | |
|   bool TypeNotScalarized =
 | |
|       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
 | |
|   return VectorizationCostTy(C, TypeNotScalarized);
 | |
| }
 | |
| 
 | |
| void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
 | |
|   if (VF == 1)
 | |
|     return;
 | |
|   NumPredStores = 0;
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     // For each instruction in the old loop.
 | |
|     for (Instruction &I : *BB) {
 | |
|       Value *Ptr =  getLoadStorePointerOperand(&I);
 | |
|       if (!Ptr)
 | |
|         continue;
 | |
| 
 | |
|       // TODO: We should generate better code and update the cost model for
 | |
|       // predicated uniform stores. Today they are treated as any other
 | |
|       // predicated store (see added test cases in
 | |
|       // invariant-store-vectorization.ll).
 | |
|       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
 | |
|         NumPredStores++;
 | |
| 
 | |
|       if (Legal->isUniform(Ptr) &&
 | |
|           // Conditional loads and stores should be scalarized and predicated.
 | |
|           // isScalarWithPredication cannot be used here since masked
 | |
|           // gather/scatters are not considered scalar with predication.
 | |
|           !Legal->blockNeedsPredication(I.getParent())) {
 | |
|         // TODO: Avoid replicating loads and stores instead of
 | |
|         // relying on instcombine to remove them.
 | |
|         // Load: Scalar load + broadcast
 | |
|         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
 | |
|         unsigned Cost = getUniformMemOpCost(&I, VF);
 | |
|         setWideningDecision(&I, VF, CM_Scalarize, Cost);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We assume that widening is the best solution when possible.
 | |
|       if (memoryInstructionCanBeWidened(&I, VF)) {
 | |
|         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
 | |
|         int ConsecutiveStride =
 | |
|                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
 | |
|         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
 | |
|                "Expected consecutive stride.");
 | |
|         InstWidening Decision =
 | |
|             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
 | |
|         setWideningDecision(&I, VF, Decision, Cost);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Choose between Interleaving, Gather/Scatter or Scalarization.
 | |
|       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
 | |
|       unsigned NumAccesses = 1;
 | |
|       if (isAccessInterleaved(&I)) {
 | |
|         auto Group = getInterleavedAccessGroup(&I);
 | |
|         assert(Group && "Fail to get an interleaved access group.");
 | |
| 
 | |
|         // Make one decision for the whole group.
 | |
|         if (getWideningDecision(&I, VF) != CM_Unknown)
 | |
|           continue;
 | |
| 
 | |
|         NumAccesses = Group->getNumMembers();
 | |
|         InterleaveCost = getInterleaveGroupCost(&I, VF);
 | |
|       }
 | |
| 
 | |
|       unsigned GatherScatterCost =
 | |
|           isLegalGatherOrScatter(&I)
 | |
|               ? getGatherScatterCost(&I, VF) * NumAccesses
 | |
|               : std::numeric_limits<unsigned>::max();
 | |
| 
 | |
|       unsigned ScalarizationCost =
 | |
|           getMemInstScalarizationCost(&I, VF) * NumAccesses;
 | |
| 
 | |
|       // Choose better solution for the current VF,
 | |
|       // write down this decision and use it during vectorization.
 | |
|       unsigned Cost;
 | |
|       InstWidening Decision;
 | |
|       if (InterleaveCost <= GatherScatterCost &&
 | |
|           InterleaveCost < ScalarizationCost) {
 | |
|         Decision = CM_Interleave;
 | |
|         Cost = InterleaveCost;
 | |
|       } else if (GatherScatterCost < ScalarizationCost) {
 | |
|         Decision = CM_GatherScatter;
 | |
|         Cost = GatherScatterCost;
 | |
|       } else {
 | |
|         Decision = CM_Scalarize;
 | |
|         Cost = ScalarizationCost;
 | |
|       }
 | |
|       // If the instructions belongs to an interleave group, the whole group
 | |
|       // receives the same decision. The whole group receives the cost, but
 | |
|       // the cost will actually be assigned to one instruction.
 | |
|       if (auto Group = getInterleavedAccessGroup(&I))
 | |
|         setWideningDecision(Group, VF, Decision, Cost);
 | |
|       else
 | |
|         setWideningDecision(&I, VF, Decision, Cost);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that any load of address and any other address computation
 | |
|   // remains scalar unless there is gather/scatter support. This avoids
 | |
|   // inevitable extracts into address registers, and also has the benefit of
 | |
|   // activating LSR more, since that pass can't optimize vectorized
 | |
|   // addresses.
 | |
|   if (TTI.prefersVectorizedAddressing())
 | |
|     return;
 | |
| 
 | |
|   // Start with all scalar pointer uses.
 | |
|   SmallPtrSet<Instruction *, 8> AddrDefs;
 | |
|   for (BasicBlock *BB : TheLoop->blocks())
 | |
|     for (Instruction &I : *BB) {
 | |
|       Instruction *PtrDef =
 | |
|         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
 | |
|       if (PtrDef && TheLoop->contains(PtrDef) &&
 | |
|           getWideningDecision(&I, VF) != CM_GatherScatter)
 | |
|         AddrDefs.insert(PtrDef);
 | |
|     }
 | |
| 
 | |
|   // Add all instructions used to generate the addresses.
 | |
|   SmallVector<Instruction *, 4> Worklist;
 | |
|   for (auto *I : AddrDefs)
 | |
|     Worklist.push_back(I);
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
|     for (auto &Op : I->operands())
 | |
|       if (auto *InstOp = dyn_cast<Instruction>(Op))
 | |
|         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
 | |
|             AddrDefs.insert(InstOp).second)
 | |
|           Worklist.push_back(InstOp);
 | |
|   }
 | |
| 
 | |
|   for (auto *I : AddrDefs) {
 | |
|     if (isa<LoadInst>(I)) {
 | |
|       // Setting the desired widening decision should ideally be handled in
 | |
|       // by cost functions, but since this involves the task of finding out
 | |
|       // if the loaded register is involved in an address computation, it is
 | |
|       // instead changed here when we know this is the case.
 | |
|       InstWidening Decision = getWideningDecision(I, VF);
 | |
|       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
 | |
|         // Scalarize a widened load of address.
 | |
|         setWideningDecision(I, VF, CM_Scalarize,
 | |
|                             (VF * getMemoryInstructionCost(I, 1)));
 | |
|       else if (auto Group = getInterleavedAccessGroup(I)) {
 | |
|         // Scalarize an interleave group of address loads.
 | |
|         for (unsigned I = 0; I < Group->getFactor(); ++I) {
 | |
|           if (Instruction *Member = Group->getMember(I))
 | |
|             setWideningDecision(Member, VF, CM_Scalarize,
 | |
|                                 (VF * getMemoryInstructionCost(Member, 1)));
 | |
|         }
 | |
|       }
 | |
|     } else
 | |
|       // Make sure I gets scalarized and a cost estimate without
 | |
|       // scalarization overhead.
 | |
|       ForcedScalars[VF].insert(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
 | |
|                                                         unsigned VF,
 | |
|                                                         Type *&VectorTy) {
 | |
|   Type *RetTy = I->getType();
 | |
|   if (canTruncateToMinimalBitwidth(I, VF))
 | |
|     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
 | |
|   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
 | |
|   auto SE = PSE.getSE();
 | |
| 
 | |
|   // TODO: We need to estimate the cost of intrinsic calls.
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::GetElementPtr:
 | |
|     // We mark this instruction as zero-cost because the cost of GEPs in
 | |
|     // vectorized code depends on whether the corresponding memory instruction
 | |
|     // is scalarized or not. Therefore, we handle GEPs with the memory
 | |
|     // instruction cost.
 | |
|     return 0;
 | |
|   case Instruction::Br: {
 | |
|     // In cases of scalarized and predicated instructions, there will be VF
 | |
|     // predicated blocks in the vectorized loop. Each branch around these
 | |
|     // blocks requires also an extract of its vector compare i1 element.
 | |
|     bool ScalarPredicatedBB = false;
 | |
|     BranchInst *BI = cast<BranchInst>(I);
 | |
|     if (VF > 1 && BI->isConditional() &&
 | |
|         (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
 | |
|              PredicatedBBsAfterVectorization.end() ||
 | |
|          PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
 | |
|              PredicatedBBsAfterVectorization.end()))
 | |
|       ScalarPredicatedBB = true;
 | |
| 
 | |
|     if (ScalarPredicatedBB) {
 | |
|       // Return cost for branches around scalarized and predicated blocks.
 | |
|       Type *Vec_i1Ty =
 | |
|           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
 | |
|       return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
 | |
|               (TTI.getCFInstrCost(Instruction::Br) * VF));
 | |
|     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
 | |
|       // The back-edge branch will remain, as will all scalar branches.
 | |
|       return TTI.getCFInstrCost(Instruction::Br);
 | |
|     else
 | |
|       // This branch will be eliminated by if-conversion.
 | |
|       return 0;
 | |
|     // Note: We currently assume zero cost for an unconditional branch inside
 | |
|     // a predicated block since it will become a fall-through, although we
 | |
|     // may decide in the future to call TTI for all branches.
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     auto *Phi = cast<PHINode>(I);
 | |
| 
 | |
|     // First-order recurrences are replaced by vector shuffles inside the loop.
 | |
|     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
 | |
|       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
 | |
|                                 VectorTy, VF - 1, VectorTy);
 | |
| 
 | |
|     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
 | |
|     // converted into select instructions. We require N - 1 selects per phi
 | |
|     // node, where N is the number of incoming values.
 | |
|     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
 | |
|       return (Phi->getNumIncomingValues() - 1) *
 | |
|              TTI.getCmpSelInstrCost(
 | |
|                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
 | |
|                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
 | |
| 
 | |
|     return TTI.getCFInstrCost(Instruction::PHI);
 | |
|   }
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|     // If we have a predicated instruction, it may not be executed for each
 | |
|     // vector lane. Get the scalarization cost and scale this amount by the
 | |
|     // probability of executing the predicated block. If the instruction is not
 | |
|     // predicated, we fall through to the next case.
 | |
|     if (VF > 1 && isScalarWithPredication(I)) {
 | |
|       unsigned Cost = 0;
 | |
| 
 | |
|       // These instructions have a non-void type, so account for the phi nodes
 | |
|       // that we will create. This cost is likely to be zero. The phi node
 | |
|       // cost, if any, should be scaled by the block probability because it
 | |
|       // models a copy at the end of each predicated block.
 | |
|       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
 | |
| 
 | |
|       // The cost of the non-predicated instruction.
 | |
|       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
 | |
| 
 | |
|       // The cost of insertelement and extractelement instructions needed for
 | |
|       // scalarization.
 | |
|       Cost += getScalarizationOverhead(I, VF, TTI);
 | |
| 
 | |
|       // Scale the cost by the probability of executing the predicated blocks.
 | |
|       // This assumes the predicated block for each vector lane is equally
 | |
|       // likely.
 | |
|       return Cost / getReciprocalPredBlockProb();
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     // Since we will replace the stride by 1 the multiplication should go away.
 | |
|     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
 | |
|       return 0;
 | |
|     // Certain instructions can be cheaper to vectorize if they have a constant
 | |
|     // second vector operand. One example of this are shifts on x86.
 | |
|     Value *Op2 = I->getOperand(1);
 | |
|     TargetTransformInfo::OperandValueProperties Op2VP;
 | |
|     TargetTransformInfo::OperandValueKind Op2VK =
 | |
|         TTI.getOperandInfo(Op2, Op2VP);
 | |
|     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
 | |
|       Op2VK = TargetTransformInfo::OK_UniformValue;
 | |
| 
 | |
|     SmallVector<const Value *, 4> Operands(I->operand_values());
 | |
|     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
 | |
|     return N * TTI.getArithmeticInstrCost(
 | |
|                    I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
 | |
|                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands);
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
 | |
|     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
 | |
|     Type *CondTy = SI->getCondition()->getType();
 | |
|     if (!ScalarCond)
 | |
|       CondTy = VectorType::get(CondTy, VF);
 | |
| 
 | |
|     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
 | |
|   }
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: {
 | |
|     Type *ValTy = I->getOperand(0)->getType();
 | |
|     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
 | |
|     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
 | |
|       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
 | |
|     VectorTy = ToVectorTy(ValTy, VF);
 | |
|     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
 | |
|   }
 | |
|   case Instruction::Store:
 | |
|   case Instruction::Load: {
 | |
|     unsigned Width = VF;
 | |
|     if (Width > 1) {
 | |
|       InstWidening Decision = getWideningDecision(I, Width);
 | |
|       assert(Decision != CM_Unknown &&
 | |
|              "CM decision should be taken at this point");
 | |
|       if (Decision == CM_Scalarize)
 | |
|         Width = 1;
 | |
|     }
 | |
|     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
 | |
|     return getMemoryInstructionCost(I, VF);
 | |
|   }
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast: {
 | |
|     // We optimize the truncation of induction variables having constant
 | |
|     // integer steps. The cost of these truncations is the same as the scalar
 | |
|     // operation.
 | |
|     if (isOptimizableIVTruncate(I, VF)) {
 | |
|       auto *Trunc = cast<TruncInst>(I);
 | |
|       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
 | |
|                                   Trunc->getSrcTy(), Trunc);
 | |
|     }
 | |
| 
 | |
|     Type *SrcScalarTy = I->getOperand(0)->getType();
 | |
|     Type *SrcVecTy =
 | |
|         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
 | |
|     if (canTruncateToMinimalBitwidth(I, VF)) {
 | |
|       // This cast is going to be shrunk. This may remove the cast or it might
 | |
|       // turn it into slightly different cast. For example, if MinBW == 16,
 | |
|       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
 | |
|       //
 | |
|       // Calculate the modified src and dest types.
 | |
|       Type *MinVecTy = VectorTy;
 | |
|       if (I->getOpcode() == Instruction::Trunc) {
 | |
|         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
 | |
|         VectorTy =
 | |
|             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
 | |
|       } else if (I->getOpcode() == Instruction::ZExt ||
 | |
|                  I->getOpcode() == Instruction::SExt) {
 | |
|         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
 | |
|         VectorTy =
 | |
|             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
 | |
|     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
 | |
|   }
 | |
|   case Instruction::Call: {
 | |
|     bool NeedToScalarize;
 | |
|     CallInst *CI = cast<CallInst>(I);
 | |
|     unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
 | |
|     if (getVectorIntrinsicIDForCall(CI, TLI))
 | |
|       return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
 | |
|     return CallCost;
 | |
|   }
 | |
|   default:
 | |
|     // The cost of executing VF copies of the scalar instruction. This opcode
 | |
|     // is unknown. Assume that it is the same as 'mul'.
 | |
|     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
 | |
|            getScalarizationOverhead(I, VF, TTI);
 | |
|   } // end of switch.
 | |
| }
 | |
| 
 | |
| char LoopVectorize::ID = 0;
 | |
| 
 | |
| static const char lv_name[] = "Loop Vectorization";
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
 | |
|   return new LoopVectorize(NoUnrolling, AlwaysVectorize);
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
 | |
|   // Check if the pointer operand of a load or store instruction is
 | |
|   // consecutive.
 | |
|   if (auto *Ptr = getLoadStorePointerOperand(Inst))
 | |
|     return Legal->isConsecutivePtr(Ptr);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopVectorizationCostModel::collectValuesToIgnore() {
 | |
|   // Ignore ephemeral values.
 | |
|   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
 | |
| 
 | |
|   // Ignore type-promoting instructions we identified during reduction
 | |
|   // detection.
 | |
|   for (auto &Reduction : *Legal->getReductionVars()) {
 | |
|     RecurrenceDescriptor &RedDes = Reduction.second;
 | |
|     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
 | |
|     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
 | |
|   }
 | |
|   // Ignore type-casting instructions we identified during induction
 | |
|   // detection.
 | |
|   for (auto &Induction : *Legal->getInductionVars()) {
 | |
|     InductionDescriptor &IndDes = Induction.second;
 | |
|     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
 | |
|     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| VectorizationFactor
 | |
| LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
 | |
|                                                 unsigned UserVF) {
 | |
|   // Width 1 means no vectorization, cost 0 means uncomputed cost.
 | |
|   const VectorizationFactor NoVectorization = {1U, 0U};
 | |
| 
 | |
|   // Outer loop handling: They may require CFG and instruction level
 | |
|   // transformations before even evaluating whether vectorization is profitable.
 | |
|   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
 | |
|   // the vectorization pipeline.
 | |
|   if (!OrigLoop->empty()) {
 | |
|     // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing.
 | |
|     // This won't be necessary when UserVF is not required in the VPlan-native
 | |
|     // path.
 | |
|     if (VPlanBuildStressTest && !UserVF)
 | |
|       UserVF = 4;
 | |
| 
 | |
|     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
 | |
|     assert(UserVF && "Expected UserVF for outer loop vectorization.");
 | |
|     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
 | |
|     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
 | |
|     buildVPlans(UserVF, UserVF);
 | |
| 
 | |
|     // For VPlan build stress testing, we bail out after VPlan construction.
 | |
|     if (VPlanBuildStressTest)
 | |
|       return NoVectorization;
 | |
| 
 | |
|     return {UserVF, 0};
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(
 | |
|       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
 | |
|                 "VPlan-native path.\n");
 | |
|   return NoVectorization;
 | |
| }
 | |
| 
 | |
| VectorizationFactor
 | |
| LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
 | |
|   assert(OrigLoop->empty() && "Inner loop expected.");
 | |
|   // Width 1 means no vectorization, cost 0 means uncomputed cost.
 | |
|   const VectorizationFactor NoVectorization = {1U, 0U};
 | |
|   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
 | |
|   if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
 | |
|     return NoVectorization;
 | |
| 
 | |
|   if (UserVF) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
 | |
|     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
 | |
|     // Collect the instructions (and their associated costs) that will be more
 | |
|     // profitable to scalarize.
 | |
|     CM.selectUserVectorizationFactor(UserVF);
 | |
|     buildVPlansWithVPRecipes(UserVF, UserVF);
 | |
|     LLVM_DEBUG(printPlans(dbgs()));
 | |
|     return {UserVF, 0};
 | |
|   }
 | |
| 
 | |
|   unsigned MaxVF = MaybeMaxVF.getValue();
 | |
|   assert(MaxVF != 0 && "MaxVF is zero.");
 | |
| 
 | |
|   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
 | |
|     // Collect Uniform and Scalar instructions after vectorization with VF.
 | |
|     CM.collectUniformsAndScalars(VF);
 | |
| 
 | |
|     // Collect the instructions (and their associated costs) that will be more
 | |
|     // profitable to scalarize.
 | |
|     if (VF > 1)
 | |
|       CM.collectInstsToScalarize(VF);
 | |
|   }
 | |
| 
 | |
|   buildVPlansWithVPRecipes(1, MaxVF);
 | |
|   LLVM_DEBUG(printPlans(dbgs()));
 | |
|   if (MaxVF == 1)
 | |
|     return NoVectorization;
 | |
| 
 | |
|   // Select the optimal vectorization factor.
 | |
|   return CM.selectVectorizationFactor(MaxVF);
 | |
| }
 | |
| 
 | |
| void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
 | |
|   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
 | |
|                     << '\n');
 | |
|   BestVF = VF;
 | |
|   BestUF = UF;
 | |
| 
 | |
|   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
 | |
|     return !Plan->hasVF(VF);
 | |
|   });
 | |
|   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
 | |
| }
 | |
| 
 | |
| void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
 | |
|                                            DominatorTree *DT) {
 | |
|   // Perform the actual loop transformation.
 | |
| 
 | |
|   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
 | |
|   VPCallbackILV CallbackILV(ILV);
 | |
| 
 | |
|   VPTransformState State{BestVF, BestUF,      LI,
 | |
|                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
 | |
|                          &ILV,   CallbackILV};
 | |
|   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
 | |
| 
 | |
|   //===------------------------------------------------===//
 | |
|   //
 | |
|   // Notice: any optimization or new instruction that go
 | |
|   // into the code below should also be implemented in
 | |
|   // the cost-model.
 | |
|   //
 | |
|   //===------------------------------------------------===//
 | |
| 
 | |
|   // 2. Copy and widen instructions from the old loop into the new loop.
 | |
|   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
 | |
|   VPlans.front()->execute(&State);
 | |
| 
 | |
|   // 3. Fix the vectorized code: take care of header phi's, live-outs,
 | |
|   //    predication, updating analyses.
 | |
|   ILV.fixVectorizedLoop();
 | |
| }
 | |
| 
 | |
| void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
 | |
|     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
 | |
|   BasicBlock *Latch = OrigLoop->getLoopLatch();
 | |
| 
 | |
|   // We create new control-flow for the vectorized loop, so the original
 | |
|   // condition will be dead after vectorization if it's only used by the
 | |
|   // branch.
 | |
|   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
 | |
|   if (Cmp && Cmp->hasOneUse())
 | |
|     DeadInstructions.insert(Cmp);
 | |
| 
 | |
|   // We create new "steps" for induction variable updates to which the original
 | |
|   // induction variables map. An original update instruction will be dead if
 | |
|   // all its users except the induction variable are dead.
 | |
|   for (auto &Induction : *Legal->getInductionVars()) {
 | |
|     PHINode *Ind = Induction.first;
 | |
|     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
 | |
|     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
 | |
|           return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
 | |
|                                  DeadInstructions.end();
 | |
|         }))
 | |
|       DeadInstructions.insert(IndUpdate);
 | |
| 
 | |
|     // We record as "Dead" also the type-casting instructions we had identified
 | |
|     // during induction analysis. We don't need any handling for them in the
 | |
|     // vectorized loop because we have proven that, under a proper runtime
 | |
|     // test guarding the vectorized loop, the value of the phi, and the casted
 | |
|     // value of the phi, are the same. The last instruction in this casting chain
 | |
|     // will get its scalar/vector/widened def from the scalar/vector/widened def
 | |
|     // of the respective phi node. Any other casts in the induction def-use chain
 | |
|     // have no other uses outside the phi update chain, and will be ignored.
 | |
|     InductionDescriptor &IndDes = Induction.second;
 | |
|     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
 | |
|     DeadInstructions.insert(Casts.begin(), Casts.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
 | |
| 
 | |
| Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
 | |
| 
 | |
| Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
 | |
|                                         Instruction::BinaryOps BinOp) {
 | |
|   // When unrolling and the VF is 1, we only need to add a simple scalar.
 | |
|   Type *Ty = Val->getType();
 | |
|   assert(!Ty->isVectorTy() && "Val must be a scalar");
 | |
| 
 | |
|   if (Ty->isFloatingPointTy()) {
 | |
|     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
 | |
| 
 | |
|     // Floating point operations had to be 'fast' to enable the unrolling.
 | |
|     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
 | |
|     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
 | |
|   }
 | |
|   Constant *C = ConstantInt::get(Ty, StartIdx);
 | |
|   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
 | |
| }
 | |
| 
 | |
| static void AddRuntimeUnrollDisableMetaData(Loop *L) {
 | |
|   SmallVector<Metadata *, 4> MDs;
 | |
|   // Reserve first location for self reference to the LoopID metadata node.
 | |
|   MDs.push_back(nullptr);
 | |
|   bool IsUnrollMetadata = false;
 | |
|   MDNode *LoopID = L->getLoopID();
 | |
|   if (LoopID) {
 | |
|     // First find existing loop unrolling disable metadata.
 | |
|     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|       if (MD) {
 | |
|         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|         IsUnrollMetadata =
 | |
|             S && S->getString().startswith("llvm.loop.unroll.disable");
 | |
|       }
 | |
|       MDs.push_back(LoopID->getOperand(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!IsUnrollMetadata) {
 | |
|     // Add runtime unroll disable metadata.
 | |
|     LLVMContext &Context = L->getHeader()->getContext();
 | |
|     SmallVector<Metadata *, 1> DisableOperands;
 | |
|     DisableOperands.push_back(
 | |
|         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
 | |
|     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | |
|     MDs.push_back(DisableNode);
 | |
|     MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|     // Set operand 0 to refer to the loop id itself.
 | |
|     NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
|     L->setLoopID(NewLoopID);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationPlanner::getDecisionAndClampRange(
 | |
|     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
 | |
|   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
 | |
|   bool PredicateAtRangeStart = Predicate(Range.Start);
 | |
| 
 | |
|   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
 | |
|     if (Predicate(TmpVF) != PredicateAtRangeStart) {
 | |
|       Range.End = TmpVF;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return PredicateAtRangeStart;
 | |
| }
 | |
| 
 | |
| /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
 | |
| /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
 | |
| /// of VF's starting at a given VF and extending it as much as possible. Each
 | |
| /// vectorization decision can potentially shorten this sub-range during
 | |
| /// buildVPlan().
 | |
| void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
 | |
|   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
 | |
|     VFRange SubRange = {VF, MaxVF + 1};
 | |
|     VPlans.push_back(buildVPlan(SubRange));
 | |
|     VF = SubRange.End;
 | |
|   }
 | |
| }
 | |
| 
 | |
| VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
 | |
|                                          VPlanPtr &Plan) {
 | |
|   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
 | |
| 
 | |
|   // Look for cached value.
 | |
|   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
 | |
|   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
 | |
|   if (ECEntryIt != EdgeMaskCache.end())
 | |
|     return ECEntryIt->second;
 | |
| 
 | |
|   VPValue *SrcMask = createBlockInMask(Src, Plan);
 | |
| 
 | |
|   // The terminator has to be a branch inst!
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
 | |
|   assert(BI && "Unexpected terminator found");
 | |
| 
 | |
|   if (!BI->isConditional())
 | |
|     return EdgeMaskCache[Edge] = SrcMask;
 | |
| 
 | |
|   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
 | |
|   assert(EdgeMask && "No Edge Mask found for condition");
 | |
| 
 | |
|   if (BI->getSuccessor(0) != Dst)
 | |
|     EdgeMask = Builder.createNot(EdgeMask);
 | |
| 
 | |
|   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
 | |
|     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
 | |
| 
 | |
|   return EdgeMaskCache[Edge] = EdgeMask;
 | |
| }
 | |
| 
 | |
| VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
 | |
|   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
 | |
| 
 | |
|   // Look for cached value.
 | |
|   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
 | |
|   if (BCEntryIt != BlockMaskCache.end())
 | |
|     return BCEntryIt->second;
 | |
| 
 | |
|   // All-one mask is modelled as no-mask following the convention for masked
 | |
|   // load/store/gather/scatter. Initialize BlockMask to no-mask.
 | |
|   VPValue *BlockMask = nullptr;
 | |
| 
 | |
|   // Loop incoming mask is all-one.
 | |
|   if (OrigLoop->getHeader() == BB)
 | |
|     return BlockMaskCache[BB] = BlockMask;
 | |
| 
 | |
|   // This is the block mask. We OR all incoming edges.
 | |
|   for (auto *Predecessor : predecessors(BB)) {
 | |
|     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
 | |
|     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
 | |
|       return BlockMaskCache[BB] = EdgeMask;
 | |
| 
 | |
|     if (!BlockMask) { // BlockMask has its initialized nullptr value.
 | |
|       BlockMask = EdgeMask;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BlockMask = Builder.createOr(BlockMask, EdgeMask);
 | |
|   }
 | |
| 
 | |
|   return BlockMaskCache[BB] = BlockMask;
 | |
| }
 | |
| 
 | |
| VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I,
 | |
|                                                            VFRange &Range) {
 | |
|   const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I);
 | |
|   if (!IG)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Now check if IG is relevant for VF's in the given range.
 | |
|   auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
 | |
|     return [=](unsigned VF) -> bool {
 | |
|       return (VF >= 2 && // Query is illegal for VF == 1
 | |
|               CM.getWideningDecision(I, VF) ==
 | |
|                   LoopVectorizationCostModel::CM_Interleave);
 | |
|     };
 | |
|   };
 | |
|   if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range))
 | |
|     return nullptr;
 | |
| 
 | |
|   // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
 | |
|   // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
 | |
|   // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
 | |
|   assert(I == IG->getInsertPos() &&
 | |
|          "Generating a recipe for an adjunct member of an interleave group");
 | |
| 
 | |
|   return new VPInterleaveRecipe(IG);
 | |
| }
 | |
| 
 | |
| VPWidenMemoryInstructionRecipe *
 | |
| VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
 | |
|                                   VPlanPtr &Plan) {
 | |
|   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto willWiden = [&](unsigned VF) -> bool {
 | |
|     if (VF == 1)
 | |
|       return false;
 | |
|     if (CM.isScalarAfterVectorization(I, VF) ||
 | |
|         CM.isProfitableToScalarize(I, VF))
 | |
|       return false;
 | |
|     LoopVectorizationCostModel::InstWidening Decision =
 | |
|         CM.getWideningDecision(I, VF);
 | |
|     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
 | |
|            "CM decision should be taken at this point.");
 | |
|     assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
 | |
|            "Interleave memory opportunity should be caught earlier.");
 | |
|     return Decision != LoopVectorizationCostModel::CM_Scalarize;
 | |
|   };
 | |
| 
 | |
|   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
 | |
|     return nullptr;
 | |
| 
 | |
|   VPValue *Mask = nullptr;
 | |
|   if (Legal->isMaskRequired(I))
 | |
|     Mask = createBlockInMask(I->getParent(), Plan);
 | |
| 
 | |
|   return new VPWidenMemoryInstructionRecipe(*I, Mask);
 | |
| }
 | |
| 
 | |
| VPWidenIntOrFpInductionRecipe *
 | |
| VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) {
 | |
|   if (PHINode *Phi = dyn_cast<PHINode>(I)) {
 | |
|     // Check if this is an integer or fp induction. If so, build the recipe that
 | |
|     // produces its scalar and vector values.
 | |
|     InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
 | |
|     if (II.getKind() == InductionDescriptor::IK_IntInduction ||
 | |
|         II.getKind() == InductionDescriptor::IK_FpInduction)
 | |
|       return new VPWidenIntOrFpInductionRecipe(Phi);
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Optimize the special case where the source is a constant integer
 | |
|   // induction variable. Notice that we can only optimize the 'trunc' case
 | |
|   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
 | |
|   // (c) other casts depend on pointer size.
 | |
| 
 | |
|   // Determine whether \p K is a truncation based on an induction variable that
 | |
|   // can be optimized.
 | |
|   auto isOptimizableIVTruncate =
 | |
|       [&](Instruction *K) -> std::function<bool(unsigned)> {
 | |
|     return
 | |
|         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
 | |
|   };
 | |
| 
 | |
|   if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange(
 | |
|                                isOptimizableIVTruncate(I), Range))
 | |
|     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
 | |
|                                              cast<TruncInst>(I));
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) {
 | |
|   PHINode *Phi = dyn_cast<PHINode>(I);
 | |
|   if (!Phi || Phi->getParent() == OrigLoop->getHeader())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We know that all PHIs in non-header blocks are converted into selects, so
 | |
|   // we don't have to worry about the insertion order and we can just use the
 | |
|   // builder. At this point we generate the predication tree. There may be
 | |
|   // duplications since this is a simple recursive scan, but future
 | |
|   // optimizations will clean it up.
 | |
| 
 | |
|   SmallVector<VPValue *, 2> Masks;
 | |
|   unsigned NumIncoming = Phi->getNumIncomingValues();
 | |
|   for (unsigned In = 0; In < NumIncoming; In++) {
 | |
|     VPValue *EdgeMask =
 | |
|       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
 | |
|     assert((EdgeMask || NumIncoming == 1) &&
 | |
|            "Multiple predecessors with one having a full mask");
 | |
|     if (EdgeMask)
 | |
|       Masks.push_back(EdgeMask);
 | |
|   }
 | |
|   return new VPBlendRecipe(Phi, Masks);
 | |
| }
 | |
| 
 | |
| bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
 | |
|                                  VFRange &Range) {
 | |
| 
 | |
|   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
 | |
|       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
 | |
| 
 | |
|   if (IsPredicated)
 | |
|     return false;
 | |
| 
 | |
|   auto IsVectorizableOpcode = [](unsigned Opcode) {
 | |
|     switch (Opcode) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::And:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::Br:
 | |
|     case Instruction::Call:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::Load:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::PHI:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::Store:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ZExt:
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   if (!IsVectorizableOpcode(I->getOpcode()))
 | |
|     return false;
 | |
| 
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
|     if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
 | |
|                ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   auto willWiden = [&](unsigned VF) -> bool {
 | |
|     if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
 | |
|                              CM.isProfitableToScalarize(I, VF)))
 | |
|       return false;
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
|       // The following case may be scalarized depending on the VF.
 | |
|       // The flag shows whether we use Intrinsic or a usual Call for vectorized
 | |
|       // version of the instruction.
 | |
|       // Is it beneficial to perform intrinsic call compared to lib call?
 | |
|       bool NeedToScalarize;
 | |
|       unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
 | |
|       bool UseVectorIntrinsic =
 | |
|           ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
 | |
|       return UseVectorIntrinsic || !NeedToScalarize;
 | |
|     }
 | |
|     if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
 | |
|       assert(CM.getWideningDecision(I, VF) ==
 | |
|                  LoopVectorizationCostModel::CM_Scalarize &&
 | |
|              "Memory widening decisions should have been taken care by now");
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
 | |
|     return false;
 | |
| 
 | |
|   // Success: widen this instruction. We optimize the common case where
 | |
|   // consecutive instructions can be represented by a single recipe.
 | |
|   if (!VPBB->empty()) {
 | |
|     VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
 | |
|     if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   VPBB->appendRecipe(new VPWidenRecipe(I));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| VPBasicBlock *VPRecipeBuilder::handleReplication(
 | |
|     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
 | |
|     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
 | |
|     VPlanPtr &Plan) {
 | |
|   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
 | |
|       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
 | |
|       Range);
 | |
| 
 | |
|   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
 | |
|       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
 | |
| 
 | |
|   auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
 | |
| 
 | |
|   // Find if I uses a predicated instruction. If so, it will use its scalar
 | |
|   // value. Avoid hoisting the insert-element which packs the scalar value into
 | |
|   // a vector value, as that happens iff all users use the vector value.
 | |
|   for (auto &Op : I->operands())
 | |
|     if (auto *PredInst = dyn_cast<Instruction>(Op))
 | |
|       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
 | |
|         PredInst2Recipe[PredInst]->setAlsoPack(false);
 | |
| 
 | |
|   // Finalize the recipe for Instr, first if it is not predicated.
 | |
|   if (!IsPredicated) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
 | |
|     VPBB->appendRecipe(Recipe);
 | |
|     return VPBB;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
 | |
|   assert(VPBB->getSuccessors().empty() &&
 | |
|          "VPBB has successors when handling predicated replication.");
 | |
|   // Record predicated instructions for above packing optimizations.
 | |
|   PredInst2Recipe[I] = Recipe;
 | |
|   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
 | |
|   VPBlockUtils::insertBlockAfter(Region, VPBB);
 | |
|   auto *RegSucc = new VPBasicBlock();
 | |
|   VPBlockUtils::insertBlockAfter(RegSucc, Region);
 | |
|   return RegSucc;
 | |
| }
 | |
| 
 | |
| VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
 | |
|                                                       VPRecipeBase *PredRecipe,
 | |
|                                                       VPlanPtr &Plan) {
 | |
|   // Instructions marked for predication are replicated and placed under an
 | |
|   // if-then construct to prevent side-effects.
 | |
| 
 | |
|   // Generate recipes to compute the block mask for this region.
 | |
|   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
 | |
| 
 | |
|   // Build the triangular if-then region.
 | |
|   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
 | |
|   assert(Instr->getParent() && "Predicated instruction not in any basic block");
 | |
|   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
 | |
|   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
 | |
|   auto *PHIRecipe =
 | |
|       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
 | |
|   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
 | |
|   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
 | |
|   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
 | |
| 
 | |
|   // Note: first set Entry as region entry and then connect successors starting
 | |
|   // from it in order, to propagate the "parent" of each VPBasicBlock.
 | |
|   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
 | |
|   VPBlockUtils::connectBlocks(Pred, Exit);
 | |
| 
 | |
|   return Region;
 | |
| }
 | |
| 
 | |
| bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range,
 | |
|                                         VPlanPtr &Plan, VPBasicBlock *VPBB) {
 | |
|   VPRecipeBase *Recipe = nullptr;
 | |
|   // Check if Instr should belong to an interleave memory recipe, or already
 | |
|   // does. In the latter case Instr is irrelevant.
 | |
|   if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
 | |
|     VPBB->appendRecipe(Recipe);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if Instr is a memory operation that should be widened.
 | |
|   if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
 | |
|     VPBB->appendRecipe(Recipe);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if Instr should form some PHI recipe.
 | |
|   if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
 | |
|     VPBB->appendRecipe(Recipe);
 | |
|     return true;
 | |
|   }
 | |
|   if ((Recipe = tryToBlend(Instr, Plan))) {
 | |
|     VPBB->appendRecipe(Recipe);
 | |
|     return true;
 | |
|   }
 | |
|   if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
 | |
|     VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if Instr is to be widened by a general VPWidenRecipe, after
 | |
|   // having first checked for specific widening recipes that deal with
 | |
|   // Interleave Groups, Inductions and Phi nodes.
 | |
|   if (tryToWiden(Instr, VPBB, Range))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
 | |
|                                                         unsigned MaxVF) {
 | |
|   assert(OrigLoop->empty() && "Inner loop expected.");
 | |
| 
 | |
|   // Collect conditions feeding internal conditional branches; they need to be
 | |
|   // represented in VPlan for it to model masking.
 | |
|   SmallPtrSet<Value *, 1> NeedDef;
 | |
| 
 | |
|   auto *Latch = OrigLoop->getLoopLatch();
 | |
|   for (BasicBlock *BB : OrigLoop->blocks()) {
 | |
|     if (BB == Latch)
 | |
|       continue;
 | |
|     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (Branch && Branch->isConditional())
 | |
|       NeedDef.insert(Branch->getCondition());
 | |
|   }
 | |
| 
 | |
|   // Collect instructions from the original loop that will become trivially dead
 | |
|   // in the vectorized loop. We don't need to vectorize these instructions. For
 | |
|   // example, original induction update instructions can become dead because we
 | |
|   // separately emit induction "steps" when generating code for the new loop.
 | |
|   // Similarly, we create a new latch condition when setting up the structure
 | |
|   // of the new loop, so the old one can become dead.
 | |
|   SmallPtrSet<Instruction *, 4> DeadInstructions;
 | |
|   collectTriviallyDeadInstructions(DeadInstructions);
 | |
| 
 | |
|   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
 | |
|     VFRange SubRange = {VF, MaxVF + 1};
 | |
|     VPlans.push_back(
 | |
|         buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions));
 | |
|     VF = SubRange.End;
 | |
|   }
 | |
| }
 | |
| 
 | |
| LoopVectorizationPlanner::VPlanPtr
 | |
| LoopVectorizationPlanner::buildVPlanWithVPRecipes(
 | |
|     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
 | |
|     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
 | |
|   // Hold a mapping from predicated instructions to their recipes, in order to
 | |
|   // fix their AlsoPack behavior if a user is determined to replicate and use a
 | |
|   // scalar instead of vector value.
 | |
|   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
 | |
| 
 | |
|   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
 | |
|   DenseMap<Instruction *, Instruction *> SinkAfterInverse;
 | |
| 
 | |
|   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
 | |
|   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
 | |
|   auto Plan = llvm::make_unique<VPlan>(VPBB);
 | |
| 
 | |
|   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder);
 | |
|   // Represent values that will have defs inside VPlan.
 | |
|   for (Value *V : NeedDef)
 | |
|     Plan->addVPValue(V);
 | |
| 
 | |
|   // Scan the body of the loop in a topological order to visit each basic block
 | |
|   // after having visited its predecessor basic blocks.
 | |
|   LoopBlocksDFS DFS(OrigLoop);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
 | |
|     // Relevant instructions from basic block BB will be grouped into VPRecipe
 | |
|     // ingredients and fill a new VPBasicBlock.
 | |
|     unsigned VPBBsForBB = 0;
 | |
|     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
 | |
|     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
 | |
|     VPBB = FirstVPBBForBB;
 | |
|     Builder.setInsertPoint(VPBB);
 | |
| 
 | |
|     std::vector<Instruction *> Ingredients;
 | |
| 
 | |
|     // Organize the ingredients to vectorize from current basic block in the
 | |
|     // right order.
 | |
|     for (Instruction &I : BB->instructionsWithoutDebug()) {
 | |
|       Instruction *Instr = &I;
 | |
| 
 | |
|       // First filter out irrelevant instructions, to ensure no recipes are
 | |
|       // built for them.
 | |
|       if (isa<BranchInst>(Instr) ||
 | |
|           DeadInstructions.find(Instr) != DeadInstructions.end())
 | |
|         continue;
 | |
| 
 | |
|       // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
 | |
|       // member of the IG, do not construct any Recipe for it.
 | |
|       const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr);
 | |
|       if (IG && Instr != IG->getInsertPos() &&
 | |
|           Range.Start >= 2 && // Query is illegal for VF == 1
 | |
|           CM.getWideningDecision(Instr, Range.Start) ==
 | |
|               LoopVectorizationCostModel::CM_Interleave) {
 | |
|         auto SinkCandidate = SinkAfterInverse.find(Instr);
 | |
|         if (SinkCandidate != SinkAfterInverse.end())
 | |
|           Ingredients.push_back(SinkCandidate->second);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Move instructions to handle first-order recurrences, step 1: avoid
 | |
|       // handling this instruction until after we've handled the instruction it
 | |
|       // should follow.
 | |
|       auto SAIt = SinkAfter.find(Instr);
 | |
|       if (SAIt != SinkAfter.end()) {
 | |
|         LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after"
 | |
|                           << *SAIt->second
 | |
|                           << " to vectorize a 1st order recurrence.\n");
 | |
|         SinkAfterInverse[SAIt->second] = Instr;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Ingredients.push_back(Instr);
 | |
| 
 | |
|       // Move instructions to handle first-order recurrences, step 2: push the
 | |
|       // instruction to be sunk at its insertion point.
 | |
|       auto SAInvIt = SinkAfterInverse.find(Instr);
 | |
|       if (SAInvIt != SinkAfterInverse.end())
 | |
|         Ingredients.push_back(SAInvIt->second);
 | |
|     }
 | |
| 
 | |
|     // Introduce each ingredient into VPlan.
 | |
|     for (Instruction *Instr : Ingredients) {
 | |
|       if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB))
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, if all widening options failed, Instruction is to be
 | |
|       // replicated. This may create a successor for VPBB.
 | |
|       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
 | |
|           Instr, Range, VPBB, PredInst2Recipe, Plan);
 | |
|       if (NextVPBB != VPBB) {
 | |
|         VPBB = NextVPBB;
 | |
|         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
 | |
|                                     : "");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
 | |
|   // may also be empty, such as the last one VPBB, reflecting original
 | |
|   // basic-blocks with no recipes.
 | |
|   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
 | |
|   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
 | |
|   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
 | |
|   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
 | |
|   delete PreEntry;
 | |
| 
 | |
|   std::string PlanName;
 | |
|   raw_string_ostream RSO(PlanName);
 | |
|   unsigned VF = Range.Start;
 | |
|   Plan->addVF(VF);
 | |
|   RSO << "Initial VPlan for VF={" << VF;
 | |
|   for (VF *= 2; VF < Range.End; VF *= 2) {
 | |
|     Plan->addVF(VF);
 | |
|     RSO << "," << VF;
 | |
|   }
 | |
|   RSO << "},UF>=1";
 | |
|   RSO.flush();
 | |
|   Plan->setName(PlanName);
 | |
| 
 | |
|   return Plan;
 | |
| }
 | |
| 
 | |
| LoopVectorizationPlanner::VPlanPtr
 | |
| LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
 | |
|   // Outer loop handling: They may require CFG and instruction level
 | |
|   // transformations before even evaluating whether vectorization is profitable.
 | |
|   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
 | |
|   // the vectorization pipeline.
 | |
|   assert(!OrigLoop->empty());
 | |
|   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
 | |
| 
 | |
|   // Create new empty VPlan
 | |
|   auto Plan = llvm::make_unique<VPlan>();
 | |
| 
 | |
|   // Build hierarchical CFG
 | |
|   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
 | |
|   HCFGBuilder.buildHierarchicalCFG();
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 1> DeadInstructions;
 | |
|   VPlanHCFGTransforms::VPInstructionsToVPRecipes(
 | |
|       Plan, Legal->getInductionVars(), DeadInstructions);
 | |
| 
 | |
|   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
 | |
|     Plan->addVF(VF);
 | |
| 
 | |
|   return Plan;
 | |
| }
 | |
| 
 | |
| Value* LoopVectorizationPlanner::VPCallbackILV::
 | |
| getOrCreateVectorValues(Value *V, unsigned Part) {
 | |
|       return ILV.getOrCreateVectorValue(V, Part);
 | |
| }
 | |
| 
 | |
| void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n"
 | |
|     << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
 | |
|   IG->getInsertPos()->printAsOperand(O, false);
 | |
|   O << "\\l\"";
 | |
|   for (unsigned i = 0; i < IG->getFactor(); ++i)
 | |
|     if (Instruction *I = IG->getMember(i))
 | |
|       O << " +\n"
 | |
|         << Indent << "\"  " << VPlanIngredient(I) << " " << i << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPWidenRecipe::execute(VPTransformState &State) {
 | |
|   for (auto &Instr : make_range(Begin, End))
 | |
|     State.ILV->widenInstruction(Instr);
 | |
| }
 | |
| 
 | |
| void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
 | |
|   assert(!State.Instance && "Int or FP induction being replicated.");
 | |
|   State.ILV->widenIntOrFpInduction(IV, Trunc);
 | |
| }
 | |
| 
 | |
| void VPWidenPHIRecipe::execute(VPTransformState &State) {
 | |
|   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
 | |
| }
 | |
| 
 | |
| void VPBlendRecipe::execute(VPTransformState &State) {
 | |
|   State.ILV->setDebugLocFromInst(State.Builder, Phi);
 | |
|   // We know that all PHIs in non-header blocks are converted into
 | |
|   // selects, so we don't have to worry about the insertion order and we
 | |
|   // can just use the builder.
 | |
|   // At this point we generate the predication tree. There may be
 | |
|   // duplications since this is a simple recursive scan, but future
 | |
|   // optimizations will clean it up.
 | |
| 
 | |
|   unsigned NumIncoming = Phi->getNumIncomingValues();
 | |
| 
 | |
|   assert((User || NumIncoming == 1) &&
 | |
|          "Multiple predecessors with predecessors having a full mask");
 | |
|   // Generate a sequence of selects of the form:
 | |
|   // SELECT(Mask3, In3,
 | |
|   //      SELECT(Mask2, In2,
 | |
|   //                   ( ...)))
 | |
|   InnerLoopVectorizer::VectorParts Entry(State.UF);
 | |
|   for (unsigned In = 0; In < NumIncoming; ++In) {
 | |
|     for (unsigned Part = 0; Part < State.UF; ++Part) {
 | |
|       // We might have single edge PHIs (blocks) - use an identity
 | |
|       // 'select' for the first PHI operand.
 | |
|       Value *In0 =
 | |
|           State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
 | |
|       if (In == 0)
 | |
|         Entry[Part] = In0; // Initialize with the first incoming value.
 | |
|       else {
 | |
|         // Select between the current value and the previous incoming edge
 | |
|         // based on the incoming mask.
 | |
|         Value *Cond = State.get(User->getOperand(In), Part);
 | |
|         Entry[Part] =
 | |
|             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   for (unsigned Part = 0; Part < State.UF; ++Part)
 | |
|     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
 | |
| }
 | |
| 
 | |
| void VPInterleaveRecipe::execute(VPTransformState &State) {
 | |
|   assert(!State.Instance && "Interleave group being replicated.");
 | |
|   State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
 | |
| }
 | |
| 
 | |
| void VPReplicateRecipe::execute(VPTransformState &State) {
 | |
|   if (State.Instance) { // Generate a single instance.
 | |
|     State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
 | |
|     // Insert scalar instance packing it into a vector.
 | |
|     if (AlsoPack && State.VF > 1) {
 | |
|       // If we're constructing lane 0, initialize to start from undef.
 | |
|       if (State.Instance->Lane == 0) {
 | |
|         Value *Undef =
 | |
|             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
 | |
|         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
 | |
|       }
 | |
|       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Generate scalar instances for all VF lanes of all UF parts, unless the
 | |
|   // instruction is uniform inwhich case generate only the first lane for each
 | |
|   // of the UF parts.
 | |
|   unsigned EndLane = IsUniform ? 1 : State.VF;
 | |
|   for (unsigned Part = 0; Part < State.UF; ++Part)
 | |
|     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
 | |
|       State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
 | |
| }
 | |
| 
 | |
| void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
 | |
|   assert(State.Instance && "Branch on Mask works only on single instance.");
 | |
| 
 | |
|   unsigned Part = State.Instance->Part;
 | |
|   unsigned Lane = State.Instance->Lane;
 | |
| 
 | |
|   Value *ConditionBit = nullptr;
 | |
|   if (!User) // Block in mask is all-one.
 | |
|     ConditionBit = State.Builder.getTrue();
 | |
|   else {
 | |
|     VPValue *BlockInMask = User->getOperand(0);
 | |
|     ConditionBit = State.get(BlockInMask, Part);
 | |
|     if (ConditionBit->getType()->isVectorTy())
 | |
|       ConditionBit = State.Builder.CreateExtractElement(
 | |
|           ConditionBit, State.Builder.getInt32(Lane));
 | |
|   }
 | |
| 
 | |
|   // Replace the temporary unreachable terminator with a new conditional branch,
 | |
|   // whose two destinations will be set later when they are created.
 | |
|   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
 | |
|   assert(isa<UnreachableInst>(CurrentTerminator) &&
 | |
|          "Expected to replace unreachable terminator with conditional branch.");
 | |
|   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
 | |
|   CondBr->setSuccessor(0, nullptr);
 | |
|   ReplaceInstWithInst(CurrentTerminator, CondBr);
 | |
| }
 | |
| 
 | |
| void VPPredInstPHIRecipe::execute(VPTransformState &State) {
 | |
|   assert(State.Instance && "Predicated instruction PHI works per instance.");
 | |
|   Instruction *ScalarPredInst = cast<Instruction>(
 | |
|       State.ValueMap.getScalarValue(PredInst, *State.Instance));
 | |
|   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
 | |
|   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
 | |
|   assert(PredicatingBB && "Predicated block has no single predecessor.");
 | |
| 
 | |
|   // By current pack/unpack logic we need to generate only a single phi node: if
 | |
|   // a vector value for the predicated instruction exists at this point it means
 | |
|   // the instruction has vector users only, and a phi for the vector value is
 | |
|   // needed. In this case the recipe of the predicated instruction is marked to
 | |
|   // also do that packing, thereby "hoisting" the insert-element sequence.
 | |
|   // Otherwise, a phi node for the scalar value is needed.
 | |
|   unsigned Part = State.Instance->Part;
 | |
|   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
 | |
|     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
 | |
|     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
 | |
|     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
 | |
|     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
 | |
|     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
 | |
|     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
 | |
|   } else {
 | |
|     Type *PredInstType = PredInst->getType();
 | |
|     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
 | |
|     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
 | |
|     Phi->addIncoming(ScalarPredInst, PredicatedBB);
 | |
|     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
 | |
|   if (!User)
 | |
|     return State.ILV->vectorizeMemoryInstruction(&Instr);
 | |
| 
 | |
|   // Last (and currently only) operand is a mask.
 | |
|   InnerLoopVectorizer::VectorParts MaskValues(State.UF);
 | |
|   VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
 | |
|   for (unsigned Part = 0; Part < State.UF; ++Part)
 | |
|     MaskValues[Part] = State.get(Mask, Part);
 | |
|   State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
 | |
| }
 | |
| 
 | |
| // Process the loop in the VPlan-native vectorization path. This path builds
 | |
| // VPlan upfront in the vectorization pipeline, which allows to apply
 | |
| // VPlan-to-VPlan transformations from the very beginning without modifying the
 | |
| // input LLVM IR.
 | |
| static bool processLoopInVPlanNativePath(
 | |
|     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
 | |
|     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
 | |
|     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
 | |
|     OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) {
 | |
| 
 | |
|   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
 | |
|   Function *F = L->getHeader()->getParent();
 | |
|   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
 | |
|   LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
 | |
|                                 &Hints, IAI);
 | |
|   // Use the planner for outer loop vectorization.
 | |
|   // TODO: CM is not used at this point inside the planner. Turn CM into an
 | |
|   // optional argument if we don't need it in the future.
 | |
|   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM);
 | |
| 
 | |
|   // Get user vectorization factor.
 | |
|   unsigned UserVF = Hints.getWidth();
 | |
| 
 | |
|   // Check the function attributes to find out if this function should be
 | |
|   // optimized for size.
 | |
|   bool OptForSize =
 | |
|       Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
 | |
| 
 | |
|   // Plan how to best vectorize, return the best VF and its cost.
 | |
|   VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF);
 | |
| 
 | |
|   // If we are stress testing VPlan builds, do not attempt to generate vector
 | |
|   // code.
 | |
|   if (VPlanBuildStressTest)
 | |
|     return false;
 | |
| 
 | |
|   LVP.setBestPlan(VF.Width, 1);
 | |
| 
 | |
|   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL,
 | |
|                          &CM);
 | |
|   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
 | |
|                     << L->getHeader()->getParent()->getName() << "\"\n");
 | |
|   LVP.executePlan(LB, DT);
 | |
| 
 | |
|   // Mark the loop as already vectorized to avoid vectorizing again.
 | |
|   Hints.setAlreadyVectorized();
 | |
| 
 | |
|   LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizePass::processLoop(Loop *L) {
 | |
|   assert((EnableVPlanNativePath || L->empty()) &&
 | |
|          "VPlan-native path is not enabled. Only process inner loops.");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   const std::string DebugLocStr = getDebugLocString(L);
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
 | |
|                     << L->getHeader()->getParent()->getName() << "\" from "
 | |
|                     << DebugLocStr << "\n");
 | |
| 
 | |
|   LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
 | |
| 
 | |
|   LLVM_DEBUG(
 | |
|       dbgs() << "LV: Loop hints:"
 | |
|              << " force="
 | |
|              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
 | |
|                      ? "disabled"
 | |
|                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
 | |
|                             ? "enabled"
 | |
|                             : "?"))
 | |
|              << " width=" << Hints.getWidth()
 | |
|              << " unroll=" << Hints.getInterleave() << "\n");
 | |
| 
 | |
|   // Function containing loop
 | |
|   Function *F = L->getHeader()->getParent();
 | |
| 
 | |
|   // Looking at the diagnostic output is the only way to determine if a loop
 | |
|   // was vectorized (other than looking at the IR or machine code), so it
 | |
|   // is important to generate an optimization remark for each loop. Most of
 | |
|   // these messages are generated as OptimizationRemarkAnalysis. Remarks
 | |
|   // generated as OptimizationRemark and OptimizationRemarkMissed are
 | |
|   // less verbose reporting vectorized loops and unvectorized loops that may
 | |
|   // benefit from vectorization, respectively.
 | |
| 
 | |
|   if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   PredicatedScalarEvolution PSE(*SE, *L);
 | |
| 
 | |
|   // Check if it is legal to vectorize the loop.
 | |
|   LoopVectorizationRequirements Requirements(*ORE);
 | |
|   LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE,
 | |
|                                 &Requirements, &Hints, DB, AC);
 | |
|   if (!LVL.canVectorize(EnableVPlanNativePath)) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
 | |
|     emitMissedWarning(F, L, Hints, ORE);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check the function attributes to find out if this function should be
 | |
|   // optimized for size.
 | |
|   bool OptForSize =
 | |
|       Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
 | |
| 
 | |
|   // Entrance to the VPlan-native vectorization path. Outer loops are processed
 | |
|   // here. They may require CFG and instruction level transformations before
 | |
|   // even evaluating whether vectorization is profitable. Since we cannot modify
 | |
|   // the incoming IR, we need to build VPlan upfront in the vectorization
 | |
|   // pipeline.
 | |
|   if (!L->empty())
 | |
|     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
 | |
|                                         ORE, Hints);
 | |
| 
 | |
|   assert(L->empty() && "Inner loop expected.");
 | |
|   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
 | |
|   // count by optimizing for size, to minimize overheads.
 | |
|   // Prefer constant trip counts over profile data, over upper bound estimate.
 | |
|   unsigned ExpectedTC = 0;
 | |
|   bool HasExpectedTC = false;
 | |
|   if (const SCEVConstant *ConstExits =
 | |
|       dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
 | |
|     const APInt &ExitsCount = ConstExits->getAPInt();
 | |
|     // We are interested in small values for ExpectedTC. Skip over those that
 | |
|     // can't fit an unsigned.
 | |
|     if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
 | |
|       ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
 | |
|       HasExpectedTC = true;
 | |
|     }
 | |
|   }
 | |
|   // ExpectedTC may be large because it's bound by a variable. Check
 | |
|   // profiling information to validate we should vectorize.
 | |
|   if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
 | |
|     auto EstimatedTC = getLoopEstimatedTripCount(L);
 | |
|     if (EstimatedTC) {
 | |
|       ExpectedTC = *EstimatedTC;
 | |
|       HasExpectedTC = true;
 | |
|     }
 | |
|   }
 | |
|   if (!HasExpectedTC) {
 | |
|     ExpectedTC = SE->getSmallConstantMaxTripCount(L);
 | |
|     HasExpectedTC = (ExpectedTC > 0);
 | |
|   }
 | |
| 
 | |
|   if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
 | |
|                       << "This loop is worth vectorizing only if no scalar "
 | |
|                       << "iteration overheads are incurred.");
 | |
|     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
 | |
|       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
 | |
|     else {
 | |
|       LLVM_DEBUG(dbgs() << "\n");
 | |
|       // Loops with a very small trip count are considered for vectorization
 | |
|       // under OptForSize, thereby making sure the cost of their loop body is
 | |
|       // dominant, free of runtime guards and scalar iteration overheads.
 | |
|       OptForSize = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check the function attributes to see if implicit floats are allowed.
 | |
|   // FIXME: This check doesn't seem possibly correct -- what if the loop is
 | |
|   // an integer loop and the vector instructions selected are purely integer
 | |
|   // vector instructions?
 | |
|   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
 | |
|                          "attribute is used.\n");
 | |
|     ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(),
 | |
|                                      "NoImplicitFloat", L)
 | |
|               << "loop not vectorized due to NoImplicitFloat attribute");
 | |
|     emitMissedWarning(F, L, Hints, ORE);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check if the target supports potentially unsafe FP vectorization.
 | |
|   // FIXME: Add a check for the type of safety issue (denormal, signaling)
 | |
|   // for the target we're vectorizing for, to make sure none of the
 | |
|   // additional fp-math flags can help.
 | |
|   if (Hints.isPotentiallyUnsafe() &&
 | |
|       TTI->isFPVectorizationPotentiallyUnsafe()) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
 | |
|     ORE->emit(
 | |
|         createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
 | |
|         << "loop not vectorized due to unsafe FP support.");
 | |
|     emitMissedWarning(F, L, Hints, ORE);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
 | |
|   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
 | |
| 
 | |
|   // If an override option has been passed in for interleaved accesses, use it.
 | |
|   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
 | |
|     UseInterleaved = EnableInterleavedMemAccesses;
 | |
| 
 | |
|   // Analyze interleaved memory accesses.
 | |
|   if (UseInterleaved) {
 | |
|     IAI.analyzeInterleaving();
 | |
|   }
 | |
| 
 | |
|   // Use the cost model.
 | |
|   LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
 | |
|                                 &Hints, IAI);
 | |
|   CM.collectValuesToIgnore();
 | |
| 
 | |
|   // Use the planner for vectorization.
 | |
|   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
 | |
| 
 | |
|   // Get user vectorization factor.
 | |
|   unsigned UserVF = Hints.getWidth();
 | |
| 
 | |
|   // Plan how to best vectorize, return the best VF and its cost.
 | |
|   VectorizationFactor VF = LVP.plan(OptForSize, UserVF);
 | |
| 
 | |
|   // Select the interleave count.
 | |
|   unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
 | |
| 
 | |
|   // Get user interleave count.
 | |
|   unsigned UserIC = Hints.getInterleave();
 | |
| 
 | |
|   // Identify the diagnostic messages that should be produced.
 | |
|   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
 | |
|   bool VectorizeLoop = true, InterleaveLoop = true;
 | |
|   if (Requirements.doesNotMeet(F, L, Hints)) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
 | |
|                          "requirements.\n");
 | |
|     emitMissedWarning(F, L, Hints, ORE);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (VF.Width == 1) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
 | |
|     VecDiagMsg = std::make_pair(
 | |
|         "VectorizationNotBeneficial",
 | |
|         "the cost-model indicates that vectorization is not beneficial");
 | |
|     VectorizeLoop = false;
 | |
|   }
 | |
| 
 | |
|   if (IC == 1 && UserIC <= 1) {
 | |
|     // Tell the user interleaving is not beneficial.
 | |
|     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
 | |
|     IntDiagMsg = std::make_pair(
 | |
|         "InterleavingNotBeneficial",
 | |
|         "the cost-model indicates that interleaving is not beneficial");
 | |
|     InterleaveLoop = false;
 | |
|     if (UserIC == 1) {
 | |
|       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
 | |
|       IntDiagMsg.second +=
 | |
|           " and is explicitly disabled or interleave count is set to 1";
 | |
|     }
 | |
|   } else if (IC > 1 && UserIC == 1) {
 | |
|     // Tell the user interleaving is beneficial, but it explicitly disabled.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
 | |
|     IntDiagMsg = std::make_pair(
 | |
|         "InterleavingBeneficialButDisabled",
 | |
|         "the cost-model indicates that interleaving is beneficial "
 | |
|         "but is explicitly disabled or interleave count is set to 1");
 | |
|     InterleaveLoop = false;
 | |
|   }
 | |
| 
 | |
|   // Override IC if user provided an interleave count.
 | |
|   IC = UserIC > 0 ? UserIC : IC;
 | |
| 
 | |
|   // Emit diagnostic messages, if any.
 | |
|   const char *VAPassName = Hints.vectorizeAnalysisPassName();
 | |
|   if (!VectorizeLoop && !InterleaveLoop) {
 | |
|     // Do not vectorize or interleaving the loop.
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
 | |
|                                       L->getStartLoc(), L->getHeader())
 | |
|              << VecDiagMsg.second;
 | |
|     });
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
 | |
|                                       L->getStartLoc(), L->getHeader())
 | |
|              << IntDiagMsg.second;
 | |
|     });
 | |
|     return false;
 | |
|   } else if (!VectorizeLoop && InterleaveLoop) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
 | |
|                                         L->getStartLoc(), L->getHeader())
 | |
|              << VecDiagMsg.second;
 | |
|     });
 | |
|   } else if (VectorizeLoop && !InterleaveLoop) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
 | |
|                       << ") in " << DebugLocStr << '\n');
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
 | |
|                                         L->getStartLoc(), L->getHeader())
 | |
|              << IntDiagMsg.second;
 | |
|     });
 | |
|   } else if (VectorizeLoop && InterleaveLoop) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
 | |
|                       << ") in " << DebugLocStr << '\n');
 | |
|     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
 | |
|   }
 | |
| 
 | |
|   LVP.setBestPlan(VF.Width, IC);
 | |
| 
 | |
|   using namespace ore;
 | |
| 
 | |
|   if (!VectorizeLoop) {
 | |
|     assert(IC > 1 && "interleave count should not be 1 or 0");
 | |
|     // If we decided that it is not legal to vectorize the loop, then
 | |
|     // interleave it.
 | |
|     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
 | |
|                                &CM);
 | |
|     LVP.executePlan(Unroller, DT);
 | |
| 
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
 | |
|                                 L->getHeader())
 | |
|              << "interleaved loop (interleaved count: "
 | |
|              << NV("InterleaveCount", IC) << ")";
 | |
|     });
 | |
|   } else {
 | |
|     // If we decided that it is *legal* to vectorize the loop, then do it.
 | |
|     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
 | |
|                            &LVL, &CM);
 | |
|     LVP.executePlan(LB, DT);
 | |
|     ++LoopsVectorized;
 | |
| 
 | |
|     // Add metadata to disable runtime unrolling a scalar loop when there are
 | |
|     // no runtime checks about strides and memory. A scalar loop that is
 | |
|     // rarely used is not worth unrolling.
 | |
|     if (!LB.areSafetyChecksAdded())
 | |
|       AddRuntimeUnrollDisableMetaData(L);
 | |
| 
 | |
|     // Report the vectorization decision.
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
 | |
|                                 L->getHeader())
 | |
|              << "vectorized loop (vectorization width: "
 | |
|              << NV("VectorizationFactor", VF.Width)
 | |
|              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // Mark the loop as already vectorized to avoid vectorizing again.
 | |
|   Hints.setAlreadyVectorized();
 | |
| 
 | |
|   LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizePass::runImpl(
 | |
|     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
 | |
|     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
 | |
|     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
 | |
|     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
 | |
|     OptimizationRemarkEmitter &ORE_) {
 | |
|   SE = &SE_;
 | |
|   LI = &LI_;
 | |
|   TTI = &TTI_;
 | |
|   DT = &DT_;
 | |
|   BFI = &BFI_;
 | |
|   TLI = TLI_;
 | |
|   AA = &AA_;
 | |
|   AC = &AC_;
 | |
|   GetLAA = &GetLAA_;
 | |
|   DB = &DB_;
 | |
|   ORE = &ORE_;
 | |
| 
 | |
|   // Don't attempt if
 | |
|   // 1. the target claims to have no vector registers, and
 | |
|   // 2. interleaving won't help ILP.
 | |
|   //
 | |
|   // The second condition is necessary because, even if the target has no
 | |
|   // vector registers, loop vectorization may still enable scalar
 | |
|   // interleaving.
 | |
|   if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // The vectorizer requires loops to be in simplified form.
 | |
|   // Since simplification may add new inner loops, it has to run before the
 | |
|   // legality and profitability checks. This means running the loop vectorizer
 | |
|   // will simplify all loops, regardless of whether anything end up being
 | |
|   // vectorized.
 | |
|   for (auto &L : *LI)
 | |
|     Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
 | |
| 
 | |
|   // Build up a worklist of inner-loops to vectorize. This is necessary as
 | |
|   // the act of vectorizing or partially unrolling a loop creates new loops
 | |
|   // and can invalidate iterators across the loops.
 | |
|   SmallVector<Loop *, 8> Worklist;
 | |
| 
 | |
|   for (Loop *L : *LI)
 | |
|     collectSupportedLoops(*L, LI, ORE, Worklist);
 | |
| 
 | |
|   LoopsAnalyzed += Worklist.size();
 | |
| 
 | |
|   // Now walk the identified inner loops.
 | |
|   while (!Worklist.empty()) {
 | |
|     Loop *L = Worklist.pop_back_val();
 | |
| 
 | |
|     // For the inner loops we actually process, form LCSSA to simplify the
 | |
|     // transform.
 | |
|     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
 | |
| 
 | |
|     Changed |= processLoop(L);
 | |
|   }
 | |
| 
 | |
|   // Process each loop nest in the function.
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LoopVectorizePass::run(Function &F,
 | |
|                                          FunctionAnalysisManager &AM) {
 | |
|     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
 | |
|     auto &LI = AM.getResult<LoopAnalysis>(F);
 | |
|     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
 | |
|     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
 | |
|     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | |
|     auto &AA = AM.getResult<AAManager>(F);
 | |
|     auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | |
|     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
 | |
|     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | |
| 
 | |
|     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
 | |
|     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
 | |
|         [&](Loop &L) -> const LoopAccessInfo & {
 | |
|       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
 | |
|       return LAM.getResult<LoopAccessAnalysis>(L, AR);
 | |
|     };
 | |
|     bool Changed =
 | |
|         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
 | |
|     if (!Changed)
 | |
|       return PreservedAnalyses::all();
 | |
|     PreservedAnalyses PA;
 | |
| 
 | |
|     // We currently do not preserve loopinfo/dominator analyses with outer loop
 | |
|     // vectorization. Until this is addressed, mark these analyses as preserved
 | |
|     // only for non-VPlan-native path.
 | |
|     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
 | |
|     if (!EnableVPlanNativePath) {
 | |
|       PA.preserve<LoopAnalysis>();
 | |
|       PA.preserve<DominatorTreeAnalysis>();
 | |
|     }
 | |
|     PA.preserve<BasicAA>();
 | |
|     PA.preserve<GlobalsAA>();
 | |
|     return PA;
 | |
| }
 |