1449 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1449 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This file contains the declarations of the Vectorization Plan base classes:
 | |
| /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
 | |
| ///    VPBlockBase, together implementing a Hierarchical CFG;
 | |
| /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
 | |
| ///    treated as proper graphs for generic algorithms;
 | |
| /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
 | |
| ///    within VPBasicBlocks;
 | |
| /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
 | |
| ///    instruction;
 | |
| /// 5. The VPlan class holding a candidate for vectorization;
 | |
| /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
 | |
| /// These are documented in docs/VectorizationPlan.rst.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
 | |
| #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
 | |
| 
 | |
| #include "VPlanLoopInfo.h"
 | |
| #include "VPlanValue.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/ADT/ilist.h"
 | |
| #include "llvm/ADT/ilist_node.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <map>
 | |
| #include <string>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class LoopVectorizationLegality;
 | |
| class LoopVectorizationCostModel;
 | |
| class BasicBlock;
 | |
| class DominatorTree;
 | |
| class InnerLoopVectorizer;
 | |
| class InterleaveGroup;
 | |
| class raw_ostream;
 | |
| class Value;
 | |
| class VPBasicBlock;
 | |
| class VPRegionBlock;
 | |
| class VPlan;
 | |
| 
 | |
| /// A range of powers-of-2 vectorization factors with fixed start and
 | |
| /// adjustable end. The range includes start and excludes end, e.g.,:
 | |
| /// [1, 9) = {1, 2, 4, 8}
 | |
| struct VFRange {
 | |
|   // A power of 2.
 | |
|   const unsigned Start;
 | |
| 
 | |
|   // Need not be a power of 2. If End <= Start range is empty.
 | |
|   unsigned End;
 | |
| };
 | |
| 
 | |
| using VPlanPtr = std::unique_ptr<VPlan>;
 | |
| 
 | |
| /// In what follows, the term "input IR" refers to code that is fed into the
 | |
| /// vectorizer whereas the term "output IR" refers to code that is generated by
 | |
| /// the vectorizer.
 | |
| 
 | |
| /// VPIteration represents a single point in the iteration space of the output
 | |
| /// (vectorized and/or unrolled) IR loop.
 | |
| struct VPIteration {
 | |
|   /// in [0..UF)
 | |
|   unsigned Part;
 | |
| 
 | |
|   /// in [0..VF)
 | |
|   unsigned Lane;
 | |
| };
 | |
| 
 | |
| /// This is a helper struct for maintaining vectorization state. It's used for
 | |
| /// mapping values from the original loop to their corresponding values in
 | |
| /// the new loop. Two mappings are maintained: one for vectorized values and
 | |
| /// one for scalarized values. Vectorized values are represented with UF
 | |
| /// vector values in the new loop, and scalarized values are represented with
 | |
| /// UF x VF scalar values in the new loop. UF and VF are the unroll and
 | |
| /// vectorization factors, respectively.
 | |
| ///
 | |
| /// Entries can be added to either map with setVectorValue and setScalarValue,
 | |
| /// which assert that an entry was not already added before. If an entry is to
 | |
| /// replace an existing one, call resetVectorValue and resetScalarValue. This is
 | |
| /// currently needed to modify the mapped values during "fix-up" operations that
 | |
| /// occur once the first phase of widening is complete. These operations include
 | |
| /// type truncation and the second phase of recurrence widening.
 | |
| ///
 | |
| /// Entries from either map can be retrieved using the getVectorValue and
 | |
| /// getScalarValue functions, which assert that the desired value exists.
 | |
| struct VectorizerValueMap {
 | |
|   friend struct VPTransformState;
 | |
| 
 | |
| private:
 | |
|   /// The unroll factor. Each entry in the vector map contains UF vector values.
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// The vectorization factor. Each entry in the scalar map contains UF x VF
 | |
|   /// scalar values.
 | |
|   unsigned VF;
 | |
| 
 | |
|   /// The vector and scalar map storage. We use std::map and not DenseMap
 | |
|   /// because insertions to DenseMap invalidate its iterators.
 | |
|   using VectorParts = SmallVector<Value *, 2>;
 | |
|   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
 | |
|   std::map<Value *, VectorParts> VectorMapStorage;
 | |
|   std::map<Value *, ScalarParts> ScalarMapStorage;
 | |
| 
 | |
| public:
 | |
|   /// Construct an empty map with the given unroll and vectorization factors.
 | |
|   VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
 | |
| 
 | |
|   /// \return True if the map has any vector entry for \p Key.
 | |
|   bool hasAnyVectorValue(Value *Key) const {
 | |
|     return VectorMapStorage.count(Key);
 | |
|   }
 | |
| 
 | |
|   /// \return True if the map has a vector entry for \p Key and \p Part.
 | |
|   bool hasVectorValue(Value *Key, unsigned Part) const {
 | |
|     assert(Part < UF && "Queried Vector Part is too large.");
 | |
|     if (!hasAnyVectorValue(Key))
 | |
|       return false;
 | |
|     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
 | |
|     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
 | |
|     return Entry[Part] != nullptr;
 | |
|   }
 | |
| 
 | |
|   /// \return True if the map has any scalar entry for \p Key.
 | |
|   bool hasAnyScalarValue(Value *Key) const {
 | |
|     return ScalarMapStorage.count(Key);
 | |
|   }
 | |
| 
 | |
|   /// \return True if the map has a scalar entry for \p Key and \p Instance.
 | |
|   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
 | |
|     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
 | |
|     assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
 | |
|     if (!hasAnyScalarValue(Key))
 | |
|       return false;
 | |
|     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
 | |
|     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
 | |
|     assert(Entry[Instance.Part].size() == VF &&
 | |
|            "ScalarParts has wrong dimensions.");
 | |
|     return Entry[Instance.Part][Instance.Lane] != nullptr;
 | |
|   }
 | |
| 
 | |
|   /// Retrieve the existing vector value that corresponds to \p Key and
 | |
|   /// \p Part.
 | |
|   Value *getVectorValue(Value *Key, unsigned Part) {
 | |
|     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
 | |
|     return VectorMapStorage[Key][Part];
 | |
|   }
 | |
| 
 | |
|   /// Retrieve the existing scalar value that corresponds to \p Key and
 | |
|   /// \p Instance.
 | |
|   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
 | |
|     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
 | |
|     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
 | |
|   }
 | |
| 
 | |
|   /// Set a vector value associated with \p Key and \p Part. Assumes such a
 | |
|   /// value is not already set. If it is, use resetVectorValue() instead.
 | |
|   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
 | |
|     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
 | |
|     if (!VectorMapStorage.count(Key)) {
 | |
|       VectorParts Entry(UF);
 | |
|       VectorMapStorage[Key] = Entry;
 | |
|     }
 | |
|     VectorMapStorage[Key][Part] = Vector;
 | |
|   }
 | |
| 
 | |
|   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
 | |
|   /// value is not already set.
 | |
|   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
 | |
|     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
 | |
|     if (!ScalarMapStorage.count(Key)) {
 | |
|       ScalarParts Entry(UF);
 | |
|       // TODO: Consider storing uniform values only per-part, as they occupy
 | |
|       //       lane 0 only, keeping the other VF-1 redundant entries null.
 | |
|       for (unsigned Part = 0; Part < UF; ++Part)
 | |
|         Entry[Part].resize(VF, nullptr);
 | |
|       ScalarMapStorage[Key] = Entry;
 | |
|     }
 | |
|     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
 | |
|   }
 | |
| 
 | |
|   /// Reset the vector value associated with \p Key for the given \p Part.
 | |
|   /// This function can be used to update values that have already been
 | |
|   /// vectorized. This is the case for "fix-up" operations including type
 | |
|   /// truncation and the second phase of recurrence vectorization.
 | |
|   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
 | |
|     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
 | |
|     VectorMapStorage[Key][Part] = Vector;
 | |
|   }
 | |
| 
 | |
|   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
 | |
|   /// This function can be used to update values that have already been
 | |
|   /// scalarized. This is the case for "fix-up" operations including scalar phi
 | |
|   /// nodes for scalarized and predicated instructions.
 | |
|   void resetScalarValue(Value *Key, const VPIteration &Instance,
 | |
|                         Value *Scalar) {
 | |
|     assert(hasScalarValue(Key, Instance) &&
 | |
|            "Scalar value not set for part and lane");
 | |
|     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// This class is used to enable the VPlan to invoke a method of ILV. This is
 | |
| /// needed until the method is refactored out of ILV and becomes reusable.
 | |
| struct VPCallback {
 | |
|   virtual ~VPCallback() {}
 | |
|   virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
 | |
| };
 | |
| 
 | |
| /// VPTransformState holds information passed down when "executing" a VPlan,
 | |
| /// needed for generating the output IR.
 | |
| struct VPTransformState {
 | |
|   VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
 | |
|                    IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
 | |
|                    InnerLoopVectorizer *ILV, VPCallback &Callback)
 | |
|       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
 | |
|         ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
 | |
| 
 | |
|   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
 | |
|   unsigned VF;
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// Hold the indices to generate specific scalar instructions. Null indicates
 | |
|   /// that all instances are to be generated, using either scalar or vector
 | |
|   /// instructions.
 | |
|   Optional<VPIteration> Instance;
 | |
| 
 | |
|   struct DataState {
 | |
|     /// A type for vectorized values in the new loop. Each value from the
 | |
|     /// original loop, when vectorized, is represented by UF vector values in
 | |
|     /// the new unrolled loop, where UF is the unroll factor.
 | |
|     typedef SmallVector<Value *, 2> PerPartValuesTy;
 | |
| 
 | |
|     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
 | |
|   } Data;
 | |
| 
 | |
|   /// Get the generated Value for a given VPValue and a given Part. Note that
 | |
|   /// as some Defs are still created by ILV and managed in its ValueMap, this
 | |
|   /// method will delegate the call to ILV in such cases in order to provide
 | |
|   /// callers a consistent API.
 | |
|   /// \see set.
 | |
|   Value *get(VPValue *Def, unsigned Part) {
 | |
|     // If Values have been set for this Def return the one relevant for \p Part.
 | |
|     if (Data.PerPartOutput.count(Def))
 | |
|       return Data.PerPartOutput[Def][Part];
 | |
|     // Def is managed by ILV: bring the Values from ValueMap.
 | |
|     return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
 | |
|   }
 | |
| 
 | |
|   /// Set the generated Value for a given VPValue and a given Part.
 | |
|   void set(VPValue *Def, Value *V, unsigned Part) {
 | |
|     if (!Data.PerPartOutput.count(Def)) {
 | |
|       DataState::PerPartValuesTy Entry(UF);
 | |
|       Data.PerPartOutput[Def] = Entry;
 | |
|     }
 | |
|     Data.PerPartOutput[Def][Part] = V;
 | |
|   }
 | |
| 
 | |
|   /// Hold state information used when constructing the CFG of the output IR,
 | |
|   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
 | |
|   struct CFGState {
 | |
|     /// The previous VPBasicBlock visited. Initially set to null.
 | |
|     VPBasicBlock *PrevVPBB = nullptr;
 | |
| 
 | |
|     /// The previous IR BasicBlock created or used. Initially set to the new
 | |
|     /// header BasicBlock.
 | |
|     BasicBlock *PrevBB = nullptr;
 | |
| 
 | |
|     /// The last IR BasicBlock in the output IR. Set to the new latch
 | |
|     /// BasicBlock, used for placing the newly created BasicBlocks.
 | |
|     BasicBlock *LastBB = nullptr;
 | |
| 
 | |
|     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
 | |
|     /// of replication, maps the BasicBlock of the last replica created.
 | |
|     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
 | |
| 
 | |
|     /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
 | |
|     /// up at the end of vector code generation.
 | |
|     SmallVector<VPBasicBlock *, 8> VPBBsToFix;
 | |
| 
 | |
|     CFGState() = default;
 | |
|   } CFG;
 | |
| 
 | |
|   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
 | |
|   LoopInfo *LI;
 | |
| 
 | |
|   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   /// Hold a reference to the IRBuilder used to generate output IR code.
 | |
|   IRBuilder<> &Builder;
 | |
| 
 | |
|   /// Hold a reference to the Value state information used when generating the
 | |
|   /// Values of the output IR.
 | |
|   VectorizerValueMap &ValueMap;
 | |
| 
 | |
|   /// Hold a reference to a mapping between VPValues in VPlan and original
 | |
|   /// Values they correspond to.
 | |
|   VPValue2ValueTy VPValue2Value;
 | |
| 
 | |
|   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
 | |
|   InnerLoopVectorizer *ILV;
 | |
| 
 | |
|   VPCallback &Callback;
 | |
| };
 | |
| 
 | |
| /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
 | |
| /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
 | |
| class VPBlockBase {
 | |
|   friend class VPBlockUtils;
 | |
| 
 | |
| private:
 | |
|   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
 | |
| 
 | |
|   /// An optional name for the block.
 | |
|   std::string Name;
 | |
| 
 | |
|   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
 | |
|   /// it is a topmost VPBlockBase.
 | |
|   VPRegionBlock *Parent = nullptr;
 | |
| 
 | |
|   /// List of predecessor blocks.
 | |
|   SmallVector<VPBlockBase *, 1> Predecessors;
 | |
| 
 | |
|   /// List of successor blocks.
 | |
|   SmallVector<VPBlockBase *, 1> Successors;
 | |
| 
 | |
|   /// Successor selector, null for zero or single successor blocks.
 | |
|   VPValue *CondBit = nullptr;
 | |
| 
 | |
|   /// Add \p Successor as the last successor to this block.
 | |
|   void appendSuccessor(VPBlockBase *Successor) {
 | |
|     assert(Successor && "Cannot add nullptr successor!");
 | |
|     Successors.push_back(Successor);
 | |
|   }
 | |
| 
 | |
|   /// Add \p Predecessor as the last predecessor to this block.
 | |
|   void appendPredecessor(VPBlockBase *Predecessor) {
 | |
|     assert(Predecessor && "Cannot add nullptr predecessor!");
 | |
|     Predecessors.push_back(Predecessor);
 | |
|   }
 | |
| 
 | |
|   /// Remove \p Predecessor from the predecessors of this block.
 | |
|   void removePredecessor(VPBlockBase *Predecessor) {
 | |
|     auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
 | |
|     assert(Pos && "Predecessor does not exist");
 | |
|     Predecessors.erase(Pos);
 | |
|   }
 | |
| 
 | |
|   /// Remove \p Successor from the successors of this block.
 | |
|   void removeSuccessor(VPBlockBase *Successor) {
 | |
|     auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
 | |
|     assert(Pos && "Successor does not exist");
 | |
|     Successors.erase(Pos);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   VPBlockBase(const unsigned char SC, const std::string &N)
 | |
|       : SubclassID(SC), Name(N) {}
 | |
| 
 | |
| public:
 | |
|   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
 | |
|   /// that are actually instantiated. Values of this enumeration are kept in the
 | |
|   /// SubclassID field of the VPBlockBase objects. They are used for concrete
 | |
|   /// type identification.
 | |
|   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
 | |
| 
 | |
|   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
 | |
| 
 | |
|   virtual ~VPBlockBase() = default;
 | |
| 
 | |
|   const std::string &getName() const { return Name; }
 | |
| 
 | |
|   void setName(const Twine &newName) { Name = newName.str(); }
 | |
| 
 | |
|   /// \return an ID for the concrete type of this object.
 | |
|   /// This is used to implement the classof checks. This should not be used
 | |
|   /// for any other purpose, as the values may change as LLVM evolves.
 | |
|   unsigned getVPBlockID() const { return SubclassID; }
 | |
| 
 | |
|   VPRegionBlock *getParent() { return Parent; }
 | |
|   const VPRegionBlock *getParent() const { return Parent; }
 | |
| 
 | |
|   void setParent(VPRegionBlock *P) { Parent = P; }
 | |
| 
 | |
|   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
 | |
|   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
 | |
|   /// VPBlockBase is a VPBasicBlock, it is returned.
 | |
|   const VPBasicBlock *getEntryBasicBlock() const;
 | |
|   VPBasicBlock *getEntryBasicBlock();
 | |
| 
 | |
|   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
 | |
|   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
 | |
|   /// VPBlockBase is a VPBasicBlock, it is returned.
 | |
|   const VPBasicBlock *getExitBasicBlock() const;
 | |
|   VPBasicBlock *getExitBasicBlock();
 | |
| 
 | |
|   const VPBlocksTy &getSuccessors() const { return Successors; }
 | |
|   VPBlocksTy &getSuccessors() { return Successors; }
 | |
| 
 | |
|   const VPBlocksTy &getPredecessors() const { return Predecessors; }
 | |
|   VPBlocksTy &getPredecessors() { return Predecessors; }
 | |
| 
 | |
|   /// \return the successor of this VPBlockBase if it has a single successor.
 | |
|   /// Otherwise return a null pointer.
 | |
|   VPBlockBase *getSingleSuccessor() const {
 | |
|     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \return the predecessor of this VPBlockBase if it has a single
 | |
|   /// predecessor. Otherwise return a null pointer.
 | |
|   VPBlockBase *getSinglePredecessor() const {
 | |
|     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
 | |
|   }
 | |
| 
 | |
|   size_t getNumSuccessors() const { return Successors.size(); }
 | |
|   size_t getNumPredecessors() const { return Predecessors.size(); }
 | |
| 
 | |
|   /// An Enclosing Block of a block B is any block containing B, including B
 | |
|   /// itself. \return the closest enclosing block starting from "this", which
 | |
|   /// has successors. \return the root enclosing block if all enclosing blocks
 | |
|   /// have no successors.
 | |
|   VPBlockBase *getEnclosingBlockWithSuccessors();
 | |
| 
 | |
|   /// \return the closest enclosing block starting from "this", which has
 | |
|   /// predecessors. \return the root enclosing block if all enclosing blocks
 | |
|   /// have no predecessors.
 | |
|   VPBlockBase *getEnclosingBlockWithPredecessors();
 | |
| 
 | |
|   /// \return the successors either attached directly to this VPBlockBase or, if
 | |
|   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
 | |
|   /// successors of its own, search recursively for the first enclosing
 | |
|   /// VPRegionBlock that has successors and return them. If no such
 | |
|   /// VPRegionBlock exists, return the (empty) successors of the topmost
 | |
|   /// VPBlockBase reached.
 | |
|   const VPBlocksTy &getHierarchicalSuccessors() {
 | |
|     return getEnclosingBlockWithSuccessors()->getSuccessors();
 | |
|   }
 | |
| 
 | |
|   /// \return the hierarchical successor of this VPBlockBase if it has a single
 | |
|   /// hierarchical successor. Otherwise return a null pointer.
 | |
|   VPBlockBase *getSingleHierarchicalSuccessor() {
 | |
|     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
 | |
|   }
 | |
| 
 | |
|   /// \return the predecessors either attached directly to this VPBlockBase or,
 | |
|   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
 | |
|   /// predecessors of its own, search recursively for the first enclosing
 | |
|   /// VPRegionBlock that has predecessors and return them. If no such
 | |
|   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
 | |
|   /// VPBlockBase reached.
 | |
|   const VPBlocksTy &getHierarchicalPredecessors() {
 | |
|     return getEnclosingBlockWithPredecessors()->getPredecessors();
 | |
|   }
 | |
| 
 | |
|   /// \return the hierarchical predecessor of this VPBlockBase if it has a
 | |
|   /// single hierarchical predecessor. Otherwise return a null pointer.
 | |
|   VPBlockBase *getSingleHierarchicalPredecessor() {
 | |
|     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
 | |
|   }
 | |
| 
 | |
|   /// \return the condition bit selecting the successor.
 | |
|   VPValue *getCondBit() { return CondBit; }
 | |
| 
 | |
|   const VPValue *getCondBit() const { return CondBit; }
 | |
| 
 | |
|   void setCondBit(VPValue *CV) { CondBit = CV; }
 | |
| 
 | |
|   /// Set a given VPBlockBase \p Successor as the single successor of this
 | |
|   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
 | |
|   /// This VPBlockBase must have no successors.
 | |
|   void setOneSuccessor(VPBlockBase *Successor) {
 | |
|     assert(Successors.empty() && "Setting one successor when others exist.");
 | |
|     appendSuccessor(Successor);
 | |
|   }
 | |
| 
 | |
|   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
 | |
|   /// successors of this VPBlockBase. \p Condition is set as the successor
 | |
|   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
 | |
|   /// IfFalse. This VPBlockBase must have no successors.
 | |
|   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
 | |
|                         VPValue *Condition) {
 | |
|     assert(Successors.empty() && "Setting two successors when others exist.");
 | |
|     assert(Condition && "Setting two successors without condition!");
 | |
|     CondBit = Condition;
 | |
|     appendSuccessor(IfTrue);
 | |
|     appendSuccessor(IfFalse);
 | |
|   }
 | |
| 
 | |
|   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
 | |
|   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
 | |
|   /// as successor of any VPBasicBlock in \p NewPreds.
 | |
|   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
 | |
|     assert(Predecessors.empty() && "Block predecessors already set.");
 | |
|     for (auto *Pred : NewPreds)
 | |
|       appendPredecessor(Pred);
 | |
|   }
 | |
| 
 | |
|   /// The method which generates the output IR that correspond to this
 | |
|   /// VPBlockBase, thereby "executing" the VPlan.
 | |
|   virtual void execute(struct VPTransformState *State) = 0;
 | |
| 
 | |
|   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
 | |
|   static void deleteCFG(VPBlockBase *Entry);
 | |
| 
 | |
|   void printAsOperand(raw_ostream &OS, bool PrintType) const {
 | |
|     OS << getName();
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &OS) const {
 | |
|     // TODO: Only printing VPBB name for now since we only have dot printing
 | |
|     // support for VPInstructions/Recipes.
 | |
|     printAsOperand(OS, false);
 | |
|   }
 | |
| 
 | |
|   /// Return true if it is legal to hoist instructions into this block.
 | |
|   bool isLegalToHoistInto() {
 | |
|     // There are currently no constraints that prevent an instruction to be
 | |
|     // hoisted into a VPBlockBase.
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// VPRecipeBase is a base class modeling a sequence of one or more output IR
 | |
| /// instructions.
 | |
| class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
 | |
|   friend VPBasicBlock;
 | |
| 
 | |
| private:
 | |
|   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
 | |
| 
 | |
|   /// Each VPRecipe belongs to a single VPBasicBlock.
 | |
|   VPBasicBlock *Parent = nullptr;
 | |
| 
 | |
| public:
 | |
|   /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
 | |
|   /// that is actually instantiated. Values of this enumeration are kept in the
 | |
|   /// SubclassID field of the VPRecipeBase objects. They are used for concrete
 | |
|   /// type identification.
 | |
|   using VPRecipeTy = enum {
 | |
|     VPBlendSC,
 | |
|     VPBranchOnMaskSC,
 | |
|     VPInstructionSC,
 | |
|     VPInterleaveSC,
 | |
|     VPPredInstPHISC,
 | |
|     VPReplicateSC,
 | |
|     VPWidenIntOrFpInductionSC,
 | |
|     VPWidenMemoryInstructionSC,
 | |
|     VPWidenPHISC,
 | |
|     VPWidenSC,
 | |
|   };
 | |
| 
 | |
|   VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
 | |
|   virtual ~VPRecipeBase() = default;
 | |
| 
 | |
|   /// \return an ID for the concrete type of this object.
 | |
|   /// This is used to implement the classof checks. This should not be used
 | |
|   /// for any other purpose, as the values may change as LLVM evolves.
 | |
|   unsigned getVPRecipeID() const { return SubclassID; }
 | |
| 
 | |
|   /// \return the VPBasicBlock which this VPRecipe belongs to.
 | |
|   VPBasicBlock *getParent() { return Parent; }
 | |
|   const VPBasicBlock *getParent() const { return Parent; }
 | |
| 
 | |
|   /// The method which generates the output IR instructions that correspond to
 | |
|   /// this VPRecipe, thereby "executing" the VPlan.
 | |
|   virtual void execute(struct VPTransformState &State) = 0;
 | |
| 
 | |
|   /// Each recipe prints itself.
 | |
|   virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
 | |
| 
 | |
|   /// Insert an unlinked recipe into a basic block immediately before
 | |
|   /// the specified recipe.
 | |
|   void insertBefore(VPRecipeBase *InsertPos);
 | |
| 
 | |
|   /// This method unlinks 'this' from the containing basic block and deletes it.
 | |
|   ///
 | |
|   /// \returns an iterator pointing to the element after the erased one
 | |
|   iplist<VPRecipeBase>::iterator eraseFromParent();
 | |
| };
 | |
| 
 | |
| /// This is a concrete Recipe that models a single VPlan-level instruction.
 | |
| /// While as any Recipe it may generate a sequence of IR instructions when
 | |
| /// executed, these instructions would always form a single-def expression as
 | |
| /// the VPInstruction is also a single def-use vertex.
 | |
| class VPInstruction : public VPUser, public VPRecipeBase {
 | |
|   friend class VPlanHCFGTransforms;
 | |
| 
 | |
| public:
 | |
|   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
 | |
|   enum { Not = Instruction::OtherOpsEnd + 1 };
 | |
| 
 | |
| private:
 | |
|   typedef unsigned char OpcodeTy;
 | |
|   OpcodeTy Opcode;
 | |
| 
 | |
|   /// Utility method serving execute(): generates a single instance of the
 | |
|   /// modeled instruction.
 | |
|   void generateInstruction(VPTransformState &State, unsigned Part);
 | |
| 
 | |
| public:
 | |
|   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
 | |
|       : VPUser(VPValue::VPInstructionSC, Operands),
 | |
|         VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
 | |
| 
 | |
|   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
 | |
|       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPValue *V) {
 | |
|     return V->getVPValueID() == VPValue::VPInstructionSC;
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *R) {
 | |
|     return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
 | |
|   }
 | |
| 
 | |
|   unsigned getOpcode() const { return Opcode; }
 | |
| 
 | |
|   /// Generate the instruction.
 | |
|   /// TODO: We currently execute only per-part unless a specific instance is
 | |
|   /// provided.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the Recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| 
 | |
|   /// Print the VPInstruction.
 | |
|   void print(raw_ostream &O) const;
 | |
| };
 | |
| 
 | |
| /// VPWidenRecipe is a recipe for producing a copy of vector type for each
 | |
| /// Instruction in its ingredients independently, in order. This recipe covers
 | |
| /// most of the traditional vectorization cases where each ingredient transforms
 | |
| /// into a vectorized version of itself.
 | |
| class VPWidenRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   /// Hold the ingredients by pointing to their original BasicBlock location.
 | |
|   BasicBlock::iterator Begin;
 | |
|   BasicBlock::iterator End;
 | |
| 
 | |
| public:
 | |
|   VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
 | |
|     End = I->getIterator();
 | |
|     Begin = End++;
 | |
|   }
 | |
| 
 | |
|   ~VPWidenRecipe() override = default;
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
 | |
|   }
 | |
| 
 | |
|   /// Produce widened copies of all Ingredients.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Augment the recipe to include Instr, if it lies at its End.
 | |
|   bool appendInstruction(Instruction *Instr) {
 | |
|     if (End != Instr->getIterator())
 | |
|       return false;
 | |
|     End++;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// A recipe for handling phi nodes of integer and floating-point inductions,
 | |
| /// producing their vector and scalar values.
 | |
| class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   PHINode *IV;
 | |
|   TruncInst *Trunc;
 | |
| 
 | |
| public:
 | |
|   VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
 | |
|       : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
 | |
|   ~VPWidenIntOrFpInductionRecipe() override = default;
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
 | |
|   }
 | |
| 
 | |
|   /// Generate the vectorized and scalarized versions of the phi node as
 | |
|   /// needed by their users.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// A recipe for handling all phi nodes except for integer and FP inductions.
 | |
| class VPWidenPHIRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   PHINode *Phi;
 | |
| 
 | |
| public:
 | |
|   VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
 | |
|   ~VPWidenPHIRecipe() override = default;
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
 | |
|   }
 | |
| 
 | |
|   /// Generate the phi/select nodes.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// A recipe for vectorizing a phi-node as a sequence of mask-based select
 | |
| /// instructions.
 | |
| class VPBlendRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   PHINode *Phi;
 | |
| 
 | |
|   /// The blend operation is a User of a mask, if not null.
 | |
|   std::unique_ptr<VPUser> User;
 | |
| 
 | |
| public:
 | |
|   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
 | |
|       : VPRecipeBase(VPBlendSC), Phi(Phi) {
 | |
|     assert((Phi->getNumIncomingValues() == 1 ||
 | |
|             Phi->getNumIncomingValues() == Masks.size()) &&
 | |
|            "Expected the same number of incoming values and masks");
 | |
|     if (!Masks.empty())
 | |
|       User.reset(new VPUser(Masks));
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
 | |
|   }
 | |
| 
 | |
|   /// Generate the phi/select nodes.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
 | |
| /// or stores into one wide load/store and shuffles.
 | |
| class VPInterleaveRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   const InterleaveGroup *IG;
 | |
| 
 | |
| public:
 | |
|   VPInterleaveRecipe(const InterleaveGroup *IG)
 | |
|       : VPRecipeBase(VPInterleaveSC), IG(IG) {}
 | |
|   ~VPInterleaveRecipe() override = default;
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
 | |
|   }
 | |
| 
 | |
|   /// Generate the wide load or store, and shuffles.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| 
 | |
|   const InterleaveGroup *getInterleaveGroup() { return IG; }
 | |
| };
 | |
| 
 | |
| /// VPReplicateRecipe replicates a given instruction producing multiple scalar
 | |
| /// copies of the original scalar type, one per lane, instead of producing a
 | |
| /// single copy of widened type for all lanes. If the instruction is known to be
 | |
| /// uniform only one copy, per lane zero, will be generated.
 | |
| class VPReplicateRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   /// The instruction being replicated.
 | |
|   Instruction *Ingredient;
 | |
| 
 | |
|   /// Indicator if only a single replica per lane is needed.
 | |
|   bool IsUniform;
 | |
| 
 | |
|   /// Indicator if the replicas are also predicated.
 | |
|   bool IsPredicated;
 | |
| 
 | |
|   /// Indicator if the scalar values should also be packed into a vector.
 | |
|   bool AlsoPack;
 | |
| 
 | |
| public:
 | |
|   VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
 | |
|       : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
 | |
|         IsPredicated(IsPredicated) {
 | |
|     // Retain the previous behavior of predicateInstructions(), where an
 | |
|     // insert-element of a predicated instruction got hoisted into the
 | |
|     // predicated basic block iff it was its only user. This is achieved by
 | |
|     // having predicated instructions also pack their values into a vector by
 | |
|     // default unless they have a replicated user which uses their scalar value.
 | |
|     AlsoPack = IsPredicated && !I->use_empty();
 | |
|   }
 | |
| 
 | |
|   ~VPReplicateRecipe() override = default;
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
 | |
|   }
 | |
| 
 | |
|   /// Generate replicas of the desired Ingredient. Replicas will be generated
 | |
|   /// for all parts and lanes unless a specific part and lane are specified in
 | |
|   /// the \p State.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// A recipe for generating conditional branches on the bits of a mask.
 | |
| class VPBranchOnMaskRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   std::unique_ptr<VPUser> User;
 | |
| 
 | |
| public:
 | |
|   VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
 | |
|     if (BlockInMask) // nullptr means all-one mask.
 | |
|       User.reset(new VPUser({BlockInMask}));
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
 | |
|   }
 | |
| 
 | |
|   /// Generate the extraction of the appropriate bit from the block mask and the
 | |
|   /// conditional branch.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override {
 | |
|     O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
 | |
|     if (User)
 | |
|       O << *User->getOperand(0);
 | |
|     else
 | |
|       O << " All-One";
 | |
|     O << "\\l\"";
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
 | |
| /// control converges back from a Branch-on-Mask. The phi nodes are needed in
 | |
| /// order to merge values that are set under such a branch and feed their uses.
 | |
| /// The phi nodes can be scalar or vector depending on the users of the value.
 | |
| /// This recipe works in concert with VPBranchOnMaskRecipe.
 | |
| class VPPredInstPHIRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   Instruction *PredInst;
 | |
| 
 | |
| public:
 | |
|   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
 | |
|   /// nodes after merging back from a Branch-on-Mask.
 | |
|   VPPredInstPHIRecipe(Instruction *PredInst)
 | |
|       : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
 | |
|   ~VPPredInstPHIRecipe() override = default;
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
 | |
|   }
 | |
| 
 | |
|   /// Generates phi nodes for live-outs as needed to retain SSA form.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// A Recipe for widening load/store operations.
 | |
| /// TODO: We currently execute only per-part unless a specific instance is
 | |
| /// provided.
 | |
| class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
 | |
| private:
 | |
|   Instruction &Instr;
 | |
|   std::unique_ptr<VPUser> User;
 | |
| 
 | |
| public:
 | |
|   VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
 | |
|       : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
 | |
|     if (Mask) // Create a VPInstruction to register as a user of the mask.
 | |
|       User.reset(new VPUser({Mask}));
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPRecipeBase *V) {
 | |
|     return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
 | |
|   }
 | |
| 
 | |
|   /// Generate the wide load/store.
 | |
|   void execute(VPTransformState &State) override;
 | |
| 
 | |
|   /// Print the recipe.
 | |
|   void print(raw_ostream &O, const Twine &Indent) const override;
 | |
| };
 | |
| 
 | |
| /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
 | |
| /// holds a sequence of zero or more VPRecipe's each representing a sequence of
 | |
| /// output IR instructions.
 | |
| class VPBasicBlock : public VPBlockBase {
 | |
| public:
 | |
|   using RecipeListTy = iplist<VPRecipeBase>;
 | |
| 
 | |
| private:
 | |
|   /// The VPRecipes held in the order of output instructions to generate.
 | |
|   RecipeListTy Recipes;
 | |
| 
 | |
| public:
 | |
|   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
 | |
|       : VPBlockBase(VPBasicBlockSC, Name.str()) {
 | |
|     if (Recipe)
 | |
|       appendRecipe(Recipe);
 | |
|   }
 | |
| 
 | |
|   ~VPBasicBlock() override { Recipes.clear(); }
 | |
| 
 | |
|   /// Instruction iterators...
 | |
|   using iterator = RecipeListTy::iterator;
 | |
|   using const_iterator = RecipeListTy::const_iterator;
 | |
|   using reverse_iterator = RecipeListTy::reverse_iterator;
 | |
|   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// Recipe iterator methods
 | |
|   ///
 | |
|   inline iterator begin() { return Recipes.begin(); }
 | |
|   inline const_iterator begin() const { return Recipes.begin(); }
 | |
|   inline iterator end() { return Recipes.end(); }
 | |
|   inline const_iterator end() const { return Recipes.end(); }
 | |
| 
 | |
|   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
 | |
|   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
 | |
|   inline reverse_iterator rend() { return Recipes.rend(); }
 | |
|   inline const_reverse_iterator rend() const { return Recipes.rend(); }
 | |
| 
 | |
|   inline size_t size() const { return Recipes.size(); }
 | |
|   inline bool empty() const { return Recipes.empty(); }
 | |
|   inline const VPRecipeBase &front() const { return Recipes.front(); }
 | |
|   inline VPRecipeBase &front() { return Recipes.front(); }
 | |
|   inline const VPRecipeBase &back() const { return Recipes.back(); }
 | |
|   inline VPRecipeBase &back() { return Recipes.back(); }
 | |
| 
 | |
|   /// Returns a reference to the list of recipes.
 | |
|   RecipeListTy &getRecipeList() { return Recipes; }
 | |
| 
 | |
|   /// Returns a pointer to a member of the recipe list.
 | |
|   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
 | |
|     return &VPBasicBlock::Recipes;
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPBlockBase *V) {
 | |
|     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
 | |
|   }
 | |
| 
 | |
|   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
 | |
|     assert(Recipe && "No recipe to append.");
 | |
|     assert(!Recipe->Parent && "Recipe already in VPlan");
 | |
|     Recipe->Parent = this;
 | |
|     Recipes.insert(InsertPt, Recipe);
 | |
|   }
 | |
| 
 | |
|   /// Augment the existing recipes of a VPBasicBlock with an additional
 | |
|   /// \p Recipe as the last recipe.
 | |
|   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
 | |
| 
 | |
|   /// The method which generates the output IR instructions that correspond to
 | |
|   /// this VPBasicBlock, thereby "executing" the VPlan.
 | |
|   void execute(struct VPTransformState *State) override;
 | |
| 
 | |
| private:
 | |
|   /// Create an IR BasicBlock to hold the output instructions generated by this
 | |
|   /// VPBasicBlock, and return it. Update the CFGState accordingly.
 | |
|   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
 | |
| };
 | |
| 
 | |
| /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
 | |
| /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
 | |
| /// A VPRegionBlock may indicate that its contents are to be replicated several
 | |
| /// times. This is designed to support predicated scalarization, in which a
 | |
| /// scalar if-then code structure needs to be generated VF * UF times. Having
 | |
| /// this replication indicator helps to keep a single model for multiple
 | |
| /// candidate VF's. The actual replication takes place only once the desired VF
 | |
| /// and UF have been determined.
 | |
| class VPRegionBlock : public VPBlockBase {
 | |
| private:
 | |
|   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
 | |
|   VPBlockBase *Entry;
 | |
| 
 | |
|   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
 | |
|   VPBlockBase *Exit;
 | |
| 
 | |
|   /// An indicator whether this region is to generate multiple replicated
 | |
|   /// instances of output IR corresponding to its VPBlockBases.
 | |
|   bool IsReplicator;
 | |
| 
 | |
| public:
 | |
|   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
 | |
|                 const std::string &Name = "", bool IsReplicator = false)
 | |
|       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
 | |
|         IsReplicator(IsReplicator) {
 | |
|     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
 | |
|     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
 | |
|     Entry->setParent(this);
 | |
|     Exit->setParent(this);
 | |
|   }
 | |
|   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
 | |
|       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
 | |
|         IsReplicator(IsReplicator) {}
 | |
| 
 | |
|   ~VPRegionBlock() override {
 | |
|     if (Entry)
 | |
|       deleteCFG(Entry);
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPBlockBase *V) {
 | |
|     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
 | |
|   }
 | |
| 
 | |
|   const VPBlockBase *getEntry() const { return Entry; }
 | |
|   VPBlockBase *getEntry() { return Entry; }
 | |
| 
 | |
|   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
 | |
|   /// EntryBlock must have no predecessors.
 | |
|   void setEntry(VPBlockBase *EntryBlock) {
 | |
|     assert(EntryBlock->getPredecessors().empty() &&
 | |
|            "Entry block cannot have predecessors.");
 | |
|     Entry = EntryBlock;
 | |
|     EntryBlock->setParent(this);
 | |
|   }
 | |
| 
 | |
|   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
 | |
|   // specific interface of llvm::Function, instead of using
 | |
|   // GraphTraints::getEntryNode. We should add a new template parameter to
 | |
|   // DominatorTreeBase representing the Graph type.
 | |
|   VPBlockBase &front() const { return *Entry; }
 | |
| 
 | |
|   const VPBlockBase *getExit() const { return Exit; }
 | |
|   VPBlockBase *getExit() { return Exit; }
 | |
| 
 | |
|   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
 | |
|   /// ExitBlock must have no successors.
 | |
|   void setExit(VPBlockBase *ExitBlock) {
 | |
|     assert(ExitBlock->getSuccessors().empty() &&
 | |
|            "Exit block cannot have successors.");
 | |
|     Exit = ExitBlock;
 | |
|     ExitBlock->setParent(this);
 | |
|   }
 | |
| 
 | |
|   /// An indicator whether this region is to generate multiple replicated
 | |
|   /// instances of output IR corresponding to its VPBlockBases.
 | |
|   bool isReplicator() const { return IsReplicator; }
 | |
| 
 | |
|   /// The method which generates the output IR instructions that correspond to
 | |
|   /// this VPRegionBlock, thereby "executing" the VPlan.
 | |
|   void execute(struct VPTransformState *State) override;
 | |
| };
 | |
| 
 | |
| /// VPlan models a candidate for vectorization, encoding various decisions take
 | |
| /// to produce efficient output IR, including which branches, basic-blocks and
 | |
| /// output IR instructions to generate, and their cost. VPlan holds a
 | |
| /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
 | |
| /// VPBlock.
 | |
| class VPlan {
 | |
|   friend class VPlanPrinter;
 | |
| 
 | |
| private:
 | |
|   /// Hold the single entry to the Hierarchical CFG of the VPlan.
 | |
|   VPBlockBase *Entry;
 | |
| 
 | |
|   /// Holds the VFs applicable to this VPlan.
 | |
|   SmallSet<unsigned, 2> VFs;
 | |
| 
 | |
|   /// Holds the name of the VPlan, for printing.
 | |
|   std::string Name;
 | |
| 
 | |
|   /// Holds all the external definitions created for this VPlan.
 | |
|   // TODO: Introduce a specific representation for external definitions in
 | |
|   // VPlan. External definitions must be immutable and hold a pointer to its
 | |
|   // underlying IR that will be used to implement its structural comparison
 | |
|   // (operators '==' and '<').
 | |
|   SmallPtrSet<VPValue *, 16> VPExternalDefs;
 | |
| 
 | |
|   /// Holds a mapping between Values and their corresponding VPValue inside
 | |
|   /// VPlan.
 | |
|   Value2VPValueTy Value2VPValue;
 | |
| 
 | |
|   /// Holds the VPLoopInfo analysis for this VPlan.
 | |
|   VPLoopInfo VPLInfo;
 | |
| 
 | |
|   /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
 | |
|   SmallVector<VPValue *, 4> VPCBVs;
 | |
| 
 | |
| public:
 | |
|   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
 | |
| 
 | |
|   ~VPlan() {
 | |
|     if (Entry)
 | |
|       VPBlockBase::deleteCFG(Entry);
 | |
|     for (auto &MapEntry : Value2VPValue)
 | |
|       delete MapEntry.second;
 | |
|     for (VPValue *Def : VPExternalDefs)
 | |
|       delete Def;
 | |
|     for (VPValue *CBV : VPCBVs)
 | |
|       delete CBV;
 | |
|   }
 | |
| 
 | |
|   /// Generate the IR code for this VPlan.
 | |
|   void execute(struct VPTransformState *State);
 | |
| 
 | |
|   VPBlockBase *getEntry() { return Entry; }
 | |
|   const VPBlockBase *getEntry() const { return Entry; }
 | |
| 
 | |
|   VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
 | |
| 
 | |
|   void addVF(unsigned VF) { VFs.insert(VF); }
 | |
| 
 | |
|   bool hasVF(unsigned VF) { return VFs.count(VF); }
 | |
| 
 | |
|   const std::string &getName() const { return Name; }
 | |
| 
 | |
|   void setName(const Twine &newName) { Name = newName.str(); }
 | |
| 
 | |
|   /// Add \p VPVal to the pool of external definitions if it's not already
 | |
|   /// in the pool.
 | |
|   void addExternalDef(VPValue *VPVal) {
 | |
|     VPExternalDefs.insert(VPVal);
 | |
|   }
 | |
| 
 | |
|   /// Add \p CBV to the vector of condition bit values.
 | |
|   void addCBV(VPValue *CBV) {
 | |
|     VPCBVs.push_back(CBV);
 | |
|   }
 | |
| 
 | |
|   void addVPValue(Value *V) {
 | |
|     assert(V && "Trying to add a null Value to VPlan");
 | |
|     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
 | |
|     Value2VPValue[V] = new VPValue();
 | |
|   }
 | |
| 
 | |
|   VPValue *getVPValue(Value *V) {
 | |
|     assert(V && "Trying to get the VPValue of a null Value");
 | |
|     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
 | |
|     return Value2VPValue[V];
 | |
|   }
 | |
| 
 | |
|   /// Return the VPLoopInfo analysis for this VPlan.
 | |
|   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
 | |
|   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
 | |
| 
 | |
| private:
 | |
|   /// Add to the given dominator tree the header block and every new basic block
 | |
|   /// that was created between it and the latch block, inclusive.
 | |
|   static void updateDominatorTree(DominatorTree *DT,
 | |
|                                   BasicBlock *LoopPreHeaderBB,
 | |
|                                   BasicBlock *LoopLatchBB);
 | |
| };
 | |
| 
 | |
| /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
 | |
| /// indented and follows the dot format.
 | |
| class VPlanPrinter {
 | |
|   friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
 | |
|   friend inline raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                         const struct VPlanIngredient &I);
 | |
| 
 | |
| private:
 | |
|   raw_ostream &OS;
 | |
|   VPlan &Plan;
 | |
|   unsigned Depth;
 | |
|   unsigned TabWidth = 2;
 | |
|   std::string Indent;
 | |
|   unsigned BID = 0;
 | |
|   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
 | |
| 
 | |
|   VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
 | |
| 
 | |
|   /// Handle indentation.
 | |
|   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
 | |
| 
 | |
|   /// Print a given \p Block of the Plan.
 | |
|   void dumpBlock(const VPBlockBase *Block);
 | |
| 
 | |
|   /// Print the information related to the CFG edges going out of a given
 | |
|   /// \p Block, followed by printing the successor blocks themselves.
 | |
|   void dumpEdges(const VPBlockBase *Block);
 | |
| 
 | |
|   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
 | |
|   /// its successor blocks.
 | |
|   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
 | |
| 
 | |
|   /// Print a given \p Region of the Plan.
 | |
|   void dumpRegion(const VPRegionBlock *Region);
 | |
| 
 | |
|   unsigned getOrCreateBID(const VPBlockBase *Block) {
 | |
|     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
 | |
|   }
 | |
| 
 | |
|   const Twine getOrCreateName(const VPBlockBase *Block);
 | |
| 
 | |
|   const Twine getUID(const VPBlockBase *Block);
 | |
| 
 | |
|   /// Print the information related to a CFG edge between two VPBlockBases.
 | |
|   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
 | |
|                 const Twine &Label);
 | |
| 
 | |
|   void dump();
 | |
| 
 | |
|   static void printAsIngredient(raw_ostream &O, Value *V);
 | |
| };
 | |
| 
 | |
| struct VPlanIngredient {
 | |
|   Value *V;
 | |
| 
 | |
|   VPlanIngredient(Value *V) : V(V) {}
 | |
| };
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
 | |
|   VPlanPrinter::printAsIngredient(OS, I.V);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
 | |
|   VPlanPrinter Printer(OS, Plan);
 | |
|   Printer.dump();
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The following set of template specializations implement GraphTraits to treat
 | |
| // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
 | |
| // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
 | |
| // VPBlockBase is a VPRegionBlock, this specialization provides access to its
 | |
| // successors/predecessors but not to the blocks inside the region.
 | |
| 
 | |
| template <> struct GraphTraits<VPBlockBase *> {
 | |
|   using NodeRef = VPBlockBase *;
 | |
|   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
 | |
| 
 | |
|   static NodeRef getEntryNode(NodeRef N) { return N; }
 | |
| 
 | |
|   static inline ChildIteratorType child_begin(NodeRef N) {
 | |
|     return N->getSuccessors().begin();
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_end(NodeRef N) {
 | |
|     return N->getSuccessors().end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<const VPBlockBase *> {
 | |
|   using NodeRef = const VPBlockBase *;
 | |
|   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
 | |
| 
 | |
|   static NodeRef getEntryNode(NodeRef N) { return N; }
 | |
| 
 | |
|   static inline ChildIteratorType child_begin(NodeRef N) {
 | |
|     return N->getSuccessors().begin();
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_end(NodeRef N) {
 | |
|     return N->getSuccessors().end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
 | |
| // of successors for the inverse traversal.
 | |
| template <> struct GraphTraits<Inverse<VPBlockBase *>> {
 | |
|   using NodeRef = VPBlockBase *;
 | |
|   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
 | |
| 
 | |
|   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
 | |
| 
 | |
|   static inline ChildIteratorType child_begin(NodeRef N) {
 | |
|     return N->getPredecessors().begin();
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_end(NodeRef N) {
 | |
|     return N->getPredecessors().end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The following set of template specializations implement GraphTraits to
 | |
| // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
 | |
| // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
 | |
| // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
 | |
| // there won't be automatic recursion into other VPBlockBases that turn to be
 | |
| // VPRegionBlocks.
 | |
| 
 | |
| template <>
 | |
| struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
 | |
|   using GraphRef = VPRegionBlock *;
 | |
|   using nodes_iterator = df_iterator<NodeRef>;
 | |
| 
 | |
|   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
 | |
| 
 | |
|   static nodes_iterator nodes_begin(GraphRef N) {
 | |
|     return nodes_iterator::begin(N->getEntry());
 | |
|   }
 | |
| 
 | |
|   static nodes_iterator nodes_end(GraphRef N) {
 | |
|     // df_iterator::end() returns an empty iterator so the node used doesn't
 | |
|     // matter.
 | |
|     return nodes_iterator::end(N);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct GraphTraits<const VPRegionBlock *>
 | |
|     : public GraphTraits<const VPBlockBase *> {
 | |
|   using GraphRef = const VPRegionBlock *;
 | |
|   using nodes_iterator = df_iterator<NodeRef>;
 | |
| 
 | |
|   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
 | |
| 
 | |
|   static nodes_iterator nodes_begin(GraphRef N) {
 | |
|     return nodes_iterator::begin(N->getEntry());
 | |
|   }
 | |
| 
 | |
|   static nodes_iterator nodes_end(GraphRef N) {
 | |
|     // df_iterator::end() returns an empty iterator so the node used doesn't
 | |
|     // matter.
 | |
|     return nodes_iterator::end(N);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct GraphTraits<Inverse<VPRegionBlock *>>
 | |
|     : public GraphTraits<Inverse<VPBlockBase *>> {
 | |
|   using GraphRef = VPRegionBlock *;
 | |
|   using nodes_iterator = df_iterator<NodeRef>;
 | |
| 
 | |
|   static NodeRef getEntryNode(Inverse<GraphRef> N) {
 | |
|     return N.Graph->getExit();
 | |
|   }
 | |
| 
 | |
|   static nodes_iterator nodes_begin(GraphRef N) {
 | |
|     return nodes_iterator::begin(N->getExit());
 | |
|   }
 | |
| 
 | |
|   static nodes_iterator nodes_end(GraphRef N) {
 | |
|     // df_iterator::end() returns an empty iterator so the node used doesn't
 | |
|     // matter.
 | |
|     return nodes_iterator::end(N);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // VPlan Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Class that provides utilities for VPBlockBases in VPlan.
 | |
| class VPBlockUtils {
 | |
| public:
 | |
|   VPBlockUtils() = delete;
 | |
| 
 | |
|   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
 | |
|   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
 | |
|   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
 | |
|   /// has more than one successor, its conditional bit is propagated to \p
 | |
|   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
 | |
|   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
 | |
|     assert(NewBlock->getSuccessors().empty() &&
 | |
|            "Can't insert new block with successors.");
 | |
|     // TODO: move successors from BlockPtr to NewBlock when this functionality
 | |
|     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
 | |
|     // already has successors.
 | |
|     BlockPtr->setOneSuccessor(NewBlock);
 | |
|     NewBlock->setPredecessors({BlockPtr});
 | |
|     NewBlock->setParent(BlockPtr->getParent());
 | |
|   }
 | |
| 
 | |
|   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
 | |
|   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
 | |
|   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
 | |
|   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
 | |
|   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
 | |
|   /// must have neither successors nor predecessors.
 | |
|   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
 | |
|                                    VPValue *Condition, VPBlockBase *BlockPtr) {
 | |
|     assert(IfTrue->getSuccessors().empty() &&
 | |
|            "Can't insert IfTrue with successors.");
 | |
|     assert(IfFalse->getSuccessors().empty() &&
 | |
|            "Can't insert IfFalse with successors.");
 | |
|     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
 | |
|     IfTrue->setPredecessors({BlockPtr});
 | |
|     IfFalse->setPredecessors({BlockPtr});
 | |
|     IfTrue->setParent(BlockPtr->getParent());
 | |
|     IfFalse->setParent(BlockPtr->getParent());
 | |
|   }
 | |
| 
 | |
|   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
 | |
|   /// the successors of \p From and \p From to the predecessors of \p To. Both
 | |
|   /// VPBlockBases must have the same parent, which can be null. Both
 | |
|   /// VPBlockBases can be already connected to other VPBlockBases.
 | |
|   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
 | |
|     assert((From->getParent() == To->getParent()) &&
 | |
|            "Can't connect two block with different parents");
 | |
|     assert(From->getNumSuccessors() < 2 &&
 | |
|            "Blocks can't have more than two successors.");
 | |
|     From->appendSuccessor(To);
 | |
|     To->appendPredecessor(From);
 | |
|   }
 | |
| 
 | |
|   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
 | |
|   /// from the successors of \p From and \p From from the predecessors of \p To.
 | |
|   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
 | |
|     assert(To && "Successor to disconnect is null.");
 | |
|     From->removeSuccessor(To);
 | |
|     To->removePredecessor(From);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
 |