151 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \
 | |
| ; RUN:   | FileCheck %s
 | |
| 
 | |
| target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
 | |
| 
 | |
| declare float @llvm.sqrt.f32(float)
 | |
| declare double @llvm.sqrt.f64(double)
 | |
| 
 | |
| ; -- reciprocal sqrt --
 | |
| 
 | |
| ; CHECK-LABEL test_rsqrt32
 | |
| define float @test_rsqrt32(float %a) #0 {
 | |
| ; CHECK: rsqrt.approx.f32
 | |
|   %val = tail call float @llvm.sqrt.f32(float %a)
 | |
|   %ret = fdiv float 1.0, %val
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL test_rsqrt_ftz
 | |
| define float @test_rsqrt_ftz(float %a) #0 #1 {
 | |
| ; CHECK: rsqrt.approx.ftz.f32
 | |
|   %val = tail call float @llvm.sqrt.f32(float %a)
 | |
|   %ret = fdiv float 1.0, %val
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL test_rsqrt64
 | |
| define double @test_rsqrt64(double %a) #0 {
 | |
| ; CHECK: rsqrt.approx.f64
 | |
|   %val = tail call double @llvm.sqrt.f64(double %a)
 | |
|   %ret = fdiv double 1.0, %val
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL test_rsqrt64_ftz
 | |
| define double @test_rsqrt64_ftz(double %a) #0 #1 {
 | |
| ; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
 | |
| ; CHECK: rsqrt.approx.f64
 | |
|   %val = tail call double @llvm.sqrt.f64(double %a)
 | |
|   %ret = fdiv double 1.0, %val
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; -- sqrt --
 | |
| 
 | |
| ; CHECK-LABEL test_sqrt32
 | |
| define float @test_sqrt32(float %a) #0 {
 | |
| ; CHECK: sqrt.approx.f32
 | |
|   %ret = tail call float @llvm.sqrt.f32(float %a)
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL test_sqrt_ftz
 | |
| define float @test_sqrt_ftz(float %a) #0 #1 {
 | |
| ; CHECK: sqrt.approx.ftz.f32
 | |
|   %ret = tail call float @llvm.sqrt.f32(float %a)
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL test_sqrt64
 | |
| define double @test_sqrt64(double %a) #0 {
 | |
| ; There's no sqrt.approx.f64 instruction; we emit
 | |
| ; reciprocal(rsqrt.approx.f64(x)).  There's no non-ftz approximate reciprocal,
 | |
| ; so we just use the ftz version.
 | |
| ; CHECK: rsqrt.approx.f64
 | |
| ; CHECK: rcp.approx.ftz.f64
 | |
|   %ret = tail call double @llvm.sqrt.f64(double %a)
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL test_sqrt64_ftz
 | |
| define double @test_sqrt64_ftz(double %a) #0 #1 {
 | |
| ; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
 | |
| ; CHECK: rsqrt.approx.f64
 | |
| ; CHECK: rcp.approx.ftz.f64
 | |
|   %ret = tail call double @llvm.sqrt.f64(double %a)
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; -- refined sqrt and rsqrt --
 | |
| ;
 | |
| ; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed
 | |
| ; by some math.
 | |
| 
 | |
| ; CHECK-LABEL: test_rsqrt32_refined
 | |
| define float @test_rsqrt32_refined(float %a) #0 #2 {
 | |
| ; CHECK: rsqrt.approx.f32
 | |
|   %val = tail call float @llvm.sqrt.f32(float %a)
 | |
|   %ret = fdiv float 1.0, %val
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: test_sqrt32_refined
 | |
| define float @test_sqrt32_refined(float %a) #0 #2 {
 | |
| ; CHECK: rsqrt.approx.f32
 | |
|   %ret = tail call float @llvm.sqrt.f32(float %a)
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: test_rsqrt64_refined
 | |
| define double @test_rsqrt64_refined(double %a) #0 #2 {
 | |
| ; CHECK: rsqrt.approx.f64
 | |
|   %val = tail call double @llvm.sqrt.f64(double %a)
 | |
|   %ret = fdiv double 1.0, %val
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: test_sqrt64_refined
 | |
| define double @test_sqrt64_refined(double %a) #0 #2 {
 | |
| ; CHECK: rsqrt.approx.f64
 | |
|   %ret = tail call double @llvm.sqrt.f64(double %a)
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; -- refined sqrt and rsqrt with ftz enabled --
 | |
| 
 | |
| ; CHECK-LABEL: test_rsqrt32_refined_ftz
 | |
| define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 {
 | |
| ; CHECK: rsqrt.approx.ftz.f32
 | |
|   %val = tail call float @llvm.sqrt.f32(float %a)
 | |
|   %ret = fdiv float 1.0, %val
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: test_sqrt32_refined_ftz
 | |
| define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 {
 | |
| ; CHECK: rsqrt.approx.ftz.f32
 | |
|   %ret = tail call float @llvm.sqrt.f32(float %a)
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: test_rsqrt64_refined_ftz
 | |
| define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 {
 | |
| ; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version.
 | |
| ; CHECK: rsqrt.approx.f64
 | |
|   %val = tail call double @llvm.sqrt.f64(double %a)
 | |
|   %ret = fdiv double 1.0, %val
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: test_sqrt64_refined_ftz
 | |
| define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 {
 | |
| ; CHECK: rsqrt.approx.f64
 | |
|   %ret = tail call double @llvm.sqrt.f64(double %a)
 | |
|   ret double %ret
 | |
| }
 | |
| 
 | |
| attributes #0 = { "unsafe-fp-math" = "true" }
 | |
| attributes #1 = { "nvptx-f32ftz" = "true" }
 | |
| attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" }
 |