996 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			996 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/AsmParser/Parser.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/NoFolder.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "gmock/gmock-matchers.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <memory>
 | |
| 
 | |
| namespace llvm {
 | |
| namespace {
 | |
| 
 | |
| static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
 | |
|   SMDiagnostic Err;
 | |
|   std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
 | |
|   if (!Mod)
 | |
|     Err.print("InstructionsTests", errs());
 | |
|   return Mod;
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, ReturnInst) {
 | |
|   LLVMContext C;
 | |
| 
 | |
|   // test for PR6589
 | |
|   const ReturnInst* r0 = ReturnInst::Create(C);
 | |
|   EXPECT_EQ(r0->getNumOperands(), 0U);
 | |
|   EXPECT_EQ(r0->op_begin(), r0->op_end());
 | |
| 
 | |
|   IntegerType* Int1 = IntegerType::get(C, 1);
 | |
|   Constant* One = ConstantInt::get(Int1, 1, true);
 | |
|   const ReturnInst* r1 = ReturnInst::Create(C, One);
 | |
|   EXPECT_EQ(1U, r1->getNumOperands());
 | |
|   User::const_op_iterator b(r1->op_begin());
 | |
|   EXPECT_NE(r1->op_end(), b);
 | |
|   EXPECT_EQ(One, *b);
 | |
|   EXPECT_EQ(One, r1->getOperand(0));
 | |
|   ++b;
 | |
|   EXPECT_EQ(r1->op_end(), b);
 | |
| 
 | |
|   // clean up
 | |
|   delete r0;
 | |
|   delete r1;
 | |
| }
 | |
| 
 | |
| // Test fixture that provides a module and a single function within it. Useful
 | |
| // for tests that need to refer to the function in some way.
 | |
| class ModuleWithFunctionTest : public testing::Test {
 | |
| protected:
 | |
|   ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
 | |
|     FArgTypes.push_back(Type::getInt8Ty(Ctx));
 | |
|     FArgTypes.push_back(Type::getInt32Ty(Ctx));
 | |
|     FArgTypes.push_back(Type::getInt64Ty(Ctx));
 | |
|     FunctionType *FTy =
 | |
|         FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
 | |
|     F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
 | |
|   }
 | |
| 
 | |
|   LLVMContext Ctx;
 | |
|   std::unique_ptr<Module> M;
 | |
|   SmallVector<Type *, 3> FArgTypes;
 | |
|   Function *F;
 | |
| };
 | |
| 
 | |
| TEST_F(ModuleWithFunctionTest, CallInst) {
 | |
|   Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
 | |
|                    ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
 | |
|                    ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
 | |
|   std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
 | |
| 
 | |
|   // Make sure iteration over a call's arguments works as expected.
 | |
|   unsigned Idx = 0;
 | |
|   for (Value *Arg : Call->arg_operands()) {
 | |
|     EXPECT_EQ(FArgTypes[Idx], Arg->getType());
 | |
|     EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
 | |
|     Idx++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_F(ModuleWithFunctionTest, InvokeInst) {
 | |
|   BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
 | |
|   BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
 | |
| 
 | |
|   Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
 | |
|                    ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
 | |
|                    ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
 | |
|   std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
 | |
| 
 | |
|   // Make sure iteration over invoke's arguments works as expected.
 | |
|   unsigned Idx = 0;
 | |
|   for (Value *Arg : Invoke->arg_operands()) {
 | |
|     EXPECT_EQ(FArgTypes[Idx], Arg->getType());
 | |
|     EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
 | |
|     Idx++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, BranchInst) {
 | |
|   LLVMContext C;
 | |
| 
 | |
|   // Make a BasicBlocks
 | |
|   BasicBlock* bb0 = BasicBlock::Create(C);
 | |
|   BasicBlock* bb1 = BasicBlock::Create(C);
 | |
| 
 | |
|   // Mandatory BranchInst
 | |
|   const BranchInst* b0 = BranchInst::Create(bb0);
 | |
| 
 | |
|   EXPECT_TRUE(b0->isUnconditional());
 | |
|   EXPECT_FALSE(b0->isConditional());
 | |
|   EXPECT_EQ(1U, b0->getNumSuccessors());
 | |
| 
 | |
|   // check num operands
 | |
|   EXPECT_EQ(1U, b0->getNumOperands());
 | |
| 
 | |
|   EXPECT_NE(b0->op_begin(), b0->op_end());
 | |
|   EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
 | |
| 
 | |
|   EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
 | |
| 
 | |
|   IntegerType* Int1 = IntegerType::get(C, 1);
 | |
|   Constant* One = ConstantInt::get(Int1, 1, true);
 | |
| 
 | |
|   // Conditional BranchInst
 | |
|   BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
 | |
| 
 | |
|   EXPECT_FALSE(b1->isUnconditional());
 | |
|   EXPECT_TRUE(b1->isConditional());
 | |
|   EXPECT_EQ(2U, b1->getNumSuccessors());
 | |
| 
 | |
|   // check num operands
 | |
|   EXPECT_EQ(3U, b1->getNumOperands());
 | |
| 
 | |
|   User::const_op_iterator b(b1->op_begin());
 | |
| 
 | |
|   // check COND
 | |
|   EXPECT_NE(b, b1->op_end());
 | |
|   EXPECT_EQ(One, *b);
 | |
|   EXPECT_EQ(One, b1->getOperand(0));
 | |
|   EXPECT_EQ(One, b1->getCondition());
 | |
|   ++b;
 | |
| 
 | |
|   // check ELSE
 | |
|   EXPECT_EQ(bb1, *b);
 | |
|   EXPECT_EQ(bb1, b1->getOperand(1));
 | |
|   EXPECT_EQ(bb1, b1->getSuccessor(1));
 | |
|   ++b;
 | |
| 
 | |
|   // check THEN
 | |
|   EXPECT_EQ(bb0, *b);
 | |
|   EXPECT_EQ(bb0, b1->getOperand(2));
 | |
|   EXPECT_EQ(bb0, b1->getSuccessor(0));
 | |
|   ++b;
 | |
| 
 | |
|   EXPECT_EQ(b1->op_end(), b);
 | |
| 
 | |
|   // clean up
 | |
|   delete b0;
 | |
|   delete b1;
 | |
| 
 | |
|   delete bb0;
 | |
|   delete bb1;
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, CastInst) {
 | |
|   LLVMContext C;
 | |
| 
 | |
|   Type *Int8Ty = Type::getInt8Ty(C);
 | |
|   Type *Int16Ty = Type::getInt16Ty(C);
 | |
|   Type *Int32Ty = Type::getInt32Ty(C);
 | |
|   Type *Int64Ty = Type::getInt64Ty(C);
 | |
|   Type *V8x8Ty = VectorType::get(Int8Ty, 8);
 | |
|   Type *V8x64Ty = VectorType::get(Int64Ty, 8);
 | |
|   Type *X86MMXTy = Type::getX86_MMXTy(C);
 | |
| 
 | |
|   Type *HalfTy = Type::getHalfTy(C);
 | |
|   Type *FloatTy = Type::getFloatTy(C);
 | |
|   Type *DoubleTy = Type::getDoubleTy(C);
 | |
| 
 | |
|   Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
 | |
|   Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
 | |
|   Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
 | |
| 
 | |
|   Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
 | |
|   Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
 | |
| 
 | |
|   Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
 | |
|   Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
 | |
| 
 | |
|   Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
 | |
|   Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
 | |
|   Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
 | |
|   Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
 | |
| 
 | |
|   Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
 | |
|   Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
 | |
|   Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
 | |
| 
 | |
|   const Constant* c8 = Constant::getNullValue(V8x8Ty);
 | |
|   const Constant* c64 = Constant::getNullValue(V8x64Ty);
 | |
| 
 | |
|   const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
 | |
| 
 | |
|   EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
 | |
|   EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
 | |
|   EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
 | |
|   EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
 | |
|   EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
 | |
|   EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
 | |
|   EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
 | |
| 
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
 | |
| 
 | |
|   // Check address space casts are rejected since we don't know the sizes here
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
 | |
|   EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
 | |
|   EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
 | |
|                                                              V2Int32PtrAS1Ty,
 | |
|                                                              true));
 | |
| 
 | |
|   // Test mismatched number of elements for pointers
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
 | |
| 
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
 | |
| 
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
 | |
| 
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
 | |
|   EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
 | |
|   EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
 | |
| 
 | |
| 
 | |
|   EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
 | |
|                                      Constant::getNullValue(V4Int32PtrTy),
 | |
|                                      V2Int32PtrTy));
 | |
|   EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
 | |
|                                      Constant::getNullValue(V2Int32PtrTy),
 | |
|                                      V4Int32PtrTy));
 | |
| 
 | |
|   EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
 | |
|                                      Constant::getNullValue(V4Int32PtrAS1Ty),
 | |
|                                      V2Int32PtrTy));
 | |
|   EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
 | |
|                                      Constant::getNullValue(V2Int32PtrTy),
 | |
|                                      V4Int32PtrAS1Ty));
 | |
| 
 | |
| 
 | |
|   // Check that assertion is not hit when creating a cast with a vector of
 | |
|   // pointers
 | |
|   // First form
 | |
|   BasicBlock *BB = BasicBlock::Create(C);
 | |
|   Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
 | |
|   auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
 | |
| 
 | |
|   // Second form
 | |
|   auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
 | |
| 
 | |
|   delete Inst2;
 | |
|   Inst1->eraseFromParent();
 | |
|   delete BB;
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, VectorGep) {
 | |
|   LLVMContext C;
 | |
| 
 | |
|   // Type Definitions
 | |
|   Type *I8Ty = IntegerType::get(C, 8);
 | |
|   Type *I32Ty = IntegerType::get(C, 32);
 | |
|   PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
 | |
|   PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
 | |
| 
 | |
|   VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
 | |
|   VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
 | |
| 
 | |
|   // Test different aspects of the vector-of-pointers type
 | |
|   // and GEPs which use this type.
 | |
|   ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
 | |
|   ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
 | |
|   std::vector<Constant*> ConstVa(2, Ci32a);
 | |
|   std::vector<Constant*> ConstVb(2, Ci32b);
 | |
|   Constant *C2xi32a = ConstantVector::get(ConstVa);
 | |
|   Constant *C2xi32b = ConstantVector::get(ConstVb);
 | |
| 
 | |
|   CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
 | |
|   CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
 | |
| 
 | |
|   ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
 | |
|   ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
 | |
|   EXPECT_NE(ICmp0, ICmp1); // suppress warning.
 | |
| 
 | |
|   BasicBlock* BB0 = BasicBlock::Create(C);
 | |
|   // Test InsertAtEnd ICmpInst constructor.
 | |
|   ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
 | |
|   EXPECT_NE(ICmp0, ICmp2); // suppress warning.
 | |
| 
 | |
|   GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
 | |
|   GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
 | |
|   GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
 | |
|   GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
 | |
| 
 | |
|   CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
 | |
|   CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
 | |
|   CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
 | |
|   CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
 | |
| 
 | |
|   Value *S0 = BTC0->stripPointerCasts();
 | |
|   Value *S1 = BTC1->stripPointerCasts();
 | |
|   Value *S2 = BTC2->stripPointerCasts();
 | |
|   Value *S3 = BTC3->stripPointerCasts();
 | |
| 
 | |
|   EXPECT_NE(S0, Gep0);
 | |
|   EXPECT_NE(S1, Gep1);
 | |
|   EXPECT_NE(S2, Gep2);
 | |
|   EXPECT_NE(S3, Gep3);
 | |
| 
 | |
|   int64_t Offset;
 | |
|   DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
 | |
|                 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
 | |
|                 ":128:128-n8:16:32:64-S128");
 | |
|   // Make sure we don't crash
 | |
|   GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
 | |
|   GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
 | |
|   GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
 | |
|   GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
 | |
| 
 | |
|   // Gep of Geps
 | |
|   GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
 | |
|   GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
 | |
|   GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
 | |
|   GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
 | |
| 
 | |
|   EXPECT_EQ(GepII0->getNumIndices(), 1u);
 | |
|   EXPECT_EQ(GepII1->getNumIndices(), 1u);
 | |
|   EXPECT_EQ(GepII2->getNumIndices(), 1u);
 | |
|   EXPECT_EQ(GepII3->getNumIndices(), 1u);
 | |
| 
 | |
|   EXPECT_FALSE(GepII0->hasAllZeroIndices());
 | |
|   EXPECT_FALSE(GepII1->hasAllZeroIndices());
 | |
|   EXPECT_FALSE(GepII2->hasAllZeroIndices());
 | |
|   EXPECT_FALSE(GepII3->hasAllZeroIndices());
 | |
| 
 | |
|   delete GepII0;
 | |
|   delete GepII1;
 | |
|   delete GepII2;
 | |
|   delete GepII3;
 | |
| 
 | |
|   delete BTC0;
 | |
|   delete BTC1;
 | |
|   delete BTC2;
 | |
|   delete BTC3;
 | |
| 
 | |
|   delete Gep0;
 | |
|   delete Gep1;
 | |
|   delete Gep2;
 | |
|   delete Gep3;
 | |
| 
 | |
|   ICmp2->eraseFromParent();
 | |
|   delete BB0;
 | |
| 
 | |
|   delete ICmp0;
 | |
|   delete ICmp1;
 | |
|   delete PtrVecA;
 | |
|   delete PtrVecB;
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, FPMathOperator) {
 | |
|   LLVMContext Context;
 | |
|   IRBuilder<> Builder(Context);
 | |
|   MDBuilder MDHelper(Context);
 | |
|   Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
 | |
|   MDNode *MD1 = MDHelper.createFPMath(1.0);
 | |
|   Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
 | |
|   EXPECT_TRUE(isa<FPMathOperator>(V1));
 | |
|   FPMathOperator *O1 = cast<FPMathOperator>(V1);
 | |
|   EXPECT_EQ(O1->getFPAccuracy(), 1.0);
 | |
|   V1->deleteValue();
 | |
|   I->deleteValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST(InstructionsTest, isEliminableCastPair) {
 | |
|   LLVMContext C;
 | |
| 
 | |
|   Type* Int16Ty = Type::getInt16Ty(C);
 | |
|   Type* Int32Ty = Type::getInt32Ty(C);
 | |
|   Type* Int64Ty = Type::getInt64Ty(C);
 | |
|   Type* Int64PtrTy = Type::getInt64PtrTy(C);
 | |
| 
 | |
|   // Source and destination pointers have same size -> bitcast.
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
 | |
|                                            CastInst::IntToPtr,
 | |
|                                            Int64PtrTy, Int64Ty, Int64PtrTy,
 | |
|                                            Int32Ty, nullptr, Int32Ty),
 | |
|             CastInst::BitCast);
 | |
| 
 | |
|   // Source and destination have unknown sizes, but the same address space and
 | |
|   // the intermediate int is the maximum pointer size -> bitcast
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
 | |
|                                            CastInst::IntToPtr,
 | |
|                                            Int64PtrTy, Int64Ty, Int64PtrTy,
 | |
|                                            nullptr, nullptr, nullptr),
 | |
|             CastInst::BitCast);
 | |
| 
 | |
|   // Source and destination have unknown sizes, but the same address space and
 | |
|   // the intermediate int is not the maximum pointer size -> nothing
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
 | |
|                                            CastInst::IntToPtr,
 | |
|                                            Int64PtrTy, Int32Ty, Int64PtrTy,
 | |
|                                            nullptr, nullptr, nullptr),
 | |
|             0U);
 | |
| 
 | |
|   // Middle pointer big enough -> bitcast.
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
 | |
|                                            CastInst::PtrToInt,
 | |
|                                            Int64Ty, Int64PtrTy, Int64Ty,
 | |
|                                            nullptr, Int64Ty, nullptr),
 | |
|             CastInst::BitCast);
 | |
| 
 | |
|   // Middle pointer too small -> fail.
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
 | |
|                                            CastInst::PtrToInt,
 | |
|                                            Int64Ty, Int64PtrTy, Int64Ty,
 | |
|                                            nullptr, Int32Ty, nullptr),
 | |
|             0U);
 | |
| 
 | |
|   // Test that we don't eliminate bitcasts between different address spaces,
 | |
|   // or if we don't have available pointer size information.
 | |
|   DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
 | |
|                 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
 | |
|                 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
 | |
| 
 | |
|   Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
 | |
|   Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
 | |
| 
 | |
|   IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
 | |
|   IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
 | |
| 
 | |
|   // Cannot simplify inttoptr, addrspacecast
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
 | |
|                                            CastInst::AddrSpaceCast,
 | |
|                                            Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
 | |
|                                            nullptr, Int16SizePtr, Int64SizePtr),
 | |
|             0U);
 | |
| 
 | |
|   // Cannot simplify addrspacecast, ptrtoint
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
 | |
|                                            CastInst::PtrToInt,
 | |
|                                            Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
 | |
|                                            Int64SizePtr, Int16SizePtr, nullptr),
 | |
|             0U);
 | |
| 
 | |
|   // Pass since the bitcast address spaces are the same
 | |
|   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
 | |
|                                            CastInst::BitCast,
 | |
|                                            Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
 | |
|                                            nullptr, nullptr, nullptr),
 | |
|             CastInst::IntToPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, CloneCall) {
 | |
|   LLVMContext C;
 | |
|   Type *Int32Ty = Type::getInt32Ty(C);
 | |
|   Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
 | |
|   Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
 | |
|   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
 | |
|   Value *Args[] = {
 | |
|     ConstantInt::get(Int32Ty, 1),
 | |
|     ConstantInt::get(Int32Ty, 2),
 | |
|     ConstantInt::get(Int32Ty, 3)
 | |
|   };
 | |
|   std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result"));
 | |
| 
 | |
|   // Test cloning the tail call kind.
 | |
|   CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
 | |
|                                     CallInst::TCK_MustTail};
 | |
|   for (CallInst::TailCallKind TCK : Kinds) {
 | |
|     Call->setTailCallKind(TCK);
 | |
|     std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
 | |
|     EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
 | |
|   }
 | |
|   Call->setTailCallKind(CallInst::TCK_None);
 | |
| 
 | |
|   // Test cloning an attribute.
 | |
|   {
 | |
|     AttrBuilder AB;
 | |
|     AB.addAttribute(Attribute::ReadOnly);
 | |
|     Call->setAttributes(
 | |
|         AttributeList::get(C, AttributeList::FunctionIndex, AB));
 | |
|     std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
 | |
|     EXPECT_TRUE(Clone->onlyReadsMemory());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, AlterCallBundles) {
 | |
|   LLVMContext C;
 | |
|   Type *Int32Ty = Type::getInt32Ty(C);
 | |
|   Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
 | |
|   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
 | |
|   Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
 | |
|   OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
 | |
|   std::unique_ptr<CallInst> Call(
 | |
|       CallInst::Create(Callee, Args, OldBundle, "result"));
 | |
|   Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
 | |
|   AttrBuilder AB;
 | |
|   AB.addAttribute(Attribute::Cold);
 | |
|   Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
 | |
|   Call->setDebugLoc(DebugLoc(MDNode::get(C, None)));
 | |
| 
 | |
|   OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
 | |
|   std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
 | |
|   EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands());
 | |
|   EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
 | |
|   EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
 | |
|   EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
 | |
|   EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
 | |
|   EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
 | |
|   EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
 | |
|   EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, AlterInvokeBundles) {
 | |
|   LLVMContext C;
 | |
|   Type *Int32Ty = Type::getInt32Ty(C);
 | |
|   Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
 | |
|   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
 | |
|   Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
 | |
|   std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
 | |
|   std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
 | |
|   OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
 | |
|   std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(
 | |
|       Callee, NormalDest.get(), UnwindDest.get(), Args, OldBundle, "result"));
 | |
|   AttrBuilder AB;
 | |
|   AB.addAttribute(Attribute::Cold);
 | |
|   Invoke->setAttributes(
 | |
|       AttributeList::get(C, AttributeList::FunctionIndex, AB));
 | |
|   Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None)));
 | |
| 
 | |
|   OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
 | |
|   std::unique_ptr<InvokeInst> Clone(
 | |
|       InvokeInst::Create(Invoke.get(), NewBundle));
 | |
|   EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
 | |
|   EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
 | |
|   EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands());
 | |
|   EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
 | |
|   EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
 | |
|   EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
 | |
|   EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
 | |
|   EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
 | |
|   EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
 | |
| }
 | |
| 
 | |
| TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
 | |
|   auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
 | |
|   auto *Arg0 = &*F->arg_begin();
 | |
| 
 | |
|   IRBuilder<NoFolder> B(Ctx);
 | |
|   B.SetInsertPoint(OnlyBB);
 | |
| 
 | |
|   {
 | |
|     auto *UI =
 | |
|         cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
 | |
|     ASSERT_TRUE(UI->isExact());
 | |
|     UI->dropPoisonGeneratingFlags();
 | |
|     ASSERT_FALSE(UI->isExact());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto *ShrI =
 | |
|         cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
 | |
|     ASSERT_TRUE(ShrI->isExact());
 | |
|     ShrI->dropPoisonGeneratingFlags();
 | |
|     ASSERT_FALSE(ShrI->isExact());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto *AI = cast<Instruction>(
 | |
|         B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
 | |
|     ASSERT_TRUE(AI->hasNoUnsignedWrap());
 | |
|     AI->dropPoisonGeneratingFlags();
 | |
|     ASSERT_FALSE(AI->hasNoUnsignedWrap());
 | |
|     ASSERT_FALSE(AI->hasNoSignedWrap());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto *SI = cast<Instruction>(
 | |
|         B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
 | |
|     ASSERT_TRUE(SI->hasNoSignedWrap());
 | |
|     SI->dropPoisonGeneratingFlags();
 | |
|     ASSERT_FALSE(SI->hasNoUnsignedWrap());
 | |
|     ASSERT_FALSE(SI->hasNoSignedWrap());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto *ShlI = cast<Instruction>(
 | |
|         B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
 | |
|     ASSERT_TRUE(ShlI->hasNoSignedWrap());
 | |
|     ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
 | |
|     ShlI->dropPoisonGeneratingFlags();
 | |
|     ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
 | |
|     ASSERT_FALSE(ShlI->hasNoSignedWrap());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy());
 | |
|     auto *GI = cast<GetElementPtrInst>(B.CreateInBoundsGEP(GEPBase, {Arg0}));
 | |
|     ASSERT_TRUE(GI->isInBounds());
 | |
|     GI->dropPoisonGeneratingFlags();
 | |
|     ASSERT_FALSE(GI->isInBounds());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, GEPIndices) {
 | |
|   LLVMContext Context;
 | |
|   IRBuilder<NoFolder> Builder(Context);
 | |
|   Type *ElementTy = Builder.getInt8Ty();
 | |
|   Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
 | |
|   Value *Indices[] = {
 | |
|     Builder.getInt32(0),
 | |
|     Builder.getInt32(13),
 | |
|     Builder.getInt32(42) };
 | |
| 
 | |
|   Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
 | |
|                                Indices);
 | |
|   ASSERT_TRUE(isa<GetElementPtrInst>(V));
 | |
| 
 | |
|   auto *GEPI = cast<GetElementPtrInst>(V);
 | |
|   ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
 | |
|   ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
 | |
|   EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
 | |
|   EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
 | |
|   EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
 | |
|   EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
 | |
|   EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
 | |
| 
 | |
|   const auto *CGEPI = GEPI;
 | |
|   ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
 | |
|   ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
 | |
|   EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
 | |
|   EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
 | |
|   EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
 | |
|   EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
 | |
|   EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
 | |
| 
 | |
|   delete GEPI;
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, SwitchInst) {
 | |
|   LLVMContext C;
 | |
| 
 | |
|   std::unique_ptr<BasicBlock> BB1, BB2, BB3;
 | |
|   BB1.reset(BasicBlock::Create(C));
 | |
|   BB2.reset(BasicBlock::Create(C));
 | |
|   BB3.reset(BasicBlock::Create(C));
 | |
| 
 | |
|   // We create block 0 after the others so that it gets destroyed first and
 | |
|   // clears the uses of the other basic blocks.
 | |
|   std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
 | |
| 
 | |
|   auto *Int32Ty = Type::getInt32Ty(C);
 | |
| 
 | |
|   SwitchInst *SI =
 | |
|       SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
 | |
|   SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
 | |
|   SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
 | |
|   SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
 | |
| 
 | |
|   auto CI = SI->case_begin();
 | |
|   ASSERT_NE(CI, SI->case_end());
 | |
|   EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
 | |
|   EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
 | |
|   EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
 | |
|   EXPECT_EQ(CI + 1, std::next(CI));
 | |
|   EXPECT_EQ(CI + 2, std::next(CI, 2));
 | |
|   EXPECT_EQ(CI + 3, std::next(CI, 3));
 | |
|   EXPECT_EQ(SI->case_end(), CI + 3);
 | |
|   EXPECT_EQ(0, CI - CI);
 | |
|   EXPECT_EQ(1, (CI + 1) - CI);
 | |
|   EXPECT_EQ(2, (CI + 2) - CI);
 | |
|   EXPECT_EQ(3, SI->case_end() - CI);
 | |
|   EXPECT_EQ(3, std::distance(CI, SI->case_end()));
 | |
| 
 | |
|   auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
 | |
|   SwitchInst::ConstCaseIt CCE = SI->case_end();
 | |
|   ASSERT_NE(CCI, SI->case_end());
 | |
|   EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
 | |
|   EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
 | |
|   EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
 | |
|   EXPECT_EQ(CCI + 1, std::next(CCI));
 | |
|   EXPECT_EQ(CCI + 2, std::next(CCI, 2));
 | |
|   EXPECT_EQ(CCI + 3, std::next(CCI, 3));
 | |
|   EXPECT_EQ(CCE, CCI + 3);
 | |
|   EXPECT_EQ(0, CCI - CCI);
 | |
|   EXPECT_EQ(1, (CCI + 1) - CCI);
 | |
|   EXPECT_EQ(2, (CCI + 2) - CCI);
 | |
|   EXPECT_EQ(3, CCE - CCI);
 | |
|   EXPECT_EQ(3, std::distance(CCI, CCE));
 | |
| 
 | |
|   // Make sure that the const iterator is compatible with a const auto ref.
 | |
|   const auto &Handle = *CCI;
 | |
|   EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
 | |
|   EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, CommuteShuffleMask) {
 | |
|   SmallVector<int, 16> Indices({-1, 0, 7});
 | |
|   ShuffleVectorInst::commuteShuffleMask(Indices, 4);
 | |
|   EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, ShuffleMaskQueries) {
 | |
|   // Create the elements for various constant vectors.
 | |
|   LLVMContext Ctx;
 | |
|   Type *Int32Ty = Type::getInt32Ty(Ctx);
 | |
|   Constant *CU = UndefValue::get(Int32Ty);
 | |
|   Constant *C0 = ConstantInt::get(Int32Ty, 0);
 | |
|   Constant *C1 = ConstantInt::get(Int32Ty, 1);
 | |
|   Constant *C2 = ConstantInt::get(Int32Ty, 2);
 | |
|   Constant *C3 = ConstantInt::get(Int32Ty, 3);
 | |
|   Constant *C4 = ConstantInt::get(Int32Ty, 4);
 | |
|   Constant *C5 = ConstantInt::get(Int32Ty, 5);
 | |
|   Constant *C6 = ConstantInt::get(Int32Ty, 6);
 | |
|   Constant *C7 = ConstantInt::get(Int32Ty, 7);
 | |
| 
 | |
|   Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity));
 | |
| 
 | |
|   Constant *Select = ConstantVector::get({CU, C1, C5});
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select));
 | |
|   
 | |
|   Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse));
 | |
| 
 | |
|   Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource));
 | |
| 
 | |
|   Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat));
 | |
| 
 | |
|   Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose));
 | |
|   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose));
 | |
| 
 | |
|   // More tests to make sure the logic is/stays correct...
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3})));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU})));
 | |
| 
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU})));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3})));
 | |
| 
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4})));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU})));
 | |
| 
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7})));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3})));
 | |
| 
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4})));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0})));
 | |
| 
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7})));
 | |
|   EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3})));
 | |
| 
 | |
|   // Nothing special about the values here - just re-using inputs to reduce code. 
 | |
|   Constant *V0 = ConstantVector::get({C0, C1, C2, C3});
 | |
|   Constant *V1 = ConstantVector::get({C3, C2, C1, C0});
 | |
| 
 | |
|   // Identity with undef elts.
 | |
|   ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C0, C1, CU, CU}));
 | |
|   EXPECT_TRUE(Id1->isIdentity());
 | |
|   EXPECT_FALSE(Id1->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id1->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id1->isConcat());
 | |
|   delete Id1;
 | |
| 
 | |
|   // Result has less elements than operands.
 | |
|   ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C0, C1, C2}));
 | |
|   EXPECT_FALSE(Id2->isIdentity());
 | |
|   EXPECT_FALSE(Id2->isIdentityWithPadding());
 | |
|   EXPECT_TRUE(Id2->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id2->isConcat());
 | |
|   delete Id2;
 | |
| 
 | |
|   // Result has less elements than operands; choose from Op1.
 | |
|   ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C4, CU, C6}));
 | |
|   EXPECT_FALSE(Id3->isIdentity());
 | |
|   EXPECT_FALSE(Id3->isIdentityWithPadding());
 | |
|   EXPECT_TRUE(Id3->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id3->isConcat());
 | |
|   delete Id3;
 | |
| 
 | |
|   // Result has less elements than operands; choose from Op0 and Op1 is not identity.
 | |
|   ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C4, C1, C6}));
 | |
|   EXPECT_FALSE(Id4->isIdentity());
 | |
|   EXPECT_FALSE(Id4->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id4->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id4->isConcat());
 | |
|   delete Id4;
 | |
| 
 | |
|   // Result has more elements than operands, and extra elements are undef.
 | |
|   ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({CU, C1, C2, C3, CU, CU}));
 | |
|   EXPECT_FALSE(Id5->isIdentity());
 | |
|   EXPECT_TRUE(Id5->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id5->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id5->isConcat());
 | |
|   delete Id5;
 | |
| 
 | |
|   // Result has more elements than operands, and extra elements are undef; choose from Op1.
 | |
|   ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C4, C5, C6, CU, CU, CU}));
 | |
|   EXPECT_FALSE(Id6->isIdentity());
 | |
|   EXPECT_TRUE(Id6->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id6->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id6->isConcat());
 | |
|   delete Id6;
 | |
|   
 | |
|   // Result has more elements than operands, but extra elements are not undef.
 | |
|   ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C0, C1, C2, C3, CU, C1}));
 | |
|   EXPECT_FALSE(Id7->isIdentity());
 | |
|   EXPECT_FALSE(Id7->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id7->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id7->isConcat());
 | |
|   delete Id7;
 | |
|   
 | |
|   // Result has more elements than operands; choose from Op0 and Op1 is not identity.
 | |
|   ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C4, CU, C2, C3, CU, CU}));
 | |
|   EXPECT_FALSE(Id8->isIdentity());
 | |
|   EXPECT_FALSE(Id8->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id8->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id8->isConcat());
 | |
|   delete Id8;
 | |
| 
 | |
|   // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
 | |
|   ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1,
 | |
|                                                  ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
 | |
|   EXPECT_FALSE(Id9->isIdentity());
 | |
|   EXPECT_FALSE(Id9->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id9->isIdentityWithExtract());
 | |
|   EXPECT_TRUE(Id9->isConcat());
 | |
|   delete Id9;
 | |
| 
 | |
|   // Result has less than twice as many elements as operands, so not a concat.
 | |
|   ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1,
 | |
|                                                   ConstantVector::get({C0, CU, C2, C3, CU, CU, C6}));
 | |
|   EXPECT_FALSE(Id10->isIdentity());
 | |
|   EXPECT_FALSE(Id10->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id10->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id10->isConcat());
 | |
|   delete Id10;
 | |
| 
 | |
|   // Result has more than twice as many elements as operands, so not a concat.
 | |
|   ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1,
 | |
|                                                   ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU}));
 | |
|   EXPECT_FALSE(Id11->isIdentity());
 | |
|   EXPECT_FALSE(Id11->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id11->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id11->isConcat());
 | |
|   delete Id11;
 | |
| 
 | |
|   // If an input is undef, it's not a concat.
 | |
|   // TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
 | |
|   ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}),
 | |
|                                                   ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
 | |
|   EXPECT_FALSE(Id12->isIdentity());
 | |
|   EXPECT_FALSE(Id12->isIdentityWithPadding());
 | |
|   EXPECT_FALSE(Id12->isIdentityWithExtract());
 | |
|   EXPECT_FALSE(Id12->isConcat());
 | |
|   delete Id12;
 | |
| }
 | |
| 
 | |
| TEST(InstructionsTest, SkipDebug) {
 | |
|   LLVMContext C;
 | |
|   std::unique_ptr<Module> M = parseIR(C,
 | |
|                                       R"(
 | |
|       declare void @llvm.dbg.value(metadata, metadata, metadata)
 | |
| 
 | |
|       define void @f() {
 | |
|       entry:
 | |
|         call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
 | |
|         ret void
 | |
|       }
 | |
| 
 | |
|       !llvm.dbg.cu = !{!0}
 | |
|       !llvm.module.flags = !{!3, !4}
 | |
|       !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
 | |
|       !1 = !DIFile(filename: "t2.c", directory: "foo")
 | |
|       !2 = !{}
 | |
|       !3 = !{i32 2, !"Dwarf Version", i32 4}
 | |
|       !4 = !{i32 2, !"Debug Info Version", i32 3}
 | |
|       !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
 | |
|       !9 = !DISubroutineType(types: !10)
 | |
|       !10 = !{null}
 | |
|       !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
 | |
|       !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
 | |
|       !13 = !DILocation(line: 2, column: 7, scope: !8)
 | |
|   )");
 | |
|   ASSERT_TRUE(M);
 | |
|   Function *F = cast<Function>(M->getNamedValue("f"));
 | |
|   BasicBlock &BB = F->front();
 | |
| 
 | |
|   // The first non-debug instruction is the terminator.
 | |
|   auto *Term = BB.getTerminator();
 | |
|   EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
 | |
|   EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
 | |
| 
 | |
|   // After the terminator, there are no non-debug instructions.
 | |
|   EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| } // end namespace llvm
 |