565 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			565 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/NoFolder.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct PatternMatchTest : ::testing::Test {
 | |
|   LLVMContext Ctx;
 | |
|   std::unique_ptr<Module> M;
 | |
|   Function *F;
 | |
|   BasicBlock *BB;
 | |
|   IRBuilder<NoFolder> IRB;
 | |
| 
 | |
|   PatternMatchTest()
 | |
|       : M(new Module("PatternMatchTestModule", Ctx)),
 | |
|         F(Function::Create(
 | |
|             FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
 | |
|             Function::ExternalLinkage, "f", M.get())),
 | |
|         BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
 | |
| };
 | |
| 
 | |
| TEST_F(PatternMatchTest, OneUse) {
 | |
|   // Build up a little tree of values:
 | |
|   //
 | |
|   //   One  = (1 + 2) + 42
 | |
|   //   Two  = One + 42
 | |
|   //   Leaf = (Two + 8) + (Two + 13)
 | |
|   Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
 | |
|                              IRB.getInt32(42));
 | |
|   Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
 | |
|   Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
 | |
|                               IRB.CreateAdd(Two, IRB.getInt32(13)));
 | |
|   Value *V;
 | |
| 
 | |
|   EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
 | |
|   EXPECT_EQ(One, V);
 | |
| 
 | |
|   EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
 | |
|   EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, CommutativeDeferredValue) {
 | |
|   Value *X = IRB.getInt32(1);
 | |
|   Value *Y = IRB.getInt32(2);
 | |
| 
 | |
|   {
 | |
|     Value *tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
|   {
 | |
|     const Value *tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
|   {
 | |
|     Value *const tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
|   {
 | |
|     const Value *const tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *tX = nullptr;
 | |
|     EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
 | |
|     EXPECT_EQ(tX, X);
 | |
|   }
 | |
|   {
 | |
|     Value *tX = nullptr;
 | |
|     EXPECT_FALSE(
 | |
|         match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
 | |
|   }
 | |
| 
 | |
|   auto checkMatch = [X, Y](Value *Pattern) {
 | |
|     Value *tX = nullptr, *tY = nullptr;
 | |
|     EXPECT_TRUE(match(
 | |
|         Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
 | |
|     EXPECT_EQ(tX, X);
 | |
|     EXPECT_EQ(tY, Y);
 | |
|   };
 | |
| 
 | |
|   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
 | |
|   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
 | |
|   checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
 | |
|   checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test OLT.
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test OLE.
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on OGE.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on OGT.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp oge L, R
 | |
|   // %min = select %cmp R, L
 | |
|   // Given L == NaN
 | |
|   // the above is expanded to %cmp == false ==> %min = L
 | |
|   // which is true for UnordFMin, not OrdFMin, so test that:
 | |
| 
 | |
|   // [OU]GE with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [OU]GT with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test OGT.
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test OGE.
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on OLE.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on OLT.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
 | |
| 
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp ole L, R
 | |
|   // %max = select %cmp, R, L
 | |
|   // Given L == NaN,
 | |
|   // the above is expanded to %cmp == false ==> %max == L
 | |
|   // which is true for UnordFMax, not OrdFMax, so test that:
 | |
| 
 | |
|   // [OU]LE with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [OUT]LT with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test ULT.
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test ULE.
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on UGE.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on UGT.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp uge L, R
 | |
|   // %min = select %cmp R, L
 | |
|   // Given L == NaN
 | |
|   // the above is expanded to %cmp == true ==> %min = R
 | |
|   // which is true for OrdFMin, not UnordFMin, so test that:
 | |
| 
 | |
|   // [UO]GE with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [UO]GT with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test UGT.
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test UGE.
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on ULE.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on ULT.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp ule L, R
 | |
|   // %max = select %cmp R, L
 | |
|   // Given L == NaN
 | |
|   // the above is expanded to %cmp == true ==> %max = R
 | |
|   // which is true for OrdFMax, not UnordFMax, so test that:
 | |
| 
 | |
|   // [UO]LE with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [UO]LT with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, OverflowingBinOps) {
 | |
|   Value *L = IRB.getInt32(1);
 | |
|   Value *R = IRB.getInt32(2);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
 | |
|   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
 | |
|   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
 | |
|   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
 | |
|   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
 | |
|   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
| 
 | |
|   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
 | |
|   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
 | |
|   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
 | |
|   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
 | |
|   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
 | |
|   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, LoadStoreOps) {
 | |
|   // Create this load/store sequence:
 | |
|   //
 | |
|   //  %p = alloca i32*
 | |
|   //  %0 = load i32*, i32** %p
 | |
|   //  store i32 42, i32* %0
 | |
| 
 | |
|   Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
 | |
|   Value *LoadInst = IRB.CreateLoad(Alloca);
 | |
|   Value *FourtyTwo = IRB.getInt32(42);
 | |
|   Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
 | |
|   Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
 | |
| 
 | |
|   EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
 | |
|   EXPECT_EQ(Alloca, MatchLoad);
 | |
| 
 | |
|   EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
 | |
| 
 | |
|   EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
 | |
| 
 | |
|   EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
 | |
|                 .match(StoreInst));
 | |
|   EXPECT_EQ(FourtyTwo, MatchStoreVal);
 | |
|   EXPECT_EQ(Alloca, MatchStorePointer);
 | |
| 
 | |
|   EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
 | |
|                 .match(Alloca));
 | |
| 
 | |
|   EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
 | |
|                 .match(StoreInst));
 | |
|   EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
 | |
|                 .match(StoreInst));
 | |
|   EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
 | |
|                 .match(StoreInst));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, VectorOps) {
 | |
|   // Build up small tree of vector operations
 | |
|   //
 | |
|   //   Val = 0 + 1
 | |
|   //   Val2 = Val + 3
 | |
|   //   VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
 | |
|   //   VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
 | |
|   //   VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
 | |
|   //   VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
 | |
|   //
 | |
|   //   SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
 | |
|   //   SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
 | |
|   //   SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
 | |
|   //   SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
 | |
|   //
 | |
|   //   SP1 = VectorSplat(2, i8 2)
 | |
|   //   SP2 = VectorSplat(2, i8 %Val)
 | |
|   Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2);
 | |
|   Type *i32 = IRB.getInt32Ty();
 | |
|   Type *i32VecTy = VectorType::get(i32, 2);
 | |
| 
 | |
|   Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
 | |
|   Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
 | |
| 
 | |
|   SmallVector<Constant *, 2> VecElemIdxs;
 | |
|   VecElemIdxs.push_back(ConstantInt::get(i32, 0));
 | |
|   VecElemIdxs.push_back(ConstantInt::get(i32, 2));
 | |
|   auto *IdxVec = ConstantVector::get(VecElemIdxs);
 | |
| 
 | |
|   Value *UndefVec = UndefValue::get(VecTy);
 | |
|   Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0);
 | |
|   Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
 | |
|   Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
 | |
|   Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
 | |
| 
 | |
|   Value *EX1 = IRB.CreateExtractElement(VI4, Val);
 | |
|   Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
 | |
|   Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
 | |
| 
 | |
|   Value *Zero = ConstantAggregateZero::get(i32VecTy);
 | |
|   Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero);
 | |
|   Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
 | |
|   Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero);
 | |
|   Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero);
 | |
| 
 | |
|   Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
 | |
|   Value *SP2 = IRB.CreateVectorSplat(2, Val);
 | |
| 
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr;
 | |
| 
 | |
|   // Test matching insertelement
 | |
|   EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(
 | |
|       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt())));
 | |
|   EXPECT_TRUE(
 | |
|       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero())));
 | |
|   EXPECT_TRUE(
 | |
|       match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero())));
 | |
|   EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(
 | |
|       match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())));
 | |
|   EXPECT_FALSE(
 | |
|       match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value())));
 | |
|   EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C))));
 | |
|   EXPECT_TRUE(A == VI1);
 | |
|   EXPECT_TRUE(B == Val2);
 | |
|   EXPECT_TRUE(isa<ConstantInt>(C));
 | |
|   A = B = C = nullptr; // reset
 | |
| 
 | |
|   // Test matching extractelement
 | |
|   EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B))));
 | |
|   EXPECT_TRUE(A == VI4);
 | |
|   EXPECT_TRUE(B == Val);
 | |
|   A = B = C = nullptr; // reset
 | |
|   EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt())));
 | |
|   EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt())));
 | |
|   EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt())));
 | |
| 
 | |
|   // Test matching shufflevector
 | |
|   EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero())));
 | |
|   EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C))));
 | |
|   EXPECT_TRUE(A == VI3);
 | |
|   EXPECT_TRUE(B == VI4);
 | |
|   EXPECT_TRUE(C == IdxVec);
 | |
|   A = B = C = nullptr; // reset
 | |
| 
 | |
|   // Test matching the vector splat pattern
 | |
|   EXPECT_TRUE(match(
 | |
|       SI1,
 | |
|       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()),
 | |
|                       m_Undef(), m_Zero())));
 | |
|   EXPECT_FALSE(match(
 | |
|       SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
 | |
|                            m_Undef(), m_Zero())));
 | |
|   EXPECT_FALSE(match(
 | |
|       SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
 | |
|                            m_Undef(), m_Zero())));
 | |
|   EXPECT_TRUE(match(
 | |
|       SP1,
 | |
|       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()),
 | |
|                       m_Undef(), m_Zero())));
 | |
|   EXPECT_TRUE(match(
 | |
|       SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()),
 | |
|                            m_Undef(), m_Zero())));
 | |
|   EXPECT_TRUE(A == Val);
 | |
| }
 | |
| 
 | |
| template <typename T> struct MutableConstTest : PatternMatchTest { };
 | |
| 
 | |
| typedef ::testing::Types<std::tuple<Value*, Instruction*>,
 | |
|                          std::tuple<const Value*, const Instruction *>>
 | |
|     MutableConstTestTypes;
 | |
| TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
 | |
| 
 | |
| TYPED_TEST(MutableConstTest, ICmp) {
 | |
|   auto &IRB = PatternMatchTest::IRB;
 | |
| 
 | |
|   typedef typename std::tuple_element<0, TypeParam>::type ValueType;
 | |
|   typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
 | |
| 
 | |
|   Value *L = IRB.getInt32(1);
 | |
|   Value *R = IRB.getInt32(2);
 | |
|   ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
 | |
| 
 | |
|   ValueType MatchL;
 | |
|   ValueType MatchR;
 | |
|   ICmpInst::Predicate MatchPred;
 | |
| 
 | |
|   EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
 | |
|               .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| } // anonymous namespace.
 |