4854 lines
		
	
	
		
			178 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4854 lines
		
	
	
		
			178 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This tablegen backend emits code for use by the GlobalISel instruction
 | |
| /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
 | |
| ///
 | |
| /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
 | |
| /// backend, filters out the ones that are unsupported, maps
 | |
| /// SelectionDAG-specific constructs to their GlobalISel counterpart
 | |
| /// (when applicable: MVT to LLT;  SDNode to generic Instruction).
 | |
| ///
 | |
| /// Not all patterns are supported: pass the tablegen invocation
 | |
| /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
 | |
| /// as well as why.
 | |
| ///
 | |
| /// The generated file defines a single method:
 | |
| ///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
 | |
| /// intended to be used in InstructionSelector::select as the first-step
 | |
| /// selector for the patterns that don't require complex C++.
 | |
| ///
 | |
| /// FIXME: We'll probably want to eventually define a base
 | |
| /// "TargetGenInstructionSelector" class.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenDAGPatterns.h"
 | |
| #include "SubtargetFeatureInfo.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CodeGenCoverage.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Error.h"
 | |
| #include "llvm/Support/LowLevelTypeImpl.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/ScopedPrinter.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include "llvm/TableGen/TableGenBackend.h"
 | |
| #include <numeric>
 | |
| #include <string>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "gisel-emitter"
 | |
| 
 | |
| STATISTIC(NumPatternTotal, "Total number of patterns");
 | |
| STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
 | |
| STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
 | |
| STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
 | |
| STATISTIC(NumPatternEmitted, "Number of patterns emitted");
 | |
| 
 | |
| cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
 | |
| 
 | |
| static cl::opt<bool> WarnOnSkippedPatterns(
 | |
|     "warn-on-skipped-patterns",
 | |
|     cl::desc("Explain why a pattern was skipped for inclusion "
 | |
|              "in the GlobalISel selector"),
 | |
|     cl::init(false), cl::cat(GlobalISelEmitterCat));
 | |
| 
 | |
| static cl::opt<bool> GenerateCoverage(
 | |
|     "instrument-gisel-coverage",
 | |
|     cl::desc("Generate coverage instrumentation for GlobalISel"),
 | |
|     cl::init(false), cl::cat(GlobalISelEmitterCat));
 | |
| 
 | |
| static cl::opt<std::string> UseCoverageFile(
 | |
|     "gisel-coverage-file", cl::init(""),
 | |
|     cl::desc("Specify file to retrieve coverage information from"),
 | |
|     cl::cat(GlobalISelEmitterCat));
 | |
| 
 | |
| static cl::opt<bool> OptimizeMatchTable(
 | |
|     "optimize-match-table",
 | |
|     cl::desc("Generate an optimized version of the match table"),
 | |
|     cl::init(true), cl::cat(GlobalISelEmitterCat));
 | |
| 
 | |
| namespace {
 | |
| //===- Helper functions ---------------------------------------------------===//
 | |
| 
 | |
| /// Get the name of the enum value used to number the predicate function.
 | |
| std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
 | |
|   if (Predicate.hasGISelPredicateCode())
 | |
|     return "GIPFP_MI_" + Predicate.getFnName();
 | |
|   return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
 | |
|          Predicate.getFnName();
 | |
| }
 | |
| 
 | |
| /// Get the opcode used to check this predicate.
 | |
| std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
 | |
|   return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
 | |
| }
 | |
| 
 | |
| /// This class stands in for LLT wherever we want to tablegen-erate an
 | |
| /// equivalent at compiler run-time.
 | |
| class LLTCodeGen {
 | |
| private:
 | |
|   LLT Ty;
 | |
| 
 | |
| public:
 | |
|   LLTCodeGen() = default;
 | |
|   LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
 | |
| 
 | |
|   std::string getCxxEnumValue() const {
 | |
|     std::string Str;
 | |
|     raw_string_ostream OS(Str);
 | |
| 
 | |
|     emitCxxEnumValue(OS);
 | |
|     return OS.str();
 | |
|   }
 | |
| 
 | |
|   void emitCxxEnumValue(raw_ostream &OS) const {
 | |
|     if (Ty.isScalar()) {
 | |
|       OS << "GILLT_s" << Ty.getSizeInBits();
 | |
|       return;
 | |
|     }
 | |
|     if (Ty.isVector()) {
 | |
|       OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
 | |
|       return;
 | |
|     }
 | |
|     if (Ty.isPointer()) {
 | |
|       OS << "GILLT_p" << Ty.getAddressSpace();
 | |
|       if (Ty.getSizeInBits() > 0)
 | |
|         OS << "s" << Ty.getSizeInBits();
 | |
|       return;
 | |
|     }
 | |
|     llvm_unreachable("Unhandled LLT");
 | |
|   }
 | |
| 
 | |
|   void emitCxxConstructorCall(raw_ostream &OS) const {
 | |
|     if (Ty.isScalar()) {
 | |
|       OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
 | |
|       return;
 | |
|     }
 | |
|     if (Ty.isVector()) {
 | |
|       OS << "LLT::vector(" << Ty.getNumElements() << ", "
 | |
|          << Ty.getScalarSizeInBits() << ")";
 | |
|       return;
 | |
|     }
 | |
|     if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
 | |
|       OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
 | |
|          << Ty.getSizeInBits() << ")";
 | |
|       return;
 | |
|     }
 | |
|     llvm_unreachable("Unhandled LLT");
 | |
|   }
 | |
| 
 | |
|   const LLT &get() const { return Ty; }
 | |
| 
 | |
|   /// This ordering is used for std::unique() and llvm::sort(). There's no
 | |
|   /// particular logic behind the order but either A < B or B < A must be
 | |
|   /// true if A != B.
 | |
|   bool operator<(const LLTCodeGen &Other) const {
 | |
|     if (Ty.isValid() != Other.Ty.isValid())
 | |
|       return Ty.isValid() < Other.Ty.isValid();
 | |
|     if (!Ty.isValid())
 | |
|       return false;
 | |
| 
 | |
|     if (Ty.isVector() != Other.Ty.isVector())
 | |
|       return Ty.isVector() < Other.Ty.isVector();
 | |
|     if (Ty.isScalar() != Other.Ty.isScalar())
 | |
|       return Ty.isScalar() < Other.Ty.isScalar();
 | |
|     if (Ty.isPointer() != Other.Ty.isPointer())
 | |
|       return Ty.isPointer() < Other.Ty.isPointer();
 | |
| 
 | |
|     if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
 | |
|       return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
 | |
| 
 | |
|     if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
 | |
|       return Ty.getNumElements() < Other.Ty.getNumElements();
 | |
| 
 | |
|     return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
 | |
|   }
 | |
| 
 | |
|   bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
 | |
| };
 | |
| 
 | |
| // Track all types that are used so we can emit the corresponding enum.
 | |
| std::set<LLTCodeGen> KnownTypes;
 | |
| 
 | |
| class InstructionMatcher;
 | |
| /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
 | |
| /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
 | |
| static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
 | |
|   MVT VT(SVT);
 | |
| 
 | |
|   if (VT.isVector() && VT.getVectorNumElements() != 1)
 | |
|     return LLTCodeGen(
 | |
|         LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
 | |
| 
 | |
|   if (VT.isInteger() || VT.isFloatingPoint())
 | |
|     return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static std::string explainPredicates(const TreePatternNode *N) {
 | |
|   std::string Explanation = "";
 | |
|   StringRef Separator = "";
 | |
|   for (const auto &P : N->getPredicateFns()) {
 | |
|     Explanation +=
 | |
|         (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
 | |
|     Separator = ", ";
 | |
| 
 | |
|     if (P.isAlwaysTrue())
 | |
|       Explanation += " always-true";
 | |
|     if (P.isImmediatePattern())
 | |
|       Explanation += " immediate";
 | |
| 
 | |
|     if (P.isUnindexed())
 | |
|       Explanation += " unindexed";
 | |
| 
 | |
|     if (P.isNonExtLoad())
 | |
|       Explanation += " non-extload";
 | |
|     if (P.isAnyExtLoad())
 | |
|       Explanation += " extload";
 | |
|     if (P.isSignExtLoad())
 | |
|       Explanation += " sextload";
 | |
|     if (P.isZeroExtLoad())
 | |
|       Explanation += " zextload";
 | |
| 
 | |
|     if (P.isNonTruncStore())
 | |
|       Explanation += " non-truncstore";
 | |
|     if (P.isTruncStore())
 | |
|       Explanation += " truncstore";
 | |
| 
 | |
|     if (Record *VT = P.getMemoryVT())
 | |
|       Explanation += (" MemVT=" + VT->getName()).str();
 | |
|     if (Record *VT = P.getScalarMemoryVT())
 | |
|       Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
 | |
| 
 | |
|     if (P.isAtomicOrderingMonotonic())
 | |
|       Explanation += " monotonic";
 | |
|     if (P.isAtomicOrderingAcquire())
 | |
|       Explanation += " acquire";
 | |
|     if (P.isAtomicOrderingRelease())
 | |
|       Explanation += " release";
 | |
|     if (P.isAtomicOrderingAcquireRelease())
 | |
|       Explanation += " acq_rel";
 | |
|     if (P.isAtomicOrderingSequentiallyConsistent())
 | |
|       Explanation += " seq_cst";
 | |
|     if (P.isAtomicOrderingAcquireOrStronger())
 | |
|       Explanation += " >=acquire";
 | |
|     if (P.isAtomicOrderingWeakerThanAcquire())
 | |
|       Explanation += " <acquire";
 | |
|     if (P.isAtomicOrderingReleaseOrStronger())
 | |
|       Explanation += " >=release";
 | |
|     if (P.isAtomicOrderingWeakerThanRelease())
 | |
|       Explanation += " <release";
 | |
|   }
 | |
|   return Explanation;
 | |
| }
 | |
| 
 | |
| std::string explainOperator(Record *Operator) {
 | |
|   if (Operator->isSubClassOf("SDNode"))
 | |
|     return (" (" + Operator->getValueAsString("Opcode") + ")").str();
 | |
| 
 | |
|   if (Operator->isSubClassOf("Intrinsic"))
 | |
|     return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
 | |
| 
 | |
|   if (Operator->isSubClassOf("ComplexPattern"))
 | |
|     return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
 | |
|             ")")
 | |
|         .str();
 | |
| 
 | |
|   if (Operator->isSubClassOf("SDNodeXForm"))
 | |
|     return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
 | |
|             ")")
 | |
|         .str();
 | |
| 
 | |
|   return (" (Operator " + Operator->getName() + " not understood)").str();
 | |
| }
 | |
| 
 | |
| /// Helper function to let the emitter report skip reason error messages.
 | |
| static Error failedImport(const Twine &Reason) {
 | |
|   return make_error<StringError>(Reason, inconvertibleErrorCode());
 | |
| }
 | |
| 
 | |
| static Error isTrivialOperatorNode(const TreePatternNode *N) {
 | |
|   std::string Explanation = "";
 | |
|   std::string Separator = "";
 | |
| 
 | |
|   bool HasUnsupportedPredicate = false;
 | |
|   for (const auto &Predicate : N->getPredicateFns()) {
 | |
|     if (Predicate.isAlwaysTrue())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isImmediatePattern())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
 | |
|         Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isNonTruncStore())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isLoad() && Predicate.getMemoryVT())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isLoad() || Predicate.isStore()) {
 | |
|       if (Predicate.isUnindexed())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     if (Predicate.isAtomic() && Predicate.getMemoryVT())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isAtomic() &&
 | |
|         (Predicate.isAtomicOrderingMonotonic() ||
 | |
|          Predicate.isAtomicOrderingAcquire() ||
 | |
|          Predicate.isAtomicOrderingRelease() ||
 | |
|          Predicate.isAtomicOrderingAcquireRelease() ||
 | |
|          Predicate.isAtomicOrderingSequentiallyConsistent() ||
 | |
|          Predicate.isAtomicOrderingAcquireOrStronger() ||
 | |
|          Predicate.isAtomicOrderingWeakerThanAcquire() ||
 | |
|          Predicate.isAtomicOrderingReleaseOrStronger() ||
 | |
|          Predicate.isAtomicOrderingWeakerThanRelease()))
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.hasGISelPredicateCode())
 | |
|       continue;
 | |
| 
 | |
|     HasUnsupportedPredicate = true;
 | |
|     Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
 | |
|     Separator = ", ";
 | |
|     Explanation += (Separator + "first-failing:" +
 | |
|                     Predicate.getOrigPatFragRecord()->getRecord()->getName())
 | |
|                        .str();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!HasUnsupportedPredicate)
 | |
|     return Error::success();
 | |
| 
 | |
|   return failedImport(Explanation);
 | |
| }
 | |
| 
 | |
| static Record *getInitValueAsRegClass(Init *V) {
 | |
|   if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
 | |
|     if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
 | |
|       return VDefInit->getDef()->getValueAsDef("RegClass");
 | |
|     if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
 | |
|       return VDefInit->getDef();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| std::string
 | |
| getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
 | |
|   std::string Name = "GIFBS";
 | |
|   for (const auto &Feature : FeatureBitset)
 | |
|     Name += ("_" + Feature->getName()).str();
 | |
|   return Name;
 | |
| }
 | |
| 
 | |
| //===- MatchTable Helpers -------------------------------------------------===//
 | |
| 
 | |
| class MatchTable;
 | |
| 
 | |
| /// A record to be stored in a MatchTable.
 | |
| ///
 | |
| /// This class represents any and all output that may be required to emit the
 | |
| /// MatchTable. Instances  are most often configured to represent an opcode or
 | |
| /// value that will be emitted to the table with some formatting but it can also
 | |
| /// represent commas, comments, and other formatting instructions.
 | |
| struct MatchTableRecord {
 | |
|   enum RecordFlagsBits {
 | |
|     MTRF_None = 0x0,
 | |
|     /// Causes EmitStr to be formatted as comment when emitted.
 | |
|     MTRF_Comment = 0x1,
 | |
|     /// Causes the record value to be followed by a comma when emitted.
 | |
|     MTRF_CommaFollows = 0x2,
 | |
|     /// Causes the record value to be followed by a line break when emitted.
 | |
|     MTRF_LineBreakFollows = 0x4,
 | |
|     /// Indicates that the record defines a label and causes an additional
 | |
|     /// comment to be emitted containing the index of the label.
 | |
|     MTRF_Label = 0x8,
 | |
|     /// Causes the record to be emitted as the index of the label specified by
 | |
|     /// LabelID along with a comment indicating where that label is.
 | |
|     MTRF_JumpTarget = 0x10,
 | |
|     /// Causes the formatter to add a level of indentation before emitting the
 | |
|     /// record.
 | |
|     MTRF_Indent = 0x20,
 | |
|     /// Causes the formatter to remove a level of indentation after emitting the
 | |
|     /// record.
 | |
|     MTRF_Outdent = 0x40,
 | |
|   };
 | |
| 
 | |
|   /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
 | |
|   /// reference or define.
 | |
|   unsigned LabelID;
 | |
|   /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
 | |
|   /// value, a label name.
 | |
|   std::string EmitStr;
 | |
| 
 | |
| private:
 | |
|   /// The number of MatchTable elements described by this record. Comments are 0
 | |
|   /// while values are typically 1. Values >1 may occur when we need to emit
 | |
|   /// values that exceed the size of a MatchTable element.
 | |
|   unsigned NumElements;
 | |
| 
 | |
| public:
 | |
|   /// A bitfield of RecordFlagsBits flags.
 | |
|   unsigned Flags;
 | |
| 
 | |
|   /// The actual run-time value, if known
 | |
|   int64_t RawValue;
 | |
| 
 | |
|   MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
 | |
|                    unsigned NumElements, unsigned Flags,
 | |
|                    int64_t RawValue = std::numeric_limits<int64_t>::min())
 | |
|       : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
 | |
|         EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
 | |
|         RawValue(RawValue) {
 | |
| 
 | |
|     assert((!LabelID_.hasValue() || LabelID != ~0u) &&
 | |
|            "This value is reserved for non-labels");
 | |
|   }
 | |
|   MatchTableRecord(const MatchTableRecord &Other) = default;
 | |
|   MatchTableRecord(MatchTableRecord &&Other) = default;
 | |
| 
 | |
|   /// Useful if a Match Table Record gets optimized out
 | |
|   void turnIntoComment() {
 | |
|     Flags |= MTRF_Comment;
 | |
|     Flags &= ~MTRF_CommaFollows;
 | |
|     NumElements = 0;
 | |
|   }
 | |
| 
 | |
|   /// For Jump Table generation purposes
 | |
|   bool operator<(const MatchTableRecord &Other) const {
 | |
|     return RawValue < Other.RawValue;
 | |
|   }
 | |
|   int64_t getRawValue() const { return RawValue; }
 | |
| 
 | |
|   void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
 | |
|             const MatchTable &Table) const;
 | |
|   unsigned size() const { return NumElements; }
 | |
| };
 | |
| 
 | |
| class Matcher;
 | |
| 
 | |
| /// Holds the contents of a generated MatchTable to enable formatting and the
 | |
| /// necessary index tracking needed to support GIM_Try.
 | |
| class MatchTable {
 | |
|   /// An unique identifier for the table. The generated table will be named
 | |
|   /// MatchTable${ID}.
 | |
|   unsigned ID;
 | |
|   /// The records that make up the table. Also includes comments describing the
 | |
|   /// values being emitted and line breaks to format it.
 | |
|   std::vector<MatchTableRecord> Contents;
 | |
|   /// The currently defined labels.
 | |
|   DenseMap<unsigned, unsigned> LabelMap;
 | |
|   /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
 | |
|   unsigned CurrentSize = 0;
 | |
|   /// A unique identifier for a MatchTable label.
 | |
|   unsigned CurrentLabelID = 0;
 | |
|   /// Determines if the table should be instrumented for rule coverage tracking.
 | |
|   bool IsWithCoverage;
 | |
| 
 | |
| public:
 | |
|   static MatchTableRecord LineBreak;
 | |
|   static MatchTableRecord Comment(StringRef Comment) {
 | |
|     return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
 | |
|   }
 | |
|   static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
 | |
|     unsigned ExtraFlags = 0;
 | |
|     if (IndentAdjust > 0)
 | |
|       ExtraFlags |= MatchTableRecord::MTRF_Indent;
 | |
|     if (IndentAdjust < 0)
 | |
|       ExtraFlags |= MatchTableRecord::MTRF_Outdent;
 | |
| 
 | |
|     return MatchTableRecord(None, Opcode, 1,
 | |
|                             MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
 | |
|   }
 | |
|   static MatchTableRecord NamedValue(StringRef NamedValue) {
 | |
|     return MatchTableRecord(None, NamedValue, 1,
 | |
|                             MatchTableRecord::MTRF_CommaFollows);
 | |
|   }
 | |
|   static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
 | |
|     return MatchTableRecord(None, NamedValue, 1,
 | |
|                             MatchTableRecord::MTRF_CommaFollows, RawValue);
 | |
|   }
 | |
|   static MatchTableRecord NamedValue(StringRef Namespace,
 | |
|                                      StringRef NamedValue) {
 | |
|     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
 | |
|                             MatchTableRecord::MTRF_CommaFollows);
 | |
|   }
 | |
|   static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
 | |
|                                      int64_t RawValue) {
 | |
|     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
 | |
|                             MatchTableRecord::MTRF_CommaFollows, RawValue);
 | |
|   }
 | |
|   static MatchTableRecord IntValue(int64_t IntValue) {
 | |
|     return MatchTableRecord(None, llvm::to_string(IntValue), 1,
 | |
|                             MatchTableRecord::MTRF_CommaFollows);
 | |
|   }
 | |
|   static MatchTableRecord Label(unsigned LabelID) {
 | |
|     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
 | |
|                             MatchTableRecord::MTRF_Label |
 | |
|                                 MatchTableRecord::MTRF_Comment |
 | |
|                                 MatchTableRecord::MTRF_LineBreakFollows);
 | |
|   }
 | |
|   static MatchTableRecord JumpTarget(unsigned LabelID) {
 | |
|     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
 | |
|                             MatchTableRecord::MTRF_JumpTarget |
 | |
|                                 MatchTableRecord::MTRF_Comment |
 | |
|                                 MatchTableRecord::MTRF_CommaFollows);
 | |
|   }
 | |
| 
 | |
|   static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
 | |
| 
 | |
|   MatchTable(bool WithCoverage, unsigned ID = 0)
 | |
|       : ID(ID), IsWithCoverage(WithCoverage) {}
 | |
| 
 | |
|   bool isWithCoverage() const { return IsWithCoverage; }
 | |
| 
 | |
|   void push_back(const MatchTableRecord &Value) {
 | |
|     if (Value.Flags & MatchTableRecord::MTRF_Label)
 | |
|       defineLabel(Value.LabelID);
 | |
|     Contents.push_back(Value);
 | |
|     CurrentSize += Value.size();
 | |
|   }
 | |
| 
 | |
|   unsigned allocateLabelID() { return CurrentLabelID++; }
 | |
| 
 | |
|   void defineLabel(unsigned LabelID) {
 | |
|     LabelMap.insert(std::make_pair(LabelID, CurrentSize));
 | |
|   }
 | |
| 
 | |
|   unsigned getLabelIndex(unsigned LabelID) const {
 | |
|     const auto I = LabelMap.find(LabelID);
 | |
|     assert(I != LabelMap.end() && "Use of undeclared label");
 | |
|     return I->second;
 | |
|   }
 | |
| 
 | |
|   void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
 | |
| 
 | |
|   void emitDeclaration(raw_ostream &OS) const {
 | |
|     unsigned Indentation = 4;
 | |
|     OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
 | |
|     LineBreak.emit(OS, true, *this);
 | |
|     OS << std::string(Indentation, ' ');
 | |
| 
 | |
|     for (auto I = Contents.begin(), E = Contents.end(); I != E;
 | |
|          ++I) {
 | |
|       bool LineBreakIsNext = false;
 | |
|       const auto &NextI = std::next(I);
 | |
| 
 | |
|       if (NextI != E) {
 | |
|         if (NextI->EmitStr == "" &&
 | |
|             NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
 | |
|           LineBreakIsNext = true;
 | |
|       }
 | |
| 
 | |
|       if (I->Flags & MatchTableRecord::MTRF_Indent)
 | |
|         Indentation += 2;
 | |
| 
 | |
|       I->emit(OS, LineBreakIsNext, *this);
 | |
|       if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
 | |
|         OS << std::string(Indentation, ' ');
 | |
| 
 | |
|       if (I->Flags & MatchTableRecord::MTRF_Outdent)
 | |
|         Indentation -= 2;
 | |
|     }
 | |
|     OS << "};\n";
 | |
|   }
 | |
| };
 | |
| 
 | |
| MatchTableRecord MatchTable::LineBreak = {
 | |
|     None, "" /* Emit String */, 0 /* Elements */,
 | |
|     MatchTableRecord::MTRF_LineBreakFollows};
 | |
| 
 | |
| void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
 | |
|                             const MatchTable &Table) const {
 | |
|   bool UseLineComment =
 | |
|       LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
 | |
|   if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
 | |
|     UseLineComment = false;
 | |
| 
 | |
|   if (Flags & MTRF_Comment)
 | |
|     OS << (UseLineComment ? "// " : "/*");
 | |
| 
 | |
|   OS << EmitStr;
 | |
|   if (Flags & MTRF_Label)
 | |
|     OS << ": @" << Table.getLabelIndex(LabelID);
 | |
| 
 | |
|   if (Flags & MTRF_Comment && !UseLineComment)
 | |
|     OS << "*/";
 | |
| 
 | |
|   if (Flags & MTRF_JumpTarget) {
 | |
|     if (Flags & MTRF_Comment)
 | |
|       OS << " ";
 | |
|     OS << Table.getLabelIndex(LabelID);
 | |
|   }
 | |
| 
 | |
|   if (Flags & MTRF_CommaFollows) {
 | |
|     OS << ",";
 | |
|     if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
 | |
|       OS << " ";
 | |
|   }
 | |
| 
 | |
|   if (Flags & MTRF_LineBreakFollows)
 | |
|     OS << "\n";
 | |
| }
 | |
| 
 | |
| MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
 | |
|   Table.push_back(Value);
 | |
|   return Table;
 | |
| }
 | |
| 
 | |
| //===- Matchers -----------------------------------------------------------===//
 | |
| 
 | |
| class OperandMatcher;
 | |
| class MatchAction;
 | |
| class PredicateMatcher;
 | |
| class RuleMatcher;
 | |
| 
 | |
| class Matcher {
 | |
| public:
 | |
|   virtual ~Matcher() = default;
 | |
|   virtual void optimize() {}
 | |
|   virtual void emit(MatchTable &Table) = 0;
 | |
| 
 | |
|   virtual bool hasFirstCondition() const = 0;
 | |
|   virtual const PredicateMatcher &getFirstCondition() const = 0;
 | |
|   virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
 | |
| };
 | |
| 
 | |
| MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
 | |
|                                   bool WithCoverage) {
 | |
|   MatchTable Table(WithCoverage);
 | |
|   for (Matcher *Rule : Rules)
 | |
|     Rule->emit(Table);
 | |
| 
 | |
|   return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
 | |
| }
 | |
| 
 | |
| class GroupMatcher final : public Matcher {
 | |
|   /// Conditions that form a common prefix of all the matchers contained.
 | |
|   SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
 | |
| 
 | |
|   /// All the nested matchers, sharing a common prefix.
 | |
|   std::vector<Matcher *> Matchers;
 | |
| 
 | |
|   /// An owning collection for any auxiliary matchers created while optimizing
 | |
|   /// nested matchers contained.
 | |
|   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
 | |
| 
 | |
| public:
 | |
|   /// Add a matcher to the collection of nested matchers if it meets the
 | |
|   /// requirements, and return true. If it doesn't, do nothing and return false.
 | |
|   ///
 | |
|   /// Expected to preserve its argument, so it could be moved out later on.
 | |
|   bool addMatcher(Matcher &Candidate);
 | |
| 
 | |
|   /// Mark the matcher as fully-built and ensure any invariants expected by both
 | |
|   /// optimize() and emit(...) methods. Generally, both sequences of calls
 | |
|   /// are expected to lead to a sensible result:
 | |
|   ///
 | |
|   /// addMatcher(...)*; finalize(); optimize(); emit(...); and
 | |
|   /// addMatcher(...)*; finalize(); emit(...);
 | |
|   ///
 | |
|   /// or generally
 | |
|   ///
 | |
|   /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
 | |
|   ///
 | |
|   /// Multiple calls to optimize() are expected to be handled gracefully, though
 | |
|   /// optimize() is not expected to be idempotent. Multiple calls to finalize()
 | |
|   /// aren't generally supported. emit(...) is expected to be non-mutating and
 | |
|   /// producing the exact same results upon repeated calls.
 | |
|   ///
 | |
|   /// addMatcher() calls after the finalize() call are not supported.
 | |
|   ///
 | |
|   /// finalize() and optimize() are both allowed to mutate the contained
 | |
|   /// matchers, so moving them out after finalize() is not supported.
 | |
|   void finalize();
 | |
|   void optimize() override;
 | |
|   void emit(MatchTable &Table) override;
 | |
| 
 | |
|   /// Could be used to move out the matchers added previously, unless finalize()
 | |
|   /// has been already called. If any of the matchers are moved out, the group
 | |
|   /// becomes safe to destroy, but not safe to re-use for anything else.
 | |
|   iterator_range<std::vector<Matcher *>::iterator> matchers() {
 | |
|     return make_range(Matchers.begin(), Matchers.end());
 | |
|   }
 | |
|   size_t size() const { return Matchers.size(); }
 | |
|   bool empty() const { return Matchers.empty(); }
 | |
| 
 | |
|   std::unique_ptr<PredicateMatcher> popFirstCondition() override {
 | |
|     assert(!Conditions.empty() &&
 | |
|            "Trying to pop a condition from a condition-less group");
 | |
|     std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
 | |
|     Conditions.erase(Conditions.begin());
 | |
|     return P;
 | |
|   }
 | |
|   const PredicateMatcher &getFirstCondition() const override {
 | |
|     assert(!Conditions.empty() &&
 | |
|            "Trying to get a condition from a condition-less group");
 | |
|     return *Conditions.front();
 | |
|   }
 | |
|   bool hasFirstCondition() const override { return !Conditions.empty(); }
 | |
| 
 | |
| private:
 | |
|   /// See if a candidate matcher could be added to this group solely by
 | |
|   /// analyzing its first condition.
 | |
|   bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
 | |
| };
 | |
| 
 | |
| class SwitchMatcher : public Matcher {
 | |
|   /// All the nested matchers, representing distinct switch-cases. The first
 | |
|   /// conditions (as Matcher::getFirstCondition() reports) of all the nested
 | |
|   /// matchers must share the same type and path to a value they check, in other
 | |
|   /// words, be isIdenticalDownToValue, but have different values they check
 | |
|   /// against.
 | |
|   std::vector<Matcher *> Matchers;
 | |
| 
 | |
|   /// The representative condition, with a type and a path (InsnVarID and OpIdx
 | |
|   /// in most cases)  shared by all the matchers contained.
 | |
|   std::unique_ptr<PredicateMatcher> Condition = nullptr;
 | |
| 
 | |
|   /// Temporary set used to check that the case values don't repeat within the
 | |
|   /// same switch.
 | |
|   std::set<MatchTableRecord> Values;
 | |
| 
 | |
|   /// An owning collection for any auxiliary matchers created while optimizing
 | |
|   /// nested matchers contained.
 | |
|   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
 | |
| 
 | |
| public:
 | |
|   bool addMatcher(Matcher &Candidate);
 | |
| 
 | |
|   void finalize();
 | |
|   void emit(MatchTable &Table) override;
 | |
| 
 | |
|   iterator_range<std::vector<Matcher *>::iterator> matchers() {
 | |
|     return make_range(Matchers.begin(), Matchers.end());
 | |
|   }
 | |
|   size_t size() const { return Matchers.size(); }
 | |
|   bool empty() const { return Matchers.empty(); }
 | |
| 
 | |
|   std::unique_ptr<PredicateMatcher> popFirstCondition() override {
 | |
|     // SwitchMatcher doesn't have a common first condition for its cases, as all
 | |
|     // the cases only share a kind of a value (a type and a path to it) they
 | |
|     // match, but deliberately differ in the actual value they match.
 | |
|     llvm_unreachable("Trying to pop a condition from a condition-less group");
 | |
|   }
 | |
|   const PredicateMatcher &getFirstCondition() const override {
 | |
|     llvm_unreachable("Trying to pop a condition from a condition-less group");
 | |
|   }
 | |
|   bool hasFirstCondition() const override { return false; }
 | |
| 
 | |
| private:
 | |
|   /// See if the predicate type has a Switch-implementation for it.
 | |
|   static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
 | |
| 
 | |
|   bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
 | |
| 
 | |
|   /// emit()-helper
 | |
|   static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
 | |
|                                            MatchTable &Table);
 | |
| };
 | |
| 
 | |
| /// Generates code to check that a match rule matches.
 | |
| class RuleMatcher : public Matcher {
 | |
| public:
 | |
|   using ActionList = std::list<std::unique_ptr<MatchAction>>;
 | |
|   using action_iterator = ActionList::iterator;
 | |
| 
 | |
| protected:
 | |
|   /// A list of matchers that all need to succeed for the current rule to match.
 | |
|   /// FIXME: This currently supports a single match position but could be
 | |
|   /// extended to support multiple positions to support div/rem fusion or
 | |
|   /// load-multiple instructions.
 | |
|   using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
 | |
|   MatchersTy Matchers;
 | |
| 
 | |
|   /// A list of actions that need to be taken when all predicates in this rule
 | |
|   /// have succeeded.
 | |
|   ActionList Actions;
 | |
| 
 | |
|   using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
 | |
| 
 | |
|   /// A map of instruction matchers to the local variables
 | |
|   DefinedInsnVariablesMap InsnVariableIDs;
 | |
| 
 | |
|   using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
 | |
| 
 | |
|   // The set of instruction matchers that have not yet been claimed for mutation
 | |
|   // by a BuildMI.
 | |
|   MutatableInsnSet MutatableInsns;
 | |
| 
 | |
|   /// A map of named operands defined by the matchers that may be referenced by
 | |
|   /// the renderers.
 | |
|   StringMap<OperandMatcher *> DefinedOperands;
 | |
| 
 | |
|   /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
 | |
|   unsigned NextInsnVarID;
 | |
| 
 | |
|   /// ID for the next output instruction allocated with allocateOutputInsnID()
 | |
|   unsigned NextOutputInsnID;
 | |
| 
 | |
|   /// ID for the next temporary register ID allocated with allocateTempRegID()
 | |
|   unsigned NextTempRegID;
 | |
| 
 | |
|   std::vector<Record *> RequiredFeatures;
 | |
|   std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
 | |
| 
 | |
|   ArrayRef<SMLoc> SrcLoc;
 | |
| 
 | |
|   typedef std::tuple<Record *, unsigned, unsigned>
 | |
|       DefinedComplexPatternSubOperand;
 | |
|   typedef StringMap<DefinedComplexPatternSubOperand>
 | |
|       DefinedComplexPatternSubOperandMap;
 | |
|   /// A map of Symbolic Names to ComplexPattern sub-operands.
 | |
|   DefinedComplexPatternSubOperandMap ComplexSubOperands;
 | |
| 
 | |
|   uint64_t RuleID;
 | |
|   static uint64_t NextRuleID;
 | |
| 
 | |
| public:
 | |
|   RuleMatcher(ArrayRef<SMLoc> SrcLoc)
 | |
|       : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
 | |
|         DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
 | |
|         NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
 | |
|         RuleID(NextRuleID++) {}
 | |
|   RuleMatcher(RuleMatcher &&Other) = default;
 | |
|   RuleMatcher &operator=(RuleMatcher &&Other) = default;
 | |
| 
 | |
|   uint64_t getRuleID() const { return RuleID; }
 | |
| 
 | |
|   InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
 | |
|   void addRequiredFeature(Record *Feature);
 | |
|   const std::vector<Record *> &getRequiredFeatures() const;
 | |
| 
 | |
|   template <class Kind, class... Args> Kind &addAction(Args &&... args);
 | |
|   template <class Kind, class... Args>
 | |
|   action_iterator insertAction(action_iterator InsertPt, Args &&... args);
 | |
| 
 | |
|   /// Define an instruction without emitting any code to do so.
 | |
|   unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
 | |
| 
 | |
|   unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
 | |
|   DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
 | |
|     return InsnVariableIDs.begin();
 | |
|   }
 | |
|   DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
 | |
|     return InsnVariableIDs.end();
 | |
|   }
 | |
|   iterator_range<typename DefinedInsnVariablesMap::const_iterator>
 | |
|   defined_insn_vars() const {
 | |
|     return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
 | |
|   }
 | |
| 
 | |
|   MutatableInsnSet::const_iterator mutatable_insns_begin() const {
 | |
|     return MutatableInsns.begin();
 | |
|   }
 | |
|   MutatableInsnSet::const_iterator mutatable_insns_end() const {
 | |
|     return MutatableInsns.end();
 | |
|   }
 | |
|   iterator_range<typename MutatableInsnSet::const_iterator>
 | |
|   mutatable_insns() const {
 | |
|     return make_range(mutatable_insns_begin(), mutatable_insns_end());
 | |
|   }
 | |
|   void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
 | |
|     bool R = MutatableInsns.erase(InsnMatcher);
 | |
|     assert(R && "Reserving a mutatable insn that isn't available");
 | |
|     (void)R;
 | |
|   }
 | |
| 
 | |
|   action_iterator actions_begin() { return Actions.begin(); }
 | |
|   action_iterator actions_end() { return Actions.end(); }
 | |
|   iterator_range<action_iterator> actions() {
 | |
|     return make_range(actions_begin(), actions_end());
 | |
|   }
 | |
| 
 | |
|   void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
 | |
| 
 | |
|   void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
 | |
|                                unsigned RendererID, unsigned SubOperandID) {
 | |
|     assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
 | |
|     ComplexSubOperands[SymbolicName] =
 | |
|         std::make_tuple(ComplexPattern, RendererID, SubOperandID);
 | |
|   }
 | |
|   Optional<DefinedComplexPatternSubOperand>
 | |
|   getComplexSubOperand(StringRef SymbolicName) const {
 | |
|     const auto &I = ComplexSubOperands.find(SymbolicName);
 | |
|     if (I == ComplexSubOperands.end())
 | |
|       return None;
 | |
|     return I->second;
 | |
|   }
 | |
| 
 | |
|   InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
 | |
|   const OperandMatcher &getOperandMatcher(StringRef Name) const;
 | |
| 
 | |
|   void optimize() override;
 | |
|   void emit(MatchTable &Table) override;
 | |
| 
 | |
|   /// Compare the priority of this object and B.
 | |
|   ///
 | |
|   /// Returns true if this object is more important than B.
 | |
|   bool isHigherPriorityThan(const RuleMatcher &B) const;
 | |
| 
 | |
|   /// Report the maximum number of temporary operands needed by the rule
 | |
|   /// matcher.
 | |
|   unsigned countRendererFns() const;
 | |
| 
 | |
|   std::unique_ptr<PredicateMatcher> popFirstCondition() override;
 | |
|   const PredicateMatcher &getFirstCondition() const override;
 | |
|   LLTCodeGen getFirstConditionAsRootType();
 | |
|   bool hasFirstCondition() const override;
 | |
|   unsigned getNumOperands() const;
 | |
|   StringRef getOpcode() const;
 | |
| 
 | |
|   // FIXME: Remove this as soon as possible
 | |
|   InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
 | |
| 
 | |
|   unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
 | |
|   unsigned allocateTempRegID() { return NextTempRegID++; }
 | |
| 
 | |
|   iterator_range<MatchersTy::iterator> insnmatchers() {
 | |
|     return make_range(Matchers.begin(), Matchers.end());
 | |
|   }
 | |
|   bool insnmatchers_empty() const { return Matchers.empty(); }
 | |
|   void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
 | |
| };
 | |
| 
 | |
| uint64_t RuleMatcher::NextRuleID = 0;
 | |
| 
 | |
| using action_iterator = RuleMatcher::action_iterator;
 | |
| 
 | |
| template <class PredicateTy> class PredicateListMatcher {
 | |
| private:
 | |
|   /// Template instantiations should specialize this to return a string to use
 | |
|   /// for the comment emitted when there are no predicates.
 | |
|   std::string getNoPredicateComment() const;
 | |
| 
 | |
| protected:
 | |
|   using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
 | |
|   PredicatesTy Predicates;
 | |
| 
 | |
|   /// Track if the list of predicates was manipulated by one of the optimization
 | |
|   /// methods.
 | |
|   bool Optimized = false;
 | |
| 
 | |
| public:
 | |
|   /// Construct a new predicate and add it to the matcher.
 | |
|   template <class Kind, class... Args>
 | |
|   Optional<Kind *> addPredicate(Args &&... args);
 | |
| 
 | |
|   typename PredicatesTy::iterator predicates_begin() {
 | |
|     return Predicates.begin();
 | |
|   }
 | |
|   typename PredicatesTy::iterator predicates_end() {
 | |
|     return Predicates.end();
 | |
|   }
 | |
|   iterator_range<typename PredicatesTy::iterator> predicates() {
 | |
|     return make_range(predicates_begin(), predicates_end());
 | |
|   }
 | |
|   typename PredicatesTy::size_type predicates_size() const {
 | |
|     return Predicates.size();
 | |
|   }
 | |
|   bool predicates_empty() const { return Predicates.empty(); }
 | |
| 
 | |
|   std::unique_ptr<PredicateTy> predicates_pop_front() {
 | |
|     std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
 | |
|     Predicates.pop_front();
 | |
|     Optimized = true;
 | |
|     return Front;
 | |
|   }
 | |
| 
 | |
|   void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
 | |
|     Predicates.push_front(std::move(Predicate));
 | |
|   }
 | |
| 
 | |
|   void eraseNullPredicates() {
 | |
|     const auto NewEnd =
 | |
|         std::stable_partition(Predicates.begin(), Predicates.end(),
 | |
|                               std::logical_not<std::unique_ptr<PredicateTy>>());
 | |
|     if (NewEnd != Predicates.begin()) {
 | |
|       Predicates.erase(Predicates.begin(), NewEnd);
 | |
|       Optimized = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Emit MatchTable opcodes that tests whether all the predicates are met.
 | |
|   template <class... Args>
 | |
|   void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
 | |
|     if (Predicates.empty() && !Optimized) {
 | |
|       Table << MatchTable::Comment(getNoPredicateComment())
 | |
|             << MatchTable::LineBreak;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     for (const auto &Predicate : predicates())
 | |
|       Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class PredicateMatcher {
 | |
| public:
 | |
|   /// This enum is used for RTTI and also defines the priority that is given to
 | |
|   /// the predicate when generating the matcher code. Kinds with higher priority
 | |
|   /// must be tested first.
 | |
|   ///
 | |
|   /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
 | |
|   /// but OPM_Int must have priority over OPM_RegBank since constant integers
 | |
|   /// are represented by a virtual register defined by a G_CONSTANT instruction.
 | |
|   ///
 | |
|   /// Note: The relative priority between IPM_ and OPM_ does not matter, they
 | |
|   /// are currently not compared between each other.
 | |
|   enum PredicateKind {
 | |
|     IPM_Opcode,
 | |
|     IPM_NumOperands,
 | |
|     IPM_ImmPredicate,
 | |
|     IPM_AtomicOrderingMMO,
 | |
|     IPM_MemoryLLTSize,
 | |
|     IPM_MemoryVsLLTSize,
 | |
|     IPM_GenericPredicate,
 | |
|     OPM_SameOperand,
 | |
|     OPM_ComplexPattern,
 | |
|     OPM_IntrinsicID,
 | |
|     OPM_Instruction,
 | |
|     OPM_Int,
 | |
|     OPM_LiteralInt,
 | |
|     OPM_LLT,
 | |
|     OPM_PointerToAny,
 | |
|     OPM_RegBank,
 | |
|     OPM_MBB,
 | |
|   };
 | |
| 
 | |
| protected:
 | |
|   PredicateKind Kind;
 | |
|   unsigned InsnVarID;
 | |
|   unsigned OpIdx;
 | |
| 
 | |
| public:
 | |
|   PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
 | |
|       : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
 | |
| 
 | |
|   unsigned getInsnVarID() const { return InsnVarID; }
 | |
|   unsigned getOpIdx() const { return OpIdx; }
 | |
| 
 | |
|   virtual ~PredicateMatcher() = default;
 | |
|   /// Emit MatchTable opcodes that check the predicate for the given operand.
 | |
|   virtual void emitPredicateOpcodes(MatchTable &Table,
 | |
|                                     RuleMatcher &Rule) const = 0;
 | |
| 
 | |
|   PredicateKind getKind() const { return Kind; }
 | |
| 
 | |
|   virtual bool isIdentical(const PredicateMatcher &B) const {
 | |
|     return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
 | |
|            OpIdx == B.OpIdx;
 | |
|   }
 | |
| 
 | |
|   virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
 | |
|     return hasValue() && PredicateMatcher::isIdentical(B);
 | |
|   }
 | |
| 
 | |
|   virtual MatchTableRecord getValue() const {
 | |
|     assert(hasValue() && "Can not get a value of a value-less predicate!");
 | |
|     llvm_unreachable("Not implemented yet");
 | |
|   }
 | |
|   virtual bool hasValue() const { return false; }
 | |
| 
 | |
|   /// Report the maximum number of temporary operands needed by the predicate
 | |
|   /// matcher.
 | |
|   virtual unsigned countRendererFns() const { return 0; }
 | |
| };
 | |
| 
 | |
| /// Generates code to check a predicate of an operand.
 | |
| ///
 | |
| /// Typical predicates include:
 | |
| /// * Operand is a particular register.
 | |
| /// * Operand is assigned a particular register bank.
 | |
| /// * Operand is an MBB.
 | |
| class OperandPredicateMatcher : public PredicateMatcher {
 | |
| public:
 | |
|   OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
 | |
|                           unsigned OpIdx)
 | |
|       : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
 | |
|   virtual ~OperandPredicateMatcher() {}
 | |
| 
 | |
|   /// Compare the priority of this object and B.
 | |
|   ///
 | |
|   /// Returns true if this object is more important than B.
 | |
|   virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| std::string
 | |
| PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
 | |
|   return "No operand predicates";
 | |
| }
 | |
| 
 | |
| /// Generates code to check that a register operand is defined by the same exact
 | |
| /// one as another.
 | |
| class SameOperandMatcher : public OperandPredicateMatcher {
 | |
|   std::string MatchingName;
 | |
| 
 | |
| public:
 | |
|   SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
 | |
|       : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
 | |
|         MatchingName(MatchingName) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_SameOperand;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override;
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return OperandPredicateMatcher::isIdentical(B) &&
 | |
|            MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is a particular LLT.
 | |
| class LLTOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   LLTCodeGen Ty;
 | |
| 
 | |
| public:
 | |
|   static std::map<LLTCodeGen, unsigned> TypeIDValues;
 | |
| 
 | |
|   static void initTypeIDValuesMap() {
 | |
|     TypeIDValues.clear();
 | |
| 
 | |
|     unsigned ID = 0;
 | |
|     for (const LLTCodeGen LLTy : KnownTypes)
 | |
|       TypeIDValues[LLTy] = ID++;
 | |
|   }
 | |
| 
 | |
|   LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
 | |
|       : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
 | |
|     KnownTypes.insert(Ty);
 | |
|   }
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_LLT;
 | |
|   }
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return OperandPredicateMatcher::isIdentical(B) &&
 | |
|            Ty == cast<LLTOperandMatcher>(&B)->Ty;
 | |
|   }
 | |
|   MatchTableRecord getValue() const override {
 | |
|     const auto VI = TypeIDValues.find(Ty);
 | |
|     if (VI == TypeIDValues.end())
 | |
|       return MatchTable::NamedValue(getTy().getCxxEnumValue());
 | |
|     return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
 | |
|   }
 | |
|   bool hasValue() const override {
 | |
|     if (TypeIDValues.size() != KnownTypes.size())
 | |
|       initTypeIDValuesMap();
 | |
|     return TypeIDValues.count(Ty);
 | |
|   }
 | |
| 
 | |
|   LLTCodeGen getTy() const { return Ty; }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
 | |
|           << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
 | |
|           << getValue() << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
 | |
| 
 | |
| /// Generates code to check that an operand is a pointer to any address space.
 | |
| ///
 | |
| /// In SelectionDAG, the types did not describe pointers or address spaces. As a
 | |
| /// result, iN is used to describe a pointer of N bits to any address space and
 | |
| /// PatFrag predicates are typically used to constrain the address space. There's
 | |
| /// no reliable means to derive the missing type information from the pattern so
 | |
| /// imported rules must test the components of a pointer separately.
 | |
| ///
 | |
| /// If SizeInBits is zero, then the pointer size will be obtained from the
 | |
| /// subtarget.
 | |
| class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   unsigned SizeInBits;
 | |
| 
 | |
| public:
 | |
|   PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
 | |
|                              unsigned SizeInBits)
 | |
|       : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
 | |
|         SizeInBits(SizeInBits) {}
 | |
| 
 | |
|   static bool classof(const OperandPredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_PointerToAny;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckPointerToAny")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::Comment("SizeInBits")
 | |
|           << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is a particular target constant.
 | |
| class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   const OperandMatcher &Operand;
 | |
|   const Record &TheDef;
 | |
| 
 | |
|   unsigned getAllocatedTemporariesBaseID() const;
 | |
| 
 | |
| public:
 | |
|   bool isIdentical(const PredicateMatcher &B) const override { return false; }
 | |
| 
 | |
|   ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
 | |
|                                const OperandMatcher &Operand,
 | |
|                                const Record &TheDef)
 | |
|       : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
 | |
|         Operand(Operand), TheDef(TheDef) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_ComplexPattern;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     unsigned ID = getAllocatedTemporariesBaseID();
 | |
|     Table << MatchTable::Opcode("GIM_CheckComplexPattern")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
 | |
|           << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| 
 | |
|   unsigned countRendererFns() const override {
 | |
|     return 1;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is in a particular register bank.
 | |
| class RegisterBankOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   const CodeGenRegisterClass &RC;
 | |
| 
 | |
| public:
 | |
|   RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
 | |
|                              const CodeGenRegisterClass &RC)
 | |
|       : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return OperandPredicateMatcher::isIdentical(B) &&
 | |
|            RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
 | |
|   }
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_RegBank;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::Comment("RC")
 | |
|           << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is a basic block.
 | |
| class MBBOperandMatcher : public OperandPredicateMatcher {
 | |
| public:
 | |
|   MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
 | |
|       : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_MBB;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
 | |
|           << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is a G_CONSTANT with a particular
 | |
| /// int.
 | |
| class ConstantIntOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   int64_t Value;
 | |
| 
 | |
| public:
 | |
|   ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
 | |
|       : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return OperandPredicateMatcher::isIdentical(B) &&
 | |
|            Value == cast<ConstantIntOperandMatcher>(&B)->Value;
 | |
|   }
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_Int;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckConstantInt")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is a raw int (where MO.isImm() or
 | |
| /// MO.isCImm() is true).
 | |
| class LiteralIntOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   int64_t Value;
 | |
| 
 | |
| public:
 | |
|   LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
 | |
|       : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
 | |
|         Value(Value) {}
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return OperandPredicateMatcher::isIdentical(B) &&
 | |
|            Value == cast<LiteralIntOperandMatcher>(&B)->Value;
 | |
|   }
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_LiteralInt;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckLiteralInt")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that an operand is an intrinsic ID.
 | |
| class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   const CodeGenIntrinsic *II;
 | |
| 
 | |
| public:
 | |
|   IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
 | |
|                             const CodeGenIntrinsic *II)
 | |
|       : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return OperandPredicateMatcher::isIdentical(B) &&
 | |
|            II == cast<IntrinsicIDOperandMatcher>(&B)->II;
 | |
|   }
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_IntrinsicID;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that a set of predicates match for a particular
 | |
| /// operand.
 | |
| class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
 | |
| protected:
 | |
|   InstructionMatcher &Insn;
 | |
|   unsigned OpIdx;
 | |
|   std::string SymbolicName;
 | |
| 
 | |
|   /// The index of the first temporary variable allocated to this operand. The
 | |
|   /// number of allocated temporaries can be found with
 | |
|   /// countRendererFns().
 | |
|   unsigned AllocatedTemporariesBaseID;
 | |
| 
 | |
| public:
 | |
|   OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
 | |
|                  const std::string &SymbolicName,
 | |
|                  unsigned AllocatedTemporariesBaseID)
 | |
|       : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
 | |
|         AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
 | |
| 
 | |
|   bool hasSymbolicName() const { return !SymbolicName.empty(); }
 | |
|   const StringRef getSymbolicName() const { return SymbolicName; }
 | |
|   void setSymbolicName(StringRef Name) {
 | |
|     assert(SymbolicName.empty() && "Operand already has a symbolic name");
 | |
|     SymbolicName = Name;
 | |
|   }
 | |
| 
 | |
|   /// Construct a new operand predicate and add it to the matcher.
 | |
|   template <class Kind, class... Args>
 | |
|   Optional<Kind *> addPredicate(Args &&... args) {
 | |
|     if (isSameAsAnotherOperand())
 | |
|       return None;
 | |
|     Predicates.emplace_back(llvm::make_unique<Kind>(
 | |
|         getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
 | |
|     return static_cast<Kind *>(Predicates.back().get());
 | |
|   }
 | |
| 
 | |
|   unsigned getOpIdx() const { return OpIdx; }
 | |
|   unsigned getInsnVarID() const;
 | |
| 
 | |
|   std::string getOperandExpr(unsigned InsnVarID) const {
 | |
|     return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
 | |
|            llvm::to_string(OpIdx) + ")";
 | |
|   }
 | |
| 
 | |
|   InstructionMatcher &getInstructionMatcher() const { return Insn; }
 | |
| 
 | |
|   Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
 | |
|                               bool OperandIsAPointer);
 | |
| 
 | |
|   /// Emit MatchTable opcodes that test whether the instruction named in
 | |
|   /// InsnVarID matches all the predicates and all the operands.
 | |
|   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
 | |
|     if (!Optimized) {
 | |
|       std::string Comment;
 | |
|       raw_string_ostream CommentOS(Comment);
 | |
|       CommentOS << "MIs[" << getInsnVarID() << "] ";
 | |
|       if (SymbolicName.empty())
 | |
|         CommentOS << "Operand " << OpIdx;
 | |
|       else
 | |
|         CommentOS << SymbolicName;
 | |
|       Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
 | |
|     }
 | |
| 
 | |
|     emitPredicateListOpcodes(Table, Rule);
 | |
|   }
 | |
| 
 | |
|   /// Compare the priority of this object and B.
 | |
|   ///
 | |
|   /// Returns true if this object is more important than B.
 | |
|   bool isHigherPriorityThan(OperandMatcher &B) {
 | |
|     // Operand matchers involving more predicates have higher priority.
 | |
|     if (predicates_size() > B.predicates_size())
 | |
|       return true;
 | |
|     if (predicates_size() < B.predicates_size())
 | |
|       return false;
 | |
| 
 | |
|     // This assumes that predicates are added in a consistent order.
 | |
|     for (auto &&Predicate : zip(predicates(), B.predicates())) {
 | |
|       if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
 | |
|         return true;
 | |
|       if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   /// Report the maximum number of temporary operands needed by the operand
 | |
|   /// matcher.
 | |
|   unsigned countRendererFns() {
 | |
|     return std::accumulate(
 | |
|         predicates().begin(), predicates().end(), 0,
 | |
|         [](unsigned A,
 | |
|            const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
 | |
|           return A + Predicate->countRendererFns();
 | |
|         });
 | |
|   }
 | |
| 
 | |
|   unsigned getAllocatedTemporariesBaseID() const {
 | |
|     return AllocatedTemporariesBaseID;
 | |
|   }
 | |
| 
 | |
|   bool isSameAsAnotherOperand() {
 | |
|     for (const auto &Predicate : predicates())
 | |
|       if (isa<SameOperandMatcher>(Predicate))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
 | |
|                                             bool OperandIsAPointer) {
 | |
|   if (!VTy.isMachineValueType())
 | |
|     return failedImport("unsupported typeset");
 | |
| 
 | |
|   if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
 | |
|     addPredicate<PointerToAnyOperandMatcher>(0);
 | |
|     return Error::success();
 | |
|   }
 | |
| 
 | |
|   auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
 | |
|   if (!OpTyOrNone)
 | |
|     return failedImport("unsupported type");
 | |
| 
 | |
|   if (OperandIsAPointer)
 | |
|     addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
 | |
|   else
 | |
|     addPredicate<LLTOperandMatcher>(*OpTyOrNone);
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
 | |
|   return Operand.getAllocatedTemporariesBaseID();
 | |
| }
 | |
| 
 | |
| /// Generates code to check a predicate on an instruction.
 | |
| ///
 | |
| /// Typical predicates include:
 | |
| /// * The opcode of the instruction is a particular value.
 | |
| /// * The nsw/nuw flag is/isn't set.
 | |
| class InstructionPredicateMatcher : public PredicateMatcher {
 | |
| public:
 | |
|   InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
 | |
|       : PredicateMatcher(Kind, InsnVarID) {}
 | |
|   virtual ~InstructionPredicateMatcher() {}
 | |
| 
 | |
|   /// Compare the priority of this object and B.
 | |
|   ///
 | |
|   /// Returns true if this object is more important than B.
 | |
|   virtual bool
 | |
|   isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
 | |
|     return Kind < B.Kind;
 | |
|   };
 | |
| };
 | |
| 
 | |
| template <>
 | |
| std::string
 | |
| PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
 | |
|   return "No instruction predicates";
 | |
| }
 | |
| 
 | |
| /// Generates code to check the opcode of an instruction.
 | |
| class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
 | |
| protected:
 | |
|   const CodeGenInstruction *I;
 | |
| 
 | |
|   static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
 | |
| 
 | |
| public:
 | |
|   static void initOpcodeValuesMap(const CodeGenTarget &Target) {
 | |
|     OpcodeValues.clear();
 | |
| 
 | |
|     unsigned OpcodeValue = 0;
 | |
|     for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
 | |
|       OpcodeValues[I] = OpcodeValue++;
 | |
|   }
 | |
| 
 | |
|   InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
 | |
|       : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_Opcode;
 | |
|   }
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return InstructionPredicateMatcher::isIdentical(B) &&
 | |
|            I == cast<InstructionOpcodeMatcher>(&B)->I;
 | |
|   }
 | |
|   MatchTableRecord getValue() const override {
 | |
|     const auto VI = OpcodeValues.find(I);
 | |
|     if (VI != OpcodeValues.end())
 | |
|       return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
 | |
|                                     VI->second);
 | |
|     return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
 | |
|   }
 | |
|   bool hasValue() const override { return OpcodeValues.count(I); }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(InsnVarID) << getValue()
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| 
 | |
|   /// Compare the priority of this object and B.
 | |
|   ///
 | |
|   /// Returns true if this object is more important than B.
 | |
|   bool
 | |
|   isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
 | |
|     if (InstructionPredicateMatcher::isHigherPriorityThan(B))
 | |
|       return true;
 | |
|     if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
 | |
|       return false;
 | |
| 
 | |
|     // Prioritize opcodes for cosmetic reasons in the generated source. Although
 | |
|     // this is cosmetic at the moment, we may want to drive a similar ordering
 | |
|     // using instruction frequency information to improve compile time.
 | |
|     if (const InstructionOpcodeMatcher *BO =
 | |
|             dyn_cast<InstructionOpcodeMatcher>(&B))
 | |
|       return I->TheDef->getName() < BO->I->TheDef->getName();
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   bool isConstantInstruction() const {
 | |
|     return I->TheDef->getName() == "G_CONSTANT";
 | |
|   }
 | |
| 
 | |
|   StringRef getOpcode() const { return I->TheDef->getName(); }
 | |
|   unsigned getNumOperands() const { return I->Operands.size(); }
 | |
| 
 | |
|   StringRef getOperandType(unsigned OpIdx) const {
 | |
|     return I->Operands[OpIdx].OperandType;
 | |
|   }
 | |
| };
 | |
| 
 | |
| DenseMap<const CodeGenInstruction *, unsigned>
 | |
|     InstructionOpcodeMatcher::OpcodeValues;
 | |
| 
 | |
| class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
 | |
|   unsigned NumOperands = 0;
 | |
| 
 | |
| public:
 | |
|   InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
 | |
|       : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
 | |
|         NumOperands(NumOperands) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_NumOperands;
 | |
|   }
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return InstructionPredicateMatcher::isIdentical(B) &&
 | |
|            NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckNumOperands")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Expected")
 | |
|           << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that this instruction is a constant whose value
 | |
| /// meets an immediate predicate.
 | |
| ///
 | |
| /// Immediates are slightly odd since they are typically used like an operand
 | |
| /// but are represented as an operator internally. We typically write simm8:$src
 | |
| /// in a tablegen pattern, but this is just syntactic sugar for
 | |
| /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
 | |
| /// that will be matched and the predicate (which is attached to the imm
 | |
| /// operator) that will be tested. In SelectionDAG this describes a
 | |
| /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
 | |
| ///
 | |
| /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
 | |
| /// this representation, the immediate could be tested with an
 | |
| /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
 | |
| /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
 | |
| /// there are two implementation issues with producing that matcher
 | |
| /// configuration from the SelectionDAG pattern:
 | |
| /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
 | |
| ///   were we to sink the immediate predicate to the operand we would have to
 | |
| ///   have two partial implementations of PatFrag support, one for immediates
 | |
| ///   and one for non-immediates.
 | |
| /// * At the point we handle the predicate, the OperandMatcher hasn't been
 | |
| ///   created yet. If we were to sink the predicate to the OperandMatcher we
 | |
| ///   would also have to complicate (or duplicate) the code that descends and
 | |
| ///   creates matchers for the subtree.
 | |
| /// Overall, it's simpler to handle it in the place it was found.
 | |
| class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
 | |
| protected:
 | |
|   TreePredicateFn Predicate;
 | |
| 
 | |
| public:
 | |
|   InstructionImmPredicateMatcher(unsigned InsnVarID,
 | |
|                                  const TreePredicateFn &Predicate)
 | |
|       : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
 | |
|         Predicate(Predicate) {}
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return InstructionPredicateMatcher::isIdentical(B) &&
 | |
|            Predicate.getOrigPatFragRecord() ==
 | |
|                cast<InstructionImmPredicateMatcher>(&B)
 | |
|                    ->Predicate.getOrigPatFragRecord();
 | |
|   }
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_ImmPredicate;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("Predicate")
 | |
|           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that a memory instruction has a atomic ordering
 | |
| /// MachineMemoryOperand.
 | |
| class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
 | |
| public:
 | |
|   enum AOComparator {
 | |
|     AO_Exactly,
 | |
|     AO_OrStronger,
 | |
|     AO_WeakerThan,
 | |
|   };
 | |
| 
 | |
| protected:
 | |
|   StringRef Order;
 | |
|   AOComparator Comparator;
 | |
| 
 | |
| public:
 | |
|   AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
 | |
|                                     AOComparator Comparator = AO_Exactly)
 | |
|       : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
 | |
|         Order(Order), Comparator(Comparator) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_AtomicOrderingMMO;
 | |
|   }
 | |
| 
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     if (!InstructionPredicateMatcher::isIdentical(B))
 | |
|       return false;
 | |
|     const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
 | |
|     return Order == R.Order && Comparator == R.Comparator;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     StringRef Opcode = "GIM_CheckAtomicOrdering";
 | |
| 
 | |
|     if (Comparator == AO_OrStronger)
 | |
|       Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
 | |
|     if (Comparator == AO_WeakerThan)
 | |
|       Opcode = "GIM_CheckAtomicOrderingWeakerThan";
 | |
| 
 | |
|     Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
 | |
|           << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that the size of an MMO is exactly N bytes.
 | |
| class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
 | |
| protected:
 | |
|   unsigned MMOIdx;
 | |
|   uint64_t Size;
 | |
| 
 | |
| public:
 | |
|   MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
 | |
|       : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
 | |
|         MMOIdx(MMOIdx), Size(Size) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_MemoryLLTSize;
 | |
|   }
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return InstructionPredicateMatcher::isIdentical(B) &&
 | |
|            MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
 | |
|            Size == cast<MemorySizePredicateMatcher>(&B)->Size;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
 | |
|           << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that the size of an MMO is less-than, equal-to, or
 | |
| /// greater than a given LLT.
 | |
| class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
 | |
| public:
 | |
|   enum RelationKind {
 | |
|     GreaterThan,
 | |
|     EqualTo,
 | |
|     LessThan,
 | |
|   };
 | |
| 
 | |
| protected:
 | |
|   unsigned MMOIdx;
 | |
|   RelationKind Relation;
 | |
|   unsigned OpIdx;
 | |
| 
 | |
| public:
 | |
|   MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
 | |
|                                   enum RelationKind Relation,
 | |
|                                   unsigned OpIdx)
 | |
|       : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
 | |
|         MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_MemoryVsLLTSize;
 | |
|   }
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return InstructionPredicateMatcher::isIdentical(B) &&
 | |
|            MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
 | |
|            Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
 | |
|            OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode(Relation == EqualTo
 | |
|                                     ? "GIM_CheckMemorySizeEqualToLLT"
 | |
|                                     : Relation == GreaterThan
 | |
|                                           ? "GIM_CheckMemorySizeGreaterThanLLT"
 | |
|                                           : "GIM_CheckMemorySizeLessThanLLT")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
 | |
|           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check an arbitrary C++ instruction predicate.
 | |
| class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
 | |
| protected:
 | |
|   TreePredicateFn Predicate;
 | |
| 
 | |
| public:
 | |
|   GenericInstructionPredicateMatcher(unsigned InsnVarID,
 | |
|                                      TreePredicateFn Predicate)
 | |
|       : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
 | |
|         Predicate(Predicate) {}
 | |
| 
 | |
|   static bool classof(const InstructionPredicateMatcher *P) {
 | |
|     return P->getKind() == IPM_GenericPredicate;
 | |
|   }
 | |
|   bool isIdentical(const PredicateMatcher &B) const override {
 | |
|     return InstructionPredicateMatcher::isIdentical(B) &&
 | |
|            Predicate ==
 | |
|                static_cast<const GenericInstructionPredicateMatcher &>(B)
 | |
|                    .Predicate;
 | |
|   }
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
 | |
|           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|           << MatchTable::Comment("FnId")
 | |
|           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to check that a set of predicates and operands match for a
 | |
| /// particular instruction.
 | |
| ///
 | |
| /// Typical predicates include:
 | |
| /// * Has a specific opcode.
 | |
| /// * Has an nsw/nuw flag or doesn't.
 | |
| class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
 | |
| protected:
 | |
|   typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
 | |
| 
 | |
|   RuleMatcher &Rule;
 | |
| 
 | |
|   /// The operands to match. All rendered operands must be present even if the
 | |
|   /// condition is always true.
 | |
|   OperandVec Operands;
 | |
|   bool NumOperandsCheck = true;
 | |
| 
 | |
|   std::string SymbolicName;
 | |
|   unsigned InsnVarID;
 | |
| 
 | |
| public:
 | |
|   InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
 | |
|       : Rule(Rule), SymbolicName(SymbolicName) {
 | |
|     // We create a new instruction matcher.
 | |
|     // Get a new ID for that instruction.
 | |
|     InsnVarID = Rule.implicitlyDefineInsnVar(*this);
 | |
|   }
 | |
| 
 | |
|   /// Construct a new instruction predicate and add it to the matcher.
 | |
|   template <class Kind, class... Args>
 | |
|   Optional<Kind *> addPredicate(Args &&... args) {
 | |
|     Predicates.emplace_back(
 | |
|         llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
 | |
|     return static_cast<Kind *>(Predicates.back().get());
 | |
|   }
 | |
| 
 | |
|   RuleMatcher &getRuleMatcher() const { return Rule; }
 | |
| 
 | |
|   unsigned getInsnVarID() const { return InsnVarID; }
 | |
| 
 | |
|   /// Add an operand to the matcher.
 | |
|   OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
 | |
|                              unsigned AllocatedTemporariesBaseID) {
 | |
|     Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
 | |
|                                              AllocatedTemporariesBaseID));
 | |
|     if (!SymbolicName.empty())
 | |
|       Rule.defineOperand(SymbolicName, *Operands.back());
 | |
| 
 | |
|     return *Operands.back();
 | |
|   }
 | |
| 
 | |
|   OperandMatcher &getOperand(unsigned OpIdx) {
 | |
|     auto I = std::find_if(Operands.begin(), Operands.end(),
 | |
|                           [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
 | |
|                             return X->getOpIdx() == OpIdx;
 | |
|                           });
 | |
|     if (I != Operands.end())
 | |
|       return **I;
 | |
|     llvm_unreachable("Failed to lookup operand");
 | |
|   }
 | |
| 
 | |
|   StringRef getSymbolicName() const { return SymbolicName; }
 | |
|   unsigned getNumOperands() const { return Operands.size(); }
 | |
|   OperandVec::iterator operands_begin() { return Operands.begin(); }
 | |
|   OperandVec::iterator operands_end() { return Operands.end(); }
 | |
|   iterator_range<OperandVec::iterator> operands() {
 | |
|     return make_range(operands_begin(), operands_end());
 | |
|   }
 | |
|   OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
 | |
|   OperandVec::const_iterator operands_end() const { return Operands.end(); }
 | |
|   iterator_range<OperandVec::const_iterator> operands() const {
 | |
|     return make_range(operands_begin(), operands_end());
 | |
|   }
 | |
|   bool operands_empty() const { return Operands.empty(); }
 | |
| 
 | |
|   void pop_front() { Operands.erase(Operands.begin()); }
 | |
| 
 | |
|   void optimize();
 | |
| 
 | |
|   /// Emit MatchTable opcodes that test whether the instruction named in
 | |
|   /// InsnVarName matches all the predicates and all the operands.
 | |
|   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
 | |
|     if (NumOperandsCheck)
 | |
|       InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
 | |
|           .emitPredicateOpcodes(Table, Rule);
 | |
| 
 | |
|     emitPredicateListOpcodes(Table, Rule);
 | |
| 
 | |
|     for (const auto &Operand : Operands)
 | |
|       Operand->emitPredicateOpcodes(Table, Rule);
 | |
|   }
 | |
| 
 | |
|   /// Compare the priority of this object and B.
 | |
|   ///
 | |
|   /// Returns true if this object is more important than B.
 | |
|   bool isHigherPriorityThan(InstructionMatcher &B) {
 | |
|     // Instruction matchers involving more operands have higher priority.
 | |
|     if (Operands.size() > B.Operands.size())
 | |
|       return true;
 | |
|     if (Operands.size() < B.Operands.size())
 | |
|       return false;
 | |
| 
 | |
|     for (auto &&P : zip(predicates(), B.predicates())) {
 | |
|       auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
 | |
|       auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
 | |
|       if (L->isHigherPriorityThan(*R))
 | |
|         return true;
 | |
|       if (R->isHigherPriorityThan(*L))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (const auto &Operand : zip(Operands, B.Operands)) {
 | |
|       if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
 | |
|         return true;
 | |
|       if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   /// Report the maximum number of temporary operands needed by the instruction
 | |
|   /// matcher.
 | |
|   unsigned countRendererFns() {
 | |
|     return std::accumulate(
 | |
|                predicates().begin(), predicates().end(), 0,
 | |
|                [](unsigned A,
 | |
|                   const std::unique_ptr<PredicateMatcher> &Predicate) {
 | |
|                  return A + Predicate->countRendererFns();
 | |
|                }) +
 | |
|            std::accumulate(
 | |
|                Operands.begin(), Operands.end(), 0,
 | |
|                [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
 | |
|                  return A + Operand->countRendererFns();
 | |
|                });
 | |
|   }
 | |
| 
 | |
|   InstructionOpcodeMatcher &getOpcodeMatcher() {
 | |
|     for (auto &P : predicates())
 | |
|       if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
 | |
|         return *OpMatcher;
 | |
|     llvm_unreachable("Didn't find an opcode matcher");
 | |
|   }
 | |
| 
 | |
|   bool isConstantInstruction() {
 | |
|     return getOpcodeMatcher().isConstantInstruction();
 | |
|   }
 | |
| 
 | |
|   StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
 | |
| };
 | |
| 
 | |
| StringRef RuleMatcher::getOpcode() const {
 | |
|   return Matchers.front()->getOpcode();
 | |
| }
 | |
| 
 | |
| unsigned RuleMatcher::getNumOperands() const {
 | |
|   return Matchers.front()->getNumOperands();
 | |
| }
 | |
| 
 | |
| LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
 | |
|   InstructionMatcher &InsnMatcher = *Matchers.front();
 | |
|   if (!InsnMatcher.predicates_empty())
 | |
|     if (const auto *TM =
 | |
|             dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
 | |
|       if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
 | |
|         return TM->getTy();
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| /// Generates code to check that the operand is a register defined by an
 | |
| /// instruction that matches the given instruction matcher.
 | |
| ///
 | |
| /// For example, the pattern:
 | |
| ///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
 | |
| /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
 | |
| /// the:
 | |
| ///   (G_ADD $src1, $src2)
 | |
| /// subpattern.
 | |
| class InstructionOperandMatcher : public OperandPredicateMatcher {
 | |
| protected:
 | |
|   std::unique_ptr<InstructionMatcher> InsnMatcher;
 | |
| 
 | |
| public:
 | |
|   InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
 | |
|                             RuleMatcher &Rule, StringRef SymbolicName)
 | |
|       : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
 | |
|         InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
 | |
| 
 | |
|   static bool classof(const PredicateMatcher *P) {
 | |
|     return P->getKind() == OPM_Instruction;
 | |
|   }
 | |
| 
 | |
|   InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
 | |
| 
 | |
|   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
 | |
|     const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
 | |
|     Table << MatchTable::Opcode("GIM_RecordInsn")
 | |
|           << MatchTable::Comment("DefineMI")
 | |
|           << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(getInsnVarID())
 | |
|           << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
 | |
|           << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| 
 | |
|   void emitPredicateOpcodes(MatchTable &Table,
 | |
|                             RuleMatcher &Rule) const override {
 | |
|     emitCaptureOpcodes(Table, Rule);
 | |
|     InsnMatcher->emitPredicateOpcodes(Table, Rule);
 | |
|   }
 | |
| 
 | |
|   bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
 | |
|     if (OperandPredicateMatcher::isHigherPriorityThan(B))
 | |
|       return true;
 | |
|     if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
 | |
|       return false;
 | |
| 
 | |
|     if (const InstructionOperandMatcher *BP =
 | |
|             dyn_cast<InstructionOperandMatcher>(&B))
 | |
|       if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void InstructionMatcher::optimize() {
 | |
|   SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
 | |
|   const auto &OpcMatcher = getOpcodeMatcher();
 | |
| 
 | |
|   Stash.push_back(predicates_pop_front());
 | |
|   if (Stash.back().get() == &OpcMatcher) {
 | |
|     if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
 | |
|       Stash.emplace_back(
 | |
|           new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
 | |
|     NumOperandsCheck = false;
 | |
| 
 | |
|     for (auto &OM : Operands)
 | |
|       for (auto &OP : OM->predicates())
 | |
|         if (isa<IntrinsicIDOperandMatcher>(OP)) {
 | |
|           Stash.push_back(std::move(OP));
 | |
|           OM->eraseNullPredicates();
 | |
|           break;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   if (InsnVarID > 0) {
 | |
|     assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
 | |
|     for (auto &OP : Operands[0]->predicates())
 | |
|       OP.reset();
 | |
|     Operands[0]->eraseNullPredicates();
 | |
|   }
 | |
|   for (auto &OM : Operands) {
 | |
|     for (auto &OP : OM->predicates())
 | |
|       if (isa<LLTOperandMatcher>(OP))
 | |
|         Stash.push_back(std::move(OP));
 | |
|     OM->eraseNullPredicates();
 | |
|   }
 | |
|   while (!Stash.empty())
 | |
|     prependPredicate(Stash.pop_back_val());
 | |
| }
 | |
| 
 | |
| //===- Actions ------------------------------------------------------------===//
 | |
| class OperandRenderer {
 | |
| public:
 | |
|   enum RendererKind {
 | |
|     OR_Copy,
 | |
|     OR_CopyOrAddZeroReg,
 | |
|     OR_CopySubReg,
 | |
|     OR_CopyConstantAsImm,
 | |
|     OR_CopyFConstantAsFPImm,
 | |
|     OR_Imm,
 | |
|     OR_Register,
 | |
|     OR_TempRegister,
 | |
|     OR_ComplexPattern,
 | |
|     OR_Custom
 | |
|   };
 | |
| 
 | |
| protected:
 | |
|   RendererKind Kind;
 | |
| 
 | |
| public:
 | |
|   OperandRenderer(RendererKind Kind) : Kind(Kind) {}
 | |
|   virtual ~OperandRenderer() {}
 | |
| 
 | |
|   RendererKind getKind() const { return Kind; }
 | |
| 
 | |
|   virtual void emitRenderOpcodes(MatchTable &Table,
 | |
|                                  RuleMatcher &Rule) const = 0;
 | |
| };
 | |
| 
 | |
| /// A CopyRenderer emits code to copy a single operand from an existing
 | |
| /// instruction to the one being built.
 | |
| class CopyRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned NewInsnID;
 | |
|   /// The name of the operand.
 | |
|   const StringRef SymbolicName;
 | |
| 
 | |
| public:
 | |
|   CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
 | |
|       : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
 | |
|         SymbolicName(SymbolicName) {
 | |
|     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
 | |
|   }
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_Copy;
 | |
|   }
 | |
| 
 | |
|   const StringRef getSymbolicName() const { return SymbolicName; }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
 | |
|     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
 | |
|     Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
 | |
|           << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
 | |
|           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
 | |
|           << MatchTable::IntValue(Operand.getOpIdx())
 | |
|           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
 | |
| /// existing instruction to the one being built. If the operand turns out to be
 | |
| /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
 | |
| class CopyOrAddZeroRegRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned NewInsnID;
 | |
|   /// The name of the operand.
 | |
|   const StringRef SymbolicName;
 | |
|   const Record *ZeroRegisterDef;
 | |
| 
 | |
| public:
 | |
|   CopyOrAddZeroRegRenderer(unsigned NewInsnID,
 | |
|                            StringRef SymbolicName, Record *ZeroRegisterDef)
 | |
|       : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
 | |
|         SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
 | |
|     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
 | |
|   }
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_CopyOrAddZeroReg;
 | |
|   }
 | |
| 
 | |
|   const StringRef getSymbolicName() const { return SymbolicName; }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
 | |
|     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
 | |
|     Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
 | |
|           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
 | |
|           << MatchTable::Comment("OldInsnID")
 | |
|           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
 | |
|           << MatchTable::IntValue(Operand.getOpIdx())
 | |
|           << MatchTable::NamedValue(
 | |
|                  (ZeroRegisterDef->getValue("Namespace")
 | |
|                       ? ZeroRegisterDef->getValueAsString("Namespace")
 | |
|                       : ""),
 | |
|                  ZeroRegisterDef->getName())
 | |
|           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
 | |
| /// an extended immediate operand.
 | |
| class CopyConstantAsImmRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned NewInsnID;
 | |
|   /// The name of the operand.
 | |
|   const std::string SymbolicName;
 | |
|   bool Signed;
 | |
| 
 | |
| public:
 | |
|   CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
 | |
|       : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
 | |
|         SymbolicName(SymbolicName), Signed(true) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_CopyConstantAsImm;
 | |
|   }
 | |
| 
 | |
|   const StringRef getSymbolicName() const { return SymbolicName; }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
 | |
|     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
 | |
|     Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
 | |
|                                        : "GIR_CopyConstantAsUImm")
 | |
|           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
 | |
|           << MatchTable::Comment("OldInsnID")
 | |
|           << MatchTable::IntValue(OldInsnVarID)
 | |
|           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
 | |
| /// instruction to an extended immediate operand.
 | |
| class CopyFConstantAsFPImmRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned NewInsnID;
 | |
|   /// The name of the operand.
 | |
|   const std::string SymbolicName;
 | |
| 
 | |
| public:
 | |
|   CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
 | |
|       : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
 | |
|         SymbolicName(SymbolicName) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_CopyFConstantAsFPImm;
 | |
|   }
 | |
| 
 | |
|   const StringRef getSymbolicName() const { return SymbolicName; }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
 | |
|     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
 | |
|     Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
 | |
|           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
 | |
|           << MatchTable::Comment("OldInsnID")
 | |
|           << MatchTable::IntValue(OldInsnVarID)
 | |
|           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// A CopySubRegRenderer emits code to copy a single register operand from an
 | |
| /// existing instruction to the one being built and indicate that only a
 | |
| /// subregister should be copied.
 | |
| class CopySubRegRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned NewInsnID;
 | |
|   /// The name of the operand.
 | |
|   const StringRef SymbolicName;
 | |
|   /// The subregister to extract.
 | |
|   const CodeGenSubRegIndex *SubReg;
 | |
| 
 | |
| public:
 | |
|   CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
 | |
|                      const CodeGenSubRegIndex *SubReg)
 | |
|       : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
 | |
|         SymbolicName(SymbolicName), SubReg(SubReg) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_CopySubReg;
 | |
|   }
 | |
| 
 | |
|   const StringRef getSymbolicName() const { return SymbolicName; }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
 | |
|     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
 | |
|     Table << MatchTable::Opcode("GIR_CopySubReg")
 | |
|           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
 | |
|           << MatchTable::Comment("OldInsnID")
 | |
|           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
 | |
|           << MatchTable::IntValue(Operand.getOpIdx())
 | |
|           << MatchTable::Comment("SubRegIdx")
 | |
|           << MatchTable::IntValue(SubReg->EnumValue)
 | |
|           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Adds a specific physical register to the instruction being built.
 | |
| /// This is typically useful for WZR/XZR on AArch64.
 | |
| class AddRegisterRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned InsnID;
 | |
|   const Record *RegisterDef;
 | |
| 
 | |
| public:
 | |
|   AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
 | |
|       : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
 | |
|   }
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_Register;
 | |
|   }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIR_AddRegister")
 | |
|           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|           << MatchTable::NamedValue(
 | |
|                  (RegisterDef->getValue("Namespace")
 | |
|                       ? RegisterDef->getValueAsString("Namespace")
 | |
|                       : ""),
 | |
|                  RegisterDef->getName())
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Adds a specific temporary virtual register to the instruction being built.
 | |
| /// This is used to chain instructions together when emitting multiple
 | |
| /// instructions.
 | |
| class TempRegRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned InsnID;
 | |
|   unsigned TempRegID;
 | |
|   bool IsDef;
 | |
| 
 | |
| public:
 | |
|   TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
 | |
|       : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
 | |
|         IsDef(IsDef) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_TempRegister;
 | |
|   }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIR_AddTempRegister")
 | |
|           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
 | |
|           << MatchTable::Comment("TempRegFlags");
 | |
|     if (IsDef)
 | |
|       Table << MatchTable::NamedValue("RegState::Define");
 | |
|     else
 | |
|       Table << MatchTable::IntValue(0);
 | |
|     Table << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Adds a specific immediate to the instruction being built.
 | |
| class ImmRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned InsnID;
 | |
|   int64_t Imm;
 | |
| 
 | |
| public:
 | |
|   ImmRenderer(unsigned InsnID, int64_t Imm)
 | |
|       : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_Imm;
 | |
|   }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
 | |
|           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
 | |
|           << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Adds operands by calling a renderer function supplied by the ComplexPattern
 | |
| /// matcher function.
 | |
| class RenderComplexPatternOperand : public OperandRenderer {
 | |
| private:
 | |
|   unsigned InsnID;
 | |
|   const Record &TheDef;
 | |
|   /// The name of the operand.
 | |
|   const StringRef SymbolicName;
 | |
|   /// The renderer number. This must be unique within a rule since it's used to
 | |
|   /// identify a temporary variable to hold the renderer function.
 | |
|   unsigned RendererID;
 | |
|   /// When provided, this is the suboperand of the ComplexPattern operand to
 | |
|   /// render. Otherwise all the suboperands will be rendered.
 | |
|   Optional<unsigned> SubOperand;
 | |
| 
 | |
|   unsigned getNumOperands() const {
 | |
|     return TheDef.getValueAsDag("Operands")->getNumArgs();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
 | |
|                               StringRef SymbolicName, unsigned RendererID,
 | |
|                               Optional<unsigned> SubOperand = None)
 | |
|       : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
 | |
|         SymbolicName(SymbolicName), RendererID(RendererID),
 | |
|         SubOperand(SubOperand) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_ComplexPattern;
 | |
|   }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
 | |
|                                                       : "GIR_ComplexRenderer")
 | |
|           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|           << MatchTable::Comment("RendererID")
 | |
|           << MatchTable::IntValue(RendererID);
 | |
|     if (SubOperand.hasValue())
 | |
|       Table << MatchTable::Comment("SubOperand")
 | |
|             << MatchTable::IntValue(SubOperand.getValue());
 | |
|     Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class CustomRenderer : public OperandRenderer {
 | |
| protected:
 | |
|   unsigned InsnID;
 | |
|   const Record &Renderer;
 | |
|   /// The name of the operand.
 | |
|   const std::string SymbolicName;
 | |
| 
 | |
| public:
 | |
|   CustomRenderer(unsigned InsnID, const Record &Renderer,
 | |
|                  StringRef SymbolicName)
 | |
|       : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
 | |
|         SymbolicName(SymbolicName) {}
 | |
| 
 | |
|   static bool classof(const OperandRenderer *R) {
 | |
|     return R->getKind() == OR_Custom;
 | |
|   }
 | |
| 
 | |
|   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
 | |
|     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
 | |
|     Table << MatchTable::Opcode("GIR_CustomRenderer")
 | |
|           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|           << MatchTable::Comment("OldInsnID")
 | |
|           << MatchTable::IntValue(OldInsnVarID)
 | |
|           << MatchTable::Comment("Renderer")
 | |
|           << MatchTable::NamedValue(
 | |
|                  "GICR_" + Renderer.getValueAsString("RendererFn").str())
 | |
|           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// An action taken when all Matcher predicates succeeded for a parent rule.
 | |
| ///
 | |
| /// Typical actions include:
 | |
| /// * Changing the opcode of an instruction.
 | |
| /// * Adding an operand to an instruction.
 | |
| class MatchAction {
 | |
| public:
 | |
|   virtual ~MatchAction() {}
 | |
| 
 | |
|   /// Emit the MatchTable opcodes to implement the action.
 | |
|   virtual void emitActionOpcodes(MatchTable &Table,
 | |
|                                  RuleMatcher &Rule) const = 0;
 | |
| };
 | |
| 
 | |
| /// Generates a comment describing the matched rule being acted upon.
 | |
| class DebugCommentAction : public MatchAction {
 | |
| private:
 | |
|   std::string S;
 | |
| 
 | |
| public:
 | |
|   DebugCommentAction(StringRef S) : S(S) {}
 | |
| 
 | |
|   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Comment(S) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to build an instruction or mutate an existing instruction
 | |
| /// into the desired instruction when this is possible.
 | |
| class BuildMIAction : public MatchAction {
 | |
| private:
 | |
|   unsigned InsnID;
 | |
|   const CodeGenInstruction *I;
 | |
|   InstructionMatcher *Matched;
 | |
|   std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
 | |
| 
 | |
|   /// True if the instruction can be built solely by mutating the opcode.
 | |
|   bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
 | |
|     if (!Insn)
 | |
|       return false;
 | |
| 
 | |
|     if (OperandRenderers.size() != Insn->getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     for (const auto &Renderer : enumerate(OperandRenderers)) {
 | |
|       if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
 | |
|         const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
 | |
|         if (Insn != &OM.getInstructionMatcher() ||
 | |
|             OM.getOpIdx() != Renderer.index())
 | |
|           return false;
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
 | |
|       : InsnID(InsnID), I(I), Matched(nullptr) {}
 | |
| 
 | |
|   unsigned getInsnID() const { return InsnID; }
 | |
|   const CodeGenInstruction *getCGI() const { return I; }
 | |
| 
 | |
|   void chooseInsnToMutate(RuleMatcher &Rule) {
 | |
|     for (auto *MutateCandidate : Rule.mutatable_insns()) {
 | |
|       if (canMutate(Rule, MutateCandidate)) {
 | |
|         // Take the first one we're offered that we're able to mutate.
 | |
|         Rule.reserveInsnMatcherForMutation(MutateCandidate);
 | |
|         Matched = MutateCandidate;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <class Kind, class... Args>
 | |
|   Kind &addRenderer(Args&&... args) {
 | |
|     OperandRenderers.emplace_back(
 | |
|         llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
 | |
|     return *static_cast<Kind *>(OperandRenderers.back().get());
 | |
|   }
 | |
| 
 | |
|   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     if (Matched) {
 | |
|       assert(canMutate(Rule, Matched) &&
 | |
|              "Arranged to mutate an insn that isn't mutatable");
 | |
| 
 | |
|       unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
 | |
|       Table << MatchTable::Opcode("GIR_MutateOpcode")
 | |
|             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|             << MatchTable::Comment("RecycleInsnID")
 | |
|             << MatchTable::IntValue(RecycleInsnID)
 | |
|             << MatchTable::Comment("Opcode")
 | |
|             << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
 | |
|             << MatchTable::LineBreak;
 | |
| 
 | |
|       if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
 | |
|         for (auto Def : I->ImplicitDefs) {
 | |
|           auto Namespace = Def->getValue("Namespace")
 | |
|                                ? Def->getValueAsString("Namespace")
 | |
|                                : "";
 | |
|           Table << MatchTable::Opcode("GIR_AddImplicitDef")
 | |
|                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|                 << MatchTable::NamedValue(Namespace, Def->getName())
 | |
|                 << MatchTable::LineBreak;
 | |
|         }
 | |
|         for (auto Use : I->ImplicitUses) {
 | |
|           auto Namespace = Use->getValue("Namespace")
 | |
|                                ? Use->getValueAsString("Namespace")
 | |
|                                : "";
 | |
|           Table << MatchTable::Opcode("GIR_AddImplicitUse")
 | |
|                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|                 << MatchTable::NamedValue(Namespace, Use->getName())
 | |
|                 << MatchTable::LineBreak;
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // TODO: Simple permutation looks like it could be almost as common as
 | |
|     //       mutation due to commutative operations.
 | |
| 
 | |
|     Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
 | |
|           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
 | |
|           << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
 | |
|           << MatchTable::LineBreak;
 | |
|     for (const auto &Renderer : OperandRenderers)
 | |
|       Renderer->emitRenderOpcodes(Table, Rule);
 | |
| 
 | |
|     if (I->mayLoad || I->mayStore) {
 | |
|       Table << MatchTable::Opcode("GIR_MergeMemOperands")
 | |
|             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|             << MatchTable::Comment("MergeInsnID's");
 | |
|       // Emit the ID's for all the instructions that are matched by this rule.
 | |
|       // TODO: Limit this to matched instructions that mayLoad/mayStore or have
 | |
|       //       some other means of having a memoperand. Also limit this to
 | |
|       //       emitted instructions that expect to have a memoperand too. For
 | |
|       //       example, (G_SEXT (G_LOAD x)) that results in separate load and
 | |
|       //       sign-extend instructions shouldn't put the memoperand on the
 | |
|       //       sign-extend since it has no effect there.
 | |
|       std::vector<unsigned> MergeInsnIDs;
 | |
|       for (const auto &IDMatcherPair : Rule.defined_insn_vars())
 | |
|         MergeInsnIDs.push_back(IDMatcherPair.second);
 | |
|       llvm::sort(MergeInsnIDs);
 | |
|       for (const auto &MergeInsnID : MergeInsnIDs)
 | |
|         Table << MatchTable::IntValue(MergeInsnID);
 | |
|       Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
 | |
|             << MatchTable::LineBreak;
 | |
|     }
 | |
| 
 | |
|     // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
 | |
|     //        better for combines. Particularly when there are multiple match
 | |
|     //        roots.
 | |
|     if (InsnID == 0)
 | |
|       Table << MatchTable::Opcode("GIR_EraseFromParent")
 | |
|             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|             << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to constrain the operands of an output instruction to the
 | |
| /// register classes specified by the definition of that instruction.
 | |
| class ConstrainOperandsToDefinitionAction : public MatchAction {
 | |
|   unsigned InsnID;
 | |
| 
 | |
| public:
 | |
|   ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
 | |
| 
 | |
|   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
 | |
|           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to constrain the specified operand of an output instruction
 | |
| /// to the specified register class.
 | |
| class ConstrainOperandToRegClassAction : public MatchAction {
 | |
|   unsigned InsnID;
 | |
|   unsigned OpIdx;
 | |
|   const CodeGenRegisterClass &RC;
 | |
| 
 | |
| public:
 | |
|   ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
 | |
|                                    const CodeGenRegisterClass &RC)
 | |
|       : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
 | |
| 
 | |
|   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
 | |
|           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
 | |
|           << MatchTable::Comment("RC " + RC.getName())
 | |
|           << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Generates code to create a temporary register which can be used to chain
 | |
| /// instructions together.
 | |
| class MakeTempRegisterAction : public MatchAction {
 | |
| private:
 | |
|   LLTCodeGen Ty;
 | |
|   unsigned TempRegID;
 | |
| 
 | |
| public:
 | |
|   MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
 | |
|       : Ty(Ty), TempRegID(TempRegID) {}
 | |
| 
 | |
|   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
 | |
|     Table << MatchTable::Opcode("GIR_MakeTempReg")
 | |
|           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
 | |
|           << MatchTable::Comment("TypeID")
 | |
|           << MatchTable::NamedValue(Ty.getCxxEnumValue())
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| };
 | |
| 
 | |
| InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
 | |
|   Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
 | |
|   MutatableInsns.insert(Matchers.back().get());
 | |
|   return *Matchers.back();
 | |
| }
 | |
| 
 | |
| void RuleMatcher::addRequiredFeature(Record *Feature) {
 | |
|   RequiredFeatures.push_back(Feature);
 | |
| }
 | |
| 
 | |
| const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
 | |
|   return RequiredFeatures;
 | |
| }
 | |
| 
 | |
| // Emplaces an action of the specified Kind at the end of the action list.
 | |
| //
 | |
| // Returns a reference to the newly created action.
 | |
| //
 | |
| // Like std::vector::emplace_back(), may invalidate all iterators if the new
 | |
| // size exceeds the capacity. Otherwise, only invalidates the past-the-end
 | |
| // iterator.
 | |
| template <class Kind, class... Args>
 | |
| Kind &RuleMatcher::addAction(Args &&... args) {
 | |
|   Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
 | |
|   return *static_cast<Kind *>(Actions.back().get());
 | |
| }
 | |
| 
 | |
| // Emplaces an action of the specified Kind before the given insertion point.
 | |
| //
 | |
| // Returns an iterator pointing at the newly created instruction.
 | |
| //
 | |
| // Like std::vector::insert(), may invalidate all iterators if the new size
 | |
| // exceeds the capacity. Otherwise, only invalidates the iterators from the
 | |
| // insertion point onwards.
 | |
| template <class Kind, class... Args>
 | |
| action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
 | |
|                                           Args &&... args) {
 | |
|   return Actions.emplace(InsertPt,
 | |
|                          llvm::make_unique<Kind>(std::forward<Args>(args)...));
 | |
| }
 | |
| 
 | |
| unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
 | |
|   unsigned NewInsnVarID = NextInsnVarID++;
 | |
|   InsnVariableIDs[&Matcher] = NewInsnVarID;
 | |
|   return NewInsnVarID;
 | |
| }
 | |
| 
 | |
| unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
 | |
|   const auto &I = InsnVariableIDs.find(&InsnMatcher);
 | |
|   if (I != InsnVariableIDs.end())
 | |
|     return I->second;
 | |
|   llvm_unreachable("Matched Insn was not captured in a local variable");
 | |
| }
 | |
| 
 | |
| void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
 | |
|   if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
 | |
|     DefinedOperands[SymbolicName] = &OM;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the operand is already defined, then we must ensure both references in
 | |
|   // the matcher have the exact same node.
 | |
|   OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
 | |
| }
 | |
| 
 | |
| InstructionMatcher &
 | |
| RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
 | |
|   for (const auto &I : InsnVariableIDs)
 | |
|     if (I.first->getSymbolicName() == SymbolicName)
 | |
|       return *I.first;
 | |
|   llvm_unreachable(
 | |
|       ("Failed to lookup instruction " + SymbolicName).str().c_str());
 | |
| }
 | |
| 
 | |
| const OperandMatcher &
 | |
| RuleMatcher::getOperandMatcher(StringRef Name) const {
 | |
|   const auto &I = DefinedOperands.find(Name);
 | |
| 
 | |
|   if (I == DefinedOperands.end())
 | |
|     PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
 | |
| 
 | |
|   return *I->second;
 | |
| }
 | |
| 
 | |
| void RuleMatcher::emit(MatchTable &Table) {
 | |
|   if (Matchers.empty())
 | |
|     llvm_unreachable("Unexpected empty matcher!");
 | |
| 
 | |
|   // The representation supports rules that require multiple roots such as:
 | |
|   //    %ptr(p0) = ...
 | |
|   //    %elt0(s32) = G_LOAD %ptr
 | |
|   //    %1(p0) = G_ADD %ptr, 4
 | |
|   //    %elt1(s32) = G_LOAD p0 %1
 | |
|   // which could be usefully folded into:
 | |
|   //    %ptr(p0) = ...
 | |
|   //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
 | |
|   // on some targets but we don't need to make use of that yet.
 | |
|   assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
 | |
| 
 | |
|   unsigned LabelID = Table.allocateLabelID();
 | |
|   Table << MatchTable::Opcode("GIM_Try", +1)
 | |
|         << MatchTable::Comment("On fail goto")
 | |
|         << MatchTable::JumpTarget(LabelID)
 | |
|         << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
 | |
|         << MatchTable::LineBreak;
 | |
| 
 | |
|   if (!RequiredFeatures.empty()) {
 | |
|     Table << MatchTable::Opcode("GIM_CheckFeatures")
 | |
|           << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
 | |
|           << MatchTable::LineBreak;
 | |
|   }
 | |
| 
 | |
|   Matchers.front()->emitPredicateOpcodes(Table, *this);
 | |
| 
 | |
|   // We must also check if it's safe to fold the matched instructions.
 | |
|   if (InsnVariableIDs.size() >= 2) {
 | |
|     // Invert the map to create stable ordering (by var names)
 | |
|     SmallVector<unsigned, 2> InsnIDs;
 | |
|     for (const auto &Pair : InsnVariableIDs) {
 | |
|       // Skip the root node since it isn't moving anywhere. Everything else is
 | |
|       // sinking to meet it.
 | |
|       if (Pair.first == Matchers.front().get())
 | |
|         continue;
 | |
| 
 | |
|       InsnIDs.push_back(Pair.second);
 | |
|     }
 | |
|     llvm::sort(InsnIDs);
 | |
| 
 | |
|     for (const auto &InsnID : InsnIDs) {
 | |
|       // Reject the difficult cases until we have a more accurate check.
 | |
|       Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
 | |
|             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
 | |
|             << MatchTable::LineBreak;
 | |
| 
 | |
|       // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
 | |
|       //        account for unsafe cases.
 | |
|       //
 | |
|       //        Example:
 | |
|       //          MI1--> %0 = ...
 | |
|       //                 %1 = ... %0
 | |
|       //          MI0--> %2 = ... %0
 | |
|       //          It's not safe to erase MI1. We currently handle this by not
 | |
|       //          erasing %0 (even when it's dead).
 | |
|       //
 | |
|       //        Example:
 | |
|       //          MI1--> %0 = load volatile @a
 | |
|       //                 %1 = load volatile @a
 | |
|       //          MI0--> %2 = ... %0
 | |
|       //          It's not safe to sink %0's def past %1. We currently handle
 | |
|       //          this by rejecting all loads.
 | |
|       //
 | |
|       //        Example:
 | |
|       //          MI1--> %0 = load @a
 | |
|       //                 %1 = store @a
 | |
|       //          MI0--> %2 = ... %0
 | |
|       //          It's not safe to sink %0's def past %1. We currently handle
 | |
|       //          this by rejecting all loads.
 | |
|       //
 | |
|       //        Example:
 | |
|       //                   G_CONDBR %cond, @BB1
 | |
|       //                 BB0:
 | |
|       //          MI1-->   %0 = load @a
 | |
|       //                   G_BR @BB1
 | |
|       //                 BB1:
 | |
|       //          MI0-->   %2 = ... %0
 | |
|       //          It's not always safe to sink %0 across control flow. In this
 | |
|       //          case it may introduce a memory fault. We currentl handle this
 | |
|       //          by rejecting all loads.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const auto &PM : EpilogueMatchers)
 | |
|     PM->emitPredicateOpcodes(Table, *this);
 | |
| 
 | |
|   for (const auto &MA : Actions)
 | |
|     MA->emitActionOpcodes(Table, *this);
 | |
| 
 | |
|   if (Table.isWithCoverage())
 | |
|     Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
 | |
|           << MatchTable::LineBreak;
 | |
|   else
 | |
|     Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
 | |
|           << MatchTable::LineBreak;
 | |
| 
 | |
|   Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
 | |
|         << MatchTable::Label(LabelID);
 | |
|   ++NumPatternEmitted;
 | |
| }
 | |
| 
 | |
| bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
 | |
|   // Rules involving more match roots have higher priority.
 | |
|   if (Matchers.size() > B.Matchers.size())
 | |
|     return true;
 | |
|   if (Matchers.size() < B.Matchers.size())
 | |
|     return false;
 | |
| 
 | |
|   for (const auto &Matcher : zip(Matchers, B.Matchers)) {
 | |
|     if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
 | |
|       return true;
 | |
|     if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned RuleMatcher::countRendererFns() const {
 | |
|   return std::accumulate(
 | |
|       Matchers.begin(), Matchers.end(), 0,
 | |
|       [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
 | |
|         return A + Matcher->countRendererFns();
 | |
|       });
 | |
| }
 | |
| 
 | |
| bool OperandPredicateMatcher::isHigherPriorityThan(
 | |
|     const OperandPredicateMatcher &B) const {
 | |
|   // Generally speaking, an instruction is more important than an Int or a
 | |
|   // LiteralInt because it can cover more nodes but theres an exception to
 | |
|   // this. G_CONSTANT's are less important than either of those two because they
 | |
|   // are more permissive.
 | |
| 
 | |
|   const InstructionOperandMatcher *AOM =
 | |
|       dyn_cast<InstructionOperandMatcher>(this);
 | |
|   const InstructionOperandMatcher *BOM =
 | |
|       dyn_cast<InstructionOperandMatcher>(&B);
 | |
|   bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
 | |
|   bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
 | |
| 
 | |
|   if (AOM && BOM) {
 | |
|     // The relative priorities between a G_CONSTANT and any other instruction
 | |
|     // don't actually matter but this code is needed to ensure a strict weak
 | |
|     // ordering. This is particularly important on Windows where the rules will
 | |
|     // be incorrectly sorted without it.
 | |
|     if (AIsConstantInsn != BIsConstantInsn)
 | |
|       return AIsConstantInsn < BIsConstantInsn;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
 | |
|     return false;
 | |
|   if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
 | |
|     return true;
 | |
| 
 | |
|   return Kind < B.Kind;
 | |
| }
 | |
| 
 | |
| void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
 | |
|                                               RuleMatcher &Rule) const {
 | |
|   const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
 | |
|   unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
 | |
|   assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
 | |
| 
 | |
|   Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
 | |
|         << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
 | |
|         << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
 | |
|         << MatchTable::Comment("OtherMI")
 | |
|         << MatchTable::IntValue(OtherInsnVarID)
 | |
|         << MatchTable::Comment("OtherOpIdx")
 | |
|         << MatchTable::IntValue(OtherOM.getOpIdx())
 | |
|         << MatchTable::LineBreak;
 | |
| }
 | |
| 
 | |
| //===- GlobalISelEmitter class --------------------------------------------===//
 | |
| 
 | |
| class GlobalISelEmitter {
 | |
| public:
 | |
|   explicit GlobalISelEmitter(RecordKeeper &RK);
 | |
|   void run(raw_ostream &OS);
 | |
| 
 | |
| private:
 | |
|   const RecordKeeper &RK;
 | |
|   const CodeGenDAGPatterns CGP;
 | |
|   const CodeGenTarget &Target;
 | |
|   CodeGenRegBank CGRegs;
 | |
| 
 | |
|   /// Keep track of the equivalence between SDNodes and Instruction by mapping
 | |
|   /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
 | |
|   /// check for attributes on the relation such as CheckMMOIsNonAtomic.
 | |
|   /// This is defined using 'GINodeEquiv' in the target description.
 | |
|   DenseMap<Record *, Record *> NodeEquivs;
 | |
| 
 | |
|   /// Keep track of the equivalence between ComplexPattern's and
 | |
|   /// GIComplexOperandMatcher. Map entries are specified by subclassing
 | |
|   /// GIComplexPatternEquiv.
 | |
|   DenseMap<const Record *, const Record *> ComplexPatternEquivs;
 | |
| 
 | |
|   /// Keep track of the equivalence between SDNodeXForm's and
 | |
|   /// GICustomOperandRenderer. Map entries are specified by subclassing
 | |
|   /// GISDNodeXFormEquiv.
 | |
|   DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
 | |
| 
 | |
|   /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
 | |
|   /// This adds compatibility for RuleMatchers to use this for ordering rules.
 | |
|   DenseMap<uint64_t, int> RuleMatcherScores;
 | |
| 
 | |
|   // Map of predicates to their subtarget features.
 | |
|   SubtargetFeatureInfoMap SubtargetFeatures;
 | |
| 
 | |
|   // Rule coverage information.
 | |
|   Optional<CodeGenCoverage> RuleCoverage;
 | |
| 
 | |
|   void gatherOpcodeValues();
 | |
|   void gatherTypeIDValues();
 | |
|   void gatherNodeEquivs();
 | |
| 
 | |
|   Record *findNodeEquiv(Record *N) const;
 | |
|   const CodeGenInstruction *getEquivNode(Record &Equiv,
 | |
|                                          const TreePatternNode *N) const;
 | |
| 
 | |
|   Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
 | |
|   Expected<InstructionMatcher &>
 | |
|   createAndImportSelDAGMatcher(RuleMatcher &Rule,
 | |
|                                InstructionMatcher &InsnMatcher,
 | |
|                                const TreePatternNode *Src, unsigned &TempOpIdx);
 | |
|   Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
 | |
|                                            unsigned &TempOpIdx) const;
 | |
|   Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
 | |
|                            const TreePatternNode *SrcChild,
 | |
|                            bool OperandIsAPointer, unsigned OpIdx,
 | |
|                            unsigned &TempOpIdx);
 | |
| 
 | |
|   Expected<BuildMIAction &>
 | |
|   createAndImportInstructionRenderer(RuleMatcher &M,
 | |
|                                      const TreePatternNode *Dst);
 | |
|   Expected<action_iterator> createAndImportSubInstructionRenderer(
 | |
|       action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
 | |
|       unsigned TempReg);
 | |
|   Expected<action_iterator>
 | |
|   createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
 | |
|                             const TreePatternNode *Dst);
 | |
|   void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
 | |
|   Expected<action_iterator>
 | |
|   importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
 | |
|                              BuildMIAction &DstMIBuilder,
 | |
|                              const llvm::TreePatternNode *Dst);
 | |
|   Expected<action_iterator>
 | |
|   importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
 | |
|                             BuildMIAction &DstMIBuilder,
 | |
|                             TreePatternNode *DstChild);
 | |
|   Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
 | |
|                                       DagInit *DefaultOps) const;
 | |
|   Error
 | |
|   importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
 | |
|                              const std::vector<Record *> &ImplicitDefs) const;
 | |
| 
 | |
|   void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
 | |
|                            StringRef TypeIdentifier, StringRef ArgType,
 | |
|                            StringRef ArgName, StringRef AdditionalDeclarations,
 | |
|                            std::function<bool(const Record *R)> Filter);
 | |
|   void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
 | |
|                            StringRef ArgType,
 | |
|                            std::function<bool(const Record *R)> Filter);
 | |
|   void emitMIPredicateFns(raw_ostream &OS);
 | |
| 
 | |
|   /// Analyze pattern \p P, returning a matcher for it if possible.
 | |
|   /// Otherwise, return an Error explaining why we don't support it.
 | |
|   Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
 | |
| 
 | |
|   void declareSubtargetFeature(Record *Predicate);
 | |
| 
 | |
|   MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
 | |
|                              bool WithCoverage);
 | |
| 
 | |
| public:
 | |
|   /// Takes a sequence of \p Rules and group them based on the predicates
 | |
|   /// they share. \p MatcherStorage is used as a memory container
 | |
|   /// for the group that are created as part of this process.
 | |
|   ///
 | |
|   /// What this optimization does looks like if GroupT = GroupMatcher:
 | |
|   /// Output without optimization:
 | |
|   /// \verbatim
 | |
|   /// # R1
 | |
|   ///  # predicate A
 | |
|   ///  # predicate B
 | |
|   ///  ...
 | |
|   /// # R2
 | |
|   ///  # predicate A // <-- effectively this is going to be checked twice.
 | |
|   ///                //     Once in R1 and once in R2.
 | |
|   ///  # predicate C
 | |
|   /// \endverbatim
 | |
|   /// Output with optimization:
 | |
|   /// \verbatim
 | |
|   /// # Group1_2
 | |
|   ///  # predicate A // <-- Check is now shared.
 | |
|   ///  # R1
 | |
|   ///   # predicate B
 | |
|   ///  # R2
 | |
|   ///   # predicate C
 | |
|   /// \endverbatim
 | |
|   template <class GroupT>
 | |
|   static std::vector<Matcher *> optimizeRules(
 | |
|       ArrayRef<Matcher *> Rules,
 | |
|       std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
 | |
| };
 | |
| 
 | |
| void GlobalISelEmitter::gatherOpcodeValues() {
 | |
|   InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::gatherTypeIDValues() {
 | |
|   LLTOperandMatcher::initTypeIDValuesMap();
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::gatherNodeEquivs() {
 | |
|   assert(NodeEquivs.empty());
 | |
|   for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
 | |
|     NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
 | |
| 
 | |
|   assert(ComplexPatternEquivs.empty());
 | |
|   for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
 | |
|     Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
 | |
|     if (!SelDAGEquiv)
 | |
|       continue;
 | |
|     ComplexPatternEquivs[SelDAGEquiv] = Equiv;
 | |
|  }
 | |
| 
 | |
|  assert(SDNodeXFormEquivs.empty());
 | |
|  for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
 | |
|    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
 | |
|    if (!SelDAGEquiv)
 | |
|      continue;
 | |
|    SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
 | |
|  }
 | |
| }
 | |
| 
 | |
| Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
 | |
|   return NodeEquivs.lookup(N);
 | |
| }
 | |
| 
 | |
| const CodeGenInstruction *
 | |
| GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
 | |
|   for (const auto &Predicate : N->getPredicateFns()) {
 | |
|     if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
 | |
|         Predicate.isSignExtLoad())
 | |
|       return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
 | |
|     if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
 | |
|         Predicate.isZeroExtLoad())
 | |
|       return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
 | |
|   }
 | |
|   return &Target.getInstruction(Equiv.getValueAsDef("I"));
 | |
| }
 | |
| 
 | |
| GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
 | |
|     : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
 | |
|       CGRegs(RK, Target.getHwModes()) {}
 | |
| 
 | |
| //===- Emitter ------------------------------------------------------------===//
 | |
| 
 | |
| Error
 | |
| GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
 | |
|                                         ArrayRef<Predicate> Predicates) {
 | |
|   for (const Predicate &P : Predicates) {
 | |
|     if (!P.Def)
 | |
|       continue;
 | |
|     declareSubtargetFeature(P.Def);
 | |
|     M.addRequiredFeature(P.Def);
 | |
|   }
 | |
| 
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
 | |
|     RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
 | |
|     const TreePatternNode *Src, unsigned &TempOpIdx) {
 | |
|   Record *SrcGIEquivOrNull = nullptr;
 | |
|   const CodeGenInstruction *SrcGIOrNull = nullptr;
 | |
| 
 | |
|   // Start with the defined operands (i.e., the results of the root operator).
 | |
|   if (Src->getExtTypes().size() > 1)
 | |
|     return failedImport("Src pattern has multiple results");
 | |
| 
 | |
|   if (Src->isLeaf()) {
 | |
|     Init *SrcInit = Src->getLeafValue();
 | |
|     if (isa<IntInit>(SrcInit)) {
 | |
|       InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
 | |
|           &Target.getInstruction(RK.getDef("G_CONSTANT")));
 | |
|     } else
 | |
|       return failedImport(
 | |
|           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
 | |
|   } else {
 | |
|     SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
 | |
|     if (!SrcGIEquivOrNull)
 | |
|       return failedImport("Pattern operator lacks an equivalent Instruction" +
 | |
|                           explainOperator(Src->getOperator()));
 | |
|     SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
 | |
| 
 | |
|     // The operators look good: match the opcode
 | |
|     InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
 | |
|   }
 | |
| 
 | |
|   unsigned OpIdx = 0;
 | |
|   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
 | |
|     // Results don't have a name unless they are the root node. The caller will
 | |
|     // set the name if appropriate.
 | |
|     OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
 | |
|     if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
 | |
|       return failedImport(toString(std::move(Error)) +
 | |
|                           " for result of Src pattern operator");
 | |
|   }
 | |
| 
 | |
|   for (const auto &Predicate : Src->getPredicateFns()) {
 | |
|     if (Predicate.isAlwaysTrue())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isImmediatePattern()) {
 | |
|       InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // G_LOAD is used for both non-extending and any-extending loads. 
 | |
|     if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
 | |
|       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
 | |
|           0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
 | |
|       continue;
 | |
|     }
 | |
|     if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
 | |
|       InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
 | |
|           0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // No check required. We already did it by swapping the opcode.
 | |
|     if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
 | |
|         Predicate.isSignExtLoad())
 | |
|       continue;
 | |
| 
 | |
|     // No check required. We already did it by swapping the opcode.
 | |
|     if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
 | |
|         Predicate.isZeroExtLoad())
 | |
|       continue;
 | |
| 
 | |
|     // No check required. G_STORE by itself is a non-extending store.
 | |
|     if (Predicate.isNonTruncStore())
 | |
|       continue;
 | |
| 
 | |
|     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
 | |
|       if (Predicate.getMemoryVT() != nullptr) {
 | |
|         Optional<LLTCodeGen> MemTyOrNone =
 | |
|             MVTToLLT(getValueType(Predicate.getMemoryVT()));
 | |
| 
 | |
|         if (!MemTyOrNone)
 | |
|           return failedImport("MemVT could not be converted to LLT");
 | |
| 
 | |
|         // MMO's work in bytes so we must take care of unusual types like i1
 | |
|         // don't round down.
 | |
|         unsigned MemSizeInBits =
 | |
|             llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
 | |
| 
 | |
|         InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
 | |
|             0, MemSizeInBits / 8);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Predicate.isLoad() || Predicate.isStore()) {
 | |
|       // No check required. A G_LOAD/G_STORE is an unindexed load.
 | |
|       if (Predicate.isUnindexed())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     if (Predicate.isAtomic()) {
 | |
|       if (Predicate.isAtomicOrderingMonotonic()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "Monotonic");
 | |
|         continue;
 | |
|       }
 | |
|       if (Predicate.isAtomicOrderingAcquire()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
 | |
|         continue;
 | |
|       }
 | |
|       if (Predicate.isAtomicOrderingRelease()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
 | |
|         continue;
 | |
|       }
 | |
|       if (Predicate.isAtomicOrderingAcquireRelease()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "AcquireRelease");
 | |
|         continue;
 | |
|       }
 | |
|       if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "SequentiallyConsistent");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Predicate.isAtomicOrderingAcquireOrStronger()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
 | |
|         continue;
 | |
|       }
 | |
|       if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Predicate.isAtomicOrderingReleaseOrStronger()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
 | |
|         continue;
 | |
|       }
 | |
|       if (Predicate.isAtomicOrderingWeakerThanRelease()) {
 | |
|         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
 | |
|             "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Predicate.hasGISelPredicateCode()) {
 | |
|       InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     return failedImport("Src pattern child has predicate (" +
 | |
|                         explainPredicates(Src) + ")");
 | |
|   }
 | |
|   if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
 | |
|     InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
 | |
| 
 | |
|   if (Src->isLeaf()) {
 | |
|     Init *SrcInit = Src->getLeafValue();
 | |
|     if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
 | |
|       OperandMatcher &OM =
 | |
|           InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
 | |
|       OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
 | |
|     } else
 | |
|       return failedImport(
 | |
|           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
 | |
|   } else {
 | |
|     assert(SrcGIOrNull &&
 | |
|            "Expected to have already found an equivalent Instruction");
 | |
|     if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
 | |
|         SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
 | |
|       // imm/fpimm still have operands but we don't need to do anything with it
 | |
|       // here since we don't support ImmLeaf predicates yet. However, we still
 | |
|       // need to note the hidden operand to get GIM_CheckNumOperands correct.
 | |
|       InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
 | |
|       return InsnMatcher;
 | |
|     }
 | |
| 
 | |
|     // Match the used operands (i.e. the children of the operator).
 | |
|     for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *SrcChild = Src->getChild(i);
 | |
| 
 | |
|       // SelectionDAG allows pointers to be represented with iN since it doesn't
 | |
|       // distinguish between pointers and integers but they are different types in GlobalISel.
 | |
|       // Coerce integers to pointers to address space 0 if the context indicates a pointer.
 | |
|       bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
 | |
| 
 | |
|       // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
 | |
|       // following the defs is an intrinsic ID.
 | |
|       if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
 | |
|            SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
 | |
|           i == 0) {
 | |
|         if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
 | |
|           OperandMatcher &OM =
 | |
|               InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
 | |
|           OM.addPredicate<IntrinsicIDOperandMatcher>(II);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         return failedImport("Expected IntInit containing instrinsic ID)");
 | |
|       }
 | |
| 
 | |
|       if (auto Error =
 | |
|               importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
 | |
|                                  OpIdx++, TempOpIdx))
 | |
|         return std::move(Error);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return InsnMatcher;
 | |
| }
 | |
| 
 | |
| Error GlobalISelEmitter::importComplexPatternOperandMatcher(
 | |
|     OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
 | |
|   const auto &ComplexPattern = ComplexPatternEquivs.find(R);
 | |
|   if (ComplexPattern == ComplexPatternEquivs.end())
 | |
|     return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
 | |
|                         ") not mapped to GlobalISel");
 | |
| 
 | |
|   OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
 | |
|   TempOpIdx++;
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
 | |
|                                             InstructionMatcher &InsnMatcher,
 | |
|                                             const TreePatternNode *SrcChild,
 | |
|                                             bool OperandIsAPointer,
 | |
|                                             unsigned OpIdx,
 | |
|                                             unsigned &TempOpIdx) {
 | |
|   OperandMatcher &OM =
 | |
|       InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
 | |
|   if (OM.isSameAsAnotherOperand())
 | |
|     return Error::success();
 | |
| 
 | |
|   ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
 | |
|   if (ChildTypes.size() != 1)
 | |
|     return failedImport("Src pattern child has multiple results");
 | |
| 
 | |
|   // Check MBB's before the type check since they are not a known type.
 | |
|   if (!SrcChild->isLeaf()) {
 | |
|     if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
 | |
|       auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
 | |
|       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
 | |
|         OM.addPredicate<MBBOperandMatcher>();
 | |
|         return Error::success();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto Error =
 | |
|           OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
 | |
|     return failedImport(toString(std::move(Error)) + " for Src operand (" +
 | |
|                         to_string(*SrcChild) + ")");
 | |
| 
 | |
|   // Check for nested instructions.
 | |
|   if (!SrcChild->isLeaf()) {
 | |
|     if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
 | |
|       // When a ComplexPattern is used as an operator, it should do the same
 | |
|       // thing as when used as a leaf. However, the children of the operator
 | |
|       // name the sub-operands that make up the complex operand and we must
 | |
|       // prepare to reference them in the renderer too.
 | |
|       unsigned RendererID = TempOpIdx;
 | |
|       if (auto Error = importComplexPatternOperandMatcher(
 | |
|               OM, SrcChild->getOperator(), TempOpIdx))
 | |
|         return Error;
 | |
| 
 | |
|       for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
 | |
|         auto *SubOperand = SrcChild->getChild(i);
 | |
|         if (!SubOperand->getName().empty())
 | |
|           Rule.defineComplexSubOperand(SubOperand->getName(),
 | |
|                                        SrcChild->getOperator(), RendererID, i);
 | |
|       }
 | |
| 
 | |
|       return Error::success();
 | |
|     }
 | |
| 
 | |
|     auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
 | |
|         InsnMatcher.getRuleMatcher(), SrcChild->getName());
 | |
|     if (!MaybeInsnOperand.hasValue()) {
 | |
|       // This isn't strictly true. If the user were to provide exactly the same
 | |
|       // matchers as the original operand then we could allow it. However, it's
 | |
|       // simpler to not permit the redundant specification.
 | |
|       return failedImport("Nested instruction cannot be the same as another operand");
 | |
|     }
 | |
| 
 | |
|     // Map the node to a gMIR instruction.
 | |
|     InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
 | |
|     auto InsnMatcherOrError = createAndImportSelDAGMatcher(
 | |
|         Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
 | |
|     if (auto Error = InsnMatcherOrError.takeError())
 | |
|       return Error;
 | |
| 
 | |
|     return Error::success();
 | |
|   }
 | |
| 
 | |
|   if (SrcChild->hasAnyPredicate())
 | |
|     return failedImport("Src pattern child has unsupported predicate");
 | |
| 
 | |
|   // Check for constant immediates.
 | |
|   if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
 | |
|     OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
 | |
|     return Error::success();
 | |
|   }
 | |
| 
 | |
|   // Check for def's like register classes or ComplexPattern's.
 | |
|   if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
 | |
|     auto *ChildRec = ChildDefInit->getDef();
 | |
| 
 | |
|     // Check for register classes.
 | |
|     if (ChildRec->isSubClassOf("RegisterClass") ||
 | |
|         ChildRec->isSubClassOf("RegisterOperand")) {
 | |
|       OM.addPredicate<RegisterBankOperandMatcher>(
 | |
|           Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
 | |
|       return Error::success();
 | |
|     }
 | |
| 
 | |
|     // Check for ValueType.
 | |
|     if (ChildRec->isSubClassOf("ValueType")) {
 | |
|       // We already added a type check as standard practice so this doesn't need
 | |
|       // to do anything.
 | |
|       return Error::success();
 | |
|     }
 | |
| 
 | |
|     // Check for ComplexPattern's.
 | |
|     if (ChildRec->isSubClassOf("ComplexPattern"))
 | |
|       return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
 | |
| 
 | |
|     if (ChildRec->isSubClassOf("ImmLeaf")) {
 | |
|       return failedImport(
 | |
|           "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
 | |
|     }
 | |
| 
 | |
|     return failedImport(
 | |
|         "Src pattern child def is an unsupported tablegen class");
 | |
|   }
 | |
| 
 | |
|   return failedImport("Src pattern child is an unsupported kind");
 | |
| }
 | |
| 
 | |
| Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
 | |
|     action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
 | |
|     TreePatternNode *DstChild) {
 | |
| 
 | |
|   const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
 | |
|   if (SubOperand.hasValue()) {
 | |
|     DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
 | |
|         *std::get<0>(*SubOperand), DstChild->getName(),
 | |
|         std::get<1>(*SubOperand), std::get<2>(*SubOperand));
 | |
|     return InsertPt;
 | |
|   }
 | |
| 
 | |
|   if (!DstChild->isLeaf()) {
 | |
| 
 | |
|     if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
 | |
|       auto Child = DstChild->getChild(0);
 | |
|       auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
 | |
|       if (I != SDNodeXFormEquivs.end()) {
 | |
|         DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
 | |
|         return InsertPt;
 | |
|       }
 | |
|       return failedImport("SDNodeXForm " + Child->getName() +
 | |
|                           " has no custom renderer");
 | |
|     }
 | |
| 
 | |
|     // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
 | |
|     // inline, but in MI it's just another operand.
 | |
|     if (DstChild->getOperator()->isSubClassOf("SDNode")) {
 | |
|       auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
 | |
|       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
 | |
|         DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
 | |
|         return InsertPt;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Similarly, imm is an operator in TreePatternNode's view but must be
 | |
|     // rendered as operands.
 | |
|     // FIXME: The target should be able to choose sign-extended when appropriate
 | |
|     //        (e.g. on Mips).
 | |
|     if (DstChild->getOperator()->getName() == "imm") {
 | |
|       DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
 | |
|       return InsertPt;
 | |
|     } else if (DstChild->getOperator()->getName() == "fpimm") {
 | |
|       DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
 | |
|           DstChild->getName());
 | |
|       return InsertPt;
 | |
|     }
 | |
| 
 | |
|     if (DstChild->getOperator()->isSubClassOf("Instruction")) {
 | |
|       ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
 | |
|       if (ChildTypes.size() != 1)
 | |
|         return failedImport("Dst pattern child has multiple results");
 | |
| 
 | |
|       Optional<LLTCodeGen> OpTyOrNone = None;
 | |
|       if (ChildTypes.front().isMachineValueType())
 | |
|         OpTyOrNone =
 | |
|             MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
 | |
|       if (!OpTyOrNone)
 | |
|         return failedImport("Dst operand has an unsupported type");
 | |
| 
 | |
|       unsigned TempRegID = Rule.allocateTempRegID();
 | |
|       InsertPt = Rule.insertAction<MakeTempRegisterAction>(
 | |
|           InsertPt, OpTyOrNone.getValue(), TempRegID);
 | |
|       DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
 | |
| 
 | |
|       auto InsertPtOrError = createAndImportSubInstructionRenderer(
 | |
|           ++InsertPt, Rule, DstChild, TempRegID);
 | |
|       if (auto Error = InsertPtOrError.takeError())
 | |
|         return std::move(Error);
 | |
|       return InsertPtOrError.get();
 | |
|     }
 | |
| 
 | |
|     return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
 | |
|   }
 | |
| 
 | |
|   // It could be a specific immediate in which case we should just check for
 | |
|   // that immediate.
 | |
|   if (const IntInit *ChildIntInit =
 | |
|           dyn_cast<IntInit>(DstChild->getLeafValue())) {
 | |
|     DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
 | |
|     return InsertPt;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we're looking for a bog-standard RegisterClass operand.
 | |
|   if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
 | |
|     auto *ChildRec = ChildDefInit->getDef();
 | |
| 
 | |
|     ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
 | |
|     if (ChildTypes.size() != 1)
 | |
|       return failedImport("Dst pattern child has multiple results");
 | |
| 
 | |
|     Optional<LLTCodeGen> OpTyOrNone = None;
 | |
|     if (ChildTypes.front().isMachineValueType())
 | |
|       OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
 | |
|     if (!OpTyOrNone)
 | |
|       return failedImport("Dst operand has an unsupported type");
 | |
| 
 | |
|     if (ChildRec->isSubClassOf("Register")) {
 | |
|       DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
 | |
|       return InsertPt;
 | |
|     }
 | |
| 
 | |
|     if (ChildRec->isSubClassOf("RegisterClass") ||
 | |
|         ChildRec->isSubClassOf("RegisterOperand") ||
 | |
|         ChildRec->isSubClassOf("ValueType")) {
 | |
|       if (ChildRec->isSubClassOf("RegisterOperand") &&
 | |
|           !ChildRec->isValueUnset("GIZeroRegister")) {
 | |
|         DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
 | |
|             DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
 | |
|         return InsertPt;
 | |
|       }
 | |
| 
 | |
|       DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
 | |
|       return InsertPt;
 | |
|     }
 | |
| 
 | |
|     if (ChildRec->isSubClassOf("ComplexPattern")) {
 | |
|       const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
 | |
|       if (ComplexPattern == ComplexPatternEquivs.end())
 | |
|         return failedImport(
 | |
|             "SelectionDAG ComplexPattern not mapped to GlobalISel");
 | |
| 
 | |
|       const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
 | |
|       DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
 | |
|           *ComplexPattern->second, DstChild->getName(),
 | |
|           OM.getAllocatedTemporariesBaseID());
 | |
|       return InsertPt;
 | |
|     }
 | |
| 
 | |
|     return failedImport(
 | |
|         "Dst pattern child def is an unsupported tablegen class");
 | |
|   }
 | |
| 
 | |
|   return failedImport("Dst pattern child is an unsupported kind");
 | |
| }
 | |
| 
 | |
| Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
 | |
|     RuleMatcher &M, const TreePatternNode *Dst) {
 | |
|   auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
 | |
|   if (auto Error = InsertPtOrError.takeError())
 | |
|     return std::move(Error);
 | |
| 
 | |
|   action_iterator InsertPt = InsertPtOrError.get();
 | |
|   BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
 | |
| 
 | |
|   importExplicitDefRenderers(DstMIBuilder);
 | |
| 
 | |
|   if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
 | |
|                        .takeError())
 | |
|     return std::move(Error);
 | |
| 
 | |
|   return DstMIBuilder;
 | |
| }
 | |
| 
 | |
| Expected<action_iterator>
 | |
| GlobalISelEmitter::createAndImportSubInstructionRenderer(
 | |
|     const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
 | |
|     unsigned TempRegID) {
 | |
|   auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
 | |
| 
 | |
|   // TODO: Assert there's exactly one result.
 | |
| 
 | |
|   if (auto Error = InsertPtOrError.takeError())
 | |
|     return std::move(Error);
 | |
| 
 | |
|   BuildMIAction &DstMIBuilder =
 | |
|       *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
 | |
| 
 | |
|   // Assign the result to TempReg.
 | |
|   DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
 | |
| 
 | |
|   InsertPtOrError =
 | |
|       importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
 | |
|   if (auto Error = InsertPtOrError.takeError())
 | |
|     return std::move(Error);
 | |
| 
 | |
|   M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
 | |
|                                                       DstMIBuilder.getInsnID());
 | |
|   return InsertPtOrError.get();
 | |
| }
 | |
| 
 | |
| Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
 | |
|     action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
 | |
|   Record *DstOp = Dst->getOperator();
 | |
|   if (!DstOp->isSubClassOf("Instruction")) {
 | |
|     if (DstOp->isSubClassOf("ValueType"))
 | |
|       return failedImport(
 | |
|           "Pattern operator isn't an instruction (it's a ValueType)");
 | |
|     return failedImport("Pattern operator isn't an instruction");
 | |
|   }
 | |
|   CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
 | |
| 
 | |
|   // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
 | |
|   // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
 | |
|   if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
 | |
|     DstI = &Target.getInstruction(RK.getDef("COPY"));
 | |
|   else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
 | |
|     DstI = &Target.getInstruction(RK.getDef("COPY"));
 | |
|   else if (DstI->TheDef->getName() == "REG_SEQUENCE")
 | |
|     return failedImport("Unable to emit REG_SEQUENCE");
 | |
| 
 | |
|   return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
 | |
|                                        DstI);
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::importExplicitDefRenderers(
 | |
|     BuildMIAction &DstMIBuilder) {
 | |
|   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
 | |
|   for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
 | |
|     const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
 | |
|     DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
 | |
|     action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
 | |
|     const llvm::TreePatternNode *Dst) {
 | |
|   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
 | |
|   CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
 | |
| 
 | |
|   // EXTRACT_SUBREG needs to use a subregister COPY.
 | |
|   if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
 | |
|     if (!Dst->getChild(0)->isLeaf())
 | |
|       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
 | |
| 
 | |
|     if (DefInit *SubRegInit =
 | |
|             dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
 | |
|       Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
 | |
|       if (!RCDef)
 | |
|         return failedImport("EXTRACT_SUBREG child #0 could not "
 | |
|                             "be coerced to a register class");
 | |
| 
 | |
|       CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
 | |
|       CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
 | |
| 
 | |
|       const auto &SrcRCDstRCPair =
 | |
|           RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
 | |
|       if (SrcRCDstRCPair.hasValue()) {
 | |
|         assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
 | |
|         if (SrcRCDstRCPair->first != RC)
 | |
|           return failedImport("EXTRACT_SUBREG requires an additional COPY");
 | |
|       }
 | |
| 
 | |
|       DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
 | |
|                                                    SubIdx);
 | |
|       return InsertPt;
 | |
|     }
 | |
| 
 | |
|     return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
 | |
|   }
 | |
| 
 | |
|   // Render the explicit uses.
 | |
|   unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
 | |
|   unsigned ExpectedDstINumUses = Dst->getNumChildren();
 | |
|   if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
 | |
|     DstINumUses--; // Ignore the class constraint.
 | |
|     ExpectedDstINumUses--;
 | |
|   }
 | |
| 
 | |
|   unsigned Child = 0;
 | |
|   unsigned NumDefaultOps = 0;
 | |
|   for (unsigned I = 0; I != DstINumUses; ++I) {
 | |
|     const CGIOperandList::OperandInfo &DstIOperand =
 | |
|         DstI->Operands[DstI->Operands.NumDefs + I];
 | |
| 
 | |
|     // If the operand has default values, introduce them now.
 | |
|     // FIXME: Until we have a decent test case that dictates we should do
 | |
|     // otherwise, we're going to assume that operands with default values cannot
 | |
|     // be specified in the patterns. Therefore, adding them will not cause us to
 | |
|     // end up with too many rendered operands.
 | |
|     if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
 | |
|       DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
 | |
|       if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
 | |
|         return std::move(Error);
 | |
|       ++NumDefaultOps;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
 | |
|                                                      Dst->getChild(Child));
 | |
|     if (auto Error = InsertPtOrError.takeError())
 | |
|       return std::move(Error);
 | |
|     InsertPt = InsertPtOrError.get();
 | |
|     ++Child;
 | |
|   }
 | |
| 
 | |
|   if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
 | |
|     return failedImport("Expected " + llvm::to_string(DstINumUses) +
 | |
|                         " used operands but found " +
 | |
|                         llvm::to_string(ExpectedDstINumUses) +
 | |
|                         " explicit ones and " + llvm::to_string(NumDefaultOps) +
 | |
|                         " default ones");
 | |
| 
 | |
|   return InsertPt;
 | |
| }
 | |
| 
 | |
| Error GlobalISelEmitter::importDefaultOperandRenderers(
 | |
|     BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
 | |
|   for (const auto *DefaultOp : DefaultOps->getArgs()) {
 | |
|     // Look through ValueType operators.
 | |
|     if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
 | |
|       if (const DefInit *DefaultDagOperator =
 | |
|               dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
 | |
|         if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
 | |
|           DefaultOp = DefaultDagOp->getArg(0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
 | |
|       DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
 | |
|       DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     return failedImport("Could not add default op");
 | |
|   }
 | |
| 
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Error GlobalISelEmitter::importImplicitDefRenderers(
 | |
|     BuildMIAction &DstMIBuilder,
 | |
|     const std::vector<Record *> &ImplicitDefs) const {
 | |
|   if (!ImplicitDefs.empty())
 | |
|     return failedImport("Pattern defines a physical register");
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
 | |
|   // Keep track of the matchers and actions to emit.
 | |
|   int Score = P.getPatternComplexity(CGP);
 | |
|   RuleMatcher M(P.getSrcRecord()->getLoc());
 | |
|   RuleMatcherScores[M.getRuleID()] = Score;
 | |
|   M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
 | |
|                                   "  =>  " +
 | |
|                                   llvm::to_string(*P.getDstPattern()));
 | |
| 
 | |
|   if (auto Error = importRulePredicates(M, P.getPredicates()))
 | |
|     return std::move(Error);
 | |
| 
 | |
|   // Next, analyze the pattern operators.
 | |
|   TreePatternNode *Src = P.getSrcPattern();
 | |
|   TreePatternNode *Dst = P.getDstPattern();
 | |
| 
 | |
|   // If the root of either pattern isn't a simple operator, ignore it.
 | |
|   if (auto Err = isTrivialOperatorNode(Dst))
 | |
|     return failedImport("Dst pattern root isn't a trivial operator (" +
 | |
|                         toString(std::move(Err)) + ")");
 | |
|   if (auto Err = isTrivialOperatorNode(Src))
 | |
|     return failedImport("Src pattern root isn't a trivial operator (" +
 | |
|                         toString(std::move(Err)) + ")");
 | |
| 
 | |
|   // The different predicates and matchers created during
 | |
|   // addInstructionMatcher use the RuleMatcher M to set up their
 | |
|   // instruction ID (InsnVarID) that are going to be used when
 | |
|   // M is going to be emitted.
 | |
|   // However, the code doing the emission still relies on the IDs
 | |
|   // returned during that process by the RuleMatcher when issuing
 | |
|   // the recordInsn opcodes.
 | |
|   // Because of that:
 | |
|   // 1. The order in which we created the predicates
 | |
|   //    and such must be the same as the order in which we emit them,
 | |
|   //    and
 | |
|   // 2. We need to reset the generation of the IDs in M somewhere between
 | |
|   //    addInstructionMatcher and emit
 | |
|   //
 | |
|   // FIXME: Long term, we don't want to have to rely on this implicit
 | |
|   // naming being the same. One possible solution would be to have
 | |
|   // explicit operator for operation capture and reference those.
 | |
|   // The plus side is that it would expose opportunities to share
 | |
|   // the capture accross rules. The downside is that it would
 | |
|   // introduce a dependency between predicates (captures must happen
 | |
|   // before their first use.)
 | |
|   InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
 | |
|   unsigned TempOpIdx = 0;
 | |
|   auto InsnMatcherOrError =
 | |
|       createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
 | |
|   if (auto Error = InsnMatcherOrError.takeError())
 | |
|     return std::move(Error);
 | |
|   InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
 | |
| 
 | |
|   if (Dst->isLeaf()) {
 | |
|     Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
 | |
| 
 | |
|     const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
 | |
|     if (RCDef) {
 | |
|       // We need to replace the def and all its uses with the specified
 | |
|       // operand. However, we must also insert COPY's wherever needed.
 | |
|       // For now, emit a copy and let the register allocator clean up.
 | |
|       auto &DstI = Target.getInstruction(RK.getDef("COPY"));
 | |
|       const auto &DstIOperand = DstI.Operands[0];
 | |
| 
 | |
|       OperandMatcher &OM0 = InsnMatcher.getOperand(0);
 | |
|       OM0.setSymbolicName(DstIOperand.Name);
 | |
|       M.defineOperand(OM0.getSymbolicName(), OM0);
 | |
|       OM0.addPredicate<RegisterBankOperandMatcher>(RC);
 | |
| 
 | |
|       auto &DstMIBuilder =
 | |
|           M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
 | |
|       DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
 | |
|       DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
 | |
|       M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
 | |
| 
 | |
|       // We're done with this pattern!  It's eligible for GISel emission; return
 | |
|       // it.
 | |
|       ++NumPatternImported;
 | |
|       return std::move(M);
 | |
|     }
 | |
| 
 | |
|     return failedImport("Dst pattern root isn't a known leaf");
 | |
|   }
 | |
| 
 | |
|   // Start with the defined operands (i.e., the results of the root operator).
 | |
|   Record *DstOp = Dst->getOperator();
 | |
|   if (!DstOp->isSubClassOf("Instruction"))
 | |
|     return failedImport("Pattern operator isn't an instruction");
 | |
| 
 | |
|   auto &DstI = Target.getInstruction(DstOp);
 | |
|   if (DstI.Operands.NumDefs != Src->getExtTypes().size())
 | |
|     return failedImport("Src pattern results and dst MI defs are different (" +
 | |
|                         to_string(Src->getExtTypes().size()) + " def(s) vs " +
 | |
|                         to_string(DstI.Operands.NumDefs) + " def(s))");
 | |
| 
 | |
|   // The root of the match also has constraints on the register bank so that it
 | |
|   // matches the result instruction.
 | |
|   unsigned OpIdx = 0;
 | |
|   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
 | |
|     (void)VTy;
 | |
| 
 | |
|     const auto &DstIOperand = DstI.Operands[OpIdx];
 | |
|     Record *DstIOpRec = DstIOperand.Rec;
 | |
|     if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
 | |
|       DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
 | |
| 
 | |
|       if (DstIOpRec == nullptr)
 | |
|         return failedImport(
 | |
|             "COPY_TO_REGCLASS operand #1 isn't a register class");
 | |
|     } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
 | |
|       if (!Dst->getChild(0)->isLeaf())
 | |
|         return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
 | |
| 
 | |
|       // We can assume that a subregister is in the same bank as it's super
 | |
|       // register.
 | |
|       DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
 | |
| 
 | |
|       if (DstIOpRec == nullptr)
 | |
|         return failedImport(
 | |
|             "EXTRACT_SUBREG operand #0 isn't a register class");
 | |
|     } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
 | |
|       DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
 | |
|     else if (!DstIOpRec->isSubClassOf("RegisterClass"))
 | |
|       return failedImport("Dst MI def isn't a register class" +
 | |
|                           to_string(*Dst));
 | |
| 
 | |
|     OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
 | |
|     OM.setSymbolicName(DstIOperand.Name);
 | |
|     M.defineOperand(OM.getSymbolicName(), OM);
 | |
|     OM.addPredicate<RegisterBankOperandMatcher>(
 | |
|         Target.getRegisterClass(DstIOpRec));
 | |
|     ++OpIdx;
 | |
|   }
 | |
| 
 | |
|   auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
 | |
|   if (auto Error = DstMIBuilderOrError.takeError())
 | |
|     return std::move(Error);
 | |
|   BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
 | |
| 
 | |
|   // Render the implicit defs.
 | |
|   // These are only added to the root of the result.
 | |
|   if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
 | |
|     return std::move(Error);
 | |
| 
 | |
|   DstMIBuilder.chooseInsnToMutate(M);
 | |
| 
 | |
|   // Constrain the registers to classes. This is normally derived from the
 | |
|   // emitted instruction but a few instructions require special handling.
 | |
|   if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
 | |
|     // COPY_TO_REGCLASS does not provide operand constraints itself but the
 | |
|     // result is constrained to the class given by the second child.
 | |
|     Record *DstIOpRec =
 | |
|         getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
 | |
| 
 | |
|     if (DstIOpRec == nullptr)
 | |
|       return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
 | |
| 
 | |
|     M.addAction<ConstrainOperandToRegClassAction>(
 | |
|         0, 0, Target.getRegisterClass(DstIOpRec));
 | |
| 
 | |
|     // We're done with this pattern!  It's eligible for GISel emission; return
 | |
|     // it.
 | |
|     ++NumPatternImported;
 | |
|     return std::move(M);
 | |
|   }
 | |
| 
 | |
|   if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
 | |
|     // EXTRACT_SUBREG selects into a subregister COPY but unlike most
 | |
|     // instructions, the result register class is controlled by the
 | |
|     // subregisters of the operand. As a result, we must constrain the result
 | |
|     // class rather than check that it's already the right one.
 | |
|     if (!Dst->getChild(0)->isLeaf())
 | |
|       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
 | |
| 
 | |
|     DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
 | |
|     if (!SubRegInit)
 | |
|       return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
 | |
| 
 | |
|     // Constrain the result to the same register bank as the operand.
 | |
|     Record *DstIOpRec =
 | |
|         getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
 | |
| 
 | |
|     if (DstIOpRec == nullptr)
 | |
|       return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
 | |
| 
 | |
|     CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
 | |
|     CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
 | |
| 
 | |
|     // It would be nice to leave this constraint implicit but we're required
 | |
|     // to pick a register class so constrain the result to a register class
 | |
|     // that can hold the correct MVT.
 | |
|     //
 | |
|     // FIXME: This may introduce an extra copy if the chosen class doesn't
 | |
|     //        actually contain the subregisters.
 | |
|     assert(Src->getExtTypes().size() == 1 &&
 | |
|              "Expected Src of EXTRACT_SUBREG to have one result type");
 | |
| 
 | |
|     const auto &SrcRCDstRCPair =
 | |
|         SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
 | |
|     assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
 | |
|     M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
 | |
|     M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
 | |
| 
 | |
|     // We're done with this pattern!  It's eligible for GISel emission; return
 | |
|     // it.
 | |
|     ++NumPatternImported;
 | |
|     return std::move(M);
 | |
|   }
 | |
| 
 | |
|   M.addAction<ConstrainOperandsToDefinitionAction>(0);
 | |
| 
 | |
|   // We're done with this pattern!  It's eligible for GISel emission; return it.
 | |
|   ++NumPatternImported;
 | |
|   return std::move(M);
 | |
| }
 | |
| 
 | |
| // Emit imm predicate table and an enum to reference them with.
 | |
| // The 'Predicate_' part of the name is redundant but eliminating it is more
 | |
| // trouble than it's worth.
 | |
| void GlobalISelEmitter::emitCxxPredicateFns(
 | |
|     raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
 | |
|     StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
 | |
|     std::function<bool(const Record *R)> Filter) {
 | |
|   std::vector<const Record *> MatchedRecords;
 | |
|   const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
 | |
|   std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
 | |
|                [&](Record *Record) {
 | |
|                  return !Record->getValueAsString(CodeFieldName).empty() &&
 | |
|                         Filter(Record);
 | |
|                });
 | |
| 
 | |
|   if (!MatchedRecords.empty()) {
 | |
|     OS << "// PatFrag predicates.\n"
 | |
|        << "enum {\n";
 | |
|     std::string EnumeratorSeparator =
 | |
|         (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
 | |
|     for (const auto *Record : MatchedRecords) {
 | |
|       OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
 | |
|          << EnumeratorSeparator;
 | |
|       EnumeratorSeparator = ",\n";
 | |
|     }
 | |
|     OS << "};\n";
 | |
|   }
 | |
| 
 | |
|   OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
 | |
|      << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
 | |
|      << ArgName << ") const {\n"
 | |
|      << AdditionalDeclarations;
 | |
|   if (!AdditionalDeclarations.empty())
 | |
|     OS << "\n";
 | |
|   if (!MatchedRecords.empty())
 | |
|     OS << "  switch (PredicateID) {\n";
 | |
|   for (const auto *Record : MatchedRecords) {
 | |
|     OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
 | |
|        << Record->getName() << ": {\n"
 | |
|        << "    " << Record->getValueAsString(CodeFieldName) << "\n"
 | |
|        << "    llvm_unreachable(\"" << CodeFieldName
 | |
|        << " should have returned\");\n"
 | |
|        << "    return false;\n"
 | |
|        << "  }\n";
 | |
|   }
 | |
|   if (!MatchedRecords.empty())
 | |
|     OS << "  }\n";
 | |
|   OS << "  llvm_unreachable(\"Unknown predicate\");\n"
 | |
|      << "  return false;\n"
 | |
|      << "}\n";
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::emitImmPredicateFns(
 | |
|     raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
 | |
|     std::function<bool(const Record *R)> Filter) {
 | |
|   return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
 | |
|                              "Imm", "", Filter);
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
 | |
|   return emitCxxPredicateFns(
 | |
|       OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
 | |
|       "  const MachineFunction &MF = *MI.getParent()->getParent();\n"
 | |
|       "  const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
 | |
|       "  (void)MRI;",
 | |
|       [](const Record *R) { return true; });
 | |
| }
 | |
| 
 | |
| template <class GroupT>
 | |
| std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
 | |
|     ArrayRef<Matcher *> Rules,
 | |
|     std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
 | |
| 
 | |
|   std::vector<Matcher *> OptRules;
 | |
|   std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
 | |
|   assert(CurrentGroup->empty() && "Newly created group isn't empty!");
 | |
|   unsigned NumGroups = 0;
 | |
| 
 | |
|   auto ProcessCurrentGroup = [&]() {
 | |
|     if (CurrentGroup->empty())
 | |
|       // An empty group is good to be reused:
 | |
|       return;
 | |
| 
 | |
|     // If the group isn't large enough to provide any benefit, move all the
 | |
|     // added rules out of it and make sure to re-create the group to properly
 | |
|     // re-initialize it:
 | |
|     if (CurrentGroup->size() < 2)
 | |
|       for (Matcher *M : CurrentGroup->matchers())
 | |
|         OptRules.push_back(M);
 | |
|     else {
 | |
|       CurrentGroup->finalize();
 | |
|       OptRules.push_back(CurrentGroup.get());
 | |
|       MatcherStorage.emplace_back(std::move(CurrentGroup));
 | |
|       ++NumGroups;
 | |
|     }
 | |
|     CurrentGroup = make_unique<GroupT>();
 | |
|   };
 | |
|   for (Matcher *Rule : Rules) {
 | |
|     // Greedily add as many matchers as possible to the current group:
 | |
|     if (CurrentGroup->addMatcher(*Rule))
 | |
|       continue;
 | |
| 
 | |
|     ProcessCurrentGroup();
 | |
|     assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
 | |
| 
 | |
|     // Try to add the pending matcher to a newly created empty group:
 | |
|     if (!CurrentGroup->addMatcher(*Rule))
 | |
|       // If we couldn't add the matcher to an empty group, that group type
 | |
|       // doesn't support that kind of matchers at all, so just skip it:
 | |
|       OptRules.push_back(Rule);
 | |
|   }
 | |
|   ProcessCurrentGroup();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
 | |
|   assert(CurrentGroup->empty() && "The last group wasn't properly processed");
 | |
|   return OptRules;
 | |
| }
 | |
| 
 | |
| MatchTable
 | |
| GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
 | |
|                                    bool Optimize, bool WithCoverage) {
 | |
|   std::vector<Matcher *> InputRules;
 | |
|   for (Matcher &Rule : Rules)
 | |
|     InputRules.push_back(&Rule);
 | |
| 
 | |
|   if (!Optimize)
 | |
|     return MatchTable::buildTable(InputRules, WithCoverage);
 | |
| 
 | |
|   unsigned CurrentOrdering = 0;
 | |
|   StringMap<unsigned> OpcodeOrder;
 | |
|   for (RuleMatcher &Rule : Rules) {
 | |
|     const StringRef Opcode = Rule.getOpcode();
 | |
|     assert(!Opcode.empty() && "Didn't expect an undefined opcode");
 | |
|     if (OpcodeOrder.count(Opcode) == 0)
 | |
|       OpcodeOrder[Opcode] = CurrentOrdering++;
 | |
|   }
 | |
| 
 | |
|   std::stable_sort(InputRules.begin(), InputRules.end(),
 | |
|                    [&OpcodeOrder](const Matcher *A, const Matcher *B) {
 | |
|                      auto *L = static_cast<const RuleMatcher *>(A);
 | |
|                      auto *R = static_cast<const RuleMatcher *>(B);
 | |
|                      return std::make_tuple(OpcodeOrder[L->getOpcode()],
 | |
|                                             L->getNumOperands()) <
 | |
|                             std::make_tuple(OpcodeOrder[R->getOpcode()],
 | |
|                                             R->getNumOperands());
 | |
|                    });
 | |
| 
 | |
|   for (Matcher *Rule : InputRules)
 | |
|     Rule->optimize();
 | |
| 
 | |
|   std::vector<std::unique_ptr<Matcher>> MatcherStorage;
 | |
|   std::vector<Matcher *> OptRules =
 | |
|       optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
 | |
| 
 | |
|   for (Matcher *Rule : OptRules)
 | |
|     Rule->optimize();
 | |
| 
 | |
|   OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
 | |
| 
 | |
|   return MatchTable::buildTable(OptRules, WithCoverage);
 | |
| }
 | |
| 
 | |
| void GroupMatcher::optimize() {
 | |
|   // Make sure we only sort by a specific predicate within a range of rules that
 | |
|   // all have that predicate checked against a specific value (not a wildcard):
 | |
|   auto F = Matchers.begin();
 | |
|   auto T = F;
 | |
|   auto E = Matchers.end();
 | |
|   while (T != E) {
 | |
|     while (T != E) {
 | |
|       auto *R = static_cast<RuleMatcher *>(*T);
 | |
|       if (!R->getFirstConditionAsRootType().get().isValid())
 | |
|         break;
 | |
|       ++T;
 | |
|     }
 | |
|     std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
 | |
|       auto *L = static_cast<RuleMatcher *>(A);
 | |
|       auto *R = static_cast<RuleMatcher *>(B);
 | |
|       return L->getFirstConditionAsRootType() <
 | |
|              R->getFirstConditionAsRootType();
 | |
|     });
 | |
|     if (T != E)
 | |
|       F = ++T;
 | |
|   }
 | |
|   GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
 | |
|       .swap(Matchers);
 | |
|   GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
 | |
|       .swap(Matchers);
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::run(raw_ostream &OS) {
 | |
|   if (!UseCoverageFile.empty()) {
 | |
|     RuleCoverage = CodeGenCoverage();
 | |
|     auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
 | |
|     if (!RuleCoverageBufOrErr) {
 | |
|       PrintWarning(SMLoc(), "Missing rule coverage data");
 | |
|       RuleCoverage = None;
 | |
|     } else {
 | |
|       if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
 | |
|         PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
 | |
|         RuleCoverage = None;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Track the run-time opcode values
 | |
|   gatherOpcodeValues();
 | |
|   // Track the run-time LLT ID values
 | |
|   gatherTypeIDValues();
 | |
| 
 | |
|   // Track the GINodeEquiv definitions.
 | |
|   gatherNodeEquivs();
 | |
| 
 | |
|   emitSourceFileHeader(("Global Instruction Selector for the " +
 | |
|                        Target.getName() + " target").str(), OS);
 | |
|   std::vector<RuleMatcher> Rules;
 | |
|   // Look through the SelectionDAG patterns we found, possibly emitting some.
 | |
|   for (const PatternToMatch &Pat : CGP.ptms()) {
 | |
|     ++NumPatternTotal;
 | |
| 
 | |
|     auto MatcherOrErr = runOnPattern(Pat);
 | |
| 
 | |
|     // The pattern analysis can fail, indicating an unsupported pattern.
 | |
|     // Report that if we've been asked to do so.
 | |
|     if (auto Err = MatcherOrErr.takeError()) {
 | |
|       if (WarnOnSkippedPatterns) {
 | |
|         PrintWarning(Pat.getSrcRecord()->getLoc(),
 | |
|                      "Skipped pattern: " + toString(std::move(Err)));
 | |
|       } else {
 | |
|         consumeError(std::move(Err));
 | |
|       }
 | |
|       ++NumPatternImportsSkipped;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (RuleCoverage) {
 | |
|       if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
 | |
|         ++NumPatternsTested;
 | |
|       else
 | |
|         PrintWarning(Pat.getSrcRecord()->getLoc(),
 | |
|                      "Pattern is not covered by a test");
 | |
|     }
 | |
|     Rules.push_back(std::move(MatcherOrErr.get()));
 | |
|   }
 | |
| 
 | |
|   // Comparison function to order records by name.
 | |
|   auto orderByName = [](const Record *A, const Record *B) {
 | |
|     return A->getName() < B->getName();
 | |
|   };
 | |
| 
 | |
|   std::vector<Record *> ComplexPredicates =
 | |
|       RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
 | |
|   llvm::sort(ComplexPredicates, orderByName);
 | |
| 
 | |
|   std::vector<Record *> CustomRendererFns =
 | |
|       RK.getAllDerivedDefinitions("GICustomOperandRenderer");
 | |
|   llvm::sort(CustomRendererFns, orderByName);
 | |
| 
 | |
|   unsigned MaxTemporaries = 0;
 | |
|   for (const auto &Rule : Rules)
 | |
|     MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
 | |
| 
 | |
|   OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
 | |
|      << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
 | |
|      << ";\n"
 | |
|      << "using PredicateBitset = "
 | |
|         "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
 | |
|      << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
 | |
| 
 | |
|   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
 | |
|      << "  mutable MatcherState State;\n"
 | |
|      << "  typedef "
 | |
|         "ComplexRendererFns("
 | |
|      << Target.getName()
 | |
|      << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
 | |
| 
 | |
|      << "  typedef void(" << Target.getName()
 | |
|      << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
 | |
|         "MachineInstr&) "
 | |
|         "const;\n"
 | |
|      << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
 | |
|         "CustomRendererFn> "
 | |
|         "ISelInfo;\n";
 | |
|   OS << "  static " << Target.getName()
 | |
|      << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
 | |
|      << "  static " << Target.getName()
 | |
|      << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
 | |
|      << "  bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
 | |
|         "override;\n"
 | |
|      << "  bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
 | |
|         "const override;\n"
 | |
|      << "  bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
 | |
|         "&Imm) const override;\n"
 | |
|      << "  const int64_t *getMatchTable() const override;\n"
 | |
|      << "  bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
 | |
|         "const override;\n"
 | |
|      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
 | |
| 
 | |
|   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
 | |
|      << ", State(" << MaxTemporaries << "),\n"
 | |
|      << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
 | |
|      << ", ComplexPredicateFns, CustomRenderers)\n"
 | |
|      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
 | |
| 
 | |
|   OS << "#ifdef GET_GLOBALISEL_IMPL\n";
 | |
|   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
 | |
|                                                            OS);
 | |
| 
 | |
|   // Separate subtarget features by how often they must be recomputed.
 | |
|   SubtargetFeatureInfoMap ModuleFeatures;
 | |
|   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
 | |
|                std::inserter(ModuleFeatures, ModuleFeatures.end()),
 | |
|                [](const SubtargetFeatureInfoMap::value_type &X) {
 | |
|                  return !X.second.mustRecomputePerFunction();
 | |
|                });
 | |
|   SubtargetFeatureInfoMap FunctionFeatures;
 | |
|   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
 | |
|                std::inserter(FunctionFeatures, FunctionFeatures.end()),
 | |
|                [](const SubtargetFeatureInfoMap::value_type &X) {
 | |
|                  return X.second.mustRecomputePerFunction();
 | |
|                });
 | |
| 
 | |
|   SubtargetFeatureInfo::emitComputeAvailableFeatures(
 | |
|       Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
 | |
|       ModuleFeatures, OS);
 | |
|   SubtargetFeatureInfo::emitComputeAvailableFeatures(
 | |
|       Target.getName(), "InstructionSelector",
 | |
|       "computeAvailableFunctionFeatures", FunctionFeatures, OS,
 | |
|       "const MachineFunction *MF");
 | |
| 
 | |
|   // Emit a table containing the LLT objects needed by the matcher and an enum
 | |
|   // for the matcher to reference them with.
 | |
|   std::vector<LLTCodeGen> TypeObjects;
 | |
|   for (const auto &Ty : KnownTypes)
 | |
|     TypeObjects.push_back(Ty);
 | |
|   llvm::sort(TypeObjects);
 | |
|   OS << "// LLT Objects.\n"
 | |
|      << "enum {\n";
 | |
|   for (const auto &TypeObject : TypeObjects) {
 | |
|     OS << "  ";
 | |
|     TypeObject.emitCxxEnumValue(OS);
 | |
|     OS << ",\n";
 | |
|   }
 | |
|   OS << "};\n";
 | |
|   OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
 | |
|      << "const static LLT TypeObjects[] = {\n";
 | |
|   for (const auto &TypeObject : TypeObjects) {
 | |
|     OS << "  ";
 | |
|     TypeObject.emitCxxConstructorCall(OS);
 | |
|     OS << ",\n";
 | |
|   }
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   // Emit a table containing the PredicateBitsets objects needed by the matcher
 | |
|   // and an enum for the matcher to reference them with.
 | |
|   std::vector<std::vector<Record *>> FeatureBitsets;
 | |
|   for (auto &Rule : Rules)
 | |
|     FeatureBitsets.push_back(Rule.getRequiredFeatures());
 | |
|   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
 | |
|                                  const std::vector<Record *> &B) {
 | |
|     if (A.size() < B.size())
 | |
|       return true;
 | |
|     if (A.size() > B.size())
 | |
|       return false;
 | |
|     for (const auto &Pair : zip(A, B)) {
 | |
|       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
 | |
|         return true;
 | |
|       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
 | |
|         return false;
 | |
|     }
 | |
|     return false;
 | |
|   });
 | |
|   FeatureBitsets.erase(
 | |
|       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
 | |
|       FeatureBitsets.end());
 | |
|   OS << "// Feature bitsets.\n"
 | |
|      << "enum {\n"
 | |
|      << "  GIFBS_Invalid,\n";
 | |
|   for (const auto &FeatureBitset : FeatureBitsets) {
 | |
|     if (FeatureBitset.empty())
 | |
|       continue;
 | |
|     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
 | |
|   }
 | |
|   OS << "};\n"
 | |
|      << "const static PredicateBitset FeatureBitsets[] {\n"
 | |
|      << "  {}, // GIFBS_Invalid\n";
 | |
|   for (const auto &FeatureBitset : FeatureBitsets) {
 | |
|     if (FeatureBitset.empty())
 | |
|       continue;
 | |
|     OS << "  {";
 | |
|     for (const auto &Feature : FeatureBitset) {
 | |
|       const auto &I = SubtargetFeatures.find(Feature);
 | |
|       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
 | |
|       OS << I->second.getEnumBitName() << ", ";
 | |
|     }
 | |
|     OS << "},\n";
 | |
|   }
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   // Emit complex predicate table and an enum to reference them with.
 | |
|   OS << "// ComplexPattern predicates.\n"
 | |
|      << "enum {\n"
 | |
|      << "  GICP_Invalid,\n";
 | |
|   for (const auto &Record : ComplexPredicates)
 | |
|     OS << "  GICP_" << Record->getName() << ",\n";
 | |
|   OS << "};\n"
 | |
|      << "// See constructor for table contents\n\n";
 | |
| 
 | |
|   emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
 | |
|     bool Unset;
 | |
|     return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
 | |
|            !R->getValueAsBit("IsAPInt");
 | |
|   });
 | |
|   emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
 | |
|     bool Unset;
 | |
|     return R->getValueAsBitOrUnset("IsAPFloat", Unset);
 | |
|   });
 | |
|   emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
 | |
|     return R->getValueAsBit("IsAPInt");
 | |
|   });
 | |
|   emitMIPredicateFns(OS);
 | |
|   OS << "\n";
 | |
| 
 | |
|   OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
 | |
|      << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
 | |
|      << "  nullptr, // GICP_Invalid\n";
 | |
|   for (const auto &Record : ComplexPredicates)
 | |
|     OS << "  &" << Target.getName()
 | |
|        << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
 | |
|        << ", // " << Record->getName() << "\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << "// Custom renderers.\n"
 | |
|      << "enum {\n"
 | |
|      << "  GICR_Invalid,\n";
 | |
|   for (const auto &Record : CustomRendererFns)
 | |
|     OS << "  GICR_" << Record->getValueAsString("RendererFn") << ", \n";
 | |
|   OS << "};\n";
 | |
| 
 | |
|   OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
 | |
|      << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
 | |
|      << "  nullptr, // GICP_Invalid\n";
 | |
|   for (const auto &Record : CustomRendererFns)
 | |
|     OS << "  &" << Target.getName()
 | |
|        << "InstructionSelector::" << Record->getValueAsString("RendererFn")
 | |
|        << ", // " << Record->getName() << "\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
 | |
|                                                    const RuleMatcher &B) {
 | |
|     int ScoreA = RuleMatcherScores[A.getRuleID()];
 | |
|     int ScoreB = RuleMatcherScores[B.getRuleID()];
 | |
|     if (ScoreA > ScoreB)
 | |
|       return true;
 | |
|     if (ScoreB > ScoreA)
 | |
|       return false;
 | |
|     if (A.isHigherPriorityThan(B)) {
 | |
|       assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
 | |
|                                            "and less important at "
 | |
|                                            "the same time");
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   });
 | |
| 
 | |
|   OS << "bool " << Target.getName()
 | |
|      << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
 | |
|         "&CoverageInfo) const {\n"
 | |
|      << "  MachineFunction &MF = *I.getParent()->getParent();\n"
 | |
|      << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
 | |
|      << "  // FIXME: This should be computed on a per-function basis rather "
 | |
|         "than per-insn.\n"
 | |
|      << "  AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
 | |
|         "&MF);\n"
 | |
|      << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
 | |
|      << "  NewMIVector OutMIs;\n"
 | |
|      << "  State.MIs.clear();\n"
 | |
|      << "  State.MIs.push_back(&I);\n\n"
 | |
|      << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo"
 | |
|      << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
 | |
|      << ", CoverageInfo)) {\n"
 | |
|      << "    return true;\n"
 | |
|      << "  }\n\n"
 | |
|      << "  return false;\n"
 | |
|      << "}\n\n";
 | |
| 
 | |
|   const MatchTable Table =
 | |
|       buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
 | |
|   OS << "const int64_t *" << Target.getName()
 | |
|      << "InstructionSelector::getMatchTable() const {\n";
 | |
|   Table.emitDeclaration(OS);
 | |
|   OS << "  return ";
 | |
|   Table.emitUse(OS);
 | |
|   OS << ";\n}\n";
 | |
|   OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
 | |
| 
 | |
|   OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
 | |
|      << "PredicateBitset AvailableModuleFeatures;\n"
 | |
|      << "mutable PredicateBitset AvailableFunctionFeatures;\n"
 | |
|      << "PredicateBitset getAvailableFeatures() const {\n"
 | |
|      << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
 | |
|      << "}\n"
 | |
|      << "PredicateBitset\n"
 | |
|      << "computeAvailableModuleFeatures(const " << Target.getName()
 | |
|      << "Subtarget *Subtarget) const;\n"
 | |
|      << "PredicateBitset\n"
 | |
|      << "computeAvailableFunctionFeatures(const " << Target.getName()
 | |
|      << "Subtarget *Subtarget,\n"
 | |
|      << "                                 const MachineFunction *MF) const;\n"
 | |
|      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
 | |
| 
 | |
|   OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
 | |
|      << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
 | |
|      << "AvailableFunctionFeatures()\n"
 | |
|      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
 | |
| }
 | |
| 
 | |
| void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
 | |
|   if (SubtargetFeatures.count(Predicate) == 0)
 | |
|     SubtargetFeatures.emplace(
 | |
|         Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
 | |
| }
 | |
| 
 | |
| void RuleMatcher::optimize() {
 | |
|   for (auto &Item : InsnVariableIDs) {
 | |
|     InstructionMatcher &InsnMatcher = *Item.first;
 | |
|     for (auto &OM : InsnMatcher.operands()) {
 | |
|       // Complex Patterns are usually expensive and they relatively rarely fail
 | |
|       // on their own: more often we end up throwing away all the work done by a
 | |
|       // matching part of a complex pattern because some other part of the
 | |
|       // enclosing pattern didn't match. All of this makes it beneficial to
 | |
|       // delay complex patterns until the very end of the rule matching,
 | |
|       // especially for targets having lots of complex patterns.
 | |
|       for (auto &OP : OM->predicates())
 | |
|         if (isa<ComplexPatternOperandMatcher>(OP))
 | |
|           EpilogueMatchers.emplace_back(std::move(OP));
 | |
|       OM->eraseNullPredicates();
 | |
|     }
 | |
|     InsnMatcher.optimize();
 | |
|   }
 | |
|   llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
 | |
|                                   const std::unique_ptr<PredicateMatcher> &R) {
 | |
|     return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
 | |
|            std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
 | |
|   });
 | |
| }
 | |
| 
 | |
| bool RuleMatcher::hasFirstCondition() const {
 | |
|   if (insnmatchers_empty())
 | |
|     return false;
 | |
|   InstructionMatcher &Matcher = insnmatchers_front();
 | |
|   if (!Matcher.predicates_empty())
 | |
|     return true;
 | |
|   for (auto &OM : Matcher.operands())
 | |
|     for (auto &OP : OM->predicates())
 | |
|       if (!isa<InstructionOperandMatcher>(OP))
 | |
|         return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const PredicateMatcher &RuleMatcher::getFirstCondition() const {
 | |
|   assert(!insnmatchers_empty() &&
 | |
|          "Trying to get a condition from an empty RuleMatcher");
 | |
| 
 | |
|   InstructionMatcher &Matcher = insnmatchers_front();
 | |
|   if (!Matcher.predicates_empty())
 | |
|     return **Matcher.predicates_begin();
 | |
|   // If there is no more predicate on the instruction itself, look at its
 | |
|   // operands.
 | |
|   for (auto &OM : Matcher.operands())
 | |
|     for (auto &OP : OM->predicates())
 | |
|       if (!isa<InstructionOperandMatcher>(OP))
 | |
|         return *OP;
 | |
| 
 | |
|   llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
 | |
|                    "no conditions");
 | |
| }
 | |
| 
 | |
| std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
 | |
|   assert(!insnmatchers_empty() &&
 | |
|          "Trying to pop a condition from an empty RuleMatcher");
 | |
| 
 | |
|   InstructionMatcher &Matcher = insnmatchers_front();
 | |
|   if (!Matcher.predicates_empty())
 | |
|     return Matcher.predicates_pop_front();
 | |
|   // If there is no more predicate on the instruction itself, look at its
 | |
|   // operands.
 | |
|   for (auto &OM : Matcher.operands())
 | |
|     for (auto &OP : OM->predicates())
 | |
|       if (!isa<InstructionOperandMatcher>(OP)) {
 | |
|         std::unique_ptr<PredicateMatcher> Result = std::move(OP);
 | |
|         OM->eraseNullPredicates();
 | |
|         return Result;
 | |
|       }
 | |
| 
 | |
|   llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
 | |
|                    "no conditions");
 | |
| }
 | |
| 
 | |
| bool GroupMatcher::candidateConditionMatches(
 | |
|     const PredicateMatcher &Predicate) const {
 | |
| 
 | |
|   if (empty()) {
 | |
|     // Sharing predicates for nested instructions is not supported yet as we
 | |
|     // currently don't hoist the GIM_RecordInsn's properly, therefore we can
 | |
|     // only work on the original root instruction (InsnVarID == 0):
 | |
|     if (Predicate.getInsnVarID() != 0)
 | |
|       return false;
 | |
|     // ... otherwise an empty group can handle any predicate with no specific
 | |
|     // requirements:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const Matcher &Representative = **Matchers.begin();
 | |
|   const auto &RepresentativeCondition = Representative.getFirstCondition();
 | |
|   // ... if not empty, the group can only accomodate matchers with the exact
 | |
|   // same first condition:
 | |
|   return Predicate.isIdentical(RepresentativeCondition);
 | |
| }
 | |
| 
 | |
| bool GroupMatcher::addMatcher(Matcher &Candidate) {
 | |
|   if (!Candidate.hasFirstCondition())
 | |
|     return false;
 | |
| 
 | |
|   const PredicateMatcher &Predicate = Candidate.getFirstCondition();
 | |
|   if (!candidateConditionMatches(Predicate))
 | |
|     return false;
 | |
| 
 | |
|   Matchers.push_back(&Candidate);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void GroupMatcher::finalize() {
 | |
|   assert(Conditions.empty() && "Already finalized?");
 | |
|   if (empty())
 | |
|     return;
 | |
| 
 | |
|   Matcher &FirstRule = **Matchers.begin();
 | |
|   for (;;) {
 | |
|     // All the checks are expected to succeed during the first iteration:
 | |
|     for (const auto &Rule : Matchers)
 | |
|       if (!Rule->hasFirstCondition())
 | |
|         return;
 | |
|     const auto &FirstCondition = FirstRule.getFirstCondition();
 | |
|     for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
 | |
|       if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
 | |
|         return;
 | |
| 
 | |
|     Conditions.push_back(FirstRule.popFirstCondition());
 | |
|     for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
 | |
|       Matchers[I]->popFirstCondition();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void GroupMatcher::emit(MatchTable &Table) {
 | |
|   unsigned LabelID = ~0U;
 | |
|   if (!Conditions.empty()) {
 | |
|     LabelID = Table.allocateLabelID();
 | |
|     Table << MatchTable::Opcode("GIM_Try", +1)
 | |
|           << MatchTable::Comment("On fail goto")
 | |
|           << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
 | |
|   }
 | |
|   for (auto &Condition : Conditions)
 | |
|     Condition->emitPredicateOpcodes(
 | |
|         Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
 | |
| 
 | |
|   for (const auto &M : Matchers)
 | |
|     M->emit(Table);
 | |
| 
 | |
|   // Exit the group
 | |
|   if (!Conditions.empty())
 | |
|     Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
 | |
|           << MatchTable::Label(LabelID);
 | |
| }
 | |
| 
 | |
| bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
 | |
|   return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
 | |
| }
 | |
| 
 | |
| bool SwitchMatcher::candidateConditionMatches(
 | |
|     const PredicateMatcher &Predicate) const {
 | |
| 
 | |
|   if (empty()) {
 | |
|     // Sharing predicates for nested instructions is not supported yet as we
 | |
|     // currently don't hoist the GIM_RecordInsn's properly, therefore we can
 | |
|     // only work on the original root instruction (InsnVarID == 0):
 | |
|     if (Predicate.getInsnVarID() != 0)
 | |
|       return false;
 | |
|     // ... while an attempt to add even a root matcher to an empty SwitchMatcher
 | |
|     // could fail as not all the types of conditions are supported:
 | |
|     if (!isSupportedPredicateType(Predicate))
 | |
|       return false;
 | |
|     // ... or the condition might not have a proper implementation of
 | |
|     // getValue() / isIdenticalDownToValue() yet:
 | |
|     if (!Predicate.hasValue())
 | |
|       return false;
 | |
|     // ... otherwise an empty Switch can accomodate the condition with no
 | |
|     // further requirements:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const Matcher &CaseRepresentative = **Matchers.begin();
 | |
|   const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
 | |
|   // Switch-cases must share the same kind of condition and path to the value it
 | |
|   // checks:
 | |
|   if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
 | |
|     return false;
 | |
| 
 | |
|   const auto Value = Predicate.getValue();
 | |
|   // ... but be unique with respect to the actual value they check:
 | |
|   return Values.count(Value) == 0;
 | |
| }
 | |
| 
 | |
| bool SwitchMatcher::addMatcher(Matcher &Candidate) {
 | |
|   if (!Candidate.hasFirstCondition())
 | |
|     return false;
 | |
| 
 | |
|   const PredicateMatcher &Predicate = Candidate.getFirstCondition();
 | |
|   if (!candidateConditionMatches(Predicate))
 | |
|     return false;
 | |
|   const auto Value = Predicate.getValue();
 | |
|   Values.insert(Value);
 | |
| 
 | |
|   Matchers.push_back(&Candidate);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SwitchMatcher::finalize() {
 | |
|   assert(Condition == nullptr && "Already finalized");
 | |
|   assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
 | |
|   if (empty())
 | |
|     return;
 | |
| 
 | |
|   std::stable_sort(Matchers.begin(), Matchers.end(),
 | |
|                    [](const Matcher *L, const Matcher *R) {
 | |
|                      return L->getFirstCondition().getValue() <
 | |
|                             R->getFirstCondition().getValue();
 | |
|                    });
 | |
|   Condition = Matchers[0]->popFirstCondition();
 | |
|   for (unsigned I = 1, E = Values.size(); I < E; ++I)
 | |
|     Matchers[I]->popFirstCondition();
 | |
| }
 | |
| 
 | |
| void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
 | |
|                                                  MatchTable &Table) {
 | |
|   assert(isSupportedPredicateType(P) && "Predicate type is not supported");
 | |
| 
 | |
|   if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
 | |
|     Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(Condition->getInsnVarID());
 | |
|     return;
 | |
|   }
 | |
|   if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
 | |
|     Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
 | |
|           << MatchTable::IntValue(Condition->getInsnVarID())
 | |
|           << MatchTable::Comment("Op")
 | |
|           << MatchTable::IntValue(Condition->getOpIdx());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
 | |
|                    "predicate type that is claimed to be supported");
 | |
| }
 | |
| 
 | |
| void SwitchMatcher::emit(MatchTable &Table) {
 | |
|   assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
 | |
|   if (empty())
 | |
|     return;
 | |
|   assert(Condition != nullptr &&
 | |
|          "Broken SwitchMatcher, hasn't been finalized?");
 | |
| 
 | |
|   std::vector<unsigned> LabelIDs(Values.size());
 | |
|   std::generate(LabelIDs.begin(), LabelIDs.end(),
 | |
|                 [&Table]() { return Table.allocateLabelID(); });
 | |
|   const unsigned Default = Table.allocateLabelID();
 | |
| 
 | |
|   const int64_t LowerBound = Values.begin()->getRawValue();
 | |
|   const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
 | |
| 
 | |
|   emitPredicateSpecificOpcodes(*Condition, Table);
 | |
| 
 | |
|   Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
 | |
|         << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
 | |
|         << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
 | |
| 
 | |
|   int64_t J = LowerBound;
 | |
|   auto VI = Values.begin();
 | |
|   for (unsigned I = 0, E = Values.size(); I < E; ++I) {
 | |
|     auto V = *VI++;
 | |
|     while (J++ < V.getRawValue())
 | |
|       Table << MatchTable::IntValue(0);
 | |
|     V.turnIntoComment();
 | |
|     Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
 | |
|   }
 | |
|   Table << MatchTable::LineBreak;
 | |
| 
 | |
|   for (unsigned I = 0, E = Values.size(); I < E; ++I) {
 | |
|     Table << MatchTable::Label(LabelIDs[I]);
 | |
|     Matchers[I]->emit(Table);
 | |
|     Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
 | |
|   }
 | |
|   Table << MatchTable::Label(Default);
 | |
| }
 | |
| 
 | |
| unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace llvm {
 | |
| void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
 | |
|   GlobalISelEmitter(RK).run(OS);
 | |
| }
 | |
| } // End llvm namespace
 |