657 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			657 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tablegen backend is responsible for emitting the memory fold tables of
 | |
| // the X86 backend instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenTarget.h"
 | |
| #include "X86RecognizableInstr.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/TableGenBackend.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
 | |
| // manual added entries.
 | |
| enum UnfoldStrategy {
 | |
|   UNFOLD,     // Allow unfolding
 | |
|   NO_UNFOLD,  // Prevent unfolding
 | |
|   NO_STRATEGY // Make decision according to operands' sizes
 | |
| };
 | |
| 
 | |
| // Represents an entry in the manual mapped instructions set.
 | |
| struct ManualMapEntry {
 | |
|   const char *RegInstStr;
 | |
|   const char *MemInstStr;
 | |
|   UnfoldStrategy Strategy;
 | |
| 
 | |
|   ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
 | |
|                  UnfoldStrategy Strategy = NO_STRATEGY)
 | |
|       : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
 | |
| };
 | |
| 
 | |
| class IsMatch;
 | |
| 
 | |
| // List of instructions requiring explicitly aligned memory.
 | |
| const char *ExplicitAlign[] = {"MOVDQA",  "MOVAPS",  "MOVAPD",  "MOVNTPS",
 | |
|                                "MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
 | |
| 
 | |
| // List of instructions NOT requiring explicit memory alignment.
 | |
| const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
 | |
|                                  "PCMPESTRM", "PCMPESTRI",
 | |
|                                  "PCMPISTRM", "PCMPISTRI" };
 | |
| 
 | |
| // For manually mapping instructions that do not match by their encoding.
 | |
| const ManualMapEntry ManualMapSet[] = {
 | |
|     { "ADD16ri_DB",       "ADD16mi",         NO_UNFOLD  },
 | |
|     { "ADD16ri8_DB",      "ADD16mi8",        NO_UNFOLD  },
 | |
|     { "ADD16rr_DB",       "ADD16mr",         NO_UNFOLD  },
 | |
|     { "ADD32ri_DB",       "ADD32mi",         NO_UNFOLD  },
 | |
|     { "ADD32ri8_DB",      "ADD32mi8",        NO_UNFOLD  },
 | |
|     { "ADD32rr_DB",       "ADD32mr",         NO_UNFOLD  },
 | |
|     { "ADD64ri32_DB",     "ADD64mi32",       NO_UNFOLD  },
 | |
|     { "ADD64ri8_DB",      "ADD64mi8",        NO_UNFOLD  },
 | |
|     { "ADD64rr_DB",       "ADD64mr",         NO_UNFOLD  },
 | |
|     { "ADD16rr_DB",       "ADD16rm",         NO_UNFOLD  },
 | |
|     { "ADD32rr_DB",       "ADD32rm",         NO_UNFOLD  },
 | |
|     { "ADD64rr_DB",       "ADD64rm",         NO_UNFOLD  },
 | |
|     { "PUSH16r",          "PUSH16rmm",       UNFOLD },
 | |
|     { "PUSH32r",          "PUSH32rmm",       UNFOLD },
 | |
|     { "PUSH64r",          "PUSH64rmm",       UNFOLD },
 | |
|     { "TAILJMPr",         "TAILJMPm",        UNFOLD },
 | |
|     { "TAILJMPr64",       "TAILJMPm64",      UNFOLD },
 | |
|     { "TAILJMPr64_REX",   "TAILJMPm64_REX",  UNFOLD },
 | |
| };
 | |
| 
 | |
| 
 | |
| static bool isExplicitAlign(const CodeGenInstruction *Inst) {
 | |
|   return any_of(ExplicitAlign, [Inst](const char *InstStr) {
 | |
|     return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
 | |
|   });
 | |
| }
 | |
| 
 | |
| static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
 | |
|   return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
 | |
|     return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
 | |
|   });
 | |
| }
 | |
| 
 | |
| class X86FoldTablesEmitter {
 | |
|   RecordKeeper &Records;
 | |
|   CodeGenTarget Target;
 | |
| 
 | |
|   // Represents an entry in the folding table
 | |
|   class X86FoldTableEntry {
 | |
|     const CodeGenInstruction *RegInst;
 | |
|     const CodeGenInstruction *MemInst;
 | |
| 
 | |
|   public:
 | |
|     bool CannotUnfold = false;
 | |
|     bool IsLoad = false;
 | |
|     bool IsStore = false;
 | |
|     bool IsAligned = false;
 | |
|     unsigned int Alignment = 0;
 | |
| 
 | |
|     X86FoldTableEntry(const CodeGenInstruction *RegInst,
 | |
|                       const CodeGenInstruction *MemInst)
 | |
|         : RegInst(RegInst), MemInst(MemInst) {}
 | |
| 
 | |
|     friend raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                    const X86FoldTableEntry &E) {
 | |
|       OS << "{ X86::" << E.RegInst->TheDef->getName()
 | |
|          << ", X86::" << E.MemInst->TheDef->getName() << ", ";
 | |
| 
 | |
|       if (E.IsLoad)
 | |
|         OS << "TB_FOLDED_LOAD | ";
 | |
|       if (E.IsStore)
 | |
|         OS << "TB_FOLDED_STORE | ";
 | |
|       if (E.CannotUnfold)
 | |
|         OS << "TB_NO_REVERSE | ";
 | |
|       if (E.IsAligned)
 | |
|         OS << "TB_ALIGN_" << E.Alignment << " | ";
 | |
| 
 | |
|       OS << "0 },\n";
 | |
| 
 | |
|       return OS;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   typedef std::vector<X86FoldTableEntry> FoldTable;
 | |
|   // std::vector for each folding table.
 | |
|   // Table2Addr - Holds instructions which their memory form performs load+store
 | |
|   // Table#i - Holds instructions which the their memory form perform a load OR
 | |
|   //           a store,  and their #i'th operand is folded.
 | |
|   FoldTable Table2Addr;
 | |
|   FoldTable Table0;
 | |
|   FoldTable Table1;
 | |
|   FoldTable Table2;
 | |
|   FoldTable Table3;
 | |
|   FoldTable Table4;
 | |
| 
 | |
| public:
 | |
|   X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
 | |
| 
 | |
|   // run - Generate the 6 X86 memory fold tables.
 | |
|   void run(raw_ostream &OS);
 | |
| 
 | |
| private:
 | |
|   // Decides to which table to add the entry with the given instructions.
 | |
|   // S sets the strategy of adding the TB_NO_REVERSE flag.
 | |
|   void updateTables(const CodeGenInstruction *RegInstr,
 | |
|                     const CodeGenInstruction *MemInstr,
 | |
|                     const UnfoldStrategy S = NO_STRATEGY);
 | |
| 
 | |
|   // Generates X86FoldTableEntry with the given instructions and fill it with
 | |
|   // the appropriate flags - then adds it to Table.
 | |
|   void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
 | |
|                          const CodeGenInstruction *MemInstr,
 | |
|                          const UnfoldStrategy S, const unsigned int FoldedInd);
 | |
| 
 | |
|   // Print the given table as a static const C++ array of type
 | |
|   // X86MemoryFoldTableEntry.
 | |
|   void printTable(const FoldTable &Table, StringRef TableName,
 | |
|                   raw_ostream &OS) {
 | |
|     OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
 | |
|        << "[] = {\n";
 | |
| 
 | |
|     for (const X86FoldTableEntry &E : Table)
 | |
|       OS << E;
 | |
| 
 | |
|     OS << "};\n";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Return true if one of the instruction's operands is a RST register class
 | |
| static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
 | |
|   return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
 | |
|     return OpIn.Rec->getName() == "RST";
 | |
|   });
 | |
| }
 | |
| 
 | |
| // Return true if one of the instruction's operands is a ptr_rc_tailcall
 | |
| static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
 | |
|   return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
 | |
|     return OpIn.Rec->getName() == "ptr_rc_tailcall";
 | |
|   });
 | |
| }
 | |
| 
 | |
| // Calculates the integer value representing the BitsInit object
 | |
| static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
 | |
|   assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!");
 | |
| 
 | |
|   uint64_t Value = 0;
 | |
|   for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
 | |
|     BitInit *Bit = cast<BitInit>(B->getBit(i));
 | |
|     Value |= uint64_t(Bit->getValue()) << i;
 | |
|   }
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| // Returns true if the two given BitsInits represent the same integer value
 | |
| static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
 | |
|   if (B1->getNumBits() != B2->getNumBits())
 | |
|     PrintFatalError("Comparing two BitsInits with different sizes!");
 | |
| 
 | |
|   for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
 | |
|     BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
 | |
|     BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
 | |
|     if (Bit1->getValue() != Bit2->getValue())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return the size of the register operand
 | |
| static inline unsigned int getRegOperandSize(const Record *RegRec) {
 | |
|   if (RegRec->isSubClassOf("RegisterOperand"))
 | |
|     RegRec = RegRec->getValueAsDef("RegClass");
 | |
|   if (RegRec->isSubClassOf("RegisterClass"))
 | |
|     return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");
 | |
| 
 | |
|   llvm_unreachable("Register operand's size not known!");
 | |
| }
 | |
| 
 | |
| // Return the size of the memory operand
 | |
| static inline unsigned int
 | |
| getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) {
 | |
|   if (MemRec->isSubClassOf("Operand")) {
 | |
|     // Intrinsic memory instructions use ssmem/sdmem.
 | |
|     if (IntrinsicSensitive &&
 | |
|         (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem"))
 | |
|       return 128;
 | |
| 
 | |
|     StringRef Name =
 | |
|         MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
 | |
|     if (Name == "Mem8")
 | |
|       return 8;
 | |
|     if (Name == "Mem16")
 | |
|       return 16;
 | |
|     if (Name == "Mem32")
 | |
|       return 32;
 | |
|     if (Name == "Mem64")
 | |
|       return 64;
 | |
|     if (Name == "Mem80")
 | |
|       return 80;
 | |
|     if (Name == "Mem128")
 | |
|       return 128;
 | |
|     if (Name == "Mem256")
 | |
|       return 256;
 | |
|     if (Name == "Mem512")
 | |
|       return 512;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Memory operand's size not known!");
 | |
| }
 | |
| 
 | |
| // Return true if the instruction defined as a register flavor.
 | |
| static inline bool hasRegisterFormat(const Record *Inst) {
 | |
|   const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
 | |
|   uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
 | |
| 
 | |
|   // Values from X86Local namespace defined in X86RecognizableInstr.cpp
 | |
|   return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
 | |
| }
 | |
| 
 | |
| // Return true if the instruction defined as a memory flavor.
 | |
| static inline bool hasMemoryFormat(const Record *Inst) {
 | |
|   const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
 | |
|   uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
 | |
| 
 | |
|   // Values from X86Local namespace defined in X86RecognizableInstr.cpp
 | |
|   return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
 | |
| }
 | |
| 
 | |
| static inline bool isNOREXRegClass(const Record *Op) {
 | |
|   return Op->getName().find("_NOREX") != StringRef::npos;
 | |
| }
 | |
| 
 | |
| static inline bool isRegisterOperand(const Record *Rec) {
 | |
|   return Rec->isSubClassOf("RegisterClass") ||
 | |
|          Rec->isSubClassOf("RegisterOperand") ||
 | |
|          Rec->isSubClassOf("PointerLikeRegClass");
 | |
| }
 | |
| 
 | |
| static inline bool isMemoryOperand(const Record *Rec) {
 | |
|   return Rec->isSubClassOf("Operand") &&
 | |
|          Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
 | |
| }
 | |
| 
 | |
| static inline bool isImmediateOperand(const Record *Rec) {
 | |
|   return Rec->isSubClassOf("Operand") &&
 | |
|          Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
 | |
| }
 | |
| 
 | |
| // Get the alternative instruction pointed by "FoldGenRegForm" field.
 | |
| static inline const CodeGenInstruction *
 | |
| getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
 | |
|               const CodeGenTarget &Target) {
 | |
| 
 | |
|   StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
 | |
|   Record *AltRegInstRec = Records.getDef(AltRegInstStr);
 | |
|   assert(AltRegInstRec &&
 | |
|          "Alternative register form instruction def not found");
 | |
|   CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
 | |
|   return &AltRegInst;
 | |
| }
 | |
| 
 | |
| // Function object - Operator() returns true if the given VEX instruction
 | |
| // matches the EVEX instruction of this object.
 | |
| class IsMatch {
 | |
|   const CodeGenInstruction *MemInst;
 | |
| 
 | |
| public:
 | |
|   IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
 | |
|       : MemInst(Inst) {}
 | |
| 
 | |
|   bool operator()(const CodeGenInstruction *RegInst) {
 | |
|     Record *MemRec = MemInst->TheDef;
 | |
|     Record *RegRec = RegInst->TheDef;
 | |
| 
 | |
|     // Return false if one (at least) of the encoding fields of both
 | |
|     // instructions do not match.
 | |
|     if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
 | |
|         !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
 | |
|                         MemRec->getValueAsBitsInit("Opcode")) ||
 | |
|         // VEX/EVEX fields
 | |
|         RegRec->getValueAsDef("OpPrefix") !=
 | |
|             MemRec->getValueAsDef("OpPrefix") ||
 | |
|         RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
 | |
|         RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
 | |
|         RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") ||
 | |
|         RegRec->getValueAsBit("hasVEX_4V") !=
 | |
|             MemRec->getValueAsBit("hasVEX_4V") ||
 | |
|         RegRec->getValueAsBit("hasEVEX_K") !=
 | |
|             MemRec->getValueAsBit("hasEVEX_K") ||
 | |
|         RegRec->getValueAsBit("hasEVEX_Z") !=
 | |
|             MemRec->getValueAsBit("hasEVEX_Z") ||
 | |
|         // EVEX_B means different things for memory and register forms.
 | |
|         RegRec->getValueAsBit("hasEVEX_B") != 0 ||
 | |
|         MemRec->getValueAsBit("hasEVEX_B") != 0 ||
 | |
|         RegRec->getValueAsBit("hasEVEX_RC") !=
 | |
|             MemRec->getValueAsBit("hasEVEX_RC") ||
 | |
|         RegRec->getValueAsBit("hasREX_WPrefix") !=
 | |
|             MemRec->getValueAsBit("hasREX_WPrefix") ||
 | |
|         RegRec->getValueAsBit("hasLockPrefix") !=
 | |
|             MemRec->getValueAsBit("hasLockPrefix") ||
 | |
|         RegRec->getValueAsBit("hasNoTrackPrefix") !=
 | |
|             MemRec->getValueAsBit("hasNoTrackPrefix") ||
 | |
|         !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"),
 | |
|                         MemRec->getValueAsBitsInit("EVEX_LL")) ||
 | |
|         !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"),
 | |
|                         MemRec->getValueAsBitsInit("VEX_WPrefix")) ||
 | |
|         // Instruction's format - The register form's "Form" field should be
 | |
|         // the opposite of the memory form's "Form" field.
 | |
|         !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
 | |
|                           MemRec->getValueAsBitsInit("FormBits")) ||
 | |
|         RegRec->getValueAsBit("isAsmParserOnly") !=
 | |
|             MemRec->getValueAsBit("isAsmParserOnly"))
 | |
|       return false;
 | |
| 
 | |
|     // Make sure the sizes of the operands of both instructions suit each other.
 | |
|     // This is needed for instructions with intrinsic version (_Int).
 | |
|     // Where the only difference is the size of the operands.
 | |
|     // For example: VUCOMISDZrm and Int_VUCOMISDrm
 | |
|     // Also for instructions that their EVEX version was upgraded to work with
 | |
|     // k-registers. For example VPCMPEQBrm (xmm output register) and
 | |
|     // VPCMPEQBZ128rm (k register output register).
 | |
|     bool ArgFolded = false;
 | |
|     unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
 | |
|     unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
 | |
|     unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
 | |
|     unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
 | |
| 
 | |
|     // Instructions with one output in their memory form use the memory folded
 | |
|     // operand as source and destination (Read-Modify-Write).
 | |
|     unsigned RegStartIdx =
 | |
|         (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
 | |
| 
 | |
|     for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
 | |
|       Record *MemOpRec = MemInst->Operands[i].Rec;
 | |
|       Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
 | |
| 
 | |
|       if (MemOpRec == RegOpRec)
 | |
|         continue;
 | |
| 
 | |
|       if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
 | |
|         if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
 | |
|             isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
 | |
|           return false;
 | |
|       } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
 | |
|         if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
 | |
|           return false;
 | |
|       } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
 | |
|         if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
 | |
|           return false;
 | |
|       } else {
 | |
|         // Only one operand can be folded.
 | |
|         if (ArgFolded)
 | |
|           return false;
 | |
| 
 | |
|         assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
 | |
|         ArgFolded = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Return true of the 2 given forms are the opposite of each other.
 | |
|   bool areOppositeForms(const BitsInit *RegFormBits,
 | |
|                         const BitsInit *MemFormBits) {
 | |
|     uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
 | |
|     uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);
 | |
| 
 | |
|     if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
 | |
|         (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
 | |
|         (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
 | |
|         (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
 | |
|         (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
 | |
|         (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
 | |
|         (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
 | |
|         (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
 | |
|         (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
 | |
|         (MemFormNum == X86Local::MRMDestMem &&
 | |
|          RegFormNum == X86Local::MRMDestReg) ||
 | |
|         (MemFormNum == X86Local::MRMSrcMem &&
 | |
|          RegFormNum == X86Local::MRMSrcReg) ||
 | |
|         (MemFormNum == X86Local::MRMSrcMem4VOp3 &&
 | |
|          RegFormNum == X86Local::MRMSrcReg4VOp3) ||
 | |
|         (MemFormNum == X86Local::MRMSrcMemOp4 &&
 | |
|          RegFormNum == X86Local::MRMSrcRegOp4))
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
 | |
|                                              const CodeGenInstruction *RegInstr,
 | |
|                                              const CodeGenInstruction *MemInstr,
 | |
|                                              const UnfoldStrategy S,
 | |
|                                              const unsigned int FoldedInd) {
 | |
| 
 | |
|   X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
 | |
|   Record *RegRec = RegInstr->TheDef;
 | |
|   Record *MemRec = MemInstr->TheDef;
 | |
| 
 | |
|   // Only table0 entries should explicitly specify a load or store flag.
 | |
|   if (&Table == &Table0) {
 | |
|     unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
 | |
|     unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
 | |
|     // If the instruction writes to the folded operand, it will appear as an
 | |
|     // output in the register form instruction and as an input in the memory
 | |
|     // form instruction.
 | |
|     // If the instruction reads from the folded operand, it well appear as in
 | |
|     // input in both forms.
 | |
|     if (MemInOpsNum == RegInOpsNum)
 | |
|       Result.IsLoad = true;
 | |
|     else
 | |
|       Result.IsStore = true;
 | |
|   }
 | |
| 
 | |
|   Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
 | |
|   Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
 | |
| 
 | |
|   // Unfolding code generates a load/store instruction according to the size of
 | |
|   // the register in the register form instruction.
 | |
|   // If the register's size is greater than the memory's operand size, do not
 | |
|   // allow unfolding.
 | |
|   if (S == UNFOLD)
 | |
|     Result.CannotUnfold = false;
 | |
|   else if (S == NO_UNFOLD)
 | |
|     Result.CannotUnfold = true;
 | |
|   else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
 | |
|     Result.CannotUnfold = true; // S == NO_STRATEGY
 | |
| 
 | |
|   uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
 | |
|   if (isExplicitAlign(RegInstr)) {
 | |
|     // The instruction require explicitly aligned memory.
 | |
|     BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
 | |
|     uint64_t Value = getValueFromBitsInit(VectSize);
 | |
|     Result.IsAligned = true;
 | |
|     Result.Alignment = Value;
 | |
|   } else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
 | |
|              Enc != X86Local::EVEX) {
 | |
|     // Instructions with VEX encoding do not require alignment.
 | |
|     if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
 | |
|       // SSE packed vector instructions require a 16 byte alignment.
 | |
|       Result.IsAligned = true;
 | |
|       Result.Alignment = 16;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Table.push_back(Result);
 | |
| }
 | |
| 
 | |
| void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
 | |
|                                         const CodeGenInstruction *MemInstr,
 | |
|                                         const UnfoldStrategy S) {
 | |
| 
 | |
|   Record *RegRec = RegInstr->TheDef;
 | |
|   Record *MemRec = MemInstr->TheDef;
 | |
|   unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
 | |
|   unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
 | |
|   unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
 | |
|   unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
 | |
| 
 | |
|   // Instructions which Read-Modify-Write should be added to Table2Addr.
 | |
|   if (MemOutSize != RegOutSize && MemInSize == RegInSize) {
 | |
|     addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
 | |
|     // Load-Folding cases.
 | |
|     // If the i'th register form operand is a register and the i'th memory form
 | |
|     // operand is a memory operand, add instructions to Table#i.
 | |
|     for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
 | |
|       Record *RegOpRec = RegInstr->Operands[i].Rec;
 | |
|       Record *MemOpRec = MemInstr->Operands[i].Rec;
 | |
|       if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
 | |
|         switch (i) {
 | |
|         case 0:
 | |
|           addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
 | |
|           return;
 | |
|         case 1:
 | |
|           addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
 | |
|           return;
 | |
|         case 2:
 | |
|           addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
 | |
|           return;
 | |
|         case 3:
 | |
|           addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
 | |
|           return;
 | |
|         case 4:
 | |
|           addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
 | |
|     // Store-Folding cases.
 | |
|     // If the memory form instruction performs a store, the *output*
 | |
|     // register of the register form instructions disappear and instead a
 | |
|     // memory *input* operand appears in the memory form instruction.
 | |
|     // For example:
 | |
|     //   MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
 | |
|     //   MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
 | |
|     Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
 | |
|     Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
 | |
|     if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
 | |
|         getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
 | |
|       addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void X86FoldTablesEmitter::run(raw_ostream &OS) {
 | |
|   emitSourceFileHeader("X86 fold tables", OS);
 | |
| 
 | |
|   // Holds all memory instructions
 | |
|   std::vector<const CodeGenInstruction *> MemInsts;
 | |
|   // Holds all register instructions - divided according to opcode.
 | |
|   std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
 | |
| 
 | |
|   ArrayRef<const CodeGenInstruction *> NumberedInstructions =
 | |
|       Target.getInstructionsByEnumValue();
 | |
| 
 | |
|   for (const CodeGenInstruction *Inst : NumberedInstructions) {
 | |
|     if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
 | |
|       continue;
 | |
| 
 | |
|     const Record *Rec = Inst->TheDef;
 | |
| 
 | |
|     // - Do not proceed if the instruction is marked as notMemoryFoldable.
 | |
|     // - Instructions including RST register class operands are not relevant
 | |
|     //   for memory folding (for further details check the explanation in
 | |
|     //   lib/Target/X86/X86InstrFPStack.td file).
 | |
|     // - Some instructions (listed in the manual map above) use the register
 | |
|     //   class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
 | |
|     //   safe mapping of these instruction we manually map them and exclude
 | |
|     //   them from the automation.
 | |
|     if (Rec->getValueAsBit("isMemoryFoldable") == false ||
 | |
|         hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
 | |
|       continue;
 | |
| 
 | |
|     // Add all the memory form instructions to MemInsts, and all the register
 | |
|     // form instructions to RegInsts[Opc], where Opc in the opcode of each
 | |
|     // instructions. this helps reducing the runtime of the backend.
 | |
|     if (hasMemoryFormat(Rec))
 | |
|       MemInsts.push_back(Inst);
 | |
|     else if (hasRegisterFormat(Rec)) {
 | |
|       uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
 | |
|       RegInsts[Opc].push_back(Inst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For each memory form instruction, try to find its register form
 | |
|   // instruction.
 | |
|   for (const CodeGenInstruction *MemInst : MemInsts) {
 | |
|     uint8_t Opc =
 | |
|         getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
 | |
| 
 | |
|     if (RegInsts.count(Opc) == 0)
 | |
|       continue;
 | |
| 
 | |
|     // Two forms (memory & register) of the same instruction must have the same
 | |
|     // opcode. try matching only with register form instructions with the same
 | |
|     // opcode.
 | |
|     std::vector<const CodeGenInstruction *> &OpcRegInsts =
 | |
|         RegInsts.find(Opc)->second;
 | |
| 
 | |
|     auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
 | |
|     if (Match != OpcRegInsts.end()) {
 | |
|       const CodeGenInstruction *RegInst = *Match;
 | |
|       // If the matched instruction has it's "FoldGenRegForm" set, map the
 | |
|       // memory form instruction to the register form instruction pointed by
 | |
|       // this field
 | |
|       if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
 | |
|         updateTables(RegInst, MemInst);
 | |
|       } else {
 | |
|         const CodeGenInstruction *AltRegInst =
 | |
|             getAltRegInst(RegInst, Records, Target);
 | |
|         updateTables(AltRegInst, MemInst);
 | |
|       }
 | |
|       OpcRegInsts.erase(Match);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the manually mapped instructions listed above.
 | |
|   for (const ManualMapEntry &Entry : ManualMapSet) {
 | |
|     Record *RegInstIter = Records.getDef(Entry.RegInstStr);
 | |
|     Record *MemInstIter = Records.getDef(Entry.MemInstStr);
 | |
| 
 | |
|     updateTables(&(Target.getInstruction(RegInstIter)),
 | |
|                  &(Target.getInstruction(MemInstIter)), Entry.Strategy);
 | |
|   }
 | |
| 
 | |
|   // Print all tables to raw_ostream OS.
 | |
|   printTable(Table2Addr, "Table2Addr", OS);
 | |
|   printTable(Table0, "Table0", OS);
 | |
|   printTable(Table1, "Table1", OS);
 | |
|   printTable(Table2, "Table2", OS);
 | |
|   printTable(Table3, "Table3", OS);
 | |
|   printTable(Table4, "Table4", OS);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) {
 | |
|   X86FoldTablesEmitter(RK).run(OS);
 | |
| }
 | |
| } // namespace llvm
 |