llvm-project/lldb/source/Plugins/ExpressionParser/Clang/ClangExpressionParser.cpp

970 lines
37 KiB
C++

//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Edit/Commit.h"
#include "clang/Edit/EditsReceiver.h"
#include "clang/Edit/EditedSource.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseAST.h"
#include "clang/Rewrite/Frontend/FrontendActions.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Sema/SemaConsumer.h"
#include "clang/StaticAnalyzer/Frontend/FrontendActions.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetSelect.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wglobal-constructors"
#include "llvm/ExecutionEngine/MCJIT.h"
#pragma clang diagnostic pop
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Signals.h"
// Project includes
#include "ClangExpressionParser.h"
#include "ClangDiagnostic.h"
#include "ClangASTSource.h"
#include "ClangExpressionHelper.h"
#include "ClangExpressionDeclMap.h"
#include "ClangModulesDeclVendor.h"
#include "ClangPersistentVariables.h"
#include "IRForTarget.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/StringList.h"
#include "lldb/Expression/IRDynamicChecks.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Host/File.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Utility/LLDBAssert.h"
using namespace clang;
using namespace llvm;
using namespace lldb_private;
//===----------------------------------------------------------------------===//
// Utility Methods for Clang
//===----------------------------------------------------------------------===//
class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks
{
ClangModulesDeclVendor &m_decl_vendor;
ClangPersistentVariables &m_persistent_vars;
StreamString m_error_stream;
bool m_has_errors = false;
public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
ClangPersistentVariables &persistent_vars) :
m_decl_vendor(decl_vendor),
m_persistent_vars(persistent_vars)
{
}
void
moduleImport(SourceLocation import_location,
clang::ModuleIdPath path,
const clang::Module * /*null*/) override
{
std::vector<ConstString> string_path;
for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
{
string_path.push_back(ConstString(component.first->getName()));
}
StreamString error_stream;
ClangModulesDeclVendor::ModuleVector exported_modules;
if (!m_decl_vendor.AddModule(string_path, &exported_modules, m_error_stream))
{
m_has_errors = true;
}
for (ClangModulesDeclVendor::ModuleID module : exported_modules)
{
m_persistent_vars.AddHandLoadedClangModule(module);
}
}
bool hasErrors()
{
return m_has_errors;
}
const std::string &getErrorString()
{
return m_error_stream.GetString();
}
};
class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer
{
public:
ClangDiagnosticManagerAdapter() : m_passthrough(new clang::TextDiagnosticBuffer) {}
ClangDiagnosticManagerAdapter(const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
: m_passthrough(passthrough)
{
}
void
ResetManager(DiagnosticManager *manager = nullptr)
{
m_manager = manager;
}
void
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const clang::Diagnostic &Info)
{
if (m_manager)
{
llvm::SmallVector<char, 32> diag_str;
Info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
const char *data = diag_str.data();
DiagnosticSeverity severity;
bool make_new_diagnostic = true;
switch (DiagLevel)
{
case DiagnosticsEngine::Level::Fatal:
case DiagnosticsEngine::Level::Error:
severity = eDiagnosticSeverityError;
break;
case DiagnosticsEngine::Level::Warning:
severity = eDiagnosticSeverityWarning;
break;
case DiagnosticsEngine::Level::Remark:
case DiagnosticsEngine::Level::Ignored:
severity = eDiagnosticSeverityRemark;
break;
case DiagnosticsEngine::Level::Note:
m_manager->AppendMessageToDiagnostic(data);
make_new_diagnostic = false;
}
if (make_new_diagnostic)
{
ClangDiagnostic *new_diagnostic = new ClangDiagnostic(data, severity, Info.getID());
m_manager->AddDiagnostic(new_diagnostic);
// Don't store away warning fixits, since the compiler doesn't have enough
// context in an expression for the warning to be useful.
// FIXME: Should we try to filter out FixIts that apply to our generated
// code, and not the user's expression?
if (severity == eDiagnosticSeverityError)
{
size_t num_fixit_hints = Info.getNumFixItHints();
for (size_t i = 0; i < num_fixit_hints; i++)
{
const clang::FixItHint &fixit = Info.getFixItHint(i);
if (!fixit.isNull())
new_diagnostic->AddFixitHint(fixit);
}
}
}
}
m_passthrough->HandleDiagnostic(DiagLevel, Info);
}
void
FlushDiagnostics(DiagnosticsEngine &Diags)
{
m_passthrough->FlushDiagnostics(Diags);
}
DiagnosticConsumer *
clone(DiagnosticsEngine &Diags) const
{
return new ClangDiagnosticManagerAdapter(m_passthrough);
}
clang::TextDiagnosticBuffer *
GetPassthrough()
{
return m_passthrough.get();
}
private:
DiagnosticManager *m_manager = nullptr;
std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
};
//===----------------------------------------------------------------------===//
// Implementation of ClangExpressionParser
//===----------------------------------------------------------------------===//
ClangExpressionParser::ClangExpressionParser (ExecutionContextScope *exe_scope,
Expression &expr,
bool generate_debug_info) :
ExpressionParser (exe_scope, expr, generate_debug_info),
m_compiler (),
m_code_generator (),
m_pp_callbacks(nullptr)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
// We can't compile expressions without a target. So if the exe_scope is null or doesn't have a target,
// then we just need to get out of here. I'll lldb_assert and not make any of the compiler objects since
// I can't return errors directly from the constructor. Further calls will check if the compiler was made and
// bag out if it wasn't.
if (!exe_scope)
{
lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", __FUNCTION__, __FILE__, __LINE__);
return;
}
lldb::TargetSP target_sp;
target_sp = exe_scope->CalculateTarget();
if (!target_sp)
{
lldb_assert(exe_scope, "Can't make an expression parser with a null target.", __FUNCTION__, __FILE__, __LINE__);
return;
}
// 1. Create a new compiler instance.
m_compiler.reset(new CompilerInstance());
lldb::LanguageType frame_lang = expr.Language(); // defaults to lldb::eLanguageTypeUnknown
bool overridden_target_opts = false;
lldb_private::LanguageRuntime *lang_rt = nullptr;
ArchSpec target_arch;
target_arch = target_sp->GetArchitecture();
const auto target_machine = target_arch.GetMachine();
// If the expression is being evaluated in the context of an existing
// stack frame, we introspect to see if the language runtime is available.
lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
// Make sure the user hasn't provided a preferred execution language
// with `expression --language X -- ...`
if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
frame_lang = frame_sp->GetLanguage();
if (process_sp && frame_lang != lldb::eLanguageTypeUnknown)
{
lang_rt = process_sp->GetLanguageRuntime(frame_lang);
if (log)
log->Printf("Frame has language of type %s", Language::GetNameForLanguageType(frame_lang));
}
// 2. Configure the compiler with a set of default options that are appropriate
// for most situations.
if (target_arch.IsValid())
{
std::string triple = target_arch.GetTriple().str();
m_compiler->getTargetOpts().Triple = triple;
if (log)
log->Printf("Using %s as the target triple", m_compiler->getTargetOpts().Triple.c_str());
}
else
{
// If we get here we don't have a valid target and just have to guess.
// Sometimes this will be ok to just use the host target triple (when we evaluate say "2+3", but other
// expressions like breakpoint conditions and other things that _are_ target specific really shouldn't just be
// using the host triple. In such a case the language runtime should expose an overridden options set (3),
// below.
m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
if (log)
log->Printf("Using default target triple of %s", m_compiler->getTargetOpts().Triple.c_str());
}
// Now add some special fixes for known architectures:
// Any arm32 iOS environment, but not on arm64
if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos)
{
m_compiler->getTargetOpts().ABI = "apcs-gnu";
}
// Supported subsets of x86
if (target_machine == llvm::Triple::x86 ||
target_machine == llvm::Triple::x86_64)
{
m_compiler->getTargetOpts().Features.push_back("+sse");
m_compiler->getTargetOpts().Features.push_back("+sse2");
}
// Set the target CPU to generate code for.
// This will be empty for any CPU that doesn't really need to make a special CPU string.
m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
// 3. Now allow the runtime to provide custom configuration options for the target.
// In this case, a specialized language runtime is available and we can query it for extra options.
// For 99% of use cases, this will not be needed and should be provided when basic platform detection is not enough.
if (lang_rt)
overridden_target_opts = lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
if (overridden_target_opts)
if (log)
{
log->Debug("Using overridden target options for the expression evaluation");
auto opts = m_compiler->getTargetOpts();
log->Debug("Triple: '%s'", opts.Triple.c_str());
log->Debug("CPU: '%s'", opts.CPU.c_str());
log->Debug("FPMath: '%s'", opts.FPMath.c_str());
log->Debug("ABI: '%s'", opts.ABI.c_str());
log->Debug("LinkerVersion: '%s'", opts.LinkerVersion.c_str());
StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
StringList::LogDump(log, opts.Features, "Features");
StringList::LogDump(log, opts.Reciprocals, "Reciprocals");
}
// 4. Create and install the target on the compiler.
m_compiler->createDiagnostics();
auto target_info = TargetInfo::CreateTargetInfo(m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
if (log)
{
log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
log->Printf("Target datalayout string: '%s'", target_info->getDataLayout().getStringRepresentation().c_str());
log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
log->Printf("Target vector alignment: %d", target_info->getMaxVectorAlign());
}
m_compiler->setTarget(target_info);
assert (m_compiler->hasTarget());
// 5. Set language options.
lldb::LanguageType language = expr.Language();
switch (language)
{
case lldb::eLanguageTypeC:
case lldb::eLanguageTypeC89:
case lldb::eLanguageTypeC99:
case lldb::eLanguageTypeC11:
// FIXME: the following language option is a temporary workaround,
// to "ask for C, get C++."
// For now, the expression parser must use C++ anytime the
// language is a C family language, because the expression parser
// uses features of C++ to capture values.
m_compiler->getLangOpts().CPlusPlus = true;
break;
case lldb::eLanguageTypeObjC:
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for ObjC, get ObjC++" (see comment above).
m_compiler->getLangOpts().CPlusPlus = true;
break;
case lldb::eLanguageTypeC_plus_plus:
case lldb::eLanguageTypeC_plus_plus_11:
case lldb::eLanguageTypeC_plus_plus_14:
m_compiler->getLangOpts().CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
LLVM_FALLTHROUGH;
case lldb::eLanguageTypeC_plus_plus_03:
m_compiler->getLangOpts().CPlusPlus = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for C++, get ObjC++". Apple hopes to remove this requirement
// on non-Apple platforms, but for now it is needed.
m_compiler->getLangOpts().ObjC1 = true;
break;
case lldb::eLanguageTypeObjC_plus_plus:
case lldb::eLanguageTypeUnknown:
default:
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
m_compiler->getLangOpts().CPlusPlus = true;
m_compiler->getLangOpts().CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
break;
}
m_compiler->getLangOpts().Bool = true;
m_compiler->getLangOpts().WChar = true;
m_compiler->getLangOpts().Blocks = true;
m_compiler->getLangOpts().DebuggerSupport = true; // Features specifically for debugger clients
if (expr.DesiredResultType() == Expression::eResultTypeId)
m_compiler->getLangOpts().DebuggerCastResultToId = true;
m_compiler->getLangOpts().CharIsSigned =
ArchSpec(m_compiler->getTargetOpts().Triple.c_str()).CharIsSignedByDefault();
// Spell checking is a nice feature, but it ends up completing a
// lot of types that we didn't strictly speaking need to complete.
// As a result, we spend a long time parsing and importing debug
// information.
m_compiler->getLangOpts().SpellChecking = false;
if (process_sp && m_compiler->getLangOpts().ObjC1)
{
if (process_sp->GetObjCLanguageRuntime())
{
if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
else
m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX, VersionTuple(10, 7));
if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
m_compiler->getLangOpts().DebuggerObjCLiteral = true;
}
}
m_compiler->getLangOpts().ThreadsafeStatics = false;
m_compiler->getLangOpts().AccessControl = false; // Debuggers get universal access
m_compiler->getLangOpts().DollarIdents = true; // $ indicates a persistent variable name
// Set CodeGen options
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
m_compiler->getCodeGenOpts().DisableFPElim = true;
m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
if (generate_debug_info)
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
else
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
// Disable some warnings.
m_compiler->getDiagnostics().setSeverityForGroup(clang::diag::Flavor::WarningOrError,
"unused-value", clang::diag::Severity::Ignored, SourceLocation());
m_compiler->getDiagnostics().setSeverityForGroup(clang::diag::Flavor::WarningOrError,
"odr", clang::diag::Severity::Ignored, SourceLocation());
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_compiler->getTarget().adjust(m_compiler->getLangOpts());
// 6. Set up the diagnostic buffer for reporting errors
m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
// 7. Set up the source management objects inside the compiler
clang::FileSystemOptions file_system_options;
m_file_manager.reset(new clang::FileManager(file_system_options));
if (!m_compiler->hasSourceManager())
m_compiler->createSourceManager(*m_file_manager.get());
m_compiler->createFileManager();
m_compiler->createPreprocessor(TU_Complete);
if (ClangModulesDeclVendor *decl_vendor = target_sp->GetClangModulesDeclVendor())
{
ClangPersistentVariables *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(target_sp->GetPersistentExpressionStateForLanguage(lldb::eLanguageTypeC));
std::unique_ptr<PPCallbacks> pp_callbacks(new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
m_pp_callbacks = static_cast<LLDBPreprocessorCallbacks*>(pp_callbacks.get());
m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
}
// 8. Most of this we get from the CompilerInstance, but we
// also want to give the context an ExternalASTSource.
m_selector_table.reset(new SelectorTable());
m_builtin_context.reset(new Builtin::Context());
std::unique_ptr<clang::ASTContext> ast_context(new ASTContext(m_compiler->getLangOpts(),
m_compiler->getSourceManager(),
m_compiler->getPreprocessor().getIdentifierTable(),
*m_selector_table.get(),
*m_builtin_context.get()));
ast_context->InitBuiltinTypes(m_compiler->getTarget());
ClangExpressionHelper *type_system_helper = dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
if (decl_map)
{
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(decl_map->CreateProxy());
decl_map->InstallASTContext(ast_context.get());
ast_context->setExternalSource(ast_source);
}
m_ast_context.reset(new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
m_ast_context->setASTContext(ast_context.get());
m_compiler->setASTContext(ast_context.release());
std::string module_name("$__lldb_module");
m_llvm_context.reset(new LLVMContext());
m_code_generator.reset(CreateLLVMCodeGen(m_compiler->getDiagnostics(),
module_name,
m_compiler->getHeaderSearchOpts(),
m_compiler->getPreprocessorOpts(),
m_compiler->getCodeGenOpts(),
*m_llvm_context));
}
ClangExpressionParser::~ClangExpressionParser()
{
}
unsigned
ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager)
{
ClangDiagnosticManagerAdapter *adapter =
static_cast<ClangDiagnosticManagerAdapter *>(m_compiler->getDiagnostics().getClient());
clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
adapter->ResetManager(&diagnostic_manager);
const char *expr_text = m_expr.Text();
clang::SourceManager &source_mgr = m_compiler->getSourceManager();
bool created_main_file = false;
if (m_compiler->getCodeGenOpts().getDebugInfo() == codegenoptions::FullDebugInfo)
{
int temp_fd = -1;
llvm::SmallString<PATH_MAX> result_path;
FileSpec tmpdir_file_spec;
if (HostInfo::GetLLDBPath(lldb::ePathTypeLLDBTempSystemDir, tmpdir_file_spec))
{
tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
std::string temp_source_path = tmpdir_file_spec.GetPath();
llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
}
else
{
llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
}
if (temp_fd != -1)
{
lldb_private::File file(temp_fd, true);
const size_t expr_text_len = strlen(expr_text);
size_t bytes_written = expr_text_len;
if (file.Write(expr_text, bytes_written).Success())
{
if (bytes_written == expr_text_len)
{
file.Close();
source_mgr.setMainFileID(source_mgr.createFileID(m_file_manager->getFile(result_path),
SourceLocation(), SrcMgr::C_User));
created_main_file = true;
}
}
}
}
if (!created_main_file)
{
std::unique_ptr<MemoryBuffer> memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
}
diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor());
ClangExpressionHelper *type_system_helper = dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ASTConsumer *ast_transformer = type_system_helper->ASTTransformer(m_code_generator.get());
if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
decl_map->InstallCodeGenerator(m_code_generator.get());
if (ast_transformer)
{
ast_transformer->Initialize(m_compiler->getASTContext());
ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext());
}
else
{
m_code_generator->Initialize(m_compiler->getASTContext());
ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext());
}
diag_buf->EndSourceFile();
unsigned num_errors = diag_buf->getNumErrors();
if (m_pp_callbacks && m_pp_callbacks->hasErrors())
{
num_errors++;
diagnostic_manager.PutCString(eDiagnosticSeverityError, "while importing modules:");
diagnostic_manager.AppendMessageToDiagnostic(m_pp_callbacks->getErrorString().c_str());
}
if (!num_errors)
{
if (type_system_helper->DeclMap() && !type_system_helper->DeclMap()->ResolveUnknownTypes())
{
diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't infer the type of a variable");
num_errors++;
}
}
if (!num_errors)
{
type_system_helper->CommitPersistentDecls();
}
adapter->ResetManager();
return num_errors;
}
bool
ClangExpressionParser::RewriteExpression(DiagnosticManager &diagnostic_manager)
{
clang::SourceManager &source_manager = m_compiler->getSourceManager();
clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), nullptr);
clang::edit::Commit commit(editor);
clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
class RewritesReceiver : public edit::EditsReceiver {
Rewriter &rewrite;
public:
RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) { }
void insert(SourceLocation loc, StringRef text) override {
rewrite.InsertText(loc, text);
}
void replace(CharSourceRange range, StringRef text) override {
rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
}
};
RewritesReceiver rewrites_receiver(rewriter);
const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
size_t num_diags = diagnostics.size();
if (num_diags == 0)
return false;
for (const Diagnostic *diag : diagnostic_manager.Diagnostics())
{
const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
if (diagnostic && diagnostic->HasFixIts())
{
for (const FixItHint &fixit : diagnostic->FixIts())
{
// This is cobbed from clang::Rewrite::FixItRewriter.
if (fixit.CodeToInsert.empty())
{
if (fixit.InsertFromRange.isValid())
{
commit.insertFromRange(fixit.RemoveRange.getBegin(),
fixit.InsertFromRange, /*afterToken=*/false,
fixit.BeforePreviousInsertions);
}
else
commit.remove(fixit.RemoveRange);
}
else
{
if (fixit.RemoveRange.isTokenRange() ||
fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
else
commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
/*afterToken=*/false, fixit.BeforePreviousInsertions);
}
}
}
}
// FIXME - do we want to try to propagate specific errors here?
if (!commit.isCommitable())
return false;
else if (!editor.commit(commit))
return false;
// Now play all the edits, and stash the result in the diagnostic manager.
editor.applyRewrites(rewrites_receiver);
RewriteBuffer &main_file_buffer = rewriter.getEditBuffer(source_manager.getMainFileID());
std::string fixed_expression;
llvm::raw_string_ostream out_stream(fixed_expression);
main_file_buffer.write(out_stream);
out_stream.flush();
diagnostic_manager.SetFixedExpression(fixed_expression);
return true;
}
static bool FindFunctionInModule (ConstString &mangled_name,
llvm::Module *module,
const char *orig_name)
{
for (const auto &func : module->getFunctionList())
{
const StringRef &name = func.getName();
if (name.find(orig_name) != StringRef::npos)
{
mangled_name.SetString(name);
return true;
}
}
return false;
}
lldb_private::Error
ClangExpressionParser::PrepareForExecution (lldb::addr_t &func_addr,
lldb::addr_t &func_end,
lldb::IRExecutionUnitSP &execution_unit_sp,
ExecutionContext &exe_ctx,
bool &can_interpret,
ExecutionPolicy execution_policy)
{
func_addr = LLDB_INVALID_ADDRESS;
func_end = LLDB_INVALID_ADDRESS;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
lldb_private::Error err;
std::unique_ptr<llvm::Module> llvm_module_ap (m_code_generator->ReleaseModule());
if (!llvm_module_ap.get())
{
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
ConstString function_name;
if (execution_policy != eExecutionPolicyTopLevel)
{
// Find the actual name of the function (it's often mangled somehow)
if (!FindFunctionInModule(function_name, llvm_module_ap.get(), m_expr.FunctionName()))
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module", m_expr.FunctionName());
return err;
}
else
{
if (log)
log->Printf("Found function %s for %s", function_name.AsCString(), m_expr.FunctionName());
}
}
SymbolContext sc;
if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP())
{
sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
}
else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP())
{
sc.target_sp = target_sp;
}
execution_unit_sp.reset(new IRExecutionUnit (m_llvm_context, // handed off here
llvm_module_ap, // handed off here
function_name,
exe_ctx.GetTargetSP(),
sc,
m_compiler->getTargetOpts().Features));
ClangExpressionHelper *type_system_helper = dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); // result can be NULL
if (decl_map)
{
Stream *error_stream = NULL;
Target *target = exe_ctx.GetTargetPtr();
if (target)
error_stream = target->GetDebugger().GetErrorFile().get();
IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), *execution_unit_sp, error_stream,
function_name.AsCString());
bool ir_can_run = ir_for_target.runOnModule(*execution_unit_sp->GetModule());
Process *process = exe_ctx.GetProcessPtr();
if (execution_policy != eExecutionPolicyAlways && execution_policy != eExecutionPolicyTopLevel)
{
lldb_private::Error interpret_error;
bool interpret_function_calls = !process ? false : process->CanInterpretFunctionCalls();
can_interpret =
IRInterpreter::CanInterpret(*execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
interpret_error, interpret_function_calls);
if (!can_interpret && execution_policy == eExecutionPolicyNever)
{
err.SetErrorStringWithFormat("Can't run the expression locally: %s", interpret_error.AsCString());
return err;
}
}
if (!ir_can_run)
{
err.SetErrorString("The expression could not be prepared to run in the target");
return err;
}
if (!process && execution_policy == eExecutionPolicyAlways)
{
err.SetErrorString("Expression needed to run in the target, but the target can't be run");
return err;
}
if (!process && execution_policy == eExecutionPolicyTopLevel)
{
err.SetErrorString(
"Top-level code needs to be inserted into a runnable target, but the target can't be run");
return err;
}
if (execution_policy == eExecutionPolicyAlways ||
(execution_policy != eExecutionPolicyTopLevel && !can_interpret))
{
if (m_expr.NeedsValidation() && process)
{
if (!process->GetDynamicCheckers())
{
DynamicCheckerFunctions *dynamic_checkers = new DynamicCheckerFunctions();
DiagnosticManager install_diagnostics;
if (!dynamic_checkers->Install(install_diagnostics, exe_ctx))
{
if (install_diagnostics.Diagnostics().size())
err.SetErrorString("couldn't install checkers, unknown error");
else
err.SetErrorString(install_diagnostics.GetString().c_str());
return err;
}
process->SetDynamicCheckers(dynamic_checkers);
if (log)
log->Printf("== [ClangUserExpression::Evaluate] Finished installing dynamic checkers ==");
}
IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), function_name.AsCString());
if (!ir_dynamic_checks.runOnModule(*execution_unit_sp->GetModule()))
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't add dynamic checks to the expression");
return err;
}
}
}
if (execution_policy == eExecutionPolicyAlways || execution_policy == eExecutionPolicyTopLevel ||
!can_interpret)
{
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
}
else
{
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
return err;
}
lldb_private::Error
ClangExpressionParser::RunStaticInitializers (lldb::IRExecutionUnitSP &execution_unit_sp,
ExecutionContext &exe_ctx)
{
lldb_private::Error err;
lldbassert(execution_unit_sp.get());
lldbassert(exe_ctx.HasThreadScope());
if (!execution_unit_sp.get())
{
err.SetErrorString ("can't run static initializers for a NULL execution unit");
return err;
}
if (!exe_ctx.HasThreadScope())
{
err.SetErrorString ("can't run static initializers without a thread");
return err;
}
std::vector<lldb::addr_t> static_initializers;
execution_unit_sp->GetStaticInitializers(static_initializers);
for (lldb::addr_t static_initializer : static_initializers)
{
EvaluateExpressionOptions options;
lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(exe_ctx.GetThreadRef(),
Address(static_initializer),
CompilerType(),
llvm::ArrayRef<lldb::addr_t>(),
options));
DiagnosticManager execution_errors;
lldb::ExpressionResults results = exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(exe_ctx, call_static_initializer, options, execution_errors);
if (results != lldb::eExpressionCompleted)
{
err.SetErrorStringWithFormat ("couldn't run static initializer: %s", execution_errors.GetString().c_str());
return err;
}
}
return err;
}