llvm-project/lldb/source/Plugins/UnwindAssembly/InstEmulation/UnwindAssemblyInstEmulation...

682 lines
30 KiB
C++

//===-- UnwindAssemblyInstEmulation.cpp --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "UnwindAssemblyInstEmulation.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/FormatEntity.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/Target.h"
using namespace lldb;
using namespace lldb_private;
//-----------------------------------------------------------------------------------------------
// UnwindAssemblyInstEmulation method definitions
//-----------------------------------------------------------------------------------------------
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range,
Thread& thread,
UnwindPlan& unwind_plan)
{
if (range.GetByteSize() > 0 &&
range.GetBaseAddress().IsValid() &&
m_inst_emulator_ap.get())
{
// The instruction emulation subclass setup the unwind plan for the
// first instruction.
m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);
// CreateFunctionEntryUnwind should have created the first row. If it
// doesn't, then we are done.
if (unwind_plan.GetRowCount() == 0)
return false;
ExecutionContext exe_ctx;
thread.CalculateExecutionContext(exe_ctx);
const bool prefer_file_cache = true;
DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
NULL,
NULL,
exe_ctx,
range,
prefer_file_cache));
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (disasm_sp)
{
m_range_ptr = ⦥
m_thread_ptr = &thread;
m_unwind_plan_ptr = &unwind_plan;
const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
const bool show_address = true;
const bool show_bytes = true;
m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(),
unwind_plan.GetInitialCFARegister(),
m_cfa_reg_info);
m_fp_is_cfa = false;
m_register_values.clear();
m_pushed_regs.clear();
// Initialize the CFA with a known value. In the 32 bit case
// it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
// We use the address byte size to be safe for any future address sizes
m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
RegisterValue cfa_reg_value;
cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
SetRegisterValue (m_cfa_reg_info, cfa_reg_value);
const InstructionList &inst_list = disasm_sp->GetInstructionList ();
const size_t num_instructions = inst_list.GetSize();
if (num_instructions > 0)
{
Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
const lldb::addr_t base_addr = inst->GetAddress().GetFileAddress();
// Map for storing the unwind plan row and the value of the registers at a given offset.
// When we see a forward branch we add a new entry to this map with the actual unwind plan
// row and register context for the target address of the branch as the current data have
// to be valid for the target address of the branch too if we are in the same function.
std::map<lldb::addr_t, std::pair<UnwindPlan::RowSP, RegisterValueMap>> saved_unwind_states;
// Make a copy of the current instruction Row and save it in m_curr_row
// so we can add updates as we process the instructions.
UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
UnwindPlan::Row *newrow = new UnwindPlan::Row;
if (last_row.get())
*newrow = *last_row.get();
m_curr_row.reset(newrow);
// Add the initial state to the save list with offset 0.
saved_unwind_states.insert({0, {last_row, m_register_values}});
// cache the pc register number (in whatever register numbering this UnwindPlan uses) for
// quick reference during instruction parsing.
RegisterInfo pc_reg_info;
m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info);
// cache the return address register number (in whatever register numbering this UnwindPlan uses) for
// quick reference during instruction parsing.
RegisterInfo ra_reg_info;
m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info);
// The architecture dependent condition code of the last processed instruction.
EmulateInstruction::InstructionCondition last_condition = EmulateInstruction::UnconditionalCondition;
lldb::addr_t condition_block_start_offset = 0;
for (size_t idx=0; idx<num_instructions; ++idx)
{
m_curr_row_modified = false;
m_forward_branch_offset = 0;
inst = inst_list.GetInstructionAtIndex (idx).get();
if (inst)
{
lldb::addr_t current_offset = inst->GetAddress().GetFileAddress() - base_addr;
auto it = saved_unwind_states.upper_bound(current_offset);
assert(it != saved_unwind_states.begin() && "Unwind row for the function entry missing");
--it; // Move it to the row corresponding to the current offset
// If the offset of m_curr_row don't match with the offset we see in saved_unwind_states
// then we have to update m_curr_row and m_register_values based on the saved values. It
// is happenning after we processed an epilogue and a return to caller instruction.
if (it->second.first->GetOffset() != m_curr_row->GetOffset())
{
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *it->second.first;
m_curr_row.reset(newrow);
m_register_values = it->second.second;
}
m_inst_emulator_ap->SetInstruction (inst->GetOpcode(),
inst->GetAddress(),
exe_ctx.GetTargetPtr());
if (last_condition != m_inst_emulator_ap->GetInstructionCondition())
{
if (m_inst_emulator_ap->GetInstructionCondition() != EmulateInstruction::UnconditionalCondition &&
saved_unwind_states.count(current_offset) == 0)
{
// If we don't have a saved row for the current offset then save our
// current state because we will have to restore it after the
// conditional block.
auto new_row = std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
saved_unwind_states.insert({current_offset, {new_row, m_register_values}});
}
// If the last instruction was conditional with a different condition
// then the then current condition then restore the condition.
if (last_condition != EmulateInstruction::UnconditionalCondition)
{
const auto& saved_state = saved_unwind_states.at(condition_block_start_offset);
m_curr_row = std::make_shared<UnwindPlan::Row>(*saved_state.first);
m_curr_row->SetOffset(current_offset);
m_register_values = saved_state.second;
bool replace_existing = true; // The last instruction might already
// created a row for this offset and
// we want to overwrite it.
unwind_plan.InsertRow(std::make_shared<UnwindPlan::Row>(*m_curr_row), replace_existing);
}
// We are starting a new conditional block at the catual offset
condition_block_start_offset = current_offset;
}
if (log && log->GetVerbose ())
{
StreamString strm;
lldb_private::FormatEntity::Entry format;
FormatEntity::Parse("${frame.pc}: ", format);
inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize (), show_address, show_bytes, NULL, NULL, NULL, &format, 0);
log->PutCString (strm.GetData());
}
last_condition = m_inst_emulator_ap->GetInstructionCondition();
m_inst_emulator_ap->EvaluateInstruction (eEmulateInstructionOptionIgnoreConditions);
// If the current instruction is a branch forward then save the current CFI information
// for the offset where we are branching.
if (m_forward_branch_offset != 0 && range.ContainsFileAddress(inst->GetAddress().GetFileAddress() + m_forward_branch_offset))
{
auto newrow = std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
newrow->SetOffset(current_offset + m_forward_branch_offset);
saved_unwind_states.insert({current_offset + m_forward_branch_offset, {newrow, m_register_values}});
unwind_plan.InsertRow(newrow);
}
// Were there any changes to the CFI while evaluating this instruction?
if (m_curr_row_modified)
{
// Save the modified row if we don't already have a CFI row in the currennt address
if (saved_unwind_states.count(current_offset + inst->GetOpcode().GetByteSize()) == 0)
{
m_curr_row->SetOffset (current_offset + inst->GetOpcode().GetByteSize());
unwind_plan.InsertRow (m_curr_row);
saved_unwind_states.insert({current_offset + inst->GetOpcode().GetByteSize(), {m_curr_row, m_register_values}});
// Allocate a new Row for m_curr_row, copy the current state into it
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *m_curr_row.get();
m_curr_row.reset(newrow);
}
}
}
}
}
// FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
// I'll fix that but for now, just clear the list and it will go away nicely.
disasm_sp->GetInstructionList().Clear();
}
if (log && log->GetVerbose ())
{
StreamString strm;
lldb::addr_t base_addr = range.GetBaseAddress().GetLoadAddress(thread.CalculateTarget().get());
strm.Printf ("Resulting unwind rows for [0x%" PRIx64 " - 0x%" PRIx64 "):", base_addr, base_addr + range.GetByteSize());
unwind_plan.Dump(strm, &thread, base_addr);
log->PutCString (strm.GetData());
}
return unwind_plan.GetRowCount() > 0;
}
return false;
}
bool
UnwindAssemblyInstEmulation::AugmentUnwindPlanFromCallSite (AddressRange& func,
Thread& thread,
UnwindPlan& unwind_plan)
{
return false;
}
bool
UnwindAssemblyInstEmulation::GetFastUnwindPlan (AddressRange& func,
Thread& thread,
UnwindPlan &unwind_plan)
{
return false;
}
bool
UnwindAssemblyInstEmulation::FirstNonPrologueInsn (AddressRange& func,
const ExecutionContext &exe_ctx,
Address& first_non_prologue_insn)
{
return false;
}
UnwindAssembly *
UnwindAssemblyInstEmulation::CreateInstance (const ArchSpec &arch)
{
std::unique_ptr<EmulateInstruction> inst_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypePrologueEpilogue, NULL));
// Make sure that all prologue instructions are handled
if (inst_emulator_ap.get())
return new UnwindAssemblyInstEmulation (arch, inst_emulator_ap.release());
return NULL;
}
//------------------------------------------------------------------
// PluginInterface protocol in UnwindAssemblyParser_x86
//------------------------------------------------------------------
ConstString
UnwindAssemblyInstEmulation::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
UnwindAssemblyInstEmulation::GetPluginVersion()
{
return 1;
}
void
UnwindAssemblyInstEmulation::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
UnwindAssemblyInstEmulation::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
ConstString
UnwindAssemblyInstEmulation::GetPluginNameStatic()
{
static ConstString g_name("inst-emulation");
return g_name;
}
const char *
UnwindAssemblyInstEmulation::GetPluginDescriptionStatic()
{
return "Instruction emulation based unwind information.";
}
uint64_t
UnwindAssemblyInstEmulation::MakeRegisterKindValuePair (const RegisterInfo &reg_info)
{
lldb::RegisterKind reg_kind;
uint32_t reg_num;
if (EmulateInstruction::GetBestRegisterKindAndNumber (&reg_info, reg_kind, reg_num))
return (uint64_t)reg_kind << 24 | reg_num;
return 0ull;
}
void
UnwindAssemblyInstEmulation::SetRegisterValue (const RegisterInfo &reg_info, const RegisterValue &reg_value)
{
m_register_values[MakeRegisterKindValuePair (reg_info)] = reg_value;
}
bool
UnwindAssemblyInstEmulation::GetRegisterValue (const RegisterInfo &reg_info, RegisterValue &reg_value)
{
const uint64_t reg_id = MakeRegisterKindValuePair (reg_info);
RegisterValueMap::const_iterator pos = m_register_values.find(reg_id);
if (pos != m_register_values.end())
{
reg_value = pos->second;
return true; // We had a real value that comes from an opcode that wrote
// to it...
}
// We are making up a value that is recognizable...
reg_value.SetUInt(reg_id, reg_info.byte_size);
return false;
}
size_t
UnwindAssemblyInstEmulation::ReadMemory (EmulateInstruction *instruction,
void *baton,
const EmulateInstruction::Context &context,
lldb::addr_t addr,
void *dst,
size_t dst_len)
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose ())
{
StreamString strm;
strm.Printf ("UnwindAssemblyInstEmulation::ReadMemory (addr = 0x%16.16" PRIx64 ", dst = %p, dst_len = %" PRIu64 ", context = ",
addr,
dst,
(uint64_t)dst_len);
context.Dump(strm, instruction);
log->PutCString (strm.GetData ());
}
memset (dst, 0, dst_len);
return dst_len;
}
size_t
UnwindAssemblyInstEmulation::WriteMemory (EmulateInstruction *instruction,
void *baton,
const EmulateInstruction::Context &context,
lldb::addr_t addr,
const void *dst,
size_t dst_len)
{
if (baton && dst && dst_len)
return ((UnwindAssemblyInstEmulation *)baton)->WriteMemory (instruction, context, addr, dst, dst_len);
return 0;
}
size_t
UnwindAssemblyInstEmulation::WriteMemory (EmulateInstruction *instruction,
const EmulateInstruction::Context &context,
lldb::addr_t addr,
const void *dst,
size_t dst_len)
{
DataExtractor data (dst,
dst_len,
instruction->GetArchitecture ().GetByteOrder(),
instruction->GetArchitecture ().GetAddressByteSize());
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose ())
{
StreamString strm;
strm.PutCString ("UnwindAssemblyInstEmulation::WriteMemory (");
data.Dump(&strm, 0, eFormatBytes, 1, dst_len, UINT32_MAX, addr, 0, 0);
strm.PutCString (", context = ");
context.Dump(strm, instruction);
log->PutCString (strm.GetData());
}
const bool cant_replace = false;
switch (context.type)
{
default:
case EmulateInstruction::eContextInvalid:
case EmulateInstruction::eContextReadOpcode:
case EmulateInstruction::eContextImmediate:
case EmulateInstruction::eContextAdjustBaseRegister:
case EmulateInstruction::eContextRegisterPlusOffset:
case EmulateInstruction::eContextAdjustPC:
case EmulateInstruction::eContextRegisterStore:
case EmulateInstruction::eContextRegisterLoad:
case EmulateInstruction::eContextRelativeBranchImmediate:
case EmulateInstruction::eContextAbsoluteBranchRegister:
case EmulateInstruction::eContextSupervisorCall:
case EmulateInstruction::eContextTableBranchReadMemory:
case EmulateInstruction::eContextWriteRegisterRandomBits:
case EmulateInstruction::eContextWriteMemoryRandomBits:
case EmulateInstruction::eContextArithmetic:
case EmulateInstruction::eContextAdvancePC:
case EmulateInstruction::eContextReturnFromException:
case EmulateInstruction::eContextPopRegisterOffStack:
case EmulateInstruction::eContextAdjustStackPointer:
break;
case EmulateInstruction::eContextPushRegisterOnStack:
{
uint32_t reg_num = LLDB_INVALID_REGNUM;
uint32_t generic_regnum = LLDB_INVALID_REGNUM;
if (context.info_type == EmulateInstruction::eInfoTypeRegisterToRegisterPlusOffset)
{
const uint32_t unwind_reg_kind = m_unwind_plan_ptr->GetRegisterKind();
reg_num = context.info.RegisterToRegisterPlusOffset.data_reg.kinds[unwind_reg_kind];
generic_regnum = context.info.RegisterToRegisterPlusOffset.data_reg.kinds[eRegisterKindGeneric];
}
else
assert (!"unhandled case, add code to handle this!");
if (reg_num != LLDB_INVALID_REGNUM && generic_regnum != LLDB_REGNUM_GENERIC_SP)
{
if (m_pushed_regs.find (reg_num) == m_pushed_regs.end())
{
m_pushed_regs[reg_num] = addr;
const int32_t offset = addr - m_initial_sp;
m_curr_row->SetRegisterLocationToAtCFAPlusOffset (reg_num, offset, cant_replace);
m_curr_row_modified = true;
}
}
}
break;
}
return dst_len;
}
bool
UnwindAssemblyInstEmulation::ReadRegister (EmulateInstruction *instruction,
void *baton,
const RegisterInfo *reg_info,
RegisterValue &reg_value)
{
if (baton && reg_info)
return ((UnwindAssemblyInstEmulation *)baton)->ReadRegister (instruction, reg_info, reg_value);
return false;
}
bool
UnwindAssemblyInstEmulation::ReadRegister (EmulateInstruction *instruction,
const RegisterInfo *reg_info,
RegisterValue &reg_value)
{
bool synthetic = GetRegisterValue (*reg_info, reg_value);
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose ())
{
StreamString strm;
strm.Printf ("UnwindAssemblyInstEmulation::ReadRegister (name = \"%s\") => synthetic_value = %i, value = ", reg_info->name, synthetic);
reg_value.Dump(&strm, reg_info, false, false, eFormatDefault);
log->PutCString(strm.GetData());
}
return true;
}
bool
UnwindAssemblyInstEmulation::WriteRegister (EmulateInstruction *instruction,
void *baton,
const EmulateInstruction::Context &context,
const RegisterInfo *reg_info,
const RegisterValue &reg_value)
{
if (baton && reg_info)
return ((UnwindAssemblyInstEmulation *)baton)->WriteRegister (instruction, context, reg_info, reg_value);
return false;
}
bool
UnwindAssemblyInstEmulation::WriteRegister (EmulateInstruction *instruction,
const EmulateInstruction::Context &context,
const RegisterInfo *reg_info,
const RegisterValue &reg_value)
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose ())
{
StreamString strm;
strm.Printf ("UnwindAssemblyInstEmulation::WriteRegister (name = \"%s\", value = ", reg_info->name);
reg_value.Dump(&strm, reg_info, false, false, eFormatDefault);
strm.PutCString (", context = ");
context.Dump(strm, instruction);
log->PutCString(strm.GetData());
}
SetRegisterValue (*reg_info, reg_value);
switch (context.type)
{
case EmulateInstruction::eContextInvalid:
case EmulateInstruction::eContextReadOpcode:
case EmulateInstruction::eContextImmediate:
case EmulateInstruction::eContextAdjustBaseRegister:
case EmulateInstruction::eContextRegisterPlusOffset:
case EmulateInstruction::eContextAdjustPC:
case EmulateInstruction::eContextRegisterStore:
case EmulateInstruction::eContextSupervisorCall:
case EmulateInstruction::eContextTableBranchReadMemory:
case EmulateInstruction::eContextWriteRegisterRandomBits:
case EmulateInstruction::eContextWriteMemoryRandomBits:
case EmulateInstruction::eContextAdvancePC:
case EmulateInstruction::eContextReturnFromException:
case EmulateInstruction::eContextPushRegisterOnStack:
case EmulateInstruction::eContextRegisterLoad:
// {
// const uint32_t reg_num = reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
// if (reg_num != LLDB_INVALID_REGNUM)
// {
// const bool can_replace_only_if_unspecified = true;
//
// m_curr_row.SetRegisterLocationToUndefined (reg_num,
// can_replace_only_if_unspecified,
// can_replace_only_if_unspecified);
// m_curr_row_modified = true;
// }
// }
break;
case EmulateInstruction::eContextArithmetic:
{
// If we adjusted the current frame pointer by a constant then adjust the CFA offset
// with the same amount.
lldb::RegisterKind kind = m_unwind_plan_ptr->GetRegisterKind();
if (m_fp_is_cfa && reg_info->kinds[kind] == m_cfa_reg_info.kinds[kind] &&
context.info_type == EmulateInstruction::eInfoTypeRegisterPlusOffset &&
context.info.RegisterPlusOffset.reg.kinds[kind] == m_cfa_reg_info.kinds[kind])
{
const int64_t offset = context.info.RegisterPlusOffset.signed_offset;
m_curr_row->GetCFAValue().IncOffset(-1 * offset);
m_curr_row_modified = true;
}
}
break;
case EmulateInstruction::eContextAbsoluteBranchRegister:
case EmulateInstruction::eContextRelativeBranchImmediate:
{
if (context.info_type == EmulateInstruction::eInfoTypeISAAndImmediate &&
context.info.ISAAndImmediate.unsigned_data32 > 0)
{
m_forward_branch_offset = context.info.ISAAndImmediateSigned.signed_data32;
}
else if (context.info_type == EmulateInstruction::eInfoTypeISAAndImmediateSigned &&
context.info.ISAAndImmediateSigned.signed_data32 > 0)
{
m_forward_branch_offset = context.info.ISAAndImmediate.unsigned_data32;
}
else if (context.info_type == EmulateInstruction::eInfoTypeImmediate &&
context.info.unsigned_immediate > 0)
{
m_forward_branch_offset = context.info.unsigned_immediate;
}
else if (context.info_type == EmulateInstruction::eInfoTypeImmediateSigned &&
context.info.signed_immediate > 0)
{
m_forward_branch_offset = context.info.signed_immediate;
}
}
break;
case EmulateInstruction::eContextPopRegisterOffStack:
{
const uint32_t reg_num = reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
const uint32_t generic_regnum = reg_info->kinds[eRegisterKindGeneric];
if (reg_num != LLDB_INVALID_REGNUM && generic_regnum != LLDB_REGNUM_GENERIC_SP)
{
switch (context.info_type)
{
case EmulateInstruction::eInfoTypeAddress:
if (m_pushed_regs.find(reg_num) != m_pushed_regs.end() &&
context.info.address == m_pushed_regs[reg_num])
{
m_curr_row->SetRegisterLocationToSame(reg_num,
false /*must_replace*/);
m_curr_row_modified = true;
}
break;
case EmulateInstruction::eInfoTypeISA:
assert((generic_regnum == LLDB_REGNUM_GENERIC_PC ||
generic_regnum == LLDB_REGNUM_GENERIC_FLAGS) &&
"eInfoTypeISA used for poping a register other the the PC/FLAGS");
if (generic_regnum != LLDB_REGNUM_GENERIC_FLAGS)
{
m_curr_row->SetRegisterLocationToSame(reg_num,
false /*must_replace*/);
m_curr_row_modified = true;
}
break;
default:
assert(false && "unhandled case, add code to handle this!");
break;
}
}
}
break;
case EmulateInstruction::eContextSetFramePointer:
if (!m_fp_is_cfa)
{
m_fp_is_cfa = true;
m_cfa_reg_info = *reg_info;
const uint32_t cfa_reg_num = reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
assert (cfa_reg_num != LLDB_INVALID_REGNUM);
m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(cfa_reg_num, m_initial_sp -
reg_value.GetAsUInt64());
m_curr_row_modified = true;
}
break;
case EmulateInstruction::eContextAdjustStackPointer:
// If we have created a frame using the frame pointer, don't follow
// subsequent adjustments to the stack pointer.
if (!m_fp_is_cfa)
{
m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
m_curr_row->GetCFAValue().GetRegisterNumber(),
m_initial_sp - reg_value.GetAsUInt64());
m_curr_row_modified = true;
}
break;
}
return true;
}