810 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			810 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the common interface used by the various execution engine
 | 
						|
// subclasses.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "jit"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/ModuleProvider.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
 | 
						|
#include "llvm/ExecutionEngine/GenericValue.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MutexGuard.h"
 | 
						|
#include "llvm/System/DynamicLibrary.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include <math.h>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
 | 
						|
STATISTIC(NumGlobals  , "Number of global vars initialized");
 | 
						|
 | 
						|
ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
 | 
						|
ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
 | 
						|
 | 
						|
ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
 | 
						|
  LazyCompilationDisabled = false;
 | 
						|
  Modules.push_back(P);
 | 
						|
  assert(P && "ModuleProvider is null?");
 | 
						|
}
 | 
						|
 | 
						|
ExecutionEngine::ExecutionEngine(Module *M) {
 | 
						|
  LazyCompilationDisabled = false;
 | 
						|
  assert(M && "Module is null?");
 | 
						|
  Modules.push_back(new ExistingModuleProvider(M));
 | 
						|
}
 | 
						|
 | 
						|
ExecutionEngine::~ExecutionEngine() {
 | 
						|
  clearAllGlobalMappings();
 | 
						|
  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | 
						|
    delete Modules[i];
 | 
						|
}
 | 
						|
 | 
						|
/// FindFunctionNamed - Search all of the active modules to find the one that
 | 
						|
/// defines FnName.  This is very slow operation and shouldn't be used for
 | 
						|
/// general code.
 | 
						|
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
 | 
						|
  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | 
						|
    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
 | 
						|
      return F;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// addGlobalMapping - Tell the execution engine that the specified global is
 | 
						|
/// at the specified location.  This is used internally as functions are JIT'd
 | 
						|
/// and as global variables are laid out in memory.  It can and should also be
 | 
						|
/// used by clients of the EE that want to have an LLVM global overlay
 | 
						|
/// existing data in memory.
 | 
						|
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  
 | 
						|
  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
 | 
						|
  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
 | 
						|
  CurVal = Addr;
 | 
						|
  
 | 
						|
  // If we are using the reverse mapping, add it too
 | 
						|
  if (!state.getGlobalAddressReverseMap(locked).empty()) {
 | 
						|
    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
 | 
						|
    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | 
						|
    V = GV;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// clearAllGlobalMappings - Clear all global mappings and start over again
 | 
						|
/// use in dynamic compilation scenarios when you want to move globals
 | 
						|
void ExecutionEngine::clearAllGlobalMappings() {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  
 | 
						|
  state.getGlobalAddressMap(locked).clear();
 | 
						|
  state.getGlobalAddressReverseMap(locked).clear();
 | 
						|
}
 | 
						|
 | 
						|
/// updateGlobalMapping - Replace an existing mapping for GV with a new
 | 
						|
/// address.  This updates both maps as required.  If "Addr" is null, the
 | 
						|
/// entry for the global is removed from the mappings.
 | 
						|
void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  
 | 
						|
  // Deleting from the mapping?
 | 
						|
  if (Addr == 0) {
 | 
						|
    state.getGlobalAddressMap(locked).erase(GV);
 | 
						|
    if (!state.getGlobalAddressReverseMap(locked).empty())
 | 
						|
      state.getGlobalAddressReverseMap(locked).erase(Addr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
 | 
						|
  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
 | 
						|
    state.getGlobalAddressReverseMap(locked).erase(CurVal);
 | 
						|
  CurVal = Addr;
 | 
						|
  
 | 
						|
  // If we are using the reverse mapping, add it too
 | 
						|
  if (!state.getGlobalAddressReverseMap(locked).empty()) {
 | 
						|
    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
 | 
						|
    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | 
						|
    V = GV;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerToGlobalIfAvailable - This returns the address of the specified
 | 
						|
/// global value if it is has already been codegen'd, otherwise it returns null.
 | 
						|
///
 | 
						|
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  
 | 
						|
  std::map<const GlobalValue*, void*>::iterator I =
 | 
						|
  state.getGlobalAddressMap(locked).find(GV);
 | 
						|
  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
 | 
						|
/// at the specified address.
 | 
						|
///
 | 
						|
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  // If we haven't computed the reverse mapping yet, do so first.
 | 
						|
  if (state.getGlobalAddressReverseMap(locked).empty()) {
 | 
						|
    for (std::map<const GlobalValue*, void *>::iterator
 | 
						|
         I = state.getGlobalAddressMap(locked).begin(),
 | 
						|
         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
 | 
						|
      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
 | 
						|
                                                                     I->first));
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<void *, const GlobalValue*>::iterator I =
 | 
						|
    state.getGlobalAddressReverseMap(locked).find(Addr);
 | 
						|
  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
 | 
						|
}
 | 
						|
 | 
						|
// CreateArgv - Turn a vector of strings into a nice argv style array of
 | 
						|
// pointers to null terminated strings.
 | 
						|
//
 | 
						|
static void *CreateArgv(ExecutionEngine *EE,
 | 
						|
                        const std::vector<std::string> &InputArgv) {
 | 
						|
  unsigned PtrSize = EE->getTargetData()->getPointerSize();
 | 
						|
  char *Result = new char[(InputArgv.size()+1)*PtrSize];
 | 
						|
 | 
						|
  DOUT << "ARGV = " << (void*)Result << "\n";
 | 
						|
  const Type *SBytePtr = PointerType::get(Type::Int8Ty);
 | 
						|
 | 
						|
  for (unsigned i = 0; i != InputArgv.size(); ++i) {
 | 
						|
    unsigned Size = InputArgv[i].size()+1;
 | 
						|
    char *Dest = new char[Size];
 | 
						|
    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
 | 
						|
 | 
						|
    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
 | 
						|
    Dest[Size-1] = 0;
 | 
						|
 | 
						|
    // Endian safe: Result[i] = (PointerTy)Dest;
 | 
						|
    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
 | 
						|
                           SBytePtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Null terminate it
 | 
						|
  EE->StoreValueToMemory(PTOGV(0),
 | 
						|
                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
 | 
						|
                         SBytePtr);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// runStaticConstructorsDestructors - This method is used to execute all of
 | 
						|
/// the static constructors or destructors for a program, depending on the
 | 
						|
/// value of isDtors.
 | 
						|
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
 | 
						|
  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
 | 
						|
  
 | 
						|
  // Execute global ctors/dtors for each module in the program.
 | 
						|
  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | 
						|
    GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
 | 
						|
 | 
						|
    // If this global has internal linkage, or if it has a use, then it must be
 | 
						|
    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
 | 
						|
    // this is the case, don't execute any of the global ctors, __main will do
 | 
						|
    // it.
 | 
						|
    if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
 | 
						|
  
 | 
						|
    // Should be an array of '{ int, void ()* }' structs.  The first value is
 | 
						|
    // the init priority, which we ignore.
 | 
						|
    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | 
						|
    if (!InitList) continue;
 | 
						|
    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | 
						|
      if (ConstantStruct *CS = 
 | 
						|
          dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
 | 
						|
        if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
 | 
						|
      
 | 
						|
        Constant *FP = CS->getOperand(1);
 | 
						|
        if (FP->isNullValue())
 | 
						|
          break;  // Found a null terminator, exit.
 | 
						|
      
 | 
						|
        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | 
						|
          if (CE->isCast())
 | 
						|
            FP = CE->getOperand(0);
 | 
						|
        if (Function *F = dyn_cast<Function>(FP)) {
 | 
						|
          // Execute the ctor/dtor function!
 | 
						|
          runFunction(F, std::vector<GenericValue>());
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
 | 
						|
/// handle the common task of starting up main with the specified argc, argv,
 | 
						|
/// and envp parameters.
 | 
						|
int ExecutionEngine::runFunctionAsMain(Function *Fn,
 | 
						|
                                       const std::vector<std::string> &argv,
 | 
						|
                                       const char * const * envp) {
 | 
						|
  std::vector<GenericValue> GVArgs;
 | 
						|
  GenericValue GVArgc;
 | 
						|
  GVArgc.IntVal = APInt(32, argv.size());
 | 
						|
 | 
						|
  // Check main() type
 | 
						|
  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
 | 
						|
  const FunctionType *FTy = Fn->getFunctionType();
 | 
						|
  const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty));
 | 
						|
  switch (NumArgs) {
 | 
						|
  case 3:
 | 
						|
   if (FTy->getParamType(2) != PPInt8Ty) {
 | 
						|
     cerr << "Invalid type for third argument of main() supplied\n";
 | 
						|
     abort();
 | 
						|
   }
 | 
						|
   // FALLS THROUGH
 | 
						|
  case 2:
 | 
						|
   if (FTy->getParamType(1) != PPInt8Ty) {
 | 
						|
     cerr << "Invalid type for second argument of main() supplied\n";
 | 
						|
     abort();
 | 
						|
   }
 | 
						|
   // FALLS THROUGH
 | 
						|
  case 1:
 | 
						|
   if (FTy->getParamType(0) != Type::Int32Ty) {
 | 
						|
     cerr << "Invalid type for first argument of main() supplied\n";
 | 
						|
     abort();
 | 
						|
   }
 | 
						|
   // FALLS THROUGH
 | 
						|
  case 0:
 | 
						|
   if (FTy->getReturnType() != Type::Int32Ty &&
 | 
						|
       FTy->getReturnType() != Type::VoidTy) {
 | 
						|
     cerr << "Invalid return type of main() supplied\n";
 | 
						|
     abort();
 | 
						|
   }
 | 
						|
   break;
 | 
						|
  default:
 | 
						|
   cerr << "Invalid number of arguments of main() supplied\n";
 | 
						|
   abort();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (NumArgs) {
 | 
						|
    GVArgs.push_back(GVArgc); // Arg #0 = argc.
 | 
						|
    if (NumArgs > 1) {
 | 
						|
      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
 | 
						|
      assert(((char **)GVTOP(GVArgs[1]))[0] &&
 | 
						|
             "argv[0] was null after CreateArgv");
 | 
						|
      if (NumArgs > 2) {
 | 
						|
        std::vector<std::string> EnvVars;
 | 
						|
        for (unsigned i = 0; envp[i]; ++i)
 | 
						|
          EnvVars.push_back(envp[i]);
 | 
						|
        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
/// If possible, create a JIT, unless the caller specifically requests an
 | 
						|
/// Interpreter or there's an error. If even an Interpreter cannot be created,
 | 
						|
/// NULL is returned.
 | 
						|
///
 | 
						|
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
 | 
						|
                                         bool ForceInterpreter,
 | 
						|
                                         std::string *ErrorStr) {
 | 
						|
  ExecutionEngine *EE = 0;
 | 
						|
 | 
						|
  // Unless the interpreter was explicitly selected, try making a JIT.
 | 
						|
  if (!ForceInterpreter && JITCtor)
 | 
						|
    EE = JITCtor(MP, ErrorStr);
 | 
						|
 | 
						|
  // If we can't make a JIT, make an interpreter instead.
 | 
						|
  if (EE == 0 && InterpCtor)
 | 
						|
    EE = InterpCtor(MP, ErrorStr);
 | 
						|
 | 
						|
  if (EE) {
 | 
						|
    // Make sure we can resolve symbols in the program as well. The zero arg
 | 
						|
    // to the function tells DynamicLibrary to load the program, not a library.
 | 
						|
    try {
 | 
						|
      sys::DynamicLibrary::LoadLibraryPermanently(0);
 | 
						|
    } catch (...) {
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return EE;
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerToGlobal - This returns the address of the specified global
 | 
						|
/// value.  This may involve code generation if it's a function.
 | 
						|
///
 | 
						|
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
 | 
						|
  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
 | 
						|
    return getPointerToFunction(F);
 | 
						|
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  void *p = state.getGlobalAddressMap(locked)[GV];
 | 
						|
  if (p)
 | 
						|
    return p;
 | 
						|
 | 
						|
  // Global variable might have been added since interpreter started.
 | 
						|
  if (GlobalVariable *GVar =
 | 
						|
          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
 | 
						|
    EmitGlobalVariable(GVar);
 | 
						|
  else
 | 
						|
    assert(0 && "Global hasn't had an address allocated yet!");
 | 
						|
  return state.getGlobalAddressMap(locked)[GV];
 | 
						|
}
 | 
						|
 | 
						|
/// This function converts a Constant* into a GenericValue. The interesting 
 | 
						|
/// part is if C is a ConstantExpr.
 | 
						|
/// @brief Get a GenericValue for a Constnat*
 | 
						|
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
 | 
						|
  // If its undefined, return the garbage.
 | 
						|
  if (isa<UndefValue>(C)) 
 | 
						|
    return GenericValue();
 | 
						|
 | 
						|
  // If the value is a ConstantExpr
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    Constant *Op0 = CE->getOperand(0);
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      // Compute the index 
 | 
						|
      GenericValue Result = getConstantValue(Op0);
 | 
						|
      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
 | 
						|
      uint64_t Offset =
 | 
						|
        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
 | 
						|
 | 
						|
      char* tmp = (char*) Result.PointerVal;
 | 
						|
      Result = PTOGV(tmp + Offset);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    case Instruction::Trunc: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      GV.IntVal = GV.IntVal.trunc(BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::ZExt: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      GV.IntVal = GV.IntVal.zext(BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::SExt: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      GV.IntVal = GV.IntVal.sext(BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::FPTrunc: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      GV.FloatVal = float(GV.DoubleVal);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::FPExt:{
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      GV.DoubleVal = double(GV.FloatVal);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::UIToFP: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      if (CE->getType() == Type::FloatTy)
 | 
						|
        GV.FloatVal = float(GV.IntVal.roundToDouble());
 | 
						|
      else
 | 
						|
        GV.DoubleVal = GV.IntVal.roundToDouble();
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::SIToFP: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      if (CE->getType() == Type::FloatTy)
 | 
						|
        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
 | 
						|
      else
 | 
						|
        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::FPToUI: // double->APInt conversion handles sign
 | 
						|
    case Instruction::FPToSI: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      if (Op0->getType() == Type::FloatTy)
 | 
						|
        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
 | 
						|
      else
 | 
						|
        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::PtrToInt: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t PtrWidth = TD->getPointerSizeInBits();
 | 
						|
      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::IntToPtr: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t PtrWidth = TD->getPointerSizeInBits();
 | 
						|
      if (PtrWidth != GV.IntVal.getBitWidth())
 | 
						|
        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
 | 
						|
      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
 | 
						|
      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      const Type* DestTy = CE->getType();
 | 
						|
      switch (Op0->getType()->getTypeID()) {
 | 
						|
        default: assert(0 && "Invalid bitcast operand");
 | 
						|
        case Type::IntegerTyID:
 | 
						|
          assert(DestTy->isFloatingPoint() && "invalid bitcast");
 | 
						|
          if (DestTy == Type::FloatTy)
 | 
						|
            GV.FloatVal = GV.IntVal.bitsToFloat();
 | 
						|
          else if (DestTy == Type::DoubleTy)
 | 
						|
            GV.DoubleVal = GV.IntVal.bitsToDouble();
 | 
						|
          break;
 | 
						|
        case Type::FloatTyID: 
 | 
						|
          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
 | 
						|
          GV.IntVal.floatToBits(GV.FloatVal);
 | 
						|
          break;
 | 
						|
        case Type::DoubleTyID:
 | 
						|
          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
 | 
						|
          GV.IntVal.doubleToBits(GV.DoubleVal);
 | 
						|
          break;
 | 
						|
        case Type::PointerTyID:
 | 
						|
          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
 | 
						|
          break; // getConstantValue(Op0)  above already converted it
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      GenericValue LHS = getConstantValue(Op0);
 | 
						|
      GenericValue RHS = getConstantValue(CE->getOperand(1));
 | 
						|
      GenericValue GV;
 | 
						|
      switch (CE->getOperand(0)->getType()->getTypeID()) {
 | 
						|
      default: assert(0 && "Bad add type!"); abort();
 | 
						|
      case Type::IntegerTyID:
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: assert(0 && "Invalid integer opcode");
 | 
						|
          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
 | 
						|
          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
 | 
						|
          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
 | 
						|
          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
 | 
						|
          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
 | 
						|
          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
 | 
						|
          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
 | 
						|
          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
 | 
						|
          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
 | 
						|
          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Type::FloatTyID:
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: assert(0 && "Invalid float opcode"); abort();
 | 
						|
          case Instruction::Add:  
 | 
						|
            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
 | 
						|
          case Instruction::Sub:  
 | 
						|
            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
 | 
						|
          case Instruction::Mul:  
 | 
						|
            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
 | 
						|
          case Instruction::FDiv: 
 | 
						|
            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
 | 
						|
          case Instruction::FRem: 
 | 
						|
            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Type::DoubleTyID:
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: assert(0 && "Invalid double opcode"); abort();
 | 
						|
          case Instruction::Add:  
 | 
						|
            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
 | 
						|
          case Instruction::Sub:  
 | 
						|
            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
 | 
						|
          case Instruction::Mul:  
 | 
						|
            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
 | 
						|
          case Instruction::FDiv: 
 | 
						|
            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
 | 
						|
          case Instruction::FRem: 
 | 
						|
            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    cerr << "ConstantExpr not handled: " << *CE << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  GenericValue Result;
 | 
						|
  switch (C->getType()->getTypeID()) {
 | 
						|
  case Type::FloatTyID: 
 | 
						|
    Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); 
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); 
 | 
						|
    break;
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    Result.IntVal = cast<ConstantInt>(C)->getValue();
 | 
						|
    break;
 | 
						|
  case Type::PointerTyID:
 | 
						|
    if (isa<ConstantPointerNull>(C))
 | 
						|
      Result.PointerVal = 0;
 | 
						|
    else if (const Function *F = dyn_cast<Function>(C))
 | 
						|
      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
 | 
						|
    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
 | 
						|
      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
 | 
						|
    else
 | 
						|
      assert(0 && "Unknown constant pointer type!");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
 | 
						|
/// is the address of the memory at which to store Val, cast to GenericValue *.
 | 
						|
/// It is not a pointer to a GenericValue containing the address at which to
 | 
						|
/// store Val.
 | 
						|
///
 | 
						|
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
 | 
						|
                                         const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::IntegerTyID: {
 | 
						|
    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
    GenericValue TmpVal = Val;
 | 
						|
    if (BitWidth <= 8)
 | 
						|
      *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue());
 | 
						|
    else if (BitWidth <= 16) {
 | 
						|
      *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue());
 | 
						|
    } else if (BitWidth <= 32) {
 | 
						|
      *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue());
 | 
						|
    } else if (BitWidth <= 64) {
 | 
						|
      *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue());
 | 
						|
    } else {
 | 
						|
      uint64_t *Dest = (uint64_t*)Ptr;
 | 
						|
      const uint64_t *Src = Val.IntVal.getRawData();
 | 
						|
      for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i)
 | 
						|
        Dest[i] = Src[i];
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::FloatTyID:
 | 
						|
    *((float*)Ptr) = Val.FloatVal;
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    *((double*)Ptr) = Val.DoubleVal;
 | 
						|
    break;
 | 
						|
  case Type::PointerTyID: 
 | 
						|
    *((PointerTy*)Ptr) = Val.PointerVal;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    cerr << "Cannot store value of type " << *Ty << "!\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FIXME: document
 | 
						|
///
 | 
						|
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 
 | 
						|
                                                  GenericValue *Ptr,
 | 
						|
                                                  const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::IntegerTyID: {
 | 
						|
    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
    if (BitWidth <= 8)
 | 
						|
      Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr));
 | 
						|
    else if (BitWidth <= 16) {
 | 
						|
      Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr));
 | 
						|
    } else if (BitWidth <= 32) {
 | 
						|
      Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr));
 | 
						|
    } else if (BitWidth <= 64) {
 | 
						|
      Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr));
 | 
						|
    } else
 | 
						|
      Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::FloatTyID:
 | 
						|
    Result.FloatVal = *((float*)Ptr);
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Result.DoubleVal = *((double*)Ptr); 
 | 
						|
    break;
 | 
						|
  case Type::PointerTyID: 
 | 
						|
    Result.PointerVal = *((PointerTy*)Ptr);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    cerr << "Cannot load value of type " << *Ty << "!\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// InitializeMemory - Recursive function to apply a Constant value into the
 | 
						|
// specified memory location...
 | 
						|
//
 | 
						|
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
 | 
						|
  if (isa<UndefValue>(Init)) {
 | 
						|
    return;
 | 
						|
  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
 | 
						|
    unsigned ElementSize =
 | 
						|
      getTargetData()->getTypeSize(CP->getType()->getElementType());
 | 
						|
    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | 
						|
      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
 | 
						|
    return;
 | 
						|
  } else if (Init->getType()->isFirstClassType()) {
 | 
						|
    GenericValue Val = getConstantValue(Init);
 | 
						|
    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
 | 
						|
    return;
 | 
						|
  } else if (isa<ConstantAggregateZero>(Init)) {
 | 
						|
    memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Init->getType()->getTypeID()) {
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ConstantArray *CPA = cast<ConstantArray>(Init);
 | 
						|
    unsigned ElementSize =
 | 
						|
      getTargetData()->getTypeSize(CPA->getType()->getElementType());
 | 
						|
    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | 
						|
      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
 | 
						|
    const StructLayout *SL =
 | 
						|
      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
 | 
						|
    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | 
						|
      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    cerr << "Bad Type: " << *Init->getType() << "\n";
 | 
						|
    assert(0 && "Unknown constant type to initialize memory with!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitGlobals - Emit all of the global variables to memory, storing their
 | 
						|
/// addresses into GlobalAddress.  This must make sure to copy the contents of
 | 
						|
/// their initializers into the memory.
 | 
						|
///
 | 
						|
void ExecutionEngine::emitGlobals() {
 | 
						|
  const TargetData *TD = getTargetData();
 | 
						|
 | 
						|
  // Loop over all of the global variables in the program, allocating the memory
 | 
						|
  // to hold them.  If there is more than one module, do a prepass over globals
 | 
						|
  // to figure out how the different modules should link together.
 | 
						|
  //
 | 
						|
  std::map<std::pair<std::string, const Type*>,
 | 
						|
           const GlobalValue*> LinkedGlobalsMap;
 | 
						|
 | 
						|
  if (Modules.size() != 1) {
 | 
						|
    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | 
						|
      Module &M = *Modules[m]->getModule();
 | 
						|
      for (Module::const_global_iterator I = M.global_begin(),
 | 
						|
           E = M.global_end(); I != E; ++I) {
 | 
						|
        const GlobalValue *GV = I;
 | 
						|
        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
 | 
						|
            GV->hasAppendingLinkage() || !GV->hasName())
 | 
						|
          continue;// Ignore external globals and globals with internal linkage.
 | 
						|
          
 | 
						|
        const GlobalValue *&GVEntry = 
 | 
						|
          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | 
						|
 | 
						|
        // If this is the first time we've seen this global, it is the canonical
 | 
						|
        // version.
 | 
						|
        if (!GVEntry) {
 | 
						|
          GVEntry = GV;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If the existing global is strong, never replace it.
 | 
						|
        if (GVEntry->hasExternalLinkage() ||
 | 
						|
            GVEntry->hasDLLImportLinkage() ||
 | 
						|
            GVEntry->hasDLLExportLinkage())
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
 | 
						|
        // symbol.
 | 
						|
        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
 | 
						|
          GVEntry = GV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::vector<const GlobalValue*> NonCanonicalGlobals;
 | 
						|
  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | 
						|
    Module &M = *Modules[m]->getModule();
 | 
						|
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // In the multi-module case, see what this global maps to.
 | 
						|
      if (!LinkedGlobalsMap.empty()) {
 | 
						|
        if (const GlobalValue *GVEntry = 
 | 
						|
              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
 | 
						|
          // If something else is the canonical global, ignore this one.
 | 
						|
          if (GVEntry != &*I) {
 | 
						|
            NonCanonicalGlobals.push_back(I);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        // Get the type of the global.
 | 
						|
        const Type *Ty = I->getType()->getElementType();
 | 
						|
 | 
						|
        // Allocate some memory for it!
 | 
						|
        unsigned Size = TD->getTypeSize(Ty);
 | 
						|
        addGlobalMapping(I, new char[Size]);
 | 
						|
      } else {
 | 
						|
        // External variable reference. Try to use the dynamic loader to
 | 
						|
        // get a pointer to it.
 | 
						|
        if (void *SymAddr =
 | 
						|
            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
 | 
						|
          addGlobalMapping(I, SymAddr);
 | 
						|
        else {
 | 
						|
          cerr << "Could not resolve external global address: "
 | 
						|
               << I->getName() << "\n";
 | 
						|
          abort();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If there are multiple modules, map the non-canonical globals to their
 | 
						|
    // canonical location.
 | 
						|
    if (!NonCanonicalGlobals.empty()) {
 | 
						|
      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
 | 
						|
        const GlobalValue *GV = NonCanonicalGlobals[i];
 | 
						|
        const GlobalValue *CGV =
 | 
						|
          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | 
						|
        void *Ptr = getPointerToGlobalIfAvailable(CGV);
 | 
						|
        assert(Ptr && "Canonical global wasn't codegen'd!");
 | 
						|
        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now that all of the globals are set up in memory, loop through them all 
 | 
						|
    // and initialize their contents.
 | 
						|
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        if (!LinkedGlobalsMap.empty()) {
 | 
						|
          if (const GlobalValue *GVEntry = 
 | 
						|
                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
 | 
						|
            if (GVEntry != &*I)  // Not the canonical variable.
 | 
						|
              continue;
 | 
						|
        }
 | 
						|
        EmitGlobalVariable(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// EmitGlobalVariable - This method emits the specified global variable to the
 | 
						|
// address specified in GlobalAddresses, or allocates new memory if it's not
 | 
						|
// already in the map.
 | 
						|
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
 | 
						|
  void *GA = getPointerToGlobalIfAvailable(GV);
 | 
						|
  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
 | 
						|
 | 
						|
  const Type *ElTy = GV->getType()->getElementType();
 | 
						|
  size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
 | 
						|
  if (GA == 0) {
 | 
						|
    // If it's not already specified, allocate memory for the global.
 | 
						|
    GA = new char[GVSize];
 | 
						|
    addGlobalMapping(GV, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  InitializeMemory(GV->getInitializer(), GA);
 | 
						|
  NumInitBytes += (unsigned)GVSize;
 | 
						|
  ++NumGlobals;
 | 
						|
}
 |