1123 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1123 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pattern matching instruction selector for PowerPC,
 | 
						|
// converting from a legalized dag to a PPC dag.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-codegen"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCPredicates.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "PPCHazardRecognizers.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <queue>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | 
						|
  /// instructions for SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
 | 
						|
    PPCTargetMachine &TM;
 | 
						|
    PPCTargetLowering PPCLowering;
 | 
						|
    unsigned GlobalBaseReg;
 | 
						|
  public:
 | 
						|
    PPCDAGToDAGISel(PPCTargetMachine &tm)
 | 
						|
      : SelectionDAGISel(PPCLowering), TM(tm),
 | 
						|
        PPCLowering(*TM.getTargetLowering()) {}
 | 
						|
    
 | 
						|
    virtual bool runOnFunction(Function &Fn) {
 | 
						|
      // Make sure we re-emit a set of the global base reg if necessary
 | 
						|
      GlobalBaseReg = 0;
 | 
						|
      SelectionDAGISel::runOnFunction(Fn);
 | 
						|
      
 | 
						|
      InsertVRSaveCode(Fn);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
   
 | 
						|
    /// getI32Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i32.
 | 
						|
    inline SDOperand getI32Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getI64Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i64.
 | 
						|
    inline SDOperand getI64Imm(uint64_t Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i64);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getSmallIPtrImm - Return a target constant of pointer type.
 | 
						|
    inline SDOperand getSmallIPtrImm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 
 | 
						|
    /// with any number of 0s on either side.  The 1s are allowed to wrap from
 | 
						|
    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
 | 
						|
    /// 0x0F0F0000 is not, since all 1s are not contiguous.
 | 
						|
    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
 | 
						|
 | 
						|
 | 
						|
    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
 | 
						|
    /// rotate and mask opcode and mask operation.
 | 
						|
    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
 | 
						|
                                unsigned &SH, unsigned &MB, unsigned &ME);
 | 
						|
    
 | 
						|
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | 
						|
    /// base register.  Return the virtual register that holds this value.
 | 
						|
    SDNode *getGlobalBaseReg();
 | 
						|
    
 | 
						|
    // Select - Convert the specified operand from a target-independent to a
 | 
						|
    // target-specific node if it hasn't already been changed.
 | 
						|
    SDNode *Select(SDOperand Op);
 | 
						|
    
 | 
						|
    SDNode *SelectBitfieldInsert(SDNode *N);
 | 
						|
 | 
						|
    /// SelectCC - Select a comparison of the specified values with the
 | 
						|
    /// specified condition code, returning the CR# of the expression.
 | 
						|
    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
 | 
						|
 | 
						|
    /// SelectAddrImm - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 16-bit displacement [r+imm].
 | 
						|
    bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
 | 
						|
                       SDOperand &Base) {
 | 
						|
      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
 | 
						|
    /// immediate field.  Because preinc imms have already been validated, just
 | 
						|
    /// accept it.
 | 
						|
    bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
 | 
						|
      Out = N;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
      
 | 
						|
    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | 
						|
    /// represented as an indexed [r+r] operation.  Returns false if it can
 | 
						|
    /// be represented by [r+imm], which are preferred.
 | 
						|
    bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
 | 
						|
                       SDOperand &Index) {
 | 
						|
      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | 
						|
    /// represented as an indexed [r+r] operation.
 | 
						|
    bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
 | 
						|
                           SDOperand &Index) {
 | 
						|
      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrImmShift - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | 
						|
    /// for use by STD and friends.
 | 
						|
    bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
 | 
						|
                            SDOperand &Base) {
 | 
						|
      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
 | 
						|
    }
 | 
						|
      
 | 
						|
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
    /// inline asm expressions.
 | 
						|
    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
 | 
						|
                                              char ConstraintCode,
 | 
						|
                                              std::vector<SDOperand> &OutOps,
 | 
						|
                                              SelectionDAG &DAG) {
 | 
						|
      SDOperand Op0, Op1;
 | 
						|
      switch (ConstraintCode) {
 | 
						|
      default: return true;
 | 
						|
      case 'm':   // memory
 | 
						|
        if (!SelectAddrIdx(Op, Op, Op0, Op1))
 | 
						|
          SelectAddrImm(Op, Op, Op0, Op1);
 | 
						|
        break;
 | 
						|
      case 'o':   // offsetable
 | 
						|
        if (!SelectAddrImm(Op, Op, Op0, Op1)) {
 | 
						|
          Op0 = Op;
 | 
						|
          AddToISelQueue(Op0);     // r+0.
 | 
						|
          Op1 = getSmallIPtrImm(0);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 'v':   // not offsetable
 | 
						|
        SelectAddrIdxOnly(Op, Op, Op0, Op1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      OutOps.push_back(Op0);
 | 
						|
      OutOps.push_back(Op1);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    SDOperand BuildSDIVSequence(SDNode *N);
 | 
						|
    SDOperand BuildUDIVSequence(SDNode *N);
 | 
						|
    
 | 
						|
    /// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | 
						|
    
 | 
						|
    void InsertVRSaveCode(Function &Fn);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
    } 
 | 
						|
    
 | 
						|
    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
 | 
						|
    /// this target when scheduling the DAG.
 | 
						|
    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
 | 
						|
      // Should use subtarget info to pick the right hazard recognizer.  For
 | 
						|
      // now, always return a PPC970 recognizer.
 | 
						|
      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
 | 
						|
      assert(II && "No InstrInfo?");
 | 
						|
      return new PPCHazardRecognizer970(*II); 
 | 
						|
    }
 | 
						|
 | 
						|
// Include the pieces autogenerated from the target description.
 | 
						|
#include "PPCGenDAGISel.inc"
 | 
						|
    
 | 
						|
private:
 | 
						|
    SDNode *SelectSETCC(SDOperand Op);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | 
						|
  DEBUG(BB->dump());
 | 
						|
 | 
						|
  // Select target instructions for the DAG.
 | 
						|
  DAG.setRoot(SelectRoot(DAG.getRoot()));
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
  
 | 
						|
  // Emit machine code to BB.
 | 
						|
  ScheduleAndEmitDAG(DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertVRSaveCode - Once the entire function has been instruction selected,
 | 
						|
/// all virtual registers are created and all machine instructions are built,
 | 
						|
/// check to see if we need to save/restore VRSAVE.  If so, do it.
 | 
						|
void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
 | 
						|
  // Check to see if this function uses vector registers, which means we have to
 | 
						|
  // save and restore the VRSAVE register and update it with the regs we use.  
 | 
						|
  //
 | 
						|
  // In this case, there will be virtual registers of vector type type created
 | 
						|
  // by the scheduler.  Detect them now.
 | 
						|
  MachineFunction &Fn = MachineFunction::get(&F);
 | 
						|
  SSARegMap *RegMap = Fn.getSSARegMap();
 | 
						|
  bool HasVectorVReg = false;
 | 
						|
  for (unsigned i = MRegisterInfo::FirstVirtualRegister, 
 | 
						|
       e = RegMap->getLastVirtReg()+1; i != e; ++i)
 | 
						|
    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
 | 
						|
      HasVectorVReg = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  if (!HasVectorVReg) return;  // nothing to do.
 | 
						|
      
 | 
						|
  // If we have a vector register, we want to emit code into the entry and exit
 | 
						|
  // blocks to save and restore the VRSAVE register.  We do this here (instead
 | 
						|
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | 
						|
  //
 | 
						|
  // 1. This (trivially) reduces the load on the register allocator, by not
 | 
						|
  //    having to represent the live range of the VRSAVE register.
 | 
						|
  // 2. This (more significantly) allows us to create a temporary virtual
 | 
						|
  //    register to hold the saved VRSAVE value, allowing this temporary to be
 | 
						|
  //    register allocated, instead of forcing it to be spilled to the stack.
 | 
						|
 | 
						|
  // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | 
						|
  // function and one for the value after having bits or'd into it.
 | 
						|
  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
  
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
  MachineBasicBlock &EntryBB = *Fn.begin();
 | 
						|
  // Emit the following code into the entry block:
 | 
						|
  // InVRSAVE = MFVRSAVE
 | 
						|
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | 
						|
  // MTVRSAVE UpdatedVRSAVE
 | 
						|
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | 
						|
  BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
 | 
						|
  
 | 
						|
  // Find all return blocks, outputting a restore in each epilog.
 | 
						|
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
 | 
						|
      IP = BB->end(); --IP;
 | 
						|
      
 | 
						|
      // Skip over all terminator instructions, which are part of the return
 | 
						|
      // sequence.
 | 
						|
      MachineBasicBlock::iterator I2 = IP;
 | 
						|
      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
 | 
						|
        IP = I2;
 | 
						|
      
 | 
						|
      // Emit: MTVRSAVE InVRSave
 | 
						|
      BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
 | 
						|
    }        
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getGlobalBaseReg - Output the instructions required to put the
 | 
						|
/// base address to use for accessing globals into a register.
 | 
						|
///
 | 
						|
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
 | 
						|
  if (!GlobalBaseReg) {
 | 
						|
    const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
    // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | 
						|
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
 | 
						|
 | 
						|
    if (PPCLowering.getPointerTy() == MVT::i32) {
 | 
						|
      GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
 | 
						|
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
 | 
						|
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
 | 
						|
    } else {
 | 
						|
      GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass);
 | 
						|
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
 | 
						|
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
 | 
						|
}
 | 
						|
 | 
						|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | 
						|
/// or 64-bit immediate, and if the value can be accurately represented as a
 | 
						|
/// sign extension from a 16-bit value.  If so, this returns true and the
 | 
						|
/// immediate.
 | 
						|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | 
						|
  if (N->getOpcode() != ISD::Constant)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = (short)cast<ConstantSDNode>(N)->getValue();
 | 
						|
  if (N->getValueType(0) == MVT::i32)
 | 
						|
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
 | 
						|
  else
 | 
						|
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntS16Immediate(SDOperand Op, short &Imm) {
 | 
						|
  return isIntS16Immediate(Op.Val, Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | 
						|
/// operand. If so Imm will receive the 32-bit value.
 | 
						|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
 | 
						|
/// operand.  If so Imm will receive the 64-bit value.
 | 
						|
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isInt32Immediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
 | 
						|
  return isInt32Immediate(N.Val, Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | 
						|
  if (isShiftedMask_32(Val)) {
 | 
						|
    // look for the first non-zero bit
 | 
						|
    MB = CountLeadingZeros_32(Val);
 | 
						|
    // look for the first zero bit after the run of ones
 | 
						|
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    Val = ~Val; // invert mask
 | 
						|
    if (isShiftedMask_32(Val)) {
 | 
						|
      // effectively look for the first zero bit
 | 
						|
      ME = CountLeadingZeros_32(Val) - 1;
 | 
						|
      // effectively look for the first one bit after the run of zeros
 | 
						|
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // no run present
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 
 | 
						|
                                      bool IsShiftMask, unsigned &SH, 
 | 
						|
                                      unsigned &MB, unsigned &ME) {
 | 
						|
  // Don't even go down this path for i64, since different logic will be
 | 
						|
  // necessary for rldicl/rldicr/rldimi.
 | 
						|
  if (N->getValueType(0) != MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Shift  = 32;
 | 
						|
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (N->getNumOperands() != 2 ||
 | 
						|
      !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (Opcode == ISD::SHL) {
 | 
						|
    // apply shift left to mask if it comes first
 | 
						|
    if (IsShiftMask) Mask = Mask << Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu << Shift);
 | 
						|
  } else if (Opcode == ISD::SRL) { 
 | 
						|
    // apply shift right to mask if it comes first
 | 
						|
    if (IsShiftMask) Mask = Mask >> Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | 
						|
    // adjust for the left rotate
 | 
						|
    Shift = 32 - Shift;
 | 
						|
  } else if (Opcode == ISD::ROTL) {
 | 
						|
    Indeterminant = 0;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // if the mask doesn't intersect any Indeterminant bits
 | 
						|
  if (Mask && !(Mask & Indeterminant)) {
 | 
						|
    SH = Shift & 31;
 | 
						|
    // make sure the mask is still a mask (wrap arounds may not be)
 | 
						|
    return isRunOfOnes(Mask, MB, ME);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectBitfieldInsert - turn an or of two masked values into
 | 
						|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
 | 
						|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | 
						|
  SDOperand Op0 = N->getOperand(0);
 | 
						|
  SDOperand Op1 = N->getOperand(1);
 | 
						|
  
 | 
						|
  uint64_t LKZ, LKO, RKZ, RKO;
 | 
						|
  CurDAG->ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
 | 
						|
  CurDAG->ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
 | 
						|
  
 | 
						|
  unsigned TargetMask = LKZ;
 | 
						|
  unsigned InsertMask = RKZ;
 | 
						|
  
 | 
						|
  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
 | 
						|
    unsigned Op0Opc = Op0.getOpcode();
 | 
						|
    unsigned Op1Opc = Op1.getOpcode();
 | 
						|
    unsigned Value, SH = 0;
 | 
						|
    TargetMask = ~TargetMask;
 | 
						|
    InsertMask = ~InsertMask;
 | 
						|
 | 
						|
    // If the LHS has a foldable shift and the RHS does not, then swap it to the
 | 
						|
    // RHS so that we can fold the shift into the insert.
 | 
						|
    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | 
						|
      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
          Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | 
						|
            Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | 
						|
          std::swap(Op0, Op1);
 | 
						|
          std::swap(Op0Opc, Op1Opc);
 | 
						|
          std::swap(TargetMask, InsertMask);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
 | 
						|
      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | 
						|
          Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
        std::swap(Op0Opc, Op1Opc);
 | 
						|
        std::swap(TargetMask, InsertMask);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned MB, ME;
 | 
						|
    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
 | 
						|
      SDOperand Tmp1, Tmp2, Tmp3;
 | 
						|
      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
 | 
						|
 | 
						|
      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
 | 
						|
          isInt32Immediate(Op1.getOperand(1), Value)) {
 | 
						|
        Op1 = Op1.getOperand(0);
 | 
						|
        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
 | 
						|
      }
 | 
						|
      if (Op1Opc == ISD::AND) {
 | 
						|
        unsigned SHOpc = Op1.getOperand(0).getOpcode();
 | 
						|
        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
 | 
						|
            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
 | 
						|
          Op1 = Op1.getOperand(0).getOperand(0);
 | 
						|
          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
 | 
						|
        } else {
 | 
						|
          Op1 = Op1.getOperand(0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
 | 
						|
      AddToISelQueue(Tmp3);
 | 
						|
      AddToISelQueue(Op1);
 | 
						|
      SH &= 31;
 | 
						|
      SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
 | 
						|
                          getI32Imm(ME) };
 | 
						|
      return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectCC - Select a comparison of the specified values with the specified
 | 
						|
/// condition code, returning the CR# of the expression.
 | 
						|
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
 | 
						|
                                    ISD::CondCode CC) {
 | 
						|
  // Always select the LHS.
 | 
						|
  AddToISelQueue(LHS);
 | 
						|
  unsigned Opc;
 | 
						|
  
 | 
						|
  if (LHS.getValueType() == MVT::i32) {
 | 
						|
    unsigned Imm;
 | 
						|
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
      if (isInt32Immediate(RHS, Imm)) {
 | 
						|
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | 
						|
        if (isUInt16(Imm))
 | 
						|
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
 | 
						|
                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
        // If this is a 16-bit signed immediate, fold it.
 | 
						|
        if (isInt16((int)Imm))
 | 
						|
          return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
 | 
						|
                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
        
 | 
						|
        // For non-equality comparisons, the default code would materialize the
 | 
						|
        // constant, then compare against it, like this:
 | 
						|
        //   lis r2, 4660
 | 
						|
        //   ori r2, r2, 22136 
 | 
						|
        //   cmpw cr0, r3, r2
 | 
						|
        // Since we are just comparing for equality, we can emit this instead:
 | 
						|
        //   xoris r0,r3,0x1234
 | 
						|
        //   cmplwi cr0,r0,0x5678
 | 
						|
        //   beq cr0,L6
 | 
						|
        SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
 | 
						|
                                            getI32Imm(Imm >> 16)), 0);
 | 
						|
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
 | 
						|
                                               getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
      }
 | 
						|
      Opc = PPC::CMPLW;
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
 | 
						|
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
 | 
						|
                                               getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
      Opc = PPC::CMPLW;
 | 
						|
    } else {
 | 
						|
      short SImm;
 | 
						|
      if (isIntS16Immediate(RHS, SImm))
 | 
						|
        return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
 | 
						|
                                               getI32Imm((int)SImm & 0xFFFF)),
 | 
						|
                         0);
 | 
						|
      Opc = PPC::CMPW;
 | 
						|
    }
 | 
						|
  } else if (LHS.getValueType() == MVT::i64) {
 | 
						|
    uint64_t Imm;
 | 
						|
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
      if (isInt64Immediate(RHS.Val, Imm)) {
 | 
						|
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | 
						|
        if (isUInt16(Imm))
 | 
						|
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
 | 
						|
                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
        // If this is a 16-bit signed immediate, fold it.
 | 
						|
        if (isInt16(Imm))
 | 
						|
          return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
 | 
						|
                                                 getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
        
 | 
						|
        // For non-equality comparisons, the default code would materialize the
 | 
						|
        // constant, then compare against it, like this:
 | 
						|
        //   lis r2, 4660
 | 
						|
        //   ori r2, r2, 22136 
 | 
						|
        //   cmpd cr0, r3, r2
 | 
						|
        // Since we are just comparing for equality, we can emit this instead:
 | 
						|
        //   xoris r0,r3,0x1234
 | 
						|
        //   cmpldi cr0,r0,0x5678
 | 
						|
        //   beq cr0,L6
 | 
						|
        if (isUInt32(Imm)) {
 | 
						|
          SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
 | 
						|
                                              getI64Imm(Imm >> 16)), 0);
 | 
						|
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
 | 
						|
                                                 getI64Imm(Imm & 0xFFFF)), 0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Opc = PPC::CMPLD;
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
 | 
						|
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
 | 
						|
                                               getI64Imm(Imm & 0xFFFF)), 0);
 | 
						|
      Opc = PPC::CMPLD;
 | 
						|
    } else {
 | 
						|
      short SImm;
 | 
						|
      if (isIntS16Immediate(RHS, SImm))
 | 
						|
        return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
 | 
						|
                                               getI64Imm(SImm & 0xFFFF)),
 | 
						|
                         0);
 | 
						|
      Opc = PPC::CMPD;
 | 
						|
    }
 | 
						|
  } else if (LHS.getValueType() == MVT::f32) {
 | 
						|
    Opc = PPC::FCMPUS;
 | 
						|
  } else {
 | 
						|
    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
 | 
						|
    Opc = PPC::FCMPUD;
 | 
						|
  }
 | 
						|
  AddToISelQueue(RHS);
 | 
						|
  return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
 | 
						|
}
 | 
						|
 | 
						|
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Unknown condition!"); abort();
 | 
						|
  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETEQ:  return PPC::PRED_EQ;
 | 
						|
  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  return PPC::PRED_NE;
 | 
						|
  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:  return PPC::PRED_LT;
 | 
						|
  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  return PPC::PRED_LE;
 | 
						|
  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:  return PPC::PRED_GT;
 | 
						|
  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  return PPC::PRED_GE;
 | 
						|
    
 | 
						|
  case ISD::SETO:   return PPC::PRED_NU;
 | 
						|
  case ISD::SETUO:  return PPC::PRED_UN;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getCRIdxForSetCC - Return the index of the condition register field
 | 
						|
/// associated with the SetCC condition, and whether or not the field is
 | 
						|
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | 
						|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Unknown condition!"); abort();
 | 
						|
  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:  Inv = false;  return 0;
 | 
						|
  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  Inv = true;   return 0;
 | 
						|
  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:  Inv = false;  return 1;
 | 
						|
  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  Inv = true;   return 1;
 | 
						|
  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETEQ:  Inv = false;  return 2;
 | 
						|
  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  Inv = true;   return 2;
 | 
						|
  case ISD::SETO:   Inv = true;   return 3;
 | 
						|
  case ISD::SETUO:  Inv = false;  return 3;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  unsigned Imm;
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  if (isInt32Immediate(N->getOperand(1), Imm)) {
 | 
						|
    // We can codegen setcc op, imm very efficiently compared to a brcond.
 | 
						|
    // Check for those cases here.
 | 
						|
    // setcc op, 0
 | 
						|
    if (Imm == 0) {
 | 
						|
      SDOperand Op = N->getOperand(0);
 | 
						|
      AddToISelQueue(Op);
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ: {
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
 | 
						|
        SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      case ISD::SETNE: {
 | 
						|
        SDOperand AD =
 | 
						|
          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                          Op, getI32Imm(~0U)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
 | 
						|
                                    AD.getValue(1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDOperand T =
 | 
						|
          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
 | 
						|
        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
 | 
						|
        SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      }
 | 
						|
    } else if (Imm == ~0U) {        // setcc op, -1
 | 
						|
      SDOperand Op = N->getOperand(0);
 | 
						|
      AddToISelQueue(Op);
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                             Op, getI32Imm(1)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | 
						|
                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
 | 
						|
                                                              getI32Imm(0)), 0),
 | 
						|
                                    Op.getValue(1));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
 | 
						|
        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                           Op, getI32Imm(~0U));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
 | 
						|
                                    Op, SDOperand(AD, 1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
 | 
						|
                                                       getI32Imm(1)), 0);
 | 
						|
        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
 | 
						|
                                                       Op), 0);
 | 
						|
        SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
      }
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 
 | 
						|
                                    getI32Imm(1));
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool Inv;
 | 
						|
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | 
						|
  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | 
						|
  SDOperand IntCR;
 | 
						|
  
 | 
						|
  // Force the ccreg into CR7.
 | 
						|
  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | 
						|
  
 | 
						|
  SDOperand InFlag(0, 0);  // Null incoming flag value.
 | 
						|
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
 | 
						|
                               InFlag).getValue(1);
 | 
						|
  
 | 
						|
  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | 
						|
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
 | 
						|
                                            CCReg), 0);
 | 
						|
  else
 | 
						|
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
 | 
						|
  
 | 
						|
  SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
 | 
						|
                      getI32Imm(31), getI32Imm(31) };
 | 
						|
  if (!Inv) {
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
  } else {
 | 
						|
    SDOperand Tmp =
 | 
						|
      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Select - Convert the specified operand from a target-independent to a
 | 
						|
// target-specific node if it hasn't already been changed.
 | 
						|
SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
 | 
						|
      N->getOpcode() < PPCISD::FIRST_NUMBER)
 | 
						|
    return NULL;   // Already selected.
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  
 | 
						|
  case ISD::Constant: {
 | 
						|
    if (N->getValueType(0) == MVT::i64) {
 | 
						|
      // Get 64 bit value.
 | 
						|
      int64_t Imm = cast<ConstantSDNode>(N)->getValue();
 | 
						|
      // Assume no remaining bits.
 | 
						|
      unsigned Remainder = 0;
 | 
						|
      // Assume no shift required.
 | 
						|
      unsigned Shift = 0;
 | 
						|
      
 | 
						|
      // If it can't be represented as a 32 bit value.
 | 
						|
      if (!isInt32(Imm)) {
 | 
						|
        Shift = CountTrailingZeros_64(Imm);
 | 
						|
        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | 
						|
        
 | 
						|
        // If the shifted value fits 32 bits.
 | 
						|
        if (isInt32(ImmSh)) {
 | 
						|
          // Go with the shifted value.
 | 
						|
          Imm = ImmSh;
 | 
						|
        } else {
 | 
						|
          // Still stuck with a 64 bit value.
 | 
						|
          Remainder = Imm;
 | 
						|
          Shift = 32;
 | 
						|
          Imm >>= 32;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Intermediate operand.
 | 
						|
      SDNode *Result;
 | 
						|
 | 
						|
      // Handle first 32 bits.
 | 
						|
      unsigned Lo = Imm & 0xFFFF;
 | 
						|
      unsigned Hi = (Imm >> 16) & 0xFFFF;
 | 
						|
      
 | 
						|
      // Simple value.
 | 
						|
      if (isInt16(Imm)) {
 | 
						|
       // Just the Lo bits.
 | 
						|
        Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
 | 
						|
      } else if (Lo) {
 | 
						|
        // Handle the Hi bits.
 | 
						|
        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
 | 
						|
        Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
 | 
						|
        // And Lo bits.
 | 
						|
        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
 | 
						|
                                       SDOperand(Result, 0), getI32Imm(Lo));
 | 
						|
      } else {
 | 
						|
       // Just the Hi bits.
 | 
						|
        Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If no shift, we're done.
 | 
						|
      if (!Shift) return Result;
 | 
						|
 | 
						|
      // Shift for next step if the upper 32-bits were not zero.
 | 
						|
      if (Imm) {
 | 
						|
        Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
 | 
						|
                                       SDOperand(Result, 0),
 | 
						|
                                       getI32Imm(Shift), getI32Imm(63 - Shift));
 | 
						|
      }
 | 
						|
 | 
						|
      // Add in the last bits as required.
 | 
						|
      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | 
						|
        Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
 | 
						|
                                       SDOperand(Result, 0), getI32Imm(Hi));
 | 
						|
      } 
 | 
						|
      if ((Lo = Remainder & 0xFFFF)) {
 | 
						|
        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
 | 
						|
                                       SDOperand(Result, 0), getI32Imm(Lo));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  case ISD::SETCC:
 | 
						|
    return SelectSETCC(Op);
 | 
						|
  case PPCISD::GlobalBaseReg:
 | 
						|
    return getGlobalBaseReg();
 | 
						|
    
 | 
						|
  case ISD::FrameIndex: {
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
 | 
						|
    unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
 | 
						|
    if (N->hasOneUse())
 | 
						|
      return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
 | 
						|
                                  getSmallIPtrImm(0));
 | 
						|
    return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
 | 
						|
                                 getSmallIPtrImm(0));
 | 
						|
  }
 | 
						|
 | 
						|
  case PPCISD::MFCR: {
 | 
						|
    SDOperand InFlag = N->getOperand(1);
 | 
						|
    AddToISelQueue(InFlag);
 | 
						|
    // Use MFOCRF if supported.
 | 
						|
    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | 
						|
      return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
 | 
						|
                                   N->getOperand(0), InFlag);
 | 
						|
    else
 | 
						|
      return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ISD::SDIV: {
 | 
						|
    // FIXME: since this depends on the setting of the carry flag from the srawi
 | 
						|
    //        we should really be making notes about that for the scheduler.
 | 
						|
    // FIXME: It sure would be nice if we could cheaply recognize the 
 | 
						|
    //        srl/add/sra pattern the dag combiner will generate for this as
 | 
						|
    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | 
						|
    unsigned Imm;
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm)) {
 | 
						|
      SDOperand N0 = N->getOperand(0);
 | 
						|
      AddToISelQueue(N0);
 | 
						|
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | 
						|
        SDNode *Op =
 | 
						|
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | 
						|
                                N0, getI32Imm(Log2_32(Imm)));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | 
						|
                                    SDOperand(Op, 0), SDOperand(Op, 1));
 | 
						|
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | 
						|
        SDNode *Op =
 | 
						|
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | 
						|
                                N0, getI32Imm(Log2_32(-Imm)));
 | 
						|
        SDOperand PT =
 | 
						|
          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
 | 
						|
                                          SDOperand(Op, 0), SDOperand(Op, 1)),
 | 
						|
                    0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ISD::LOAD: {
 | 
						|
    // Handle preincrement loads.
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(Op);
 | 
						|
    MVT::ValueType LoadedVT = LD->getLoadedVT();
 | 
						|
    
 | 
						|
    // Normal loads are handled by code generated from the .td file.
 | 
						|
    if (LD->getAddressingMode() != ISD::PRE_INC)
 | 
						|
      break;
 | 
						|
    
 | 
						|
    SDOperand Offset = LD->getOffset();
 | 
						|
    if (isa<ConstantSDNode>(Offset) ||
 | 
						|
        Offset.getOpcode() == ISD::TargetGlobalAddress) {
 | 
						|
      
 | 
						|
      unsigned Opcode;
 | 
						|
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
      if (LD->getValueType(0) != MVT::i64) {
 | 
						|
        // Handle PPC32 integer and normal FP loads.
 | 
						|
        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
 | 
						|
        switch (LoadedVT) {
 | 
						|
          default: assert(0 && "Invalid PPC load type!");
 | 
						|
          case MVT::f64: Opcode = PPC::LFDU; break;
 | 
						|
          case MVT::f32: Opcode = PPC::LFSU; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZU; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZU; break;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | 
						|
        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
 | 
						|
        switch (LoadedVT) {
 | 
						|
          default: assert(0 && "Invalid PPC load type!");
 | 
						|
          case MVT::i64: Opcode = PPC::LDU; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZU8; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZU8; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      SDOperand Chain = LD->getChain();
 | 
						|
      SDOperand Base = LD->getBasePtr();
 | 
						|
      AddToISelQueue(Chain);
 | 
						|
      AddToISelQueue(Base);
 | 
						|
      AddToISelQueue(Offset);
 | 
						|
      SDOperand Ops[] = { Offset, Base, Chain };
 | 
						|
      // FIXME: PPC64
 | 
						|
      return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
 | 
						|
                                   MVT::Other, Ops, 3);
 | 
						|
    } else {
 | 
						|
      assert(0 && "R+R preindex loads not supported yet!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ISD::AND: {
 | 
						|
    unsigned Imm, Imm2, SH, MB, ME;
 | 
						|
 | 
						|
    // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | 
						|
    // with a mask, emit rlwinm
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
 | 
						|
      SDOperand Val = N->getOperand(0).getOperand(0);
 | 
						|
      AddToISelQueue(Val);
 | 
						|
      SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
    // If this is just a masked value where the input is not handled above, and
 | 
						|
    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        isRunOfOnes(Imm, MB, ME) && 
 | 
						|
        N->getOperand(0).getOpcode() != ISD::ROTL) {
 | 
						|
      SDOperand Val = N->getOperand(0);
 | 
						|
      AddToISelQueue(Val);
 | 
						|
      SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
    // AND X, 0 -> 0, not "rlwinm 32".
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
 | 
						|
      AddToISelQueue(N->getOperand(1));
 | 
						|
      ReplaceUses(SDOperand(N, 0), N->getOperand(1));
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
    // ISD::OR doesn't get all the bitfield insertion fun.
 | 
						|
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) && 
 | 
						|
        N->getOperand(0).getOpcode() == ISD::OR &&
 | 
						|
        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
 | 
						|
      unsigned MB, ME;
 | 
						|
      Imm = ~(Imm^Imm2);
 | 
						|
      if (isRunOfOnes(Imm, MB, ME)) {
 | 
						|
        AddToISelQueue(N->getOperand(0).getOperand(0));
 | 
						|
        AddToISelQueue(N->getOperand(0).getOperand(1));
 | 
						|
        SDOperand Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                            N->getOperand(0).getOperand(1),
 | 
						|
                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
 | 
						|
        return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::OR:
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      if (SDNode *I = SelectBitfieldInsert(N))
 | 
						|
        return I;
 | 
						|
      
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  case ISD::SHL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      AddToISelQueue(N->getOperand(0).getOperand(0));
 | 
						|
      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SRL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
 | 
						|
      AddToISelQueue(N->getOperand(0).getOperand(0));
 | 
						|
      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SELECT_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | 
						|
    
 | 
						|
    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | 
						|
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | 
						|
      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | 
						|
        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | 
						|
          if (N1C->isNullValue() && N3C->isNullValue() &&
 | 
						|
              N2C->getValue() == 1ULL && CC == ISD::SETNE &&
 | 
						|
              // FIXME: Implement this optzn for PPC64.
 | 
						|
              N->getValueType(0) == MVT::i32) {
 | 
						|
            AddToISelQueue(N->getOperand(0));
 | 
						|
            SDNode *Tmp =
 | 
						|
              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                    N->getOperand(0), getI32Imm(~0U));
 | 
						|
            return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | 
						|
                                        SDOperand(Tmp, 0), N->getOperand(0),
 | 
						|
                                        SDOperand(Tmp, 1));
 | 
						|
          }
 | 
						|
 | 
						|
    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | 
						|
    unsigned BROpc = getPredicateForSetCC(CC);
 | 
						|
 | 
						|
    unsigned SelectCCOp;
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_I4;
 | 
						|
    else if (N->getValueType(0) == MVT::i64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_I8;
 | 
						|
    else if (N->getValueType(0) == MVT::f32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F4;
 | 
						|
    else if (N->getValueType(0) == MVT::f64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F8;
 | 
						|
    else
 | 
						|
      SelectCCOp = PPC::SELECT_CC_VRRC;
 | 
						|
 | 
						|
    AddToISelQueue(N->getOperand(2));
 | 
						|
    AddToISelQueue(N->getOperand(3));
 | 
						|
    SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
 | 
						|
                        getI32Imm(BROpc) };
 | 
						|
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
 | 
						|
  }
 | 
						|
  case PPCISD::COND_BRANCH: {
 | 
						|
    AddToISelQueue(N->getOperand(0));  // Op #0 is the Chain.
 | 
						|
    // Op #1 is the PPC::PRED_* number.
 | 
						|
    // Op #2 is the CR#
 | 
						|
    // Op #3 is the Dest MBB
 | 
						|
    AddToISelQueue(N->getOperand(4));  // Op #4 is the Flag.
 | 
						|
    // Prevent PPC::PRED_* from being selected into LI.
 | 
						|
    SDOperand Pred =
 | 
						|
      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
 | 
						|
    SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
 | 
						|
      N->getOperand(0), N->getOperand(4) };
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
 | 
						|
  }
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    AddToISelQueue(N->getOperand(0));
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
 | 
						|
    SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 
 | 
						|
                        N->getOperand(4), N->getOperand(0) };
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
 | 
						|
  }
 | 
						|
  case ISD::BRIND: {
 | 
						|
    // FIXME: Should custom lower this.
 | 
						|
    SDOperand Chain = N->getOperand(0);
 | 
						|
    SDOperand Target = N->getOperand(1);
 | 
						|
    AddToISelQueue(Chain);
 | 
						|
    AddToISelQueue(Target);
 | 
						|
    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
 | 
						|
    Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
 | 
						|
                                            Chain), 0);
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SelectCode(Op);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// createPPCISelDag - This pass converts a legalized DAG into a 
 | 
						|
/// PowerPC-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | 
						|
  return new PPCDAGToDAGISel(TM);
 | 
						|
}
 | 
						|
 |