2165 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2165 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the C++ related Decl classes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTLambda.h"
 | 
						|
#include "clang/AST/ASTMutationListener.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/IdentifierTable.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Decl Allocation/Deallocation Method Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void AccessSpecDecl::anchor() { }
 | 
						|
 | 
						|
AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) AccessSpecDecl(EmptyShell());
 | 
						|
}
 | 
						|
 | 
						|
void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
 | 
						|
  ExternalASTSource *Source = C.getExternalSource();
 | 
						|
  assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
 | 
						|
  assert(Source && "getFromExternalSource with no external source");
 | 
						|
 | 
						|
  for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
 | 
						|
    I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
 | 
						|
        reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
 | 
						|
  Impl.Decls.setLazy(false);
 | 
						|
}
 | 
						|
 | 
						|
CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
 | 
						|
  : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
 | 
						|
    Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
 | 
						|
    Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
 | 
						|
    HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
 | 
						|
    HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
 | 
						|
    HasInClassInitializer(false), HasUninitializedReferenceMember(false),
 | 
						|
    NeedOverloadResolutionForMoveConstructor(false),
 | 
						|
    NeedOverloadResolutionForMoveAssignment(false),
 | 
						|
    NeedOverloadResolutionForDestructor(false),
 | 
						|
    DefaultedMoveConstructorIsDeleted(false),
 | 
						|
    DefaultedMoveAssignmentIsDeleted(false),
 | 
						|
    DefaultedDestructorIsDeleted(false),
 | 
						|
    HasTrivialSpecialMembers(SMF_All),
 | 
						|
    DeclaredNonTrivialSpecialMembers(0),
 | 
						|
    HasIrrelevantDestructor(true),
 | 
						|
    HasConstexprNonCopyMoveConstructor(false),
 | 
						|
    DefaultedDefaultConstructorIsConstexpr(true),
 | 
						|
    HasConstexprDefaultConstructor(false),
 | 
						|
    HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
 | 
						|
    UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
 | 
						|
    ImplicitCopyConstructorHasConstParam(true),
 | 
						|
    ImplicitCopyAssignmentHasConstParam(true),
 | 
						|
    HasDeclaredCopyConstructorWithConstParam(false),
 | 
						|
    HasDeclaredCopyAssignmentWithConstParam(false),
 | 
						|
    IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
 | 
						|
    Bases(), VBases(),
 | 
						|
    Definition(D), FirstFriend() {
 | 
						|
}
 | 
						|
 | 
						|
CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
 | 
						|
  return Bases.get(Definition->getASTContext().getExternalSource());
 | 
						|
}
 | 
						|
 | 
						|
CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
 | 
						|
  return VBases.get(Definition->getASTContext().getExternalSource());
 | 
						|
}
 | 
						|
 | 
						|
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
 | 
						|
                             DeclContext *DC, SourceLocation StartLoc,
 | 
						|
                             SourceLocation IdLoc, IdentifierInfo *Id,
 | 
						|
                             CXXRecordDecl *PrevDecl)
 | 
						|
    : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
 | 
						|
      DefinitionData(PrevDecl ? PrevDecl->DefinitionData
 | 
						|
                              : DefinitionDataPtr(this)),
 | 
						|
      TemplateOrInstantiation() {}
 | 
						|
 | 
						|
CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
 | 
						|
                                     DeclContext *DC, SourceLocation StartLoc,
 | 
						|
                                     SourceLocation IdLoc, IdentifierInfo *Id,
 | 
						|
                                     CXXRecordDecl* PrevDecl,
 | 
						|
                                     bool DelayTypeCreation) {
 | 
						|
  CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
 | 
						|
                                               IdLoc, Id, PrevDecl);
 | 
						|
  R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
 | 
						|
 | 
						|
  // FIXME: DelayTypeCreation seems like such a hack
 | 
						|
  if (!DelayTypeCreation)
 | 
						|
    C.getTypeDeclType(R, PrevDecl);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
CXXRecordDecl *
 | 
						|
CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
 | 
						|
                            TypeSourceInfo *Info, SourceLocation Loc,
 | 
						|
                            bool Dependent, bool IsGeneric,
 | 
						|
                            LambdaCaptureDefault CaptureDefault) {
 | 
						|
  CXXRecordDecl *R =
 | 
						|
      new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
 | 
						|
                                nullptr, nullptr);
 | 
						|
  R->IsBeingDefined = true;
 | 
						|
  R->DefinitionData =
 | 
						|
      new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
 | 
						|
                                          CaptureDefault);
 | 
						|
  R->MayHaveOutOfDateDef = false;
 | 
						|
  R->setImplicit(true);
 | 
						|
  C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
CXXRecordDecl *
 | 
						|
CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
 | 
						|
  CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
 | 
						|
      CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
 | 
						|
      nullptr, nullptr);
 | 
						|
  R->MayHaveOutOfDateDef = false;
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
 | 
						|
                        unsigned NumBases) {
 | 
						|
  ASTContext &C = getASTContext();
 | 
						|
 | 
						|
  if (!data().Bases.isOffset() && data().NumBases > 0)
 | 
						|
    C.Deallocate(data().getBases());
 | 
						|
 | 
						|
  if (NumBases) {
 | 
						|
    // C++ [dcl.init.aggr]p1:
 | 
						|
    //   An aggregate is [...] a class with [...] no base classes [...].
 | 
						|
    data().Aggregate = false;
 | 
						|
 | 
						|
    // C++ [class]p4:
 | 
						|
    //   A POD-struct is an aggregate class...
 | 
						|
    data().PlainOldData = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // The set of seen virtual base types.
 | 
						|
  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
 | 
						|
  
 | 
						|
  // The virtual bases of this class.
 | 
						|
  SmallVector<const CXXBaseSpecifier *, 8> VBases;
 | 
						|
 | 
						|
  data().Bases = new(C) CXXBaseSpecifier [NumBases];
 | 
						|
  data().NumBases = NumBases;
 | 
						|
  for (unsigned i = 0; i < NumBases; ++i) {
 | 
						|
    data().getBases()[i] = *Bases[i];
 | 
						|
    // Keep track of inherited vbases for this base class.
 | 
						|
    const CXXBaseSpecifier *Base = Bases[i];
 | 
						|
    QualType BaseType = Base->getType();
 | 
						|
    // Skip dependent types; we can't do any checking on them now.
 | 
						|
    if (BaseType->isDependentType())
 | 
						|
      continue;
 | 
						|
    CXXRecordDecl *BaseClassDecl
 | 
						|
      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
    // A class with a non-empty base class is not empty.
 | 
						|
    // FIXME: Standard ref?
 | 
						|
    if (!BaseClassDecl->isEmpty()) {
 | 
						|
      if (!data().Empty) {
 | 
						|
        // C++0x [class]p7:
 | 
						|
        //   A standard-layout class is a class that:
 | 
						|
        //    [...]
 | 
						|
        //    -- either has no non-static data members in the most derived
 | 
						|
        //       class and at most one base class with non-static data members,
 | 
						|
        //       or has no base classes with non-static data members, and
 | 
						|
        // If this is the second non-empty base, then neither of these two
 | 
						|
        // clauses can be true.
 | 
						|
        data().IsStandardLayout = false;
 | 
						|
      }
 | 
						|
 | 
						|
      data().Empty = false;
 | 
						|
      data().HasNoNonEmptyBases = false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // C++ [class.virtual]p1:
 | 
						|
    //   A class that declares or inherits a virtual function is called a 
 | 
						|
    //   polymorphic class.
 | 
						|
    if (BaseClassDecl->isPolymorphic())
 | 
						|
      data().Polymorphic = true;
 | 
						|
 | 
						|
    // C++0x [class]p7:
 | 
						|
    //   A standard-layout class is a class that: [...]
 | 
						|
    //    -- has no non-standard-layout base classes
 | 
						|
    if (!BaseClassDecl->isStandardLayout())
 | 
						|
      data().IsStandardLayout = false;
 | 
						|
 | 
						|
    // Record if this base is the first non-literal field or base.
 | 
						|
    if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
 | 
						|
      data().HasNonLiteralTypeFieldsOrBases = true;
 | 
						|
    
 | 
						|
    // Now go through all virtual bases of this base and add them.
 | 
						|
    for (const auto &VBase : BaseClassDecl->vbases()) {
 | 
						|
      // Add this base if it's not already in the list.
 | 
						|
      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType()))) {
 | 
						|
        VBases.push_back(&VBase);
 | 
						|
 | 
						|
        // C++11 [class.copy]p8:
 | 
						|
        //   The implicitly-declared copy constructor for a class X will have
 | 
						|
        //   the form 'X::X(const X&)' if each [...] virtual base class B of X
 | 
						|
        //   has a copy constructor whose first parameter is of type
 | 
						|
        //   'const B&' or 'const volatile B&' [...]
 | 
						|
        if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
 | 
						|
          if (!VBaseDecl->hasCopyConstructorWithConstParam())
 | 
						|
            data().ImplicitCopyConstructorHasConstParam = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Base->isVirtual()) {
 | 
						|
      // Add this base if it's not already in the list.
 | 
						|
      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
 | 
						|
        VBases.push_back(Base);
 | 
						|
 | 
						|
      // C++0x [meta.unary.prop] is_empty:
 | 
						|
      //    T is a class type, but not a union type, with ... no virtual base
 | 
						|
      //    classes
 | 
						|
      data().Empty = false;
 | 
						|
 | 
						|
      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
 | 
						|
      //   A [default constructor, copy/move constructor, or copy/move assignment
 | 
						|
      //   operator for a class X] is trivial [...] if:
 | 
						|
      //    -- class X has [...] no virtual base classes
 | 
						|
      data().HasTrivialSpecialMembers &= SMF_Destructor;
 | 
						|
 | 
						|
      // C++0x [class]p7:
 | 
						|
      //   A standard-layout class is a class that: [...]
 | 
						|
      //    -- has [...] no virtual base classes
 | 
						|
      data().IsStandardLayout = false;
 | 
						|
 | 
						|
      // C++11 [dcl.constexpr]p4:
 | 
						|
      //   In the definition of a constexpr constructor [...]
 | 
						|
      //    -- the class shall not have any virtual base classes
 | 
						|
      data().DefaultedDefaultConstructorIsConstexpr = false;
 | 
						|
    } else {
 | 
						|
      // C++ [class.ctor]p5:
 | 
						|
      //   A default constructor is trivial [...] if:
 | 
						|
      //    -- all the direct base classes of its class have trivial default
 | 
						|
      //       constructors.
 | 
						|
      if (!BaseClassDecl->hasTrivialDefaultConstructor())
 | 
						|
        data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
 | 
						|
 | 
						|
      // C++0x [class.copy]p13:
 | 
						|
      //   A copy/move constructor for class X is trivial if [...]
 | 
						|
      //    [...]
 | 
						|
      //    -- the constructor selected to copy/move each direct base class
 | 
						|
      //       subobject is trivial, and
 | 
						|
      if (!BaseClassDecl->hasTrivialCopyConstructor())
 | 
						|
        data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
 | 
						|
      // If the base class doesn't have a simple move constructor, we'll eagerly
 | 
						|
      // declare it and perform overload resolution to determine which function
 | 
						|
      // it actually calls. If it does have a simple move constructor, this
 | 
						|
      // check is correct.
 | 
						|
      if (!BaseClassDecl->hasTrivialMoveConstructor())
 | 
						|
        data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
 | 
						|
 | 
						|
      // C++0x [class.copy]p27:
 | 
						|
      //   A copy/move assignment operator for class X is trivial if [...]
 | 
						|
      //    [...]
 | 
						|
      //    -- the assignment operator selected to copy/move each direct base
 | 
						|
      //       class subobject is trivial, and
 | 
						|
      if (!BaseClassDecl->hasTrivialCopyAssignment())
 | 
						|
        data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
 | 
						|
      // If the base class doesn't have a simple move assignment, we'll eagerly
 | 
						|
      // declare it and perform overload resolution to determine which function
 | 
						|
      // it actually calls. If it does have a simple move assignment, this
 | 
						|
      // check is correct.
 | 
						|
      if (!BaseClassDecl->hasTrivialMoveAssignment())
 | 
						|
        data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
 | 
						|
 | 
						|
      // C++11 [class.ctor]p6:
 | 
						|
      //   If that user-written default constructor would satisfy the
 | 
						|
      //   requirements of a constexpr constructor, the implicitly-defined
 | 
						|
      //   default constructor is constexpr.
 | 
						|
      if (!BaseClassDecl->hasConstexprDefaultConstructor())
 | 
						|
        data().DefaultedDefaultConstructorIsConstexpr = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [class.ctor]p3:
 | 
						|
    //   A destructor is trivial if all the direct base classes of its class
 | 
						|
    //   have trivial destructors.
 | 
						|
    if (!BaseClassDecl->hasTrivialDestructor())
 | 
						|
      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
 | 
						|
 | 
						|
    if (!BaseClassDecl->hasIrrelevantDestructor())
 | 
						|
      data().HasIrrelevantDestructor = false;
 | 
						|
 | 
						|
    // C++11 [class.copy]p18:
 | 
						|
    //   The implicitly-declared copy assignment oeprator for a class X will
 | 
						|
    //   have the form 'X& X::operator=(const X&)' if each direct base class B
 | 
						|
    //   of X has a copy assignment operator whose parameter is of type 'const
 | 
						|
    //   B&', 'const volatile B&', or 'B' [...]
 | 
						|
    if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
 | 
						|
      data().ImplicitCopyAssignmentHasConstParam = false;
 | 
						|
 | 
						|
    // C++11 [class.copy]p8:
 | 
						|
    //   The implicitly-declared copy constructor for a class X will have
 | 
						|
    //   the form 'X::X(const X&)' if each direct [...] base class B of X
 | 
						|
    //   has a copy constructor whose first parameter is of type
 | 
						|
    //   'const B&' or 'const volatile B&' [...]
 | 
						|
    if (!BaseClassDecl->hasCopyConstructorWithConstParam())
 | 
						|
      data().ImplicitCopyConstructorHasConstParam = false;
 | 
						|
 | 
						|
    // A class has an Objective-C object member if... or any of its bases
 | 
						|
    // has an Objective-C object member.
 | 
						|
    if (BaseClassDecl->hasObjectMember())
 | 
						|
      setHasObjectMember(true);
 | 
						|
    
 | 
						|
    if (BaseClassDecl->hasVolatileMember())
 | 
						|
      setHasVolatileMember(true);
 | 
						|
 | 
						|
    // Keep track of the presence of mutable fields.
 | 
						|
    if (BaseClassDecl->hasMutableFields())
 | 
						|
      data().HasMutableFields = true;
 | 
						|
 | 
						|
    if (BaseClassDecl->hasUninitializedReferenceMember())
 | 
						|
      data().HasUninitializedReferenceMember = true;
 | 
						|
 | 
						|
    addedClassSubobject(BaseClassDecl);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (VBases.empty()) {
 | 
						|
    data().IsParsingBaseSpecifiers = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create base specifier for any direct or indirect virtual bases.
 | 
						|
  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
 | 
						|
  data().NumVBases = VBases.size();
 | 
						|
  for (int I = 0, E = VBases.size(); I != E; ++I) {
 | 
						|
    QualType Type = VBases[I]->getType();
 | 
						|
    if (!Type->isDependentType())
 | 
						|
      addedClassSubobject(Type->getAsCXXRecordDecl());
 | 
						|
    data().getVBases()[I] = *VBases[I];
 | 
						|
  }
 | 
						|
 | 
						|
  data().IsParsingBaseSpecifiers = false;
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
 | 
						|
  // C++11 [class.copy]p11:
 | 
						|
  //   A defaulted copy/move constructor for a class X is defined as
 | 
						|
  //   deleted if X has:
 | 
						|
  //    -- a direct or virtual base class B that cannot be copied/moved [...]
 | 
						|
  //    -- a non-static data member of class type M (or array thereof)
 | 
						|
  //       that cannot be copied or moved [...]
 | 
						|
  if (!Subobj->hasSimpleMoveConstructor())
 | 
						|
    data().NeedOverloadResolutionForMoveConstructor = true;
 | 
						|
 | 
						|
  // C++11 [class.copy]p23:
 | 
						|
  //   A defaulted copy/move assignment operator for a class X is defined as
 | 
						|
  //   deleted if X has:
 | 
						|
  //    -- a direct or virtual base class B that cannot be copied/moved [...]
 | 
						|
  //    -- a non-static data member of class type M (or array thereof)
 | 
						|
  //        that cannot be copied or moved [...]
 | 
						|
  if (!Subobj->hasSimpleMoveAssignment())
 | 
						|
    data().NeedOverloadResolutionForMoveAssignment = true;
 | 
						|
 | 
						|
  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
 | 
						|
  //   A defaulted [ctor or dtor] for a class X is defined as
 | 
						|
  //   deleted if X has:
 | 
						|
  //    -- any direct or virtual base class [...] has a type with a destructor
 | 
						|
  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
 | 
						|
  //    -- any non-static data member has a type with a destructor
 | 
						|
  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
 | 
						|
  if (!Subobj->hasSimpleDestructor()) {
 | 
						|
    data().NeedOverloadResolutionForMoveConstructor = true;
 | 
						|
    data().NeedOverloadResolutionForDestructor = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Callback function for CXXRecordDecl::forallBases that acknowledges
 | 
						|
/// that it saw a base class.
 | 
						|
static bool SawBase(const CXXRecordDecl *, void *) {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CXXRecordDecl::hasAnyDependentBases() const {
 | 
						|
  if (!isDependentContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !forallBases(SawBase, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXRecordDecl::isTriviallyCopyable() const {
 | 
						|
  // C++0x [class]p5:
 | 
						|
  //   A trivially copyable class is a class that:
 | 
						|
  //   -- has no non-trivial copy constructors,
 | 
						|
  if (hasNonTrivialCopyConstructor()) return false;
 | 
						|
  //   -- has no non-trivial move constructors,
 | 
						|
  if (hasNonTrivialMoveConstructor()) return false;
 | 
						|
  //   -- has no non-trivial copy assignment operators,
 | 
						|
  if (hasNonTrivialCopyAssignment()) return false;
 | 
						|
  //   -- has no non-trivial move assignment operators, and
 | 
						|
  if (hasNonTrivialMoveAssignment()) return false;
 | 
						|
  //   -- has a trivial destructor.
 | 
						|
  if (!hasTrivialDestructor()) return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::markedVirtualFunctionPure() {
 | 
						|
  // C++ [class.abstract]p2: 
 | 
						|
  //   A class is abstract if it has at least one pure virtual function.
 | 
						|
  data().Abstract = true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::addedMember(Decl *D) {
 | 
						|
  if (!D->isImplicit() &&
 | 
						|
      !isa<FieldDecl>(D) &&
 | 
						|
      !isa<IndirectFieldDecl>(D) &&
 | 
						|
      (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
 | 
						|
        cast<TagDecl>(D)->getTagKind() == TTK_Interface))
 | 
						|
    data().HasOnlyCMembers = false;
 | 
						|
 | 
						|
  // Ignore friends and invalid declarations.
 | 
						|
  if (D->getFriendObjectKind() || D->isInvalidDecl())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
  if (FunTmpl)
 | 
						|
    D = FunTmpl->getTemplatedDecl();
 | 
						|
  
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
    if (Method->isVirtual()) {
 | 
						|
      // C++ [dcl.init.aggr]p1:
 | 
						|
      //   An aggregate is an array or a class with [...] no virtual functions.
 | 
						|
      data().Aggregate = false;
 | 
						|
      
 | 
						|
      // C++ [class]p4:
 | 
						|
      //   A POD-struct is an aggregate class...
 | 
						|
      data().PlainOldData = false;
 | 
						|
      
 | 
						|
      // Virtual functions make the class non-empty.
 | 
						|
      // FIXME: Standard ref?
 | 
						|
      data().Empty = false;
 | 
						|
 | 
						|
      // C++ [class.virtual]p1:
 | 
						|
      //   A class that declares or inherits a virtual function is called a 
 | 
						|
      //   polymorphic class.
 | 
						|
      data().Polymorphic = true;
 | 
						|
 | 
						|
      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
 | 
						|
      //   A [default constructor, copy/move constructor, or copy/move
 | 
						|
      //   assignment operator for a class X] is trivial [...] if:
 | 
						|
      //    -- class X has no virtual functions [...]
 | 
						|
      data().HasTrivialSpecialMembers &= SMF_Destructor;
 | 
						|
 | 
						|
      // C++0x [class]p7:
 | 
						|
      //   A standard-layout class is a class that: [...]
 | 
						|
      //    -- has no virtual functions
 | 
						|
      data().IsStandardLayout = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Notify the listener if an implicit member was added after the definition
 | 
						|
  // was completed.
 | 
						|
  if (!isBeingDefined() && D->isImplicit())
 | 
						|
    if (ASTMutationListener *L = getASTMutationListener())
 | 
						|
      L->AddedCXXImplicitMember(data().Definition, D);
 | 
						|
 | 
						|
  // The kind of special member this declaration is, if any.
 | 
						|
  unsigned SMKind = 0;
 | 
						|
 | 
						|
  // Handle constructors.
 | 
						|
  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | 
						|
    if (!Constructor->isImplicit()) {
 | 
						|
      // Note that we have a user-declared constructor.
 | 
						|
      data().UserDeclaredConstructor = true;
 | 
						|
 | 
						|
      // C++ [class]p4:
 | 
						|
      //   A POD-struct is an aggregate class [...]
 | 
						|
      // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
 | 
						|
      // type is technically an aggregate in C++0x since it wouldn't be in 03.
 | 
						|
      data().PlainOldData = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Technically, "user-provided" is only defined for special member
 | 
						|
    // functions, but the intent of the standard is clearly that it should apply
 | 
						|
    // to all functions.
 | 
						|
    bool UserProvided = Constructor->isUserProvided();
 | 
						|
 | 
						|
    if (Constructor->isDefaultConstructor()) {
 | 
						|
      SMKind |= SMF_DefaultConstructor;
 | 
						|
 | 
						|
      if (UserProvided)
 | 
						|
        data().UserProvidedDefaultConstructor = true;
 | 
						|
      if (Constructor->isConstexpr())
 | 
						|
        data().HasConstexprDefaultConstructor = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!FunTmpl) {
 | 
						|
      unsigned Quals;
 | 
						|
      if (Constructor->isCopyConstructor(Quals)) {
 | 
						|
        SMKind |= SMF_CopyConstructor;
 | 
						|
 | 
						|
        if (Quals & Qualifiers::Const)
 | 
						|
          data().HasDeclaredCopyConstructorWithConstParam = true;
 | 
						|
      } else if (Constructor->isMoveConstructor())
 | 
						|
        SMKind |= SMF_MoveConstructor;
 | 
						|
    }
 | 
						|
 | 
						|
    // Record if we see any constexpr constructors which are neither copy
 | 
						|
    // nor move constructors.
 | 
						|
    if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
 | 
						|
      data().HasConstexprNonCopyMoveConstructor = true;
 | 
						|
 | 
						|
    // C++ [dcl.init.aggr]p1:
 | 
						|
    //   An aggregate is an array or a class with no user-declared
 | 
						|
    //   constructors [...].
 | 
						|
    // C++11 [dcl.init.aggr]p1:
 | 
						|
    //   An aggregate is an array or a class with no user-provided
 | 
						|
    //   constructors [...].
 | 
						|
    if (getASTContext().getLangOpts().CPlusPlus11
 | 
						|
          ? UserProvided : !Constructor->isImplicit())
 | 
						|
      data().Aggregate = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle destructors.
 | 
						|
  if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
 | 
						|
    SMKind |= SMF_Destructor;
 | 
						|
 | 
						|
    if (DD->isUserProvided())
 | 
						|
      data().HasIrrelevantDestructor = false;
 | 
						|
    // If the destructor is explicitly defaulted and not trivial or not public
 | 
						|
    // or if the destructor is deleted, we clear HasIrrelevantDestructor in
 | 
						|
    // finishedDefaultedOrDeletedMember.
 | 
						|
 | 
						|
    // C++11 [class.dtor]p5:
 | 
						|
    //   A destructor is trivial if [...] the destructor is not virtual.
 | 
						|
    if (DD->isVirtual())
 | 
						|
      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle member functions.
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
    if (Method->isCopyAssignmentOperator()) {
 | 
						|
      SMKind |= SMF_CopyAssignment;
 | 
						|
 | 
						|
      const ReferenceType *ParamTy =
 | 
						|
        Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
 | 
						|
      if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
 | 
						|
        data().HasDeclaredCopyAssignmentWithConstParam = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Method->isMoveAssignmentOperator())
 | 
						|
      SMKind |= SMF_MoveAssignment;
 | 
						|
 | 
						|
    // Keep the list of conversion functions up-to-date.
 | 
						|
    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
 | 
						|
      // FIXME: We use the 'unsafe' accessor for the access specifier here,
 | 
						|
      // because Sema may not have set it yet. That's really just a misdesign
 | 
						|
      // in Sema. However, LLDB *will* have set the access specifier correctly,
 | 
						|
      // and adds declarations after the class is technically completed,
 | 
						|
      // so completeDefinition()'s overriding of the access specifiers doesn't
 | 
						|
      // work.
 | 
						|
      AccessSpecifier AS = Conversion->getAccessUnsafe();
 | 
						|
 | 
						|
      if (Conversion->getPrimaryTemplate()) {
 | 
						|
        // We don't record specializations.
 | 
						|
      } else {
 | 
						|
        ASTContext &Ctx = getASTContext();
 | 
						|
        ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
 | 
						|
        NamedDecl *Primary =
 | 
						|
            FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
 | 
						|
        if (Primary->getPreviousDecl())
 | 
						|
          Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
 | 
						|
                              Primary, AS);
 | 
						|
        else
 | 
						|
          Conversions.addDecl(Ctx, Primary, AS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SMKind) {
 | 
						|
      // If this is the first declaration of a special member, we no longer have
 | 
						|
      // an implicit trivial special member.
 | 
						|
      data().HasTrivialSpecialMembers &=
 | 
						|
        data().DeclaredSpecialMembers | ~SMKind;
 | 
						|
 | 
						|
      if (!Method->isImplicit() && !Method->isUserProvided()) {
 | 
						|
        // This method is user-declared but not user-provided. We can't work out
 | 
						|
        // whether it's trivial yet (not until we get to the end of the class).
 | 
						|
        // We'll handle this method in finishedDefaultedOrDeletedMember.
 | 
						|
      } else if (Method->isTrivial())
 | 
						|
        data().HasTrivialSpecialMembers |= SMKind;
 | 
						|
      else
 | 
						|
        data().DeclaredNonTrivialSpecialMembers |= SMKind;
 | 
						|
 | 
						|
      // Note when we have declared a declared special member, and suppress the
 | 
						|
      // implicit declaration of this special member.
 | 
						|
      data().DeclaredSpecialMembers |= SMKind;
 | 
						|
 | 
						|
      if (!Method->isImplicit()) {
 | 
						|
        data().UserDeclaredSpecialMembers |= SMKind;
 | 
						|
 | 
						|
        // C++03 [class]p4:
 | 
						|
        //   A POD-struct is an aggregate class that has [...] no user-defined
 | 
						|
        //   copy assignment operator and no user-defined destructor.
 | 
						|
        //
 | 
						|
        // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
 | 
						|
        // aggregates could not have any constructors, clear it even for an
 | 
						|
        // explicitly defaulted or deleted constructor.
 | 
						|
        // type is technically an aggregate in C++0x since it wouldn't be in 03.
 | 
						|
        //
 | 
						|
        // Also, a user-declared move assignment operator makes a class non-POD.
 | 
						|
        // This is an extension in C++03.
 | 
						|
        data().PlainOldData = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle non-static data members.
 | 
						|
  if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
 | 
						|
    // C++ [class.bit]p2:
 | 
						|
    //   A declaration for a bit-field that omits the identifier declares an 
 | 
						|
    //   unnamed bit-field. Unnamed bit-fields are not members and cannot be 
 | 
						|
    //   initialized.
 | 
						|
    if (Field->isUnnamedBitfield())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    // C++ [dcl.init.aggr]p1:
 | 
						|
    //   An aggregate is an array or a class (clause 9) with [...] no
 | 
						|
    //   private or protected non-static data members (clause 11).
 | 
						|
    //
 | 
						|
    // A POD must be an aggregate.    
 | 
						|
    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
 | 
						|
      data().Aggregate = false;
 | 
						|
      data().PlainOldData = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [class]p7:
 | 
						|
    //   A standard-layout class is a class that:
 | 
						|
    //    [...]
 | 
						|
    //    -- has the same access control for all non-static data members,
 | 
						|
    switch (D->getAccess()) {
 | 
						|
    case AS_private:    data().HasPrivateFields = true;   break;
 | 
						|
    case AS_protected:  data().HasProtectedFields = true; break;
 | 
						|
    case AS_public:     data().HasPublicFields = true;    break;
 | 
						|
    case AS_none:       llvm_unreachable("Invalid access specifier");
 | 
						|
    };
 | 
						|
    if ((data().HasPrivateFields + data().HasProtectedFields +
 | 
						|
         data().HasPublicFields) > 1)
 | 
						|
      data().IsStandardLayout = false;
 | 
						|
 | 
						|
    // Keep track of the presence of mutable fields.
 | 
						|
    if (Field->isMutable())
 | 
						|
      data().HasMutableFields = true;
 | 
						|
 | 
						|
    // C++11 [class.union]p8, DR1460:
 | 
						|
    //   If X is a union, a non-static data member of X that is not an anonymous
 | 
						|
    //   union is a variant member of X.
 | 
						|
    if (isUnion() && !Field->isAnonymousStructOrUnion())
 | 
						|
      data().HasVariantMembers = true;
 | 
						|
 | 
						|
    // C++0x [class]p9:
 | 
						|
    //   A POD struct is a class that is both a trivial class and a 
 | 
						|
    //   standard-layout class, and has no non-static data members of type 
 | 
						|
    //   non-POD struct, non-POD union (or array of such types).
 | 
						|
    //
 | 
						|
    // Automatic Reference Counting: the presence of a member of Objective-C pointer type
 | 
						|
    // that does not explicitly have no lifetime makes the class a non-POD.
 | 
						|
    // However, we delay setting PlainOldData to false in this case so that
 | 
						|
    // Sema has a chance to diagnostic causes where the same class will be
 | 
						|
    // non-POD with Automatic Reference Counting but a POD without ARC.
 | 
						|
    // In this case, the class will become a non-POD class when we complete
 | 
						|
    // the definition.
 | 
						|
    ASTContext &Context = getASTContext();
 | 
						|
    QualType T = Context.getBaseElementType(Field->getType());
 | 
						|
    if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
 | 
						|
      if (!Context.getLangOpts().ObjCAutoRefCount ||
 | 
						|
          T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
 | 
						|
        setHasObjectMember(true);
 | 
						|
    } else if (!T.isCXX98PODType(Context))
 | 
						|
      data().PlainOldData = false;
 | 
						|
    
 | 
						|
    if (T->isReferenceType()) {
 | 
						|
      if (!Field->hasInClassInitializer())
 | 
						|
        data().HasUninitializedReferenceMember = true;
 | 
						|
 | 
						|
      // C++0x [class]p7:
 | 
						|
      //   A standard-layout class is a class that:
 | 
						|
      //    -- has no non-static data members of type [...] reference,
 | 
						|
      data().IsStandardLayout = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Record if this field is the first non-literal or volatile field or base.
 | 
						|
    if (!T->isLiteralType(Context) || T.isVolatileQualified())
 | 
						|
      data().HasNonLiteralTypeFieldsOrBases = true;
 | 
						|
 | 
						|
    if (Field->hasInClassInitializer() ||
 | 
						|
        (Field->isAnonymousStructOrUnion() &&
 | 
						|
         Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
 | 
						|
      data().HasInClassInitializer = true;
 | 
						|
 | 
						|
      // C++11 [class]p5:
 | 
						|
      //   A default constructor is trivial if [...] no non-static data member
 | 
						|
      //   of its class has a brace-or-equal-initializer.
 | 
						|
      data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
 | 
						|
 | 
						|
      // C++11 [dcl.init.aggr]p1:
 | 
						|
      //   An aggregate is a [...] class with [...] no
 | 
						|
      //   brace-or-equal-initializers for non-static data members.
 | 
						|
      //
 | 
						|
      // This rule was removed in C++1y.
 | 
						|
      if (!getASTContext().getLangOpts().CPlusPlus1y)
 | 
						|
        data().Aggregate = false;
 | 
						|
 | 
						|
      // C++11 [class]p10:
 | 
						|
      //   A POD struct is [...] a trivial class.
 | 
						|
      data().PlainOldData = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [class.copy]p23:
 | 
						|
    //   A defaulted copy/move assignment operator for a class X is defined
 | 
						|
    //   as deleted if X has:
 | 
						|
    //    -- a non-static data member of reference type
 | 
						|
    if (T->isReferenceType())
 | 
						|
      data().DefaultedMoveAssignmentIsDeleted = true;
 | 
						|
 | 
						|
    if (const RecordType *RecordTy = T->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
 | 
						|
      if (FieldRec->getDefinition()) {
 | 
						|
        addedClassSubobject(FieldRec);
 | 
						|
 | 
						|
        // We may need to perform overload resolution to determine whether a
 | 
						|
        // field can be moved if it's const or volatile qualified.
 | 
						|
        if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
 | 
						|
          data().NeedOverloadResolutionForMoveConstructor = true;
 | 
						|
          data().NeedOverloadResolutionForMoveAssignment = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++11 [class.ctor]p5, C++11 [class.copy]p11:
 | 
						|
        //   A defaulted [special member] for a class X is defined as
 | 
						|
        //   deleted if:
 | 
						|
        //    -- X is a union-like class that has a variant member with a
 | 
						|
        //       non-trivial [corresponding special member]
 | 
						|
        if (isUnion()) {
 | 
						|
          if (FieldRec->hasNonTrivialMoveConstructor())
 | 
						|
            data().DefaultedMoveConstructorIsDeleted = true;
 | 
						|
          if (FieldRec->hasNonTrivialMoveAssignment())
 | 
						|
            data().DefaultedMoveAssignmentIsDeleted = true;
 | 
						|
          if (FieldRec->hasNonTrivialDestructor())
 | 
						|
            data().DefaultedDestructorIsDeleted = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++0x [class.ctor]p5:
 | 
						|
        //   A default constructor is trivial [...] if:
 | 
						|
        //    -- for all the non-static data members of its class that are of
 | 
						|
        //       class type (or array thereof), each such class has a trivial
 | 
						|
        //       default constructor.
 | 
						|
        if (!FieldRec->hasTrivialDefaultConstructor())
 | 
						|
          data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
 | 
						|
 | 
						|
        // C++0x [class.copy]p13:
 | 
						|
        //   A copy/move constructor for class X is trivial if [...]
 | 
						|
        //    [...]
 | 
						|
        //    -- for each non-static data member of X that is of class type (or
 | 
						|
        //       an array thereof), the constructor selected to copy/move that
 | 
						|
        //       member is trivial;
 | 
						|
        if (!FieldRec->hasTrivialCopyConstructor())
 | 
						|
          data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
 | 
						|
        // If the field doesn't have a simple move constructor, we'll eagerly
 | 
						|
        // declare the move constructor for this class and we'll decide whether
 | 
						|
        // it's trivial then.
 | 
						|
        if (!FieldRec->hasTrivialMoveConstructor())
 | 
						|
          data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
 | 
						|
 | 
						|
        // C++0x [class.copy]p27:
 | 
						|
        //   A copy/move assignment operator for class X is trivial if [...]
 | 
						|
        //    [...]
 | 
						|
        //    -- for each non-static data member of X that is of class type (or
 | 
						|
        //       an array thereof), the assignment operator selected to
 | 
						|
        //       copy/move that member is trivial;
 | 
						|
        if (!FieldRec->hasTrivialCopyAssignment())
 | 
						|
          data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
 | 
						|
        // If the field doesn't have a simple move assignment, we'll eagerly
 | 
						|
        // declare the move assignment for this class and we'll decide whether
 | 
						|
        // it's trivial then.
 | 
						|
        if (!FieldRec->hasTrivialMoveAssignment())
 | 
						|
          data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
 | 
						|
 | 
						|
        if (!FieldRec->hasTrivialDestructor())
 | 
						|
          data().HasTrivialSpecialMembers &= ~SMF_Destructor;
 | 
						|
        if (!FieldRec->hasIrrelevantDestructor())
 | 
						|
          data().HasIrrelevantDestructor = false;
 | 
						|
        if (FieldRec->hasObjectMember())
 | 
						|
          setHasObjectMember(true);
 | 
						|
        if (FieldRec->hasVolatileMember())
 | 
						|
          setHasVolatileMember(true);
 | 
						|
 | 
						|
        // C++0x [class]p7:
 | 
						|
        //   A standard-layout class is a class that:
 | 
						|
        //    -- has no non-static data members of type non-standard-layout
 | 
						|
        //       class (or array of such types) [...]
 | 
						|
        if (!FieldRec->isStandardLayout())
 | 
						|
          data().IsStandardLayout = false;
 | 
						|
 | 
						|
        // C++0x [class]p7:
 | 
						|
        //   A standard-layout class is a class that:
 | 
						|
        //    [...]
 | 
						|
        //    -- has no base classes of the same type as the first non-static
 | 
						|
        //       data member.
 | 
						|
        // We don't want to expend bits in the state of the record decl
 | 
						|
        // tracking whether this is the first non-static data member so we
 | 
						|
        // cheat a bit and use some of the existing state: the empty bit.
 | 
						|
        // Virtual bases and virtual methods make a class non-empty, but they
 | 
						|
        // also make it non-standard-layout so we needn't check here.
 | 
						|
        // A non-empty base class may leave the class standard-layout, but not
 | 
						|
        // if we have arrived here, and have at least one non-static data
 | 
						|
        // member. If IsStandardLayout remains true, then the first non-static
 | 
						|
        // data member must come through here with Empty still true, and Empty
 | 
						|
        // will subsequently be set to false below.
 | 
						|
        if (data().IsStandardLayout && data().Empty) {
 | 
						|
          for (const auto &BI : bases()) {
 | 
						|
            if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
 | 
						|
              data().IsStandardLayout = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Keep track of the presence of mutable fields.
 | 
						|
        if (FieldRec->hasMutableFields())
 | 
						|
          data().HasMutableFields = true;
 | 
						|
 | 
						|
        // C++11 [class.copy]p13:
 | 
						|
        //   If the implicitly-defined constructor would satisfy the
 | 
						|
        //   requirements of a constexpr constructor, the implicitly-defined
 | 
						|
        //   constructor is constexpr.
 | 
						|
        // C++11 [dcl.constexpr]p4:
 | 
						|
        //    -- every constructor involved in initializing non-static data
 | 
						|
        //       members [...] shall be a constexpr constructor
 | 
						|
        if (!Field->hasInClassInitializer() &&
 | 
						|
            !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
 | 
						|
          // The standard requires any in-class initializer to be a constant
 | 
						|
          // expression. We consider this to be a defect.
 | 
						|
          data().DefaultedDefaultConstructorIsConstexpr = false;
 | 
						|
 | 
						|
        // C++11 [class.copy]p8:
 | 
						|
        //   The implicitly-declared copy constructor for a class X will have
 | 
						|
        //   the form 'X::X(const X&)' if [...] for all the non-static data
 | 
						|
        //   members of X that are of a class type M (or array thereof), each
 | 
						|
        //   such class type has a copy constructor whose first parameter is
 | 
						|
        //   of type 'const M&' or 'const volatile M&'.
 | 
						|
        if (!FieldRec->hasCopyConstructorWithConstParam())
 | 
						|
          data().ImplicitCopyConstructorHasConstParam = false;
 | 
						|
 | 
						|
        // C++11 [class.copy]p18:
 | 
						|
        //   The implicitly-declared copy assignment oeprator for a class X will
 | 
						|
        //   have the form 'X& X::operator=(const X&)' if [...] for all the
 | 
						|
        //   non-static data members of X that are of a class type M (or array
 | 
						|
        //   thereof), each such class type has a copy assignment operator whose
 | 
						|
        //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
 | 
						|
        if (!FieldRec->hasCopyAssignmentWithConstParam())
 | 
						|
          data().ImplicitCopyAssignmentHasConstParam = false;
 | 
						|
 | 
						|
        if (FieldRec->hasUninitializedReferenceMember() &&
 | 
						|
            !Field->hasInClassInitializer())
 | 
						|
          data().HasUninitializedReferenceMember = true;
 | 
						|
 | 
						|
        // C++11 [class.union]p8, DR1460:
 | 
						|
        //   a non-static data member of an anonymous union that is a member of
 | 
						|
        //   X is also a variant member of X.
 | 
						|
        if (FieldRec->hasVariantMembers() &&
 | 
						|
            Field->isAnonymousStructOrUnion())
 | 
						|
          data().HasVariantMembers = true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Base element type of field is a non-class type.
 | 
						|
      if (!T->isLiteralType(Context) ||
 | 
						|
          (!Field->hasInClassInitializer() && !isUnion()))
 | 
						|
        data().DefaultedDefaultConstructorIsConstexpr = false;
 | 
						|
 | 
						|
      // C++11 [class.copy]p23:
 | 
						|
      //   A defaulted copy/move assignment operator for a class X is defined
 | 
						|
      //   as deleted if X has:
 | 
						|
      //    -- a non-static data member of const non-class type (or array
 | 
						|
      //       thereof)
 | 
						|
      if (T.isConstQualified())
 | 
						|
        data().DefaultedMoveAssignmentIsDeleted = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [class]p7:
 | 
						|
    //   A standard-layout class is a class that:
 | 
						|
    //    [...]
 | 
						|
    //    -- either has no non-static data members in the most derived
 | 
						|
    //       class and at most one base class with non-static data members,
 | 
						|
    //       or has no base classes with non-static data members, and
 | 
						|
    // At this point we know that we have a non-static data member, so the last
 | 
						|
    // clause holds.
 | 
						|
    if (!data().HasNoNonEmptyBases)
 | 
						|
      data().IsStandardLayout = false;
 | 
						|
 | 
						|
    // If this is not a zero-length bit-field, then the class is not empty.
 | 
						|
    if (data().Empty) {
 | 
						|
      if (!Field->isBitField() ||
 | 
						|
          (!Field->getBitWidth()->isTypeDependent() &&
 | 
						|
           !Field->getBitWidth()->isValueDependent() &&
 | 
						|
           Field->getBitWidthValue(Context) != 0))
 | 
						|
        data().Empty = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle using declarations of conversion functions.
 | 
						|
  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
 | 
						|
    if (Shadow->getDeclName().getNameKind()
 | 
						|
          == DeclarationName::CXXConversionFunctionName) {
 | 
						|
      ASTContext &Ctx = getASTContext();
 | 
						|
      data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
 | 
						|
  assert(!D->isImplicit() && !D->isUserProvided());
 | 
						|
 | 
						|
  // The kind of special member this declaration is, if any.
 | 
						|
  unsigned SMKind = 0;
 | 
						|
 | 
						|
  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | 
						|
    if (Constructor->isDefaultConstructor()) {
 | 
						|
      SMKind |= SMF_DefaultConstructor;
 | 
						|
      if (Constructor->isConstexpr())
 | 
						|
        data().HasConstexprDefaultConstructor = true;
 | 
						|
    }
 | 
						|
    if (Constructor->isCopyConstructor())
 | 
						|
      SMKind |= SMF_CopyConstructor;
 | 
						|
    else if (Constructor->isMoveConstructor())
 | 
						|
      SMKind |= SMF_MoveConstructor;
 | 
						|
    else if (Constructor->isConstexpr())
 | 
						|
      // We may now know that the constructor is constexpr.
 | 
						|
      data().HasConstexprNonCopyMoveConstructor = true;
 | 
						|
  } else if (isa<CXXDestructorDecl>(D)) {
 | 
						|
    SMKind |= SMF_Destructor;
 | 
						|
    if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
 | 
						|
      data().HasIrrelevantDestructor = false;
 | 
						|
  } else if (D->isCopyAssignmentOperator())
 | 
						|
    SMKind |= SMF_CopyAssignment;
 | 
						|
  else if (D->isMoveAssignmentOperator())
 | 
						|
    SMKind |= SMF_MoveAssignment;
 | 
						|
 | 
						|
  // Update which trivial / non-trivial special members we have.
 | 
						|
  // addedMember will have skipped this step for this member.
 | 
						|
  if (D->isTrivial())
 | 
						|
    data().HasTrivialSpecialMembers |= SMKind;
 | 
						|
  else
 | 
						|
    data().DeclaredNonTrivialSpecialMembers |= SMKind;
 | 
						|
}
 | 
						|
 | 
						|
bool CXXRecordDecl::isCLike() const {
 | 
						|
  if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
 | 
						|
      !TemplateOrInstantiation.isNull())
 | 
						|
    return false;
 | 
						|
  if (!hasDefinition())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return isPOD() && data().HasOnlyCMembers;
 | 
						|
}
 | 
						|
 
 | 
						|
bool CXXRecordDecl::isGenericLambda() const { 
 | 
						|
  if (!isLambda()) return false;
 | 
						|
  return getLambdaData().IsGenericLambda;
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
 | 
						|
  if (!isLambda()) return nullptr;
 | 
						|
  DeclarationName Name = 
 | 
						|
    getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
 | 
						|
  DeclContext::lookup_const_result Calls = lookup(Name);
 | 
						|
 | 
						|
  assert(!Calls.empty() && "Missing lambda call operator!");
 | 
						|
  assert(Calls.size() == 1 && "More than one lambda call operator!"); 
 | 
						|
   
 | 
						|
  NamedDecl *CallOp = Calls.front();
 | 
						|
  if (FunctionTemplateDecl *CallOpTmpl = 
 | 
						|
                    dyn_cast<FunctionTemplateDecl>(CallOp)) 
 | 
						|
    return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
 | 
						|
  
 | 
						|
  return cast<CXXMethodDecl>(CallOp);
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
 | 
						|
  if (!isLambda()) return nullptr;
 | 
						|
  DeclarationName Name = 
 | 
						|
    &getASTContext().Idents.get(getLambdaStaticInvokerName());
 | 
						|
  DeclContext::lookup_const_result Invoker = lookup(Name);
 | 
						|
  if (Invoker.empty()) return nullptr;
 | 
						|
  assert(Invoker.size() == 1 && "More than one static invoker operator!");  
 | 
						|
  NamedDecl *InvokerFun = Invoker.front();
 | 
						|
  if (FunctionTemplateDecl *InvokerTemplate =
 | 
						|
                  dyn_cast<FunctionTemplateDecl>(InvokerFun)) 
 | 
						|
    return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
 | 
						|
  
 | 
						|
  return cast<CXXMethodDecl>(InvokerFun); 
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::getCaptureFields(
 | 
						|
       llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
 | 
						|
       FieldDecl *&ThisCapture) const {
 | 
						|
  Captures.clear();
 | 
						|
  ThisCapture = nullptr;
 | 
						|
 | 
						|
  LambdaDefinitionData &Lambda = getLambdaData();
 | 
						|
  RecordDecl::field_iterator Field = field_begin();
 | 
						|
  for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
 | 
						|
       C != CEnd; ++C, ++Field) {
 | 
						|
    if (C->capturesThis())
 | 
						|
      ThisCapture = *Field;
 | 
						|
    else if (C->capturesVariable())
 | 
						|
      Captures[C->getCapturedVar()] = *Field;
 | 
						|
  }
 | 
						|
  assert(Field == field_end());
 | 
						|
}
 | 
						|
 | 
						|
TemplateParameterList * 
 | 
						|
CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
 | 
						|
  if (!isLambda()) return nullptr;
 | 
						|
  CXXMethodDecl *CallOp = getLambdaCallOperator();     
 | 
						|
  if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
 | 
						|
    return Tmpl->getTemplateParameters();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
 | 
						|
  QualType T =
 | 
						|
      cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
 | 
						|
          ->getConversionType();
 | 
						|
  return Context.getCanonicalType(T);
 | 
						|
}
 | 
						|
 | 
						|
/// Collect the visible conversions of a base class.
 | 
						|
///
 | 
						|
/// \param Record a base class of the class we're considering
 | 
						|
/// \param InVirtual whether this base class is a virtual base (or a base
 | 
						|
///   of a virtual base)
 | 
						|
/// \param Access the access along the inheritance path to this base
 | 
						|
/// \param ParentHiddenTypes the conversions provided by the inheritors
 | 
						|
///   of this base
 | 
						|
/// \param Output the set to which to add conversions from non-virtual bases
 | 
						|
/// \param VOutput the set to which to add conversions from virtual bases
 | 
						|
/// \param HiddenVBaseCs the set of conversions which were hidden in a
 | 
						|
///   virtual base along some inheritance path
 | 
						|
static void CollectVisibleConversions(ASTContext &Context,
 | 
						|
                                      CXXRecordDecl *Record,
 | 
						|
                                      bool InVirtual,
 | 
						|
                                      AccessSpecifier Access,
 | 
						|
                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
 | 
						|
                                      ASTUnresolvedSet &Output,
 | 
						|
                                      UnresolvedSetImpl &VOutput,
 | 
						|
                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
 | 
						|
  // The set of types which have conversions in this class or its
 | 
						|
  // subclasses.  As an optimization, we don't copy the derived set
 | 
						|
  // unless it might change.
 | 
						|
  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
 | 
						|
  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
 | 
						|
 | 
						|
  // Collect the direct conversions and figure out which conversions
 | 
						|
  // will be hidden in the subclasses.
 | 
						|
  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
 | 
						|
  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
 | 
						|
  if (ConvI != ConvE) {
 | 
						|
    HiddenTypesBuffer = ParentHiddenTypes;
 | 
						|
    HiddenTypes = &HiddenTypesBuffer;
 | 
						|
 | 
						|
    for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
 | 
						|
      CanQualType ConvType(GetConversionType(Context, I.getDecl()));
 | 
						|
      bool Hidden = ParentHiddenTypes.count(ConvType);
 | 
						|
      if (!Hidden)
 | 
						|
        HiddenTypesBuffer.insert(ConvType);
 | 
						|
 | 
						|
      // If this conversion is hidden and we're in a virtual base,
 | 
						|
      // remember that it's hidden along some inheritance path.
 | 
						|
      if (Hidden && InVirtual)
 | 
						|
        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
 | 
						|
 | 
						|
      // If this conversion isn't hidden, add it to the appropriate output.
 | 
						|
      else if (!Hidden) {
 | 
						|
        AccessSpecifier IAccess
 | 
						|
          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
 | 
						|
 | 
						|
        if (InVirtual)
 | 
						|
          VOutput.addDecl(I.getDecl(), IAccess);
 | 
						|
        else
 | 
						|
          Output.addDecl(Context, I.getDecl(), IAccess);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect information recursively from any base classes.
 | 
						|
  for (const auto &I : Record->bases()) {
 | 
						|
    const RecordType *RT = I.getType()->getAs<RecordType>();
 | 
						|
    if (!RT) continue;
 | 
						|
 | 
						|
    AccessSpecifier BaseAccess
 | 
						|
      = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
 | 
						|
    bool BaseInVirtual = InVirtual || I.isVirtual();
 | 
						|
 | 
						|
    CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
 | 
						|
                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Collect the visible conversions of a class.
 | 
						|
///
 | 
						|
/// This would be extremely straightforward if it weren't for virtual
 | 
						|
/// bases.  It might be worth special-casing that, really.
 | 
						|
static void CollectVisibleConversions(ASTContext &Context,
 | 
						|
                                      CXXRecordDecl *Record,
 | 
						|
                                      ASTUnresolvedSet &Output) {
 | 
						|
  // The collection of all conversions in virtual bases that we've
 | 
						|
  // found.  These will be added to the output as long as they don't
 | 
						|
  // appear in the hidden-conversions set.
 | 
						|
  UnresolvedSet<8> VBaseCs;
 | 
						|
  
 | 
						|
  // The set of conversions in virtual bases that we've determined to
 | 
						|
  // be hidden.
 | 
						|
  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
 | 
						|
 | 
						|
  // The set of types hidden by classes derived from this one.
 | 
						|
  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
 | 
						|
 | 
						|
  // Go ahead and collect the direct conversions and add them to the
 | 
						|
  // hidden-types set.
 | 
						|
  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
 | 
						|
  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
 | 
						|
  Output.append(Context, ConvI, ConvE);
 | 
						|
  for (; ConvI != ConvE; ++ConvI)
 | 
						|
    HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
 | 
						|
 | 
						|
  // Recursively collect conversions from base classes.
 | 
						|
  for (const auto &I : Record->bases()) {
 | 
						|
    const RecordType *RT = I.getType()->getAs<RecordType>();
 | 
						|
    if (!RT) continue;
 | 
						|
 | 
						|
    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
 | 
						|
                              I.isVirtual(), I.getAccessSpecifier(),
 | 
						|
                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add any unhidden conversions provided by virtual bases.
 | 
						|
  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
 | 
						|
      Output.addDecl(Context, I.getDecl(), I.getAccess());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getVisibleConversionFunctions - get all conversion functions visible
 | 
						|
/// in current class; including conversion function templates.
 | 
						|
std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
 | 
						|
CXXRecordDecl::getVisibleConversionFunctions() {
 | 
						|
  ASTContext &Ctx = getASTContext();
 | 
						|
 | 
						|
  ASTUnresolvedSet *Set;
 | 
						|
  if (bases_begin() == bases_end()) {
 | 
						|
    // If root class, all conversions are visible.
 | 
						|
    Set = &data().Conversions.get(Ctx);
 | 
						|
  } else {
 | 
						|
    Set = &data().VisibleConversions.get(Ctx);
 | 
						|
    // If visible conversion list is not evaluated, evaluate it.
 | 
						|
    if (!data().ComputedVisibleConversions) {
 | 
						|
      CollectVisibleConversions(Ctx, this, *Set);
 | 
						|
      data().ComputedVisibleConversions = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return std::make_pair(Set->begin(), Set->end());
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
 | 
						|
  // This operation is O(N) but extremely rare.  Sema only uses it to
 | 
						|
  // remove UsingShadowDecls in a class that were followed by a direct
 | 
						|
  // declaration, e.g.:
 | 
						|
  //   class A : B {
 | 
						|
  //     using B::operator int;
 | 
						|
  //     operator int();
 | 
						|
  //   };
 | 
						|
  // This is uncommon by itself and even more uncommon in conjunction
 | 
						|
  // with sufficiently large numbers of directly-declared conversions
 | 
						|
  // that asymptotic behavior matters.
 | 
						|
 | 
						|
  ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
 | 
						|
  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
 | 
						|
    if (Convs[I].getDecl() == ConvDecl) {
 | 
						|
      Convs.erase(I);
 | 
						|
      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
 | 
						|
             && "conversion was found multiple times in unresolved set");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("conversion not found in set!");
 | 
						|
}
 | 
						|
 | 
						|
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
 | 
						|
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
 | 
						|
    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void 
 | 
						|
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
 | 
						|
                                             TemplateSpecializationKind TSK) {
 | 
						|
  assert(TemplateOrInstantiation.isNull() && 
 | 
						|
         "Previous template or instantiation?");
 | 
						|
  assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
 | 
						|
  TemplateOrInstantiation 
 | 
						|
    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
 | 
						|
}
 | 
						|
 | 
						|
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
 | 
						|
  if (const ClassTemplateSpecializationDecl *Spec
 | 
						|
        = dyn_cast<ClassTemplateSpecializationDecl>(this))
 | 
						|
    return Spec->getSpecializationKind();
 | 
						|
  
 | 
						|
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
 | 
						|
    return MSInfo->getTemplateSpecializationKind();
 | 
						|
  
 | 
						|
  return TSK_Undeclared;
 | 
						|
}
 | 
						|
 | 
						|
void 
 | 
						|
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
 | 
						|
  if (ClassTemplateSpecializationDecl *Spec
 | 
						|
      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
 | 
						|
    Spec->setSpecializationKind(TSK);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
 | 
						|
    MSInfo->setTemplateSpecializationKind(TSK);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm_unreachable("Not a class template or member class specialization");
 | 
						|
}
 | 
						|
 | 
						|
CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
 | 
						|
  ASTContext &Context = getASTContext();
 | 
						|
  QualType ClassType = Context.getTypeDeclType(this);
 | 
						|
 | 
						|
  DeclarationName Name
 | 
						|
    = Context.DeclarationNames.getCXXDestructorName(
 | 
						|
                                          Context.getCanonicalType(ClassType));
 | 
						|
 | 
						|
  DeclContext::lookup_const_result R = lookup(Name);
 | 
						|
  if (R.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
 | 
						|
  return Dtor;
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::completeDefinition() {
 | 
						|
  completeDefinition(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
 | 
						|
  RecordDecl::completeDefinition();
 | 
						|
  
 | 
						|
  if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
 | 
						|
    // Objective-C Automatic Reference Counting:
 | 
						|
    //   If a class has a non-static data member of Objective-C pointer
 | 
						|
    //   type (or array thereof), it is a non-POD type and its
 | 
						|
    //   default constructor (if any), copy constructor, move constructor,
 | 
						|
    //   copy assignment operator, move assignment operator, and destructor are
 | 
						|
    //   non-trivial.
 | 
						|
    struct DefinitionData &Data = data();
 | 
						|
    Data.PlainOldData = false;
 | 
						|
    Data.HasTrivialSpecialMembers = 0;
 | 
						|
    Data.HasIrrelevantDestructor = false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the class may be abstract (but hasn't been marked as such), check for
 | 
						|
  // any pure final overriders.
 | 
						|
  if (mayBeAbstract()) {
 | 
						|
    CXXFinalOverriderMap MyFinalOverriders;
 | 
						|
    if (!FinalOverriders) {
 | 
						|
      getFinalOverriders(MyFinalOverriders);
 | 
						|
      FinalOverriders = &MyFinalOverriders;
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool Done = false;
 | 
						|
    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 
 | 
						|
                                     MEnd = FinalOverriders->end();
 | 
						|
         M != MEnd && !Done; ++M) {
 | 
						|
      for (OverridingMethods::iterator SO = M->second.begin(), 
 | 
						|
                                    SOEnd = M->second.end();
 | 
						|
           SO != SOEnd && !Done; ++SO) {
 | 
						|
        assert(SO->second.size() > 0 && 
 | 
						|
               "All virtual functions have overridding virtual functions");
 | 
						|
        
 | 
						|
        // C++ [class.abstract]p4:
 | 
						|
        //   A class is abstract if it contains or inherits at least one
 | 
						|
        //   pure virtual function for which the final overrider is pure
 | 
						|
        //   virtual.
 | 
						|
        if (SO->second.front().Method->isPure()) {
 | 
						|
          data().Abstract = true;
 | 
						|
          Done = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Set access bits correctly on the directly-declared conversions.
 | 
						|
  for (conversion_iterator I = conversion_begin(), E = conversion_end();
 | 
						|
       I != E; ++I)
 | 
						|
    I.setAccess((*I)->getAccess());
 | 
						|
}
 | 
						|
 | 
						|
bool CXXRecordDecl::mayBeAbstract() const {
 | 
						|
  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
 | 
						|
      isDependentContext())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  for (const auto &B : bases()) {
 | 
						|
    CXXRecordDecl *BaseDecl 
 | 
						|
      = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
 | 
						|
    if (BaseDecl->isAbstract())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CXXMethodDecl::anchor() { }
 | 
						|
 | 
						|
bool CXXMethodDecl::isStatic() const {
 | 
						|
  const CXXMethodDecl *MD = getCanonicalDecl();
 | 
						|
 | 
						|
  if (MD->getStorageClass() == SC_Static)
 | 
						|
    return true;
 | 
						|
 | 
						|
  OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
 | 
						|
  return isStaticOverloadedOperator(OOK);
 | 
						|
}
 | 
						|
 | 
						|
static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
 | 
						|
                                 const CXXMethodDecl *BaseMD) {
 | 
						|
  for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
 | 
						|
         E = DerivedMD->end_overridden_methods(); I != E; ++I) {
 | 
						|
    const CXXMethodDecl *MD = *I;
 | 
						|
    if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
 | 
						|
      return true;
 | 
						|
    if (recursivelyOverrides(MD, BaseMD))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl *
 | 
						|
CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
 | 
						|
                                             bool MayBeBase) {
 | 
						|
  if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
 | 
						|
    return this;
 | 
						|
 | 
						|
  // Lookup doesn't work for destructors, so handle them separately.
 | 
						|
  if (isa<CXXDestructorDecl>(this)) {
 | 
						|
    CXXMethodDecl *MD = RD->getDestructor();
 | 
						|
    if (MD) {
 | 
						|
      if (recursivelyOverrides(MD, this))
 | 
						|
        return MD;
 | 
						|
      if (MayBeBase && recursivelyOverrides(this, MD))
 | 
						|
        return MD;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  lookup_const_result Candidates = RD->lookup(getDeclName());
 | 
						|
  for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
 | 
						|
    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
 | 
						|
    if (!MD)
 | 
						|
      continue;
 | 
						|
    if (recursivelyOverrides(MD, this))
 | 
						|
      return MD;
 | 
						|
    if (MayBeBase && recursivelyOverrides(this, MD))
 | 
						|
      return MD;
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &I : RD->bases()) {
 | 
						|
    const RecordType *RT = I.getType()->getAs<RecordType>();
 | 
						|
    if (!RT)
 | 
						|
      continue;
 | 
						|
    const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
    CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
 | 
						|
    if (T)
 | 
						|
      return T;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl *
 | 
						|
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | 
						|
                      SourceLocation StartLoc,
 | 
						|
                      const DeclarationNameInfo &NameInfo,
 | 
						|
                      QualType T, TypeSourceInfo *TInfo,
 | 
						|
                      StorageClass SC, bool isInline,
 | 
						|
                      bool isConstexpr, SourceLocation EndLocation) {
 | 
						|
  return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
 | 
						|
                                   T, TInfo, SC, isInline, isConstexpr,
 | 
						|
                                   EndLocation);
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
 | 
						|
                                   DeclarationNameInfo(), QualType(), nullptr,
 | 
						|
                                   SC_None, false, false, SourceLocation());
 | 
						|
}
 | 
						|
 | 
						|
bool CXXMethodDecl::isUsualDeallocationFunction() const {
 | 
						|
  if (getOverloadedOperator() != OO_Delete &&
 | 
						|
      getOverloadedOperator() != OO_Array_Delete)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [basic.stc.dynamic.deallocation]p2:
 | 
						|
  //   A template instance is never a usual deallocation function,
 | 
						|
  //   regardless of its signature.
 | 
						|
  if (getPrimaryTemplate())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [basic.stc.dynamic.deallocation]p2:
 | 
						|
  //   If a class T has a member deallocation function named operator delete 
 | 
						|
  //   with exactly one parameter, then that function is a usual (non-placement)
 | 
						|
  //   deallocation function. [...]
 | 
						|
  if (getNumParams() == 1)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // C++ [basic.stc.dynamic.deallocation]p2:
 | 
						|
  //   [...] If class T does not declare such an operator delete but does 
 | 
						|
  //   declare a member deallocation function named operator delete with 
 | 
						|
  //   exactly two parameters, the second of which has type std::size_t (18.1),
 | 
						|
  //   then this function is a usual deallocation function.
 | 
						|
  ASTContext &Context = getASTContext();
 | 
						|
  if (getNumParams() != 2 ||
 | 
						|
      !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
 | 
						|
                                      Context.getSizeType()))
 | 
						|
    return false;
 | 
						|
                 
 | 
						|
  // This function is a usual deallocation function if there are no 
 | 
						|
  // single-parameter deallocation functions of the same kind.
 | 
						|
  DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
 | 
						|
  for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
 | 
						|
      if (FD->getNumParams() == 1)
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CXXMethodDecl::isCopyAssignmentOperator() const {
 | 
						|
  // C++0x [class.copy]p17:
 | 
						|
  //  A user-declared copy assignment operator X::operator= is a non-static 
 | 
						|
  //  non-template member function of class X with exactly one parameter of 
 | 
						|
  //  type X, X&, const X&, volatile X& or const volatile X&.
 | 
						|
  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
 | 
						|
      /*non-static*/ isStatic() || 
 | 
						|
      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
 | 
						|
      getNumParams() != 1)
 | 
						|
    return false;
 | 
						|
      
 | 
						|
  QualType ParamType = getParamDecl(0)->getType();
 | 
						|
  if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
 | 
						|
    ParamType = Ref->getPointeeType();
 | 
						|
  
 | 
						|
  ASTContext &Context = getASTContext();
 | 
						|
  QualType ClassType
 | 
						|
    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
 | 
						|
  return Context.hasSameUnqualifiedType(ClassType, ParamType);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXMethodDecl::isMoveAssignmentOperator() const {
 | 
						|
  // C++0x [class.copy]p19:
 | 
						|
  //  A user-declared move assignment operator X::operator= is a non-static
 | 
						|
  //  non-template member function of class X with exactly one parameter of type
 | 
						|
  //  X&&, const X&&, volatile X&&, or const volatile X&&.
 | 
						|
  if (getOverloadedOperator() != OO_Equal || isStatic() ||
 | 
						|
      getPrimaryTemplate() || getDescribedFunctionTemplate() ||
 | 
						|
      getNumParams() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType ParamType = getParamDecl(0)->getType();
 | 
						|
  if (!isa<RValueReferenceType>(ParamType))
 | 
						|
    return false;
 | 
						|
  ParamType = ParamType->getPointeeType();
 | 
						|
 | 
						|
  ASTContext &Context = getASTContext();
 | 
						|
  QualType ClassType
 | 
						|
    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
 | 
						|
  return Context.hasSameUnqualifiedType(ClassType, ParamType);
 | 
						|
}
 | 
						|
 | 
						|
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
 | 
						|
  assert(MD->isCanonicalDecl() && "Method is not canonical!");
 | 
						|
  assert(!MD->getParent()->isDependentContext() &&
 | 
						|
         "Can't add an overridden method to a class template!");
 | 
						|
  assert(MD->isVirtual() && "Method is not virtual!");
 | 
						|
 | 
						|
  getASTContext().addOverriddenMethod(this, MD);
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
 | 
						|
  if (isa<CXXConstructorDecl>(this)) return nullptr;
 | 
						|
  return getASTContext().overridden_methods_begin(this);
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
 | 
						|
  if (isa<CXXConstructorDecl>(this)) return nullptr;
 | 
						|
  return getASTContext().overridden_methods_end(this);
 | 
						|
}
 | 
						|
 | 
						|
unsigned CXXMethodDecl::size_overridden_methods() const {
 | 
						|
  if (isa<CXXConstructorDecl>(this)) return 0;
 | 
						|
  return getASTContext().overridden_methods_size(this);
 | 
						|
}
 | 
						|
 | 
						|
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
 | 
						|
  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
 | 
						|
  // If the member function is declared const, the type of this is const X*,
 | 
						|
  // if the member function is declared volatile, the type of this is
 | 
						|
  // volatile X*, and if the member function is declared const volatile,
 | 
						|
  // the type of this is const volatile X*.
 | 
						|
 | 
						|
  assert(isInstance() && "No 'this' for static methods!");
 | 
						|
 | 
						|
  QualType ClassTy = C.getTypeDeclType(getParent());
 | 
						|
  ClassTy = C.getQualifiedType(ClassTy,
 | 
						|
                               Qualifiers::fromCVRMask(getTypeQualifiers()));
 | 
						|
  return C.getPointerType(ClassTy);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXMethodDecl::hasInlineBody() const {
 | 
						|
  // If this function is a template instantiation, look at the template from 
 | 
						|
  // which it was instantiated.
 | 
						|
  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
 | 
						|
  if (!CheckFn)
 | 
						|
    CheckFn = this;
 | 
						|
  
 | 
						|
  const FunctionDecl *fn;
 | 
						|
  return CheckFn->hasBody(fn) && !fn->isOutOfLine();
 | 
						|
}
 | 
						|
 | 
						|
bool CXXMethodDecl::isLambdaStaticInvoker() const {
 | 
						|
  const CXXRecordDecl *P = getParent();
 | 
						|
  if (P->isLambda()) {
 | 
						|
    if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
 | 
						|
      if (StaticInvoker == this) return true;
 | 
						|
      if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
 | 
						|
        return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | 
						|
                                       TypeSourceInfo *TInfo, bool IsVirtual,
 | 
						|
                                       SourceLocation L, Expr *Init,
 | 
						|
                                       SourceLocation R,
 | 
						|
                                       SourceLocation EllipsisLoc)
 | 
						|
  : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), 
 | 
						|
    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 
 | 
						|
    IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | 
						|
                                       FieldDecl *Member,
 | 
						|
                                       SourceLocation MemberLoc,
 | 
						|
                                       SourceLocation L, Expr *Init,
 | 
						|
                                       SourceLocation R)
 | 
						|
  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
 | 
						|
    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
 | 
						|
    IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | 
						|
                                       IndirectFieldDecl *Member,
 | 
						|
                                       SourceLocation MemberLoc,
 | 
						|
                                       SourceLocation L, Expr *Init,
 | 
						|
                                       SourceLocation R)
 | 
						|
  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
 | 
						|
    LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
 | 
						|
    IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | 
						|
                                       TypeSourceInfo *TInfo,
 | 
						|
                                       SourceLocation L, Expr *Init, 
 | 
						|
                                       SourceLocation R)
 | 
						|
  : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
 | 
						|
    LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
 | 
						|
    IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | 
						|
                                       FieldDecl *Member,
 | 
						|
                                       SourceLocation MemberLoc,
 | 
						|
                                       SourceLocation L, Expr *Init,
 | 
						|
                                       SourceLocation R,
 | 
						|
                                       VarDecl **Indices,
 | 
						|
                                       unsigned NumIndices)
 | 
						|
  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 
 | 
						|
    LParenLoc(L), RParenLoc(R), IsVirtual(false),
 | 
						|
    IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
 | 
						|
{
 | 
						|
  VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
 | 
						|
  memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
 | 
						|
}
 | 
						|
 | 
						|
CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
 | 
						|
                                               FieldDecl *Member, 
 | 
						|
                                               SourceLocation MemberLoc,
 | 
						|
                                               SourceLocation L, Expr *Init,
 | 
						|
                                               SourceLocation R,
 | 
						|
                                               VarDecl **Indices,
 | 
						|
                                               unsigned NumIndices) {
 | 
						|
  void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
 | 
						|
                               sizeof(VarDecl *) * NumIndices,
 | 
						|
                               llvm::alignOf<CXXCtorInitializer>());
 | 
						|
  return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
 | 
						|
                                      Indices, NumIndices);
 | 
						|
}
 | 
						|
 | 
						|
TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
 | 
						|
  if (isBaseInitializer())
 | 
						|
    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
 | 
						|
  else
 | 
						|
    return TypeLoc();
 | 
						|
}
 | 
						|
 | 
						|
const Type *CXXCtorInitializer::getBaseClass() const {
 | 
						|
  if (isBaseInitializer())
 | 
						|
    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation CXXCtorInitializer::getSourceLocation() const {
 | 
						|
  if (isAnyMemberInitializer())
 | 
						|
    return getMemberLocation();
 | 
						|
 | 
						|
  if (isInClassMemberInitializer())
 | 
						|
    return getAnyMember()->getLocation();
 | 
						|
  
 | 
						|
  if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
 | 
						|
    return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | 
						|
  
 | 
						|
  return SourceLocation();
 | 
						|
}
 | 
						|
 | 
						|
SourceRange CXXCtorInitializer::getSourceRange() const {
 | 
						|
  if (isInClassMemberInitializer()) {
 | 
						|
    FieldDecl *D = getAnyMember();
 | 
						|
    if (Expr *I = D->getInClassInitializer())
 | 
						|
      return I->getSourceRange();
 | 
						|
    return SourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  return SourceRange(getSourceLocation(), getRParenLoc());
 | 
						|
}
 | 
						|
 | 
						|
void CXXConstructorDecl::anchor() { }
 | 
						|
 | 
						|
CXXConstructorDecl *
 | 
						|
CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
 | 
						|
                                        DeclarationNameInfo(), QualType(),
 | 
						|
                                        nullptr, false, false, false, false);
 | 
						|
}
 | 
						|
 | 
						|
CXXConstructorDecl *
 | 
						|
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | 
						|
                           SourceLocation StartLoc,
 | 
						|
                           const DeclarationNameInfo &NameInfo,
 | 
						|
                           QualType T, TypeSourceInfo *TInfo,
 | 
						|
                           bool isExplicit, bool isInline,
 | 
						|
                           bool isImplicitlyDeclared, bool isConstexpr) {
 | 
						|
  assert(NameInfo.getName().getNameKind()
 | 
						|
         == DeclarationName::CXXConstructorName &&
 | 
						|
         "Name must refer to a constructor");
 | 
						|
  return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
 | 
						|
                                        isExplicit, isInline,
 | 
						|
                                        isImplicitlyDeclared, isConstexpr);
 | 
						|
}
 | 
						|
 | 
						|
CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
 | 
						|
  assert(isDelegatingConstructor() && "Not a delegating constructor!");
 | 
						|
  Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
 | 
						|
  if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
 | 
						|
    return Construct->getConstructor();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool CXXConstructorDecl::isDefaultConstructor() const {
 | 
						|
  // C++ [class.ctor]p5:
 | 
						|
  //   A default constructor for a class X is a constructor of class
 | 
						|
  //   X that can be called without an argument.
 | 
						|
  return (getNumParams() == 0) ||
 | 
						|
         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
 | 
						|
  return isCopyOrMoveConstructor(TypeQuals) &&
 | 
						|
         getParamDecl(0)->getType()->isLValueReferenceType();
 | 
						|
}
 | 
						|
 | 
						|
bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
 | 
						|
  return isCopyOrMoveConstructor(TypeQuals) &&
 | 
						|
    getParamDecl(0)->getType()->isRValueReferenceType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether this is a copy or move constructor.
 | 
						|
bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
 | 
						|
  // C++ [class.copy]p2:
 | 
						|
  //   A non-template constructor for class X is a copy constructor
 | 
						|
  //   if its first parameter is of type X&, const X&, volatile X& or
 | 
						|
  //   const volatile X&, and either there are no other parameters
 | 
						|
  //   or else all other parameters have default arguments (8.3.6).
 | 
						|
  // C++0x [class.copy]p3:
 | 
						|
  //   A non-template constructor for class X is a move constructor if its
 | 
						|
  //   first parameter is of type X&&, const X&&, volatile X&&, or 
 | 
						|
  //   const volatile X&&, and either there are no other parameters or else 
 | 
						|
  //   all other parameters have default arguments.
 | 
						|
  if ((getNumParams() < 1) ||
 | 
						|
      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
 | 
						|
      (getPrimaryTemplate() != nullptr) ||
 | 
						|
      (getDescribedFunctionTemplate() != nullptr))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  const ParmVarDecl *Param = getParamDecl(0);
 | 
						|
  
 | 
						|
  // Do we have a reference type? 
 | 
						|
  const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
 | 
						|
  if (!ParamRefType)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Is it a reference to our class type?
 | 
						|
  ASTContext &Context = getASTContext();
 | 
						|
  
 | 
						|
  CanQualType PointeeType
 | 
						|
    = Context.getCanonicalType(ParamRefType->getPointeeType());
 | 
						|
  CanQualType ClassTy 
 | 
						|
    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
 | 
						|
  if (PointeeType.getUnqualifiedType() != ClassTy)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // FIXME: other qualifiers?
 | 
						|
  
 | 
						|
  // We have a copy or move constructor.
 | 
						|
  TypeQuals = PointeeType.getCVRQualifiers();
 | 
						|
  return true;  
 | 
						|
}
 | 
						|
 | 
						|
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
 | 
						|
  // C++ [class.conv.ctor]p1:
 | 
						|
  //   A constructor declared without the function-specifier explicit
 | 
						|
  //   that can be called with a single parameter specifies a
 | 
						|
  //   conversion from the type of its first parameter to the type of
 | 
						|
  //   its class. Such a constructor is called a converting
 | 
						|
  //   constructor.
 | 
						|
  if (isExplicit() && !AllowExplicit)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return (getNumParams() == 0 &&
 | 
						|
          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
 | 
						|
         (getNumParams() == 1) ||
 | 
						|
         (getNumParams() > 1 &&
 | 
						|
          (getParamDecl(1)->hasDefaultArg() ||
 | 
						|
           getParamDecl(1)->isParameterPack()));
 | 
						|
}
 | 
						|
 | 
						|
bool CXXConstructorDecl::isSpecializationCopyingObject() const {
 | 
						|
  if ((getNumParams() < 1) ||
 | 
						|
      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
 | 
						|
      (getPrimaryTemplate() == nullptr) ||
 | 
						|
      (getDescribedFunctionTemplate() != nullptr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ParmVarDecl *Param = getParamDecl(0);
 | 
						|
 | 
						|
  ASTContext &Context = getASTContext();
 | 
						|
  CanQualType ParamType = Context.getCanonicalType(Param->getType());
 | 
						|
  
 | 
						|
  // Is it the same as our our class type?
 | 
						|
  CanQualType ClassTy 
 | 
						|
    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
 | 
						|
  if (ParamType.getUnqualifiedType() != ClassTy)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  return true;  
 | 
						|
}
 | 
						|
 | 
						|
const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
 | 
						|
  // Hack: we store the inherited constructor in the overridden method table
 | 
						|
  method_iterator It = getASTContext().overridden_methods_begin(this);
 | 
						|
  if (It == getASTContext().overridden_methods_end(this))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return cast<CXXConstructorDecl>(*It);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
 | 
						|
  // Hack: we store the inherited constructor in the overridden method table
 | 
						|
  assert(getASTContext().overridden_methods_size(this) == 0 &&
 | 
						|
         "Base ctor already set.");
 | 
						|
  getASTContext().addOverriddenMethod(this, BaseCtor);
 | 
						|
}
 | 
						|
 | 
						|
void CXXDestructorDecl::anchor() { }
 | 
						|
 | 
						|
CXXDestructorDecl *
 | 
						|
CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID)
 | 
						|
      CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
 | 
						|
                        QualType(), nullptr, false, false);
 | 
						|
}
 | 
						|
 | 
						|
CXXDestructorDecl *
 | 
						|
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | 
						|
                          SourceLocation StartLoc,
 | 
						|
                          const DeclarationNameInfo &NameInfo,
 | 
						|
                          QualType T, TypeSourceInfo *TInfo,
 | 
						|
                          bool isInline, bool isImplicitlyDeclared) {
 | 
						|
  assert(NameInfo.getName().getNameKind()
 | 
						|
         == DeclarationName::CXXDestructorName &&
 | 
						|
         "Name must refer to a destructor");
 | 
						|
  return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
 | 
						|
                                       isInline, isImplicitlyDeclared);
 | 
						|
}
 | 
						|
 | 
						|
void CXXConversionDecl::anchor() { }
 | 
						|
 | 
						|
CXXConversionDecl *
 | 
						|
CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
 | 
						|
                                       DeclarationNameInfo(), QualType(),
 | 
						|
                                       nullptr, false, false, false,
 | 
						|
                                       SourceLocation());
 | 
						|
}
 | 
						|
 | 
						|
CXXConversionDecl *
 | 
						|
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | 
						|
                          SourceLocation StartLoc,
 | 
						|
                          const DeclarationNameInfo &NameInfo,
 | 
						|
                          QualType T, TypeSourceInfo *TInfo,
 | 
						|
                          bool isInline, bool isExplicit,
 | 
						|
                          bool isConstexpr, SourceLocation EndLocation) {
 | 
						|
  assert(NameInfo.getName().getNameKind()
 | 
						|
         == DeclarationName::CXXConversionFunctionName &&
 | 
						|
         "Name must refer to a conversion function");
 | 
						|
  return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
 | 
						|
                                       isInline, isExplicit, isConstexpr,
 | 
						|
                                       EndLocation);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
 | 
						|
  return isImplicit() && getParent()->isLambda() &&
 | 
						|
         getConversionType()->isBlockPointerType();
 | 
						|
}
 | 
						|
 | 
						|
void LinkageSpecDecl::anchor() { }
 | 
						|
 | 
						|
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
 | 
						|
                                         DeclContext *DC,
 | 
						|
                                         SourceLocation ExternLoc,
 | 
						|
                                         SourceLocation LangLoc,
 | 
						|
                                         LanguageIDs Lang,
 | 
						|
                                         bool HasBraces) {
 | 
						|
  return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
 | 
						|
}
 | 
						|
 | 
						|
LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
 | 
						|
                                                     unsigned ID) {
 | 
						|
  return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
 | 
						|
                                     SourceLocation(), lang_c, false);
 | 
						|
}
 | 
						|
 | 
						|
void UsingDirectiveDecl::anchor() { }
 | 
						|
 | 
						|
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                               SourceLocation L,
 | 
						|
                                               SourceLocation NamespaceLoc,
 | 
						|
                                           NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                                               SourceLocation IdentLoc,
 | 
						|
                                               NamedDecl *Used,
 | 
						|
                                               DeclContext *CommonAncestor) {
 | 
						|
  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
 | 
						|
    Used = NS->getOriginalNamespace();
 | 
						|
  return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
 | 
						|
                                        IdentLoc, Used, CommonAncestor);
 | 
						|
}
 | 
						|
 | 
						|
UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
 | 
						|
                                                           unsigned ID) {
 | 
						|
  return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
 | 
						|
                                        SourceLocation(),
 | 
						|
                                        NestedNameSpecifierLoc(),
 | 
						|
                                        SourceLocation(), nullptr, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
 | 
						|
  if (NamespaceAliasDecl *NA =
 | 
						|
        dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
 | 
						|
    return NA->getNamespace();
 | 
						|
  return cast_or_null<NamespaceDecl>(NominatedNamespace);
 | 
						|
}
 | 
						|
 | 
						|
NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
 | 
						|
                             SourceLocation StartLoc, SourceLocation IdLoc,
 | 
						|
                             IdentifierInfo *Id, NamespaceDecl *PrevDecl)
 | 
						|
    : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
 | 
						|
      redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
 | 
						|
      AnonOrFirstNamespaceAndInline(nullptr, Inline) {
 | 
						|
  setPreviousDecl(PrevDecl);
 | 
						|
 | 
						|
  if (PrevDecl)
 | 
						|
    AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
 | 
						|
}
 | 
						|
 | 
						|
NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                     bool Inline, SourceLocation StartLoc,
 | 
						|
                                     SourceLocation IdLoc, IdentifierInfo *Id,
 | 
						|
                                     NamespaceDecl *PrevDecl) {
 | 
						|
  return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
 | 
						|
                                   PrevDecl);
 | 
						|
}
 | 
						|
 | 
						|
NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
 | 
						|
                                   SourceLocation(), nullptr, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
 | 
						|
  return getNextRedeclaration();
 | 
						|
}
 | 
						|
NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
 | 
						|
  return getPreviousDecl();
 | 
						|
}
 | 
						|
NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
 | 
						|
  return getMostRecentDecl();
 | 
						|
}
 | 
						|
 | 
						|
void NamespaceAliasDecl::anchor() { }
 | 
						|
 | 
						|
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                               SourceLocation UsingLoc,
 | 
						|
                                               SourceLocation AliasLoc,
 | 
						|
                                               IdentifierInfo *Alias,
 | 
						|
                                           NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                                               SourceLocation IdentLoc,
 | 
						|
                                               NamedDecl *Namespace) {
 | 
						|
  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
 | 
						|
    Namespace = NS->getOriginalNamespace();
 | 
						|
  return new (C, DC) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
 | 
						|
                                        QualifierLoc, IdentLoc, Namespace);
 | 
						|
}
 | 
						|
 | 
						|
NamespaceAliasDecl *
 | 
						|
NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) NamespaceAliasDecl(nullptr, SourceLocation(),
 | 
						|
                                        SourceLocation(), nullptr,
 | 
						|
                                        NestedNameSpecifierLoc(),
 | 
						|
                                        SourceLocation(), nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void UsingShadowDecl::anchor() { }
 | 
						|
 | 
						|
UsingShadowDecl *
 | 
						|
UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
 | 
						|
                                     nullptr, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
UsingDecl *UsingShadowDecl::getUsingDecl() const {
 | 
						|
  const UsingShadowDecl *Shadow = this;
 | 
						|
  while (const UsingShadowDecl *NextShadow =
 | 
						|
         dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
 | 
						|
    Shadow = NextShadow;
 | 
						|
  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
 | 
						|
}
 | 
						|
 | 
						|
void UsingDecl::anchor() { }
 | 
						|
 | 
						|
void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
 | 
						|
  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
 | 
						|
         "declaration already in set");
 | 
						|
  assert(S->getUsingDecl() == this);
 | 
						|
 | 
						|
  if (FirstUsingShadow.getPointer())
 | 
						|
    S->UsingOrNextShadow = FirstUsingShadow.getPointer();
 | 
						|
  FirstUsingShadow.setPointer(S);
 | 
						|
}
 | 
						|
 | 
						|
void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
 | 
						|
  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
 | 
						|
         "declaration not in set");
 | 
						|
  assert(S->getUsingDecl() == this);
 | 
						|
 | 
						|
  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
 | 
						|
 | 
						|
  if (FirstUsingShadow.getPointer() == S) {
 | 
						|
    FirstUsingShadow.setPointer(
 | 
						|
      dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
 | 
						|
    S->UsingOrNextShadow = this;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
 | 
						|
  while (Prev->UsingOrNextShadow != S)
 | 
						|
    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
 | 
						|
  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
 | 
						|
  S->UsingOrNextShadow = this;
 | 
						|
}
 | 
						|
 | 
						|
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
 | 
						|
                             NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                             const DeclarationNameInfo &NameInfo,
 | 
						|
                             bool HasTypename) {
 | 
						|
  return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
 | 
						|
}
 | 
						|
 | 
						|
UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) UsingDecl(nullptr, SourceLocation(),
 | 
						|
                               NestedNameSpecifierLoc(), DeclarationNameInfo(),
 | 
						|
                               false);
 | 
						|
}
 | 
						|
 | 
						|
SourceRange UsingDecl::getSourceRange() const {
 | 
						|
  SourceLocation Begin = isAccessDeclaration()
 | 
						|
    ? getQualifierLoc().getBeginLoc() : UsingLocation;
 | 
						|
  return SourceRange(Begin, getNameInfo().getEndLoc());
 | 
						|
}
 | 
						|
 | 
						|
void UnresolvedUsingValueDecl::anchor() { }
 | 
						|
 | 
						|
UnresolvedUsingValueDecl *
 | 
						|
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                 SourceLocation UsingLoc,
 | 
						|
                                 NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                                 const DeclarationNameInfo &NameInfo) {
 | 
						|
  return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
 | 
						|
                                              QualifierLoc, NameInfo);
 | 
						|
}
 | 
						|
 | 
						|
UnresolvedUsingValueDecl *
 | 
						|
UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
 | 
						|
                                              SourceLocation(),
 | 
						|
                                              NestedNameSpecifierLoc(),
 | 
						|
                                              DeclarationNameInfo());
 | 
						|
}
 | 
						|
 | 
						|
SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
 | 
						|
  SourceLocation Begin = isAccessDeclaration()
 | 
						|
    ? getQualifierLoc().getBeginLoc() : UsingLocation;
 | 
						|
  return SourceRange(Begin, getNameInfo().getEndLoc());
 | 
						|
}
 | 
						|
 | 
						|
void UnresolvedUsingTypenameDecl::anchor() { }
 | 
						|
 | 
						|
UnresolvedUsingTypenameDecl *
 | 
						|
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                    SourceLocation UsingLoc,
 | 
						|
                                    SourceLocation TypenameLoc,
 | 
						|
                                    NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                                    SourceLocation TargetNameLoc,
 | 
						|
                                    DeclarationName TargetName) {
 | 
						|
  return new (C, DC) UnresolvedUsingTypenameDecl(
 | 
						|
      DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
 | 
						|
      TargetName.getAsIdentifierInfo());
 | 
						|
}
 | 
						|
 | 
						|
UnresolvedUsingTypenameDecl *
 | 
						|
UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | 
						|
  return new (C, ID) UnresolvedUsingTypenameDecl(
 | 
						|
      nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
 | 
						|
      SourceLocation(), nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void StaticAssertDecl::anchor() { }
 | 
						|
 | 
						|
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                           SourceLocation StaticAssertLoc,
 | 
						|
                                           Expr *AssertExpr,
 | 
						|
                                           StringLiteral *Message,
 | 
						|
                                           SourceLocation RParenLoc,
 | 
						|
                                           bool Failed) {
 | 
						|
  return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
 | 
						|
                                      RParenLoc, Failed);
 | 
						|
}
 | 
						|
 | 
						|
StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
 | 
						|
                                                       unsigned ID) {
 | 
						|
  return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
 | 
						|
                                      nullptr, SourceLocation(), false);
 | 
						|
}
 | 
						|
 | 
						|
MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
 | 
						|
                                       SourceLocation L, DeclarationName N,
 | 
						|
                                       QualType T, TypeSourceInfo *TInfo,
 | 
						|
                                       SourceLocation StartL,
 | 
						|
                                       IdentifierInfo *Getter,
 | 
						|
                                       IdentifierInfo *Setter) {
 | 
						|
  return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
 | 
						|
}
 | 
						|
 | 
						|
MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
 | 
						|
                                                   unsigned ID) {
 | 
						|
  return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
 | 
						|
                                    DeclarationName(), QualType(), nullptr,
 | 
						|
                                    SourceLocation(), nullptr, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
static const char *getAccessName(AccessSpecifier AS) {
 | 
						|
  switch (AS) {
 | 
						|
    case AS_none:
 | 
						|
      llvm_unreachable("Invalid access specifier!");
 | 
						|
    case AS_public:
 | 
						|
      return "public";
 | 
						|
    case AS_private:
 | 
						|
      return "private";
 | 
						|
    case AS_protected:
 | 
						|
      return "protected";
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid access specifier!");
 | 
						|
}
 | 
						|
 | 
						|
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
 | 
						|
                                           AccessSpecifier AS) {
 | 
						|
  return DB << getAccessName(AS);
 | 
						|
}
 | 
						|
 | 
						|
const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
 | 
						|
                                           AccessSpecifier AS) {
 | 
						|
  return DB << getAccessName(AS);
 | 
						|
}
 |