1150 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1150 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the code for emitting atomic operations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGCall.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/CodeGen/CGFunctionInfo.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| namespace {
 | |
|   class AtomicInfo {
 | |
|     CodeGenFunction &CGF;
 | |
|     QualType AtomicTy;
 | |
|     QualType ValueTy;
 | |
|     uint64_t AtomicSizeInBits;
 | |
|     uint64_t ValueSizeInBits;
 | |
|     CharUnits AtomicAlign;
 | |
|     CharUnits ValueAlign;
 | |
|     CharUnits LValueAlign;
 | |
|     TypeEvaluationKind EvaluationKind;
 | |
|     bool UseLibcall;
 | |
|   public:
 | |
|     AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) {
 | |
|       assert(lvalue.isSimple());
 | |
| 
 | |
|       AtomicTy = lvalue.getType();
 | |
|       ValueTy = AtomicTy->castAs<AtomicType>()->getValueType();
 | |
|       EvaluationKind = CGF.getEvaluationKind(ValueTy);
 | |
| 
 | |
|       ASTContext &C = CGF.getContext();
 | |
| 
 | |
|       uint64_t valueAlignInBits;
 | |
|       std::tie(ValueSizeInBits, valueAlignInBits) = C.getTypeInfo(ValueTy);
 | |
| 
 | |
|       uint64_t atomicAlignInBits;
 | |
|       std::tie(AtomicSizeInBits, atomicAlignInBits) = C.getTypeInfo(AtomicTy);
 | |
| 
 | |
|       assert(ValueSizeInBits <= AtomicSizeInBits);
 | |
|       assert(valueAlignInBits <= atomicAlignInBits);
 | |
| 
 | |
|       AtomicAlign = C.toCharUnitsFromBits(atomicAlignInBits);
 | |
|       ValueAlign = C.toCharUnitsFromBits(valueAlignInBits);
 | |
|       if (lvalue.getAlignment().isZero())
 | |
|         lvalue.setAlignment(AtomicAlign);
 | |
| 
 | |
|       UseLibcall =
 | |
|         (AtomicSizeInBits > uint64_t(C.toBits(lvalue.getAlignment())) ||
 | |
|          AtomicSizeInBits > C.getTargetInfo().getMaxAtomicInlineWidth());
 | |
|     }
 | |
| 
 | |
|     QualType getAtomicType() const { return AtomicTy; }
 | |
|     QualType getValueType() const { return ValueTy; }
 | |
|     CharUnits getAtomicAlignment() const { return AtomicAlign; }
 | |
|     CharUnits getValueAlignment() const { return ValueAlign; }
 | |
|     uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
 | |
|     uint64_t getValueSizeInBits() const { return AtomicSizeInBits; }
 | |
|     TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
 | |
|     bool shouldUseLibcall() const { return UseLibcall; }
 | |
| 
 | |
|     /// Is the atomic size larger than the underlying value type?
 | |
|     ///
 | |
|     /// Note that the absence of padding does not mean that atomic
 | |
|     /// objects are completely interchangeable with non-atomic
 | |
|     /// objects: we might have promoted the alignment of a type
 | |
|     /// without making it bigger.
 | |
|     bool hasPadding() const {
 | |
|       return (ValueSizeInBits != AtomicSizeInBits);
 | |
|     }
 | |
| 
 | |
|     bool emitMemSetZeroIfNecessary(LValue dest) const;
 | |
| 
 | |
|     llvm::Value *getAtomicSizeValue() const {
 | |
|       CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
 | |
|       return CGF.CGM.getSize(size);
 | |
|     }
 | |
| 
 | |
|     /// Cast the given pointer to an integer pointer suitable for
 | |
|     /// atomic operations.
 | |
|     llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const;
 | |
| 
 | |
|     /// Turn an atomic-layout object into an r-value.
 | |
|     RValue convertTempToRValue(llvm::Value *addr,
 | |
|                                AggValueSlot resultSlot,
 | |
|                                SourceLocation loc) const;
 | |
| 
 | |
|     /// Copy an atomic r-value into atomic-layout memory.
 | |
|     void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const;
 | |
| 
 | |
|     /// Project an l-value down to the value field.
 | |
|     LValue projectValue(LValue lvalue) const {
 | |
|       llvm::Value *addr = lvalue.getAddress();
 | |
|       if (hasPadding())
 | |
|         addr = CGF.Builder.CreateStructGEP(addr, 0);
 | |
| 
 | |
|       return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(),
 | |
|                               CGF.getContext(), lvalue.getTBAAInfo());
 | |
|     }
 | |
| 
 | |
|     /// Materialize an atomic r-value in atomic-layout memory.
 | |
|     llvm::Value *materializeRValue(RValue rvalue) const;
 | |
| 
 | |
|   private:
 | |
|     bool requiresMemSetZero(llvm::Type *type) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| static RValue emitAtomicLibcall(CodeGenFunction &CGF,
 | |
|                                 StringRef fnName,
 | |
|                                 QualType resultType,
 | |
|                                 CallArgList &args) {
 | |
|   const CGFunctionInfo &fnInfo =
 | |
|     CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
 | |
|             FunctionType::ExtInfo(), RequiredArgs::All);
 | |
|   llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
 | |
|   llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
 | |
|   return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
 | |
| }
 | |
| 
 | |
| /// Does a store of the given IR type modify the full expected width?
 | |
| static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
 | |
|                            uint64_t expectedSize) {
 | |
|   return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
 | |
| }
 | |
| 
 | |
| /// Does the atomic type require memsetting to zero before initialization?
 | |
| ///
 | |
| /// The IR type is provided as a way of making certain queries faster.
 | |
| bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
 | |
|   // If the atomic type has size padding, we definitely need a memset.
 | |
|   if (hasPadding()) return true;
 | |
| 
 | |
|   // Otherwise, do some simple heuristics to try to avoid it:
 | |
|   switch (getEvaluationKind()) {
 | |
|   // For scalars and complexes, check whether the store size of the
 | |
|   // type uses the full size.
 | |
|   case TEK_Scalar:
 | |
|     return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
 | |
|   case TEK_Complex:
 | |
|     return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
 | |
|                            AtomicSizeInBits / 2);
 | |
| 
 | |
|   // Padding in structs has an undefined bit pattern.  User beware.
 | |
|   case TEK_Aggregate:
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| bool AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const {
 | |
|   llvm::Value *addr = dest.getAddress();
 | |
|   if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
 | |
|     return false;
 | |
| 
 | |
|   CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
 | |
|                            AtomicSizeInBits / 8,
 | |
|                            dest.getAlignment().getQuantity());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
 | |
|                               llvm::Value *Dest, llvm::Value *Ptr,
 | |
|                               llvm::Value *Val1, llvm::Value *Val2,
 | |
|                               uint64_t Size, unsigned Align,
 | |
|                               llvm::AtomicOrdering SuccessOrder,
 | |
|                               llvm::AtomicOrdering FailureOrder) {
 | |
|   // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
 | |
|   llvm::LoadInst *Expected = CGF.Builder.CreateLoad(Val1);
 | |
|   Expected->setAlignment(Align);
 | |
|   llvm::LoadInst *Desired = CGF.Builder.CreateLoad(Val2);
 | |
|   Desired->setAlignment(Align);
 | |
| 
 | |
|   llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
 | |
|       Ptr, Expected, Desired, SuccessOrder, FailureOrder);
 | |
|   Pair->setVolatile(E->isVolatile());
 | |
|   Pair->setWeak(IsWeak);
 | |
| 
 | |
|   // Cmp holds the result of the compare-exchange operation: true on success,
 | |
|   // false on failure.
 | |
|   llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
 | |
|   llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
 | |
| 
 | |
|   // This basic block is used to hold the store instruction if the operation
 | |
|   // failed.
 | |
|   llvm::BasicBlock *StoreExpectedBB =
 | |
|       CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
 | |
| 
 | |
|   // This basic block is the exit point of the operation, we should end up
 | |
|   // here regardless of whether or not the operation succeeded.
 | |
|   llvm::BasicBlock *ContinueBB =
 | |
|       CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
 | |
| 
 | |
|   // Update Expected if Expected isn't equal to Old, otherwise branch to the
 | |
|   // exit point.
 | |
|   CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
 | |
| 
 | |
|   CGF.Builder.SetInsertPoint(StoreExpectedBB);
 | |
|   // Update the memory at Expected with Old's value.
 | |
|   llvm::StoreInst *StoreExpected = CGF.Builder.CreateStore(Old, Val1);
 | |
|   StoreExpected->setAlignment(Align);
 | |
|   // Finally, branch to the exit point.
 | |
|   CGF.Builder.CreateBr(ContinueBB);
 | |
| 
 | |
|   CGF.Builder.SetInsertPoint(ContinueBB);
 | |
|   // Update the memory at Dest with Cmp's value.
 | |
|   CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// Given an ordering required on success, emit all possible cmpxchg
 | |
| /// instructions to cope with the provided (but possibly only dynamically known)
 | |
| /// FailureOrder.
 | |
| static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
 | |
|                                         bool IsWeak, llvm::Value *Dest,
 | |
|                                         llvm::Value *Ptr, llvm::Value *Val1,
 | |
|                                         llvm::Value *Val2,
 | |
|                                         llvm::Value *FailureOrderVal,
 | |
|                                         uint64_t Size, unsigned Align,
 | |
|                                         llvm::AtomicOrdering SuccessOrder) {
 | |
|   llvm::AtomicOrdering FailureOrder;
 | |
|   if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
 | |
|     switch (FO->getSExtValue()) {
 | |
|     default:
 | |
|       FailureOrder = llvm::Monotonic;
 | |
|       break;
 | |
|     case AtomicExpr::AO_ABI_memory_order_consume:
 | |
|     case AtomicExpr::AO_ABI_memory_order_acquire:
 | |
|       FailureOrder = llvm::Acquire;
 | |
|       break;
 | |
|     case AtomicExpr::AO_ABI_memory_order_seq_cst:
 | |
|       FailureOrder = llvm::SequentiallyConsistent;
 | |
|       break;
 | |
|     }
 | |
|     if (FailureOrder >= SuccessOrder) {
 | |
|       // Don't assert on undefined behaviour.
 | |
|       FailureOrder =
 | |
|         llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
 | |
|     }
 | |
|     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, Align,
 | |
|                       SuccessOrder, FailureOrder);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Create all the relevant BB's
 | |
|   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
 | |
|                    *SeqCstBB = nullptr;
 | |
|   MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
 | |
|   if (SuccessOrder != llvm::Monotonic && SuccessOrder != llvm::Release)
 | |
|     AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
 | |
|   if (SuccessOrder == llvm::SequentiallyConsistent)
 | |
|     SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
 | |
| 
 | |
|   llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
 | |
| 
 | |
|   llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
 | |
| 
 | |
|   // Emit all the different atomics
 | |
| 
 | |
|   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
 | |
|   // doesn't matter unless someone is crazy enough to use something that
 | |
|   // doesn't fold to a constant for the ordering.
 | |
|   CGF.Builder.SetInsertPoint(MonotonicBB);
 | |
|   emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
 | |
|                     Size, Align, SuccessOrder, llvm::Monotonic);
 | |
|   CGF.Builder.CreateBr(ContBB);
 | |
| 
 | |
|   if (AcquireBB) {
 | |
|     CGF.Builder.SetInsertPoint(AcquireBB);
 | |
|     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
 | |
|                       Size, Align, SuccessOrder, llvm::Acquire);
 | |
|     CGF.Builder.CreateBr(ContBB);
 | |
|     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
 | |
|                 AcquireBB);
 | |
|     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
 | |
|                 AcquireBB);
 | |
|   }
 | |
|   if (SeqCstBB) {
 | |
|     CGF.Builder.SetInsertPoint(SeqCstBB);
 | |
|     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
 | |
|                       Size, Align, SuccessOrder, llvm::SequentiallyConsistent);
 | |
|     CGF.Builder.CreateBr(ContBB);
 | |
|     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
 | |
|                 SeqCstBB);
 | |
|   }
 | |
| 
 | |
|   CGF.Builder.SetInsertPoint(ContBB);
 | |
| }
 | |
| 
 | |
| static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
 | |
|                          llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
 | |
|                          llvm::Value *IsWeak, llvm::Value *FailureOrder,
 | |
|                          uint64_t Size, unsigned Align,
 | |
|                          llvm::AtomicOrdering Order) {
 | |
|   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
 | |
|   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
 | |
| 
 | |
|   switch (E->getOp()) {
 | |
|   case AtomicExpr::AO__c11_atomic_init:
 | |
|     llvm_unreachable("Already handled!");
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
 | |
|     emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
 | |
|                                 FailureOrder, Size, Align, Order);
 | |
|     return;
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
 | |
|     emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
 | |
|                                 FailureOrder, Size, Align, Order);
 | |
|     return;
 | |
|   case AtomicExpr::AO__atomic_compare_exchange:
 | |
|   case AtomicExpr::AO__atomic_compare_exchange_n: {
 | |
|     if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
 | |
|       emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
 | |
|                                   Val1, Val2, FailureOrder, Size, Align, Order);
 | |
|     } else {
 | |
|       // Create all the relevant BB's
 | |
|       llvm::BasicBlock *StrongBB =
 | |
|           CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
 | |
|       llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
 | |
|       llvm::BasicBlock *ContBB =
 | |
|           CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
 | |
| 
 | |
|       llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
 | |
|       SI->addCase(CGF.Builder.getInt1(false), StrongBB);
 | |
| 
 | |
|       CGF.Builder.SetInsertPoint(StrongBB);
 | |
|       emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
 | |
|                                   FailureOrder, Size, Align, Order);
 | |
|       CGF.Builder.CreateBr(ContBB);
 | |
| 
 | |
|       CGF.Builder.SetInsertPoint(WeakBB);
 | |
|       emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
 | |
|                                   FailureOrder, Size, Align, Order);
 | |
|       CGF.Builder.CreateBr(ContBB);
 | |
| 
 | |
|       CGF.Builder.SetInsertPoint(ContBB);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case AtomicExpr::AO__c11_atomic_load:
 | |
|   case AtomicExpr::AO__atomic_load_n:
 | |
|   case AtomicExpr::AO__atomic_load: {
 | |
|     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
 | |
|     Load->setAtomic(Order);
 | |
|     Load->setAlignment(Size);
 | |
|     Load->setVolatile(E->isVolatile());
 | |
|     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
 | |
|     StoreDest->setAlignment(Align);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store_n: {
 | |
|     assert(!Dest && "Store does not return a value");
 | |
|     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
 | |
|     LoadVal1->setAlignment(Align);
 | |
|     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
 | |
|     Store->setAtomic(Order);
 | |
|     Store->setAlignment(Size);
 | |
|     Store->setVolatile(E->isVolatile());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_exchange:
 | |
|   case AtomicExpr::AO__atomic_exchange_n:
 | |
|   case AtomicExpr::AO__atomic_exchange:
 | |
|     Op = llvm::AtomicRMWInst::Xchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_add_fetch:
 | |
|     PostOp = llvm::Instruction::Add;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_add:
 | |
|   case AtomicExpr::AO__atomic_fetch_add:
 | |
|     Op = llvm::AtomicRMWInst::Add;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_sub_fetch:
 | |
|     PostOp = llvm::Instruction::Sub;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__atomic_fetch_sub:
 | |
|     Op = llvm::AtomicRMWInst::Sub;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_and_fetch:
 | |
|     PostOp = llvm::Instruction::And;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_and:
 | |
|   case AtomicExpr::AO__atomic_fetch_and:
 | |
|     Op = llvm::AtomicRMWInst::And;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_or_fetch:
 | |
|     PostOp = llvm::Instruction::Or;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_or:
 | |
|   case AtomicExpr::AO__atomic_fetch_or:
 | |
|     Op = llvm::AtomicRMWInst::Or;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_xor_fetch:
 | |
|     PostOp = llvm::Instruction::Xor;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_xor:
 | |
|     Op = llvm::AtomicRMWInst::Xor;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_nand_fetch:
 | |
|     PostOp = llvm::Instruction::And;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__atomic_fetch_nand:
 | |
|     Op = llvm::AtomicRMWInst::Nand;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
 | |
|   LoadVal1->setAlignment(Align);
 | |
|   llvm::AtomicRMWInst *RMWI =
 | |
|       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
 | |
|   RMWI->setVolatile(E->isVolatile());
 | |
| 
 | |
|   // For __atomic_*_fetch operations, perform the operation again to
 | |
|   // determine the value which was written.
 | |
|   llvm::Value *Result = RMWI;
 | |
|   if (PostOp)
 | |
|     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
 | |
|   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
 | |
|     Result = CGF.Builder.CreateNot(Result);
 | |
|   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
 | |
|   StoreDest->setAlignment(Align);
 | |
| }
 | |
| 
 | |
| // This function emits any expression (scalar, complex, or aggregate)
 | |
| // into a temporary alloca.
 | |
| static llvm::Value *
 | |
| EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
 | |
|   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
 | |
|   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
 | |
|                        /*Init*/ true);
 | |
|   return DeclPtr;
 | |
| }
 | |
| 
 | |
| static void
 | |
| AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
 | |
|                   bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
 | |
|                   SourceLocation Loc) {
 | |
|   if (UseOptimizedLibcall) {
 | |
|     // Load value and pass it to the function directly.
 | |
|     unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity();
 | |
|     Val = CGF.EmitLoadOfScalar(Val, false, Align, ValTy, Loc);
 | |
|     Args.add(RValue::get(Val), ValTy);
 | |
|   } else {
 | |
|     // Non-optimized functions always take a reference.
 | |
|     Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
 | |
|                          CGF.getContext().VoidPtrTy);
 | |
|   }
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
 | |
|   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
 | |
|   QualType MemTy = AtomicTy;
 | |
|   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
 | |
|     MemTy = AT->getValueType();
 | |
|   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
 | |
|   uint64_t Size = sizeChars.getQuantity();
 | |
|   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
 | |
|   unsigned Align = alignChars.getQuantity();
 | |
|   unsigned MaxInlineWidthInBits =
 | |
|     getTarget().getMaxAtomicInlineWidth();
 | |
|   bool UseLibcall = (Size != Align ||
 | |
|                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
 | |
| 
 | |
|   llvm::Value *IsWeak = nullptr, *OrderFail = nullptr, *Val1 = nullptr,
 | |
|               *Val2 = nullptr;
 | |
|   llvm::Value *Ptr = EmitScalarExpr(E->getPtr());
 | |
| 
 | |
|   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
 | |
|     assert(!Dest && "Init does not return a value");
 | |
|     LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
 | |
|     EmitAtomicInit(E->getVal1(), lvalue);
 | |
|     return RValue::get(nullptr);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *Order = EmitScalarExpr(E->getOrder());
 | |
| 
 | |
|   switch (E->getOp()) {
 | |
|   case AtomicExpr::AO__c11_atomic_init:
 | |
|     llvm_unreachable("Already handled!");
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_load:
 | |
|   case AtomicExpr::AO__atomic_load_n:
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_load:
 | |
|     Dest = EmitScalarExpr(E->getVal1());
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_store:
 | |
|     Val1 = EmitScalarExpr(E->getVal1());
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_exchange:
 | |
|     Val1 = EmitScalarExpr(E->getVal1());
 | |
|     Dest = EmitScalarExpr(E->getVal2());
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
 | |
|   case AtomicExpr::AO__atomic_compare_exchange_n:
 | |
|   case AtomicExpr::AO__atomic_compare_exchange:
 | |
|     Val1 = EmitScalarExpr(E->getVal1());
 | |
|     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
 | |
|       Val2 = EmitScalarExpr(E->getVal2());
 | |
|     else
 | |
|       Val2 = EmitValToTemp(*this, E->getVal2());
 | |
|     OrderFail = EmitScalarExpr(E->getOrderFail());
 | |
|     if (E->getNumSubExprs() == 6)
 | |
|       IsWeak = EmitScalarExpr(E->getWeak());
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_add:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_sub:
 | |
|     if (MemTy->isPointerType()) {
 | |
|       // For pointer arithmetic, we're required to do a bit of math:
 | |
|       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
 | |
|       // ... but only for the C11 builtins. The GNU builtins expect the
 | |
|       // user to multiply by sizeof(T).
 | |
|       QualType Val1Ty = E->getVal1()->getType();
 | |
|       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
 | |
|       CharUnits PointeeIncAmt =
 | |
|           getContext().getTypeSizeInChars(MemTy->getPointeeType());
 | |
|       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
 | |
|       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
 | |
|       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
 | |
|       break;
 | |
|     }
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__atomic_fetch_add:
 | |
|   case AtomicExpr::AO__atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__atomic_add_fetch:
 | |
|   case AtomicExpr::AO__atomic_sub_fetch:
 | |
|   case AtomicExpr::AO__c11_atomic_store:
 | |
|   case AtomicExpr::AO__c11_atomic_exchange:
 | |
|   case AtomicExpr::AO__atomic_store_n:
 | |
|   case AtomicExpr::AO__atomic_exchange_n:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_and:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_or:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_and:
 | |
|   case AtomicExpr::AO__atomic_fetch_or:
 | |
|   case AtomicExpr::AO__atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_nand:
 | |
|   case AtomicExpr::AO__atomic_and_fetch:
 | |
|   case AtomicExpr::AO__atomic_or_fetch:
 | |
|   case AtomicExpr::AO__atomic_xor_fetch:
 | |
|   case AtomicExpr::AO__atomic_nand_fetch:
 | |
|     Val1 = EmitValToTemp(*this, E->getVal1());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!E->getType()->isVoidType() && !Dest)
 | |
|     Dest = CreateMemTemp(E->getType(), ".atomicdst");
 | |
| 
 | |
|   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
 | |
|   if (UseLibcall) {
 | |
|     bool UseOptimizedLibcall = false;
 | |
|     switch (E->getOp()) {
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_add:
 | |
|     case AtomicExpr::AO__atomic_fetch_add:
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_and:
 | |
|     case AtomicExpr::AO__atomic_fetch_and:
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_or:
 | |
|     case AtomicExpr::AO__atomic_fetch_or:
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_sub:
 | |
|     case AtomicExpr::AO__atomic_fetch_sub:
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_xor:
 | |
|     case AtomicExpr::AO__atomic_fetch_xor:
 | |
|       // For these, only library calls for certain sizes exist.
 | |
|       UseOptimizedLibcall = true;
 | |
|       break;
 | |
|     default:
 | |
|       // Only use optimized library calls for sizes for which they exist.
 | |
|       if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
 | |
|         UseOptimizedLibcall = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     CallArgList Args;
 | |
|     if (!UseOptimizedLibcall) {
 | |
|       // For non-optimized library calls, the size is the first parameter
 | |
|       Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
 | |
|                getContext().getSizeType());
 | |
|     }
 | |
|     // Atomic address is the first or second parameter
 | |
|     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), getContext().VoidPtrTy);
 | |
| 
 | |
|     std::string LibCallName;
 | |
|     QualType LoweredMemTy =
 | |
|       MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
 | |
|     QualType RetTy;
 | |
|     bool HaveRetTy = false;
 | |
|     switch (E->getOp()) {
 | |
|     // There is only one libcall for compare an exchange, because there is no
 | |
|     // optimisation benefit possible from a libcall version of a weak compare
 | |
|     // and exchange.
 | |
|     // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
 | |
|     //                                void *desired, int success, int failure)
 | |
|     // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
 | |
|     //                                  int success, int failure)
 | |
|     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
 | |
|     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
 | |
|     case AtomicExpr::AO__atomic_compare_exchange:
 | |
|     case AtomicExpr::AO__atomic_compare_exchange_n:
 | |
|       LibCallName = "__atomic_compare_exchange";
 | |
|       RetTy = getContext().BoolTy;
 | |
|       HaveRetTy = true;
 | |
|       Args.add(RValue::get(EmitCastToVoidPtr(Val1)), getContext().VoidPtrTy);
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy,
 | |
|                         E->getExprLoc());
 | |
|       Args.add(RValue::get(Order), getContext().IntTy);
 | |
|       Order = OrderFail;
 | |
|       break;
 | |
|     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
 | |
|     //                        int order)
 | |
|     // T __atomic_exchange_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_exchange:
 | |
|     case AtomicExpr::AO__atomic_exchange_n:
 | |
|     case AtomicExpr::AO__atomic_exchange:
 | |
|       LibCallName = "__atomic_exchange";
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     // void __atomic_store(size_t size, void *mem, void *val, int order)
 | |
|     // void __atomic_store_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_store:
 | |
|     case AtomicExpr::AO__atomic_store:
 | |
|     case AtomicExpr::AO__atomic_store_n:
 | |
|       LibCallName = "__atomic_store";
 | |
|       RetTy = getContext().VoidTy;
 | |
|       HaveRetTy = true;
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     // void __atomic_load(size_t size, void *mem, void *return, int order)
 | |
|     // T __atomic_load_N(T *mem, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_load:
 | |
|     case AtomicExpr::AO__atomic_load:
 | |
|     case AtomicExpr::AO__atomic_load_n:
 | |
|       LibCallName = "__atomic_load";
 | |
|       break;
 | |
|     // T __atomic_fetch_add_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_add:
 | |
|     case AtomicExpr::AO__atomic_fetch_add:
 | |
|       LibCallName = "__atomic_fetch_add";
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     // T __atomic_fetch_and_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_and:
 | |
|     case AtomicExpr::AO__atomic_fetch_and:
 | |
|       LibCallName = "__atomic_fetch_and";
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     // T __atomic_fetch_or_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_or:
 | |
|     case AtomicExpr::AO__atomic_fetch_or:
 | |
|       LibCallName = "__atomic_fetch_or";
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     // T __atomic_fetch_sub_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_sub:
 | |
|     case AtomicExpr::AO__atomic_fetch_sub:
 | |
|       LibCallName = "__atomic_fetch_sub";
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     // T __atomic_fetch_xor_N(T *mem, T val, int order)
 | |
|     case AtomicExpr::AO__c11_atomic_fetch_xor:
 | |
|     case AtomicExpr::AO__atomic_fetch_xor:
 | |
|       LibCallName = "__atomic_fetch_xor";
 | |
|       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
 | |
|                         E->getExprLoc());
 | |
|       break;
 | |
|     default: return EmitUnsupportedRValue(E, "atomic library call");
 | |
|     }
 | |
| 
 | |
|     // Optimized functions have the size in their name.
 | |
|     if (UseOptimizedLibcall)
 | |
|       LibCallName += "_" + llvm::utostr(Size);
 | |
|     // By default, assume we return a value of the atomic type.
 | |
|     if (!HaveRetTy) {
 | |
|       if (UseOptimizedLibcall) {
 | |
|         // Value is returned directly.
 | |
|         RetTy = MemTy;
 | |
|       } else {
 | |
|         // Value is returned through parameter before the order.
 | |
|         RetTy = getContext().VoidTy;
 | |
|         Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
 | |
|                  getContext().VoidPtrTy);
 | |
|       }
 | |
|     }
 | |
|     // order is always the last parameter
 | |
|     Args.add(RValue::get(Order),
 | |
|              getContext().IntTy);
 | |
| 
 | |
|     const CGFunctionInfo &FuncInfo =
 | |
|         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
 | |
|             FunctionType::ExtInfo(), RequiredArgs::All);
 | |
|     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
 | |
|     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
 | |
|     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
 | |
|     if (!RetTy->isVoidType())
 | |
|       return Res;
 | |
|     if (E->getType()->isVoidType())
 | |
|       return RValue::get(nullptr);
 | |
|     return convertTempToRValue(Dest, E->getType(), E->getExprLoc());
 | |
|   }
 | |
| 
 | |
|   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
 | |
|                  E->getOp() == AtomicExpr::AO__atomic_store ||
 | |
|                  E->getOp() == AtomicExpr::AO__atomic_store_n;
 | |
|   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
 | |
|                 E->getOp() == AtomicExpr::AO__atomic_load ||
 | |
|                 E->getOp() == AtomicExpr::AO__atomic_load_n;
 | |
| 
 | |
|   llvm::Type *IPtrTy =
 | |
|       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
 | |
|   llvm::Value *OrigDest = Dest;
 | |
|   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
 | |
|   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
 | |
|   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
 | |
|   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
 | |
| 
 | |
|   if (isa<llvm::ConstantInt>(Order)) {
 | |
|     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
 | |
|     switch (ord) {
 | |
|     case AtomicExpr::AO_ABI_memory_order_relaxed:
 | |
|       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                    Size, Align, llvm::Monotonic);
 | |
|       break;
 | |
|     case AtomicExpr::AO_ABI_memory_order_consume:
 | |
|     case AtomicExpr::AO_ABI_memory_order_acquire:
 | |
|       if (IsStore)
 | |
|         break; // Avoid crashing on code with undefined behavior
 | |
|       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                    Size, Align, llvm::Acquire);
 | |
|       break;
 | |
|     case AtomicExpr::AO_ABI_memory_order_release:
 | |
|       if (IsLoad)
 | |
|         break; // Avoid crashing on code with undefined behavior
 | |
|       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                    Size, Align, llvm::Release);
 | |
|       break;
 | |
|     case AtomicExpr::AO_ABI_memory_order_acq_rel:
 | |
|       if (IsLoad || IsStore)
 | |
|         break; // Avoid crashing on code with undefined behavior
 | |
|       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                    Size, Align, llvm::AcquireRelease);
 | |
|       break;
 | |
|     case AtomicExpr::AO_ABI_memory_order_seq_cst:
 | |
|       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                    Size, Align, llvm::SequentiallyConsistent);
 | |
|       break;
 | |
|     default: // invalid order
 | |
|       // We should not ever get here normally, but it's hard to
 | |
|       // enforce that in general.
 | |
|       break;
 | |
|     }
 | |
|     if (E->getType()->isVoidType())
 | |
|       return RValue::get(nullptr);
 | |
|     return convertTempToRValue(OrigDest, E->getType(), E->getExprLoc());
 | |
|   }
 | |
| 
 | |
|   // Long case, when Order isn't obviously constant.
 | |
| 
 | |
|   // Create all the relevant BB's
 | |
|   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
 | |
|                    *ReleaseBB = nullptr, *AcqRelBB = nullptr,
 | |
|                    *SeqCstBB = nullptr;
 | |
|   MonotonicBB = createBasicBlock("monotonic", CurFn);
 | |
|   if (!IsStore)
 | |
|     AcquireBB = createBasicBlock("acquire", CurFn);
 | |
|   if (!IsLoad)
 | |
|     ReleaseBB = createBasicBlock("release", CurFn);
 | |
|   if (!IsLoad && !IsStore)
 | |
|     AcqRelBB = createBasicBlock("acqrel", CurFn);
 | |
|   SeqCstBB = createBasicBlock("seqcst", CurFn);
 | |
|   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
 | |
| 
 | |
|   // Create the switch for the split
 | |
|   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
 | |
|   // doesn't matter unless someone is crazy enough to use something that
 | |
|   // doesn't fold to a constant for the ordering.
 | |
|   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
 | |
|   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
 | |
| 
 | |
|   // Emit all the different atomics
 | |
|   Builder.SetInsertPoint(MonotonicBB);
 | |
|   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                Size, Align, llvm::Monotonic);
 | |
|   Builder.CreateBr(ContBB);
 | |
|   if (!IsStore) {
 | |
|     Builder.SetInsertPoint(AcquireBB);
 | |
|     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                  Size, Align, llvm::Acquire);
 | |
|     Builder.CreateBr(ContBB);
 | |
|     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
 | |
|                 AcquireBB);
 | |
|     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
 | |
|                 AcquireBB);
 | |
|   }
 | |
|   if (!IsLoad) {
 | |
|     Builder.SetInsertPoint(ReleaseBB);
 | |
|     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                  Size, Align, llvm::Release);
 | |
|     Builder.CreateBr(ContBB);
 | |
|     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_release),
 | |
|                 ReleaseBB);
 | |
|   }
 | |
|   if (!IsLoad && !IsStore) {
 | |
|     Builder.SetInsertPoint(AcqRelBB);
 | |
|     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                  Size, Align, llvm::AcquireRelease);
 | |
|     Builder.CreateBr(ContBB);
 | |
|     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acq_rel),
 | |
|                 AcqRelBB);
 | |
|   }
 | |
|   Builder.SetInsertPoint(SeqCstBB);
 | |
|   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
 | |
|                Size, Align, llvm::SequentiallyConsistent);
 | |
|   Builder.CreateBr(ContBB);
 | |
|   SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
 | |
|               SeqCstBB);
 | |
| 
 | |
|   // Cleanup and return
 | |
|   Builder.SetInsertPoint(ContBB);
 | |
|   if (E->getType()->isVoidType())
 | |
|     return RValue::get(nullptr);
 | |
|   return convertTempToRValue(OrigDest, E->getType(), E->getExprLoc());
 | |
| }
 | |
| 
 | |
| llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
 | |
|   unsigned addrspace =
 | |
|     cast<llvm::PointerType>(addr->getType())->getAddressSpace();
 | |
|   llvm::IntegerType *ty =
 | |
|     llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
 | |
|   return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
 | |
| }
 | |
| 
 | |
| RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
 | |
|                                        AggValueSlot resultSlot,
 | |
|                                        SourceLocation loc) const {
 | |
|   if (EvaluationKind == TEK_Aggregate)
 | |
|     return resultSlot.asRValue();
 | |
| 
 | |
|   // Drill into the padding structure if we have one.
 | |
|   if (hasPadding())
 | |
|     addr = CGF.Builder.CreateStructGEP(addr, 0);
 | |
| 
 | |
|   // Otherwise, just convert the temporary to an r-value using the
 | |
|   // normal conversion routine.
 | |
|   return CGF.convertTempToRValue(addr, getValueType(), loc);
 | |
| }
 | |
| 
 | |
| /// Emit a load from an l-value of atomic type.  Note that the r-value
 | |
| /// we produce is an r-value of the atomic *value* type.
 | |
| RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
 | |
|                                        AggValueSlot resultSlot) {
 | |
|   AtomicInfo atomics(*this, src);
 | |
| 
 | |
|   // Check whether we should use a library call.
 | |
|   if (atomics.shouldUseLibcall()) {
 | |
|     llvm::Value *tempAddr;
 | |
|     if (!resultSlot.isIgnored()) {
 | |
|       assert(atomics.getEvaluationKind() == TEK_Aggregate);
 | |
|       tempAddr = resultSlot.getAddr();
 | |
|     } else {
 | |
|       tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
 | |
|     }
 | |
| 
 | |
|     // void __atomic_load(size_t size, void *mem, void *return, int order);
 | |
|     CallArgList args;
 | |
|     args.add(RValue::get(atomics.getAtomicSizeValue()),
 | |
|              getContext().getSizeType());
 | |
|     args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())),
 | |
|              getContext().VoidPtrTy);
 | |
|     args.add(RValue::get(EmitCastToVoidPtr(tempAddr)),
 | |
|              getContext().VoidPtrTy);
 | |
|     args.add(RValue::get(llvm::ConstantInt::get(
 | |
|                  IntTy, AtomicExpr::AO_ABI_memory_order_seq_cst)),
 | |
|              getContext().IntTy);
 | |
|     emitAtomicLibcall(*this, "__atomic_load", getContext().VoidTy, args);
 | |
| 
 | |
|     // Produce the r-value.
 | |
|     return atomics.convertTempToRValue(tempAddr, resultSlot, loc);
 | |
|   }
 | |
| 
 | |
|   // Okay, we're doing this natively.
 | |
|   llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress());
 | |
|   llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load");
 | |
|   load->setAtomic(llvm::SequentiallyConsistent);
 | |
| 
 | |
|   // Other decoration.
 | |
|   load->setAlignment(src.getAlignment().getQuantity());
 | |
|   if (src.isVolatileQualified())
 | |
|     load->setVolatile(true);
 | |
|   if (src.getTBAAInfo())
 | |
|     CGM.DecorateInstruction(load, src.getTBAAInfo());
 | |
| 
 | |
|   // Okay, turn that back into the original value type.
 | |
|   QualType valueType = atomics.getValueType();
 | |
|   llvm::Value *result = load;
 | |
| 
 | |
|   // If we're ignoring an aggregate return, don't do anything.
 | |
|   if (atomics.getEvaluationKind() == TEK_Aggregate && resultSlot.isIgnored())
 | |
|     return RValue::getAggregate(nullptr, false);
 | |
| 
 | |
|   // The easiest way to do this this is to go through memory, but we
 | |
|   // try not to in some easy cases.
 | |
|   if (atomics.getEvaluationKind() == TEK_Scalar && !atomics.hasPadding()) {
 | |
|     llvm::Type *resultTy = CGM.getTypes().ConvertTypeForMem(valueType);
 | |
|     if (isa<llvm::IntegerType>(resultTy)) {
 | |
|       assert(result->getType() == resultTy);
 | |
|       result = EmitFromMemory(result, valueType);
 | |
|     } else if (isa<llvm::PointerType>(resultTy)) {
 | |
|       result = Builder.CreateIntToPtr(result, resultTy);
 | |
|     } else {
 | |
|       result = Builder.CreateBitCast(result, resultTy);
 | |
|     }
 | |
|     return RValue::get(result);
 | |
|   }
 | |
| 
 | |
|   // Create a temporary.  This needs to be big enough to hold the
 | |
|   // atomic integer.
 | |
|   llvm::Value *temp;
 | |
|   bool tempIsVolatile = false;
 | |
|   CharUnits tempAlignment;
 | |
|   if (atomics.getEvaluationKind() == TEK_Aggregate) {
 | |
|     assert(!resultSlot.isIgnored());
 | |
|     temp = resultSlot.getAddr();
 | |
|     tempAlignment = atomics.getValueAlignment();
 | |
|     tempIsVolatile = resultSlot.isVolatile();
 | |
|   } else {
 | |
|     temp = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
 | |
|     tempAlignment = atomics.getAtomicAlignment();
 | |
|   }
 | |
| 
 | |
|   // Slam the integer into the temporary.
 | |
|   llvm::Value *castTemp = atomics.emitCastToAtomicIntPointer(temp);
 | |
|   Builder.CreateAlignedStore(result, castTemp, tempAlignment.getQuantity())
 | |
|     ->setVolatile(tempIsVolatile);
 | |
| 
 | |
|   return atomics.convertTempToRValue(temp, resultSlot, loc);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// Copy an r-value into memory as part of storing to an atomic type.
 | |
| /// This needs to create a bit-pattern suitable for atomic operations.
 | |
| void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const {
 | |
|   // If we have an r-value, the rvalue should be of the atomic type,
 | |
|   // which means that the caller is responsible for having zeroed
 | |
|   // any padding.  Just do an aggregate copy of that type.
 | |
|   if (rvalue.isAggregate()) {
 | |
|     CGF.EmitAggregateCopy(dest.getAddress(),
 | |
|                           rvalue.getAggregateAddr(),
 | |
|                           getAtomicType(),
 | |
|                           (rvalue.isVolatileQualified()
 | |
|                            || dest.isVolatileQualified()),
 | |
|                           dest.getAlignment());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, otherwise we're copying stuff.
 | |
| 
 | |
|   // Zero out the buffer if necessary.
 | |
|   emitMemSetZeroIfNecessary(dest);
 | |
| 
 | |
|   // Drill past the padding if present.
 | |
|   dest = projectValue(dest);
 | |
| 
 | |
|   // Okay, store the rvalue in.
 | |
|   if (rvalue.isScalar()) {
 | |
|     CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true);
 | |
|   } else {
 | |
|     CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Materialize an r-value into memory for the purposes of storing it
 | |
| /// to an atomic type.
 | |
| llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
 | |
|   // Aggregate r-values are already in memory, and EmitAtomicStore
 | |
|   // requires them to be values of the atomic type.
 | |
|   if (rvalue.isAggregate())
 | |
|     return rvalue.getAggregateAddr();
 | |
| 
 | |
|   // Otherwise, make a temporary and materialize into it.
 | |
|   llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp");
 | |
|   LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
 | |
|   emitCopyIntoMemory(rvalue, tempLV);
 | |
|   return temp;
 | |
| }
 | |
| 
 | |
| /// Emit a store to an l-value of atomic type.
 | |
| ///
 | |
| /// Note that the r-value is expected to be an r-value *of the atomic
 | |
| /// type*; this means that for aggregate r-values, it should include
 | |
| /// storage for any padding that was necessary.
 | |
| void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, bool isInit) {
 | |
|   // If this is an aggregate r-value, it should agree in type except
 | |
|   // maybe for address-space qualification.
 | |
|   assert(!rvalue.isAggregate() ||
 | |
|          rvalue.getAggregateAddr()->getType()->getPointerElementType()
 | |
|            == dest.getAddress()->getType()->getPointerElementType());
 | |
| 
 | |
|   AtomicInfo atomics(*this, dest);
 | |
| 
 | |
|   // If this is an initialization, just put the value there normally.
 | |
|   if (isInit) {
 | |
|     atomics.emitCopyIntoMemory(rvalue, dest);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check whether we should use a library call.
 | |
|   if (atomics.shouldUseLibcall()) {
 | |
|     // Produce a source address.
 | |
|     llvm::Value *srcAddr = atomics.materializeRValue(rvalue);
 | |
| 
 | |
|     // void __atomic_store(size_t size, void *mem, void *val, int order)
 | |
|     CallArgList args;
 | |
|     args.add(RValue::get(atomics.getAtomicSizeValue()),
 | |
|              getContext().getSizeType());
 | |
|     args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())),
 | |
|              getContext().VoidPtrTy);
 | |
|     args.add(RValue::get(EmitCastToVoidPtr(srcAddr)),
 | |
|              getContext().VoidPtrTy);
 | |
|     args.add(RValue::get(llvm::ConstantInt::get(
 | |
|                  IntTy, AtomicExpr::AO_ABI_memory_order_seq_cst)),
 | |
|              getContext().IntTy);
 | |
|     emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, we're doing this natively.
 | |
|   llvm::Value *intValue;
 | |
| 
 | |
|   // If we've got a scalar value of the right size, try to avoid going
 | |
|   // through memory.
 | |
|   if (rvalue.isScalar() && !atomics.hasPadding()) {
 | |
|     llvm::Value *value = rvalue.getScalarVal();
 | |
|     if (isa<llvm::IntegerType>(value->getType())) {
 | |
|       intValue = value;
 | |
|     } else {
 | |
|       llvm::IntegerType *inputIntTy =
 | |
|         llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits());
 | |
|       if (isa<llvm::PointerType>(value->getType())) {
 | |
|         intValue = Builder.CreatePtrToInt(value, inputIntTy);
 | |
|       } else {
 | |
|         intValue = Builder.CreateBitCast(value, inputIntTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Otherwise, we need to go through memory.
 | |
|   } else {
 | |
|     // Put the r-value in memory.
 | |
|     llvm::Value *addr = atomics.materializeRValue(rvalue);
 | |
| 
 | |
|     // Cast the temporary to the atomic int type and pull a value out.
 | |
|     addr = atomics.emitCastToAtomicIntPointer(addr);
 | |
|     intValue = Builder.CreateAlignedLoad(addr,
 | |
|                                  atomics.getAtomicAlignment().getQuantity());
 | |
|   }
 | |
| 
 | |
|   // Do the atomic store.
 | |
|   llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress());
 | |
|   llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
 | |
| 
 | |
|   // Initializations don't need to be atomic.
 | |
|   if (!isInit) store->setAtomic(llvm::SequentiallyConsistent);
 | |
| 
 | |
|   // Other decoration.
 | |
|   store->setAlignment(dest.getAlignment().getQuantity());
 | |
|   if (dest.isVolatileQualified())
 | |
|     store->setVolatile(true);
 | |
|   if (dest.getTBAAInfo())
 | |
|     CGM.DecorateInstruction(store, dest.getTBAAInfo());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
 | |
|   AtomicInfo atomics(*this, dest);
 | |
| 
 | |
|   switch (atomics.getEvaluationKind()) {
 | |
|   case TEK_Scalar: {
 | |
|     llvm::Value *value = EmitScalarExpr(init);
 | |
|     atomics.emitCopyIntoMemory(RValue::get(value), dest);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case TEK_Complex: {
 | |
|     ComplexPairTy value = EmitComplexExpr(init);
 | |
|     atomics.emitCopyIntoMemory(RValue::getComplex(value), dest);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case TEK_Aggregate: {
 | |
|     // Fix up the destination if the initializer isn't an expression
 | |
|     // of atomic type.
 | |
|     bool Zeroed = false;
 | |
|     if (!init->getType()->isAtomicType()) {
 | |
|       Zeroed = atomics.emitMemSetZeroIfNecessary(dest);
 | |
|       dest = atomics.projectValue(dest);
 | |
|     }
 | |
| 
 | |
|     // Evaluate the expression directly into the destination.
 | |
|     AggValueSlot slot = AggValueSlot::forLValue(dest,
 | |
|                                         AggValueSlot::IsNotDestructed,
 | |
|                                         AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                         AggValueSlot::IsNotAliased,
 | |
|                                         Zeroed ? AggValueSlot::IsZeroed :
 | |
|                                                  AggValueSlot::IsNotZeroed);
 | |
| 
 | |
|     EmitAggExpr(init, slot);
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 |