3427 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3427 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Expr nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGCall.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "CGRecordLayout.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/Frontend/CodeGenOptions.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/Support/ConvertUTF.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| //                        Miscellaneous Helper Methods
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
 | |
|   unsigned addressSpace =
 | |
|     cast<llvm::PointerType>(value->getType())->getAddressSpace();
 | |
| 
 | |
|   llvm::PointerType *destType = Int8PtrTy;
 | |
|   if (addressSpace)
 | |
|     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
 | |
| 
 | |
|   if (value->getType() == destType) return value;
 | |
|   return Builder.CreateBitCast(value, destType);
 | |
| }
 | |
| 
 | |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry
 | |
| /// block.
 | |
| llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
 | |
|                                                     const Twine &Name) {
 | |
|   if (!Builder.isNamePreserving())
 | |
|     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
 | |
|   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
 | |
|                                      llvm::Value *Init) {
 | |
|   auto *Store = new llvm::StoreInst(Init, Var);
 | |
|   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
 | |
|   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
 | |
| }
 | |
| 
 | |
| llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
 | |
|                                                 const Twine &Name) {
 | |
|   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
 | |
|   // FIXME: Should we prefer the preferred type alignment here?
 | |
|   CharUnits Align = getContext().getTypeAlignInChars(Ty);
 | |
|   Alloc->setAlignment(Align.getQuantity());
 | |
|   return Alloc;
 | |
| }
 | |
| 
 | |
| llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
 | |
|                                                  const Twine &Name) {
 | |
|   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
 | |
|   // FIXME: Should we prefer the preferred type alignment here?
 | |
|   CharUnits Align = getContext().getTypeAlignInChars(Ty);
 | |
|   Alloc->setAlignment(Align.getQuantity());
 | |
|   return Alloc;
 | |
| }
 | |
| 
 | |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
 | |
| /// expression and compare the result against zero, returning an Int1Ty value.
 | |
| llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
 | |
|   PGO.setCurrentStmt(E);
 | |
|   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
 | |
|     llvm::Value *MemPtr = EmitScalarExpr(E);
 | |
|     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
 | |
|   }
 | |
| 
 | |
|   QualType BoolTy = getContext().BoolTy;
 | |
|   if (!E->getType()->isAnyComplexType())
 | |
|     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
 | |
| 
 | |
|   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
 | |
| }
 | |
| 
 | |
| /// EmitIgnoredExpr - Emit code to compute the specified expression,
 | |
| /// ignoring the result.
 | |
| void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
 | |
|   if (E->isRValue())
 | |
|     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
 | |
| 
 | |
|   // Just emit it as an l-value and drop the result.
 | |
|   EmitLValue(E);
 | |
| }
 | |
| 
 | |
| /// EmitAnyExpr - Emit code to compute the specified expression which
 | |
| /// can have any type.  The result is returned as an RValue struct.
 | |
| /// If this is an aggregate expression, AggSlot indicates where the
 | |
| /// result should be returned.
 | |
| RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
 | |
|                                     AggValueSlot aggSlot,
 | |
|                                     bool ignoreResult) {
 | |
|   switch (getEvaluationKind(E->getType())) {
 | |
|   case TEK_Scalar:
 | |
|     return RValue::get(EmitScalarExpr(E, ignoreResult));
 | |
|   case TEK_Complex:
 | |
|     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
 | |
|   case TEK_Aggregate:
 | |
|     if (!ignoreResult && aggSlot.isIgnored())
 | |
|       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
 | |
|     EmitAggExpr(E, aggSlot);
 | |
|     return aggSlot.asRValue();
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
 | |
| /// always be accessible even if no aggregate location is provided.
 | |
| RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
 | |
|   AggValueSlot AggSlot = AggValueSlot::ignored();
 | |
| 
 | |
|   if (hasAggregateEvaluationKind(E->getType()))
 | |
|     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
 | |
|   return EmitAnyExpr(E, AggSlot);
 | |
| }
 | |
| 
 | |
| /// EmitAnyExprToMem - Evaluate an expression into a given memory
 | |
| /// location.
 | |
| void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
 | |
|                                        llvm::Value *Location,
 | |
|                                        Qualifiers Quals,
 | |
|                                        bool IsInit) {
 | |
|   // FIXME: This function should take an LValue as an argument.
 | |
|   switch (getEvaluationKind(E->getType())) {
 | |
|   case TEK_Complex:
 | |
|     EmitComplexExprIntoLValue(E,
 | |
|                          MakeNaturalAlignAddrLValue(Location, E->getType()),
 | |
|                               /*isInit*/ false);
 | |
|     return;
 | |
| 
 | |
|   case TEK_Aggregate: {
 | |
|     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
 | |
|     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
 | |
|                                          AggValueSlot::IsDestructed_t(IsInit),
 | |
|                                          AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                          AggValueSlot::IsAliased_t(!IsInit)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case TEK_Scalar: {
 | |
|     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
 | |
|     LValue LV = MakeAddrLValue(Location, E->getType());
 | |
|     EmitStoreThroughLValue(RV, LV);
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| static void
 | |
| pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
 | |
|                      const Expr *E, llvm::Value *ReferenceTemporary) {
 | |
|   // Objective-C++ ARC:
 | |
|   //   If we are binding a reference to a temporary that has ownership, we
 | |
|   //   need to perform retain/release operations on the temporary.
 | |
|   //
 | |
|   // FIXME: This should be looking at E, not M.
 | |
|   if (CGF.getLangOpts().ObjCAutoRefCount &&
 | |
|       M->getType()->isObjCLifetimeType()) {
 | |
|     QualType ObjCARCReferenceLifetimeType = M->getType();
 | |
|     switch (Qualifiers::ObjCLifetime Lifetime =
 | |
|                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
 | |
|     case Qualifiers::OCL_None:
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|       // Carry on to normal cleanup handling.
 | |
|       break;
 | |
| 
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       // Nothing to do; cleaned up by an autorelease pool.
 | |
|       return;
 | |
| 
 | |
|     case Qualifiers::OCL_Strong:
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       switch (StorageDuration Duration = M->getStorageDuration()) {
 | |
|       case SD_Static:
 | |
|         // Note: we intentionally do not register a cleanup to release
 | |
|         // the object on program termination.
 | |
|         return;
 | |
| 
 | |
|       case SD_Thread:
 | |
|         // FIXME: We should probably register a cleanup in this case.
 | |
|         return;
 | |
| 
 | |
|       case SD_Automatic:
 | |
|       case SD_FullExpression:
 | |
|         assert(!ObjCARCReferenceLifetimeType->isArrayType());
 | |
|         CodeGenFunction::Destroyer *Destroy;
 | |
|         CleanupKind CleanupKind;
 | |
|         if (Lifetime == Qualifiers::OCL_Strong) {
 | |
|           const ValueDecl *VD = M->getExtendingDecl();
 | |
|           bool Precise =
 | |
|               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
 | |
|           CleanupKind = CGF.getARCCleanupKind();
 | |
|           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
 | |
|                             : &CodeGenFunction::destroyARCStrongImprecise;
 | |
|         } else {
 | |
|           // __weak objects always get EH cleanups; otherwise, exceptions
 | |
|           // could cause really nasty crashes instead of mere leaks.
 | |
|           CleanupKind = NormalAndEHCleanup;
 | |
|           Destroy = &CodeGenFunction::destroyARCWeak;
 | |
|         }
 | |
|         if (Duration == SD_FullExpression)
 | |
|           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
 | |
|                           ObjCARCReferenceLifetimeType, *Destroy,
 | |
|                           CleanupKind & EHCleanup);
 | |
|         else
 | |
|           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
 | |
|                                           ObjCARCReferenceLifetimeType,
 | |
|                                           *Destroy, CleanupKind & EHCleanup);
 | |
|         return;
 | |
| 
 | |
|       case SD_Dynamic:
 | |
|         llvm_unreachable("temporary cannot have dynamic storage duration");
 | |
|       }
 | |
|       llvm_unreachable("unknown storage duration");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
 | |
|   if (const RecordType *RT =
 | |
|           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
 | |
|     // Get the destructor for the reference temporary.
 | |
|     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (!ClassDecl->hasTrivialDestructor())
 | |
|       ReferenceTemporaryDtor = ClassDecl->getDestructor();
 | |
|   }
 | |
| 
 | |
|   if (!ReferenceTemporaryDtor)
 | |
|     return;
 | |
| 
 | |
|   // Call the destructor for the temporary.
 | |
|   switch (M->getStorageDuration()) {
 | |
|   case SD_Static:
 | |
|   case SD_Thread: {
 | |
|     llvm::Constant *CleanupFn;
 | |
|     llvm::Constant *CleanupArg;
 | |
|     if (E->getType()->isArrayType()) {
 | |
|       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
 | |
|           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
 | |
|           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
 | |
|           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
 | |
|       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
 | |
|     } else {
 | |
|       CleanupFn =
 | |
|         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
 | |
|       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
 | |
|     }
 | |
|     CGF.CGM.getCXXABI().registerGlobalDtor(
 | |
|         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case SD_FullExpression:
 | |
|     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
 | |
|                     CodeGenFunction::destroyCXXObject,
 | |
|                     CGF.getLangOpts().Exceptions);
 | |
|     break;
 | |
| 
 | |
|   case SD_Automatic:
 | |
|     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
 | |
|                                     ReferenceTemporary, E->getType(),
 | |
|                                     CodeGenFunction::destroyCXXObject,
 | |
|                                     CGF.getLangOpts().Exceptions);
 | |
|     break;
 | |
| 
 | |
|   case SD_Dynamic:
 | |
|     llvm_unreachable("temporary cannot have dynamic storage duration");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static llvm::Value *
 | |
| createReferenceTemporary(CodeGenFunction &CGF,
 | |
|                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
 | |
|   switch (M->getStorageDuration()) {
 | |
|   case SD_FullExpression:
 | |
|   case SD_Automatic:
 | |
|     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
 | |
| 
 | |
|   case SD_Thread:
 | |
|   case SD_Static:
 | |
|     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
 | |
| 
 | |
|   case SD_Dynamic:
 | |
|     llvm_unreachable("temporary can't have dynamic storage duration");
 | |
|   }
 | |
|   llvm_unreachable("unknown storage duration");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
 | |
|                                            const MaterializeTemporaryExpr *M) {
 | |
|   const Expr *E = M->GetTemporaryExpr();
 | |
| 
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       M->getType()->isObjCLifetimeType() &&
 | |
|       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
 | |
|       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
 | |
|     // FIXME: Fold this into the general case below.
 | |
|     llvm::Value *Object = createReferenceTemporary(*this, M, E);
 | |
|     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
 | |
| 
 | |
|     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
 | |
|       // We should not have emitted the initializer for this temporary as a
 | |
|       // constant.
 | |
|       assert(!Var->hasInitializer());
 | |
|       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
 | |
|     }
 | |
| 
 | |
|     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
 | |
| 
 | |
|     pushTemporaryCleanup(*this, M, E, Object);
 | |
|     return RefTempDst;
 | |
|   }
 | |
| 
 | |
|   SmallVector<const Expr *, 2> CommaLHSs;
 | |
|   SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
 | |
| 
 | |
|   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
 | |
|     EmitIgnoredExpr(CommaLHSs[I]);
 | |
| 
 | |
|   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
 | |
|     if (opaque->getType()->isRecordType()) {
 | |
|       assert(Adjustments.empty());
 | |
|       return EmitOpaqueValueLValue(opaque);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create and initialize the reference temporary.
 | |
|   llvm::Value *Object = createReferenceTemporary(*this, M, E);
 | |
|   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
 | |
|     // If the temporary is a global and has a constant initializer, we may
 | |
|     // have already initialized it.
 | |
|     if (!Var->hasInitializer()) {
 | |
|       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
 | |
|       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
 | |
|     }
 | |
|   } else {
 | |
|     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
 | |
|   }
 | |
|   pushTemporaryCleanup(*this, M, E, Object);
 | |
| 
 | |
|   // Perform derived-to-base casts and/or field accesses, to get from the
 | |
|   // temporary object we created (and, potentially, for which we extended
 | |
|   // the lifetime) to the subobject we're binding the reference to.
 | |
|   for (unsigned I = Adjustments.size(); I != 0; --I) {
 | |
|     SubobjectAdjustment &Adjustment = Adjustments[I-1];
 | |
|     switch (Adjustment.Kind) {
 | |
|     case SubobjectAdjustment::DerivedToBaseAdjustment:
 | |
|       Object =
 | |
|           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
 | |
|                                 Adjustment.DerivedToBase.BasePath->path_begin(),
 | |
|                                 Adjustment.DerivedToBase.BasePath->path_end(),
 | |
|                                 /*NullCheckValue=*/ false);
 | |
|       break;
 | |
| 
 | |
|     case SubobjectAdjustment::FieldAdjustment: {
 | |
|       LValue LV = MakeAddrLValue(Object, E->getType());
 | |
|       LV = EmitLValueForField(LV, Adjustment.Field);
 | |
|       assert(LV.isSimple() &&
 | |
|              "materialized temporary field is not a simple lvalue");
 | |
|       Object = LV.getAddress();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SubobjectAdjustment::MemberPointerAdjustment: {
 | |
|       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
 | |
|       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
 | |
|           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MakeAddrLValue(Object, M->getType());
 | |
| }
 | |
| 
 | |
| RValue
 | |
| CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
 | |
|   // Emit the expression as an lvalue.
 | |
|   LValue LV = EmitLValue(E);
 | |
|   assert(LV.isSimple());
 | |
|   llvm::Value *Value = LV.getAddress();
 | |
| 
 | |
|   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
 | |
|     // C++11 [dcl.ref]p5 (as amended by core issue 453):
 | |
|     //   If a glvalue to which a reference is directly bound designates neither
 | |
|     //   an existing object or function of an appropriate type nor a region of
 | |
|     //   storage of suitable size and alignment to contain an object of the
 | |
|     //   reference's type, the behavior is undefined.
 | |
|     QualType Ty = E->getType();
 | |
|     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
 | |
|   }
 | |
| 
 | |
|   return RValue::get(Value);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getAccessedFieldNo - Given an encoded value and a result number, return the
 | |
| /// input field number being accessed.
 | |
| unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
 | |
|                                              const llvm::Constant *Elts) {
 | |
|   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
 | |
|       ->getZExtValue();
 | |
| }
 | |
| 
 | |
| /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
 | |
| static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
 | |
|                                     llvm::Value *High) {
 | |
|   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
 | |
|   llvm::Value *K47 = Builder.getInt64(47);
 | |
|   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
 | |
|   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
 | |
|   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
 | |
|   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
 | |
|   return Builder.CreateMul(B1, KMul);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
 | |
|                                     llvm::Value *Address,
 | |
|                                     QualType Ty, CharUnits Alignment) {
 | |
|   if (!SanitizePerformTypeCheck)
 | |
|     return;
 | |
| 
 | |
|   // Don't check pointers outside the default address space. The null check
 | |
|   // isn't correct, the object-size check isn't supported by LLVM, and we can't
 | |
|   // communicate the addresses to the runtime handler for the vptr check.
 | |
|   if (Address->getType()->getPointerAddressSpace())
 | |
|     return;
 | |
| 
 | |
|   llvm::Value *Cond = nullptr;
 | |
|   llvm::BasicBlock *Done = nullptr;
 | |
| 
 | |
|   if (SanOpts->Null) {
 | |
|     // The glvalue must not be an empty glvalue.
 | |
|     Cond = Builder.CreateICmpNE(
 | |
|         Address, llvm::Constant::getNullValue(Address->getType()));
 | |
| 
 | |
|     if (TCK == TCK_DowncastPointer) {
 | |
|       // When performing a pointer downcast, it's OK if the value is null.
 | |
|       // Skip the remaining checks in that case.
 | |
|       Done = createBasicBlock("null");
 | |
|       llvm::BasicBlock *Rest = createBasicBlock("not.null");
 | |
|       Builder.CreateCondBr(Cond, Rest, Done);
 | |
|       EmitBlock(Rest);
 | |
|       Cond = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
 | |
|     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
 | |
| 
 | |
|     // The glvalue must refer to a large enough storage region.
 | |
|     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
 | |
|     //        to check this.
 | |
|     // FIXME: Get object address space
 | |
|     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
 | |
|     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
 | |
|     llvm::Value *Min = Builder.getFalse();
 | |
|     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
 | |
|     llvm::Value *LargeEnough =
 | |
|         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
 | |
|                               llvm::ConstantInt::get(IntPtrTy, Size));
 | |
|     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
 | |
|   }
 | |
| 
 | |
|   uint64_t AlignVal = 0;
 | |
| 
 | |
|   if (SanOpts->Alignment) {
 | |
|     AlignVal = Alignment.getQuantity();
 | |
|     if (!Ty->isIncompleteType() && !AlignVal)
 | |
|       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
 | |
| 
 | |
|     // The glvalue must be suitably aligned.
 | |
|     if (AlignVal) {
 | |
|       llvm::Value *Align =
 | |
|           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
 | |
|                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
 | |
|       llvm::Value *Aligned =
 | |
|         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
 | |
|       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Cond) {
 | |
|     llvm::Constant *StaticData[] = {
 | |
|       EmitCheckSourceLocation(Loc),
 | |
|       EmitCheckTypeDescriptor(Ty),
 | |
|       llvm::ConstantInt::get(SizeTy, AlignVal),
 | |
|       llvm::ConstantInt::get(Int8Ty, TCK)
 | |
|     };
 | |
|     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
 | |
|   }
 | |
| 
 | |
|   // If possible, check that the vptr indicates that there is a subobject of
 | |
|   // type Ty at offset zero within this object.
 | |
|   //
 | |
|   // C++11 [basic.life]p5,6:
 | |
|   //   [For storage which does not refer to an object within its lifetime]
 | |
|   //   The program has undefined behavior if:
 | |
|   //    -- the [pointer or glvalue] is used to access a non-static data member
 | |
|   //       or call a non-static member function
 | |
|   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|   if (SanOpts->Vptr &&
 | |
|       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
 | |
|        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
 | |
|       RD && RD->hasDefinition() && RD->isDynamicClass()) {
 | |
|     // Compute a hash of the mangled name of the type.
 | |
|     //
 | |
|     // FIXME: This is not guaranteed to be deterministic! Move to a
 | |
|     //        fingerprinting mechanism once LLVM provides one. For the time
 | |
|     //        being the implementation happens to be deterministic.
 | |
|     SmallString<64> MangledName;
 | |
|     llvm::raw_svector_ostream Out(MangledName);
 | |
|     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
 | |
|                                                      Out);
 | |
|     llvm::hash_code TypeHash = hash_value(Out.str());
 | |
| 
 | |
|     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
 | |
|     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
 | |
|     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
 | |
|     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
 | |
|     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
 | |
|     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
 | |
| 
 | |
|     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
 | |
|     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
 | |
| 
 | |
|     // Look the hash up in our cache.
 | |
|     const int CacheSize = 128;
 | |
|     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
 | |
|     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
 | |
|                                                    "__ubsan_vptr_type_cache");
 | |
|     llvm::Value *Slot = Builder.CreateAnd(Hash,
 | |
|                                           llvm::ConstantInt::get(IntPtrTy,
 | |
|                                                                  CacheSize-1));
 | |
|     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
 | |
|     llvm::Value *CacheVal =
 | |
|       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
 | |
| 
 | |
|     // If the hash isn't in the cache, call a runtime handler to perform the
 | |
|     // hard work of checking whether the vptr is for an object of the right
 | |
|     // type. This will either fill in the cache and return, or produce a
 | |
|     // diagnostic.
 | |
|     llvm::Constant *StaticData[] = {
 | |
|       EmitCheckSourceLocation(Loc),
 | |
|       EmitCheckTypeDescriptor(Ty),
 | |
|       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
 | |
|       llvm::ConstantInt::get(Int8Ty, TCK)
 | |
|     };
 | |
|     llvm::Value *DynamicData[] = { Address, Hash };
 | |
|     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
 | |
|               "dynamic_type_cache_miss", StaticData, DynamicData,
 | |
|               CRK_AlwaysRecoverable);
 | |
|   }
 | |
| 
 | |
|   if (Done) {
 | |
|     Builder.CreateBr(Done);
 | |
|     EmitBlock(Done);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine whether this expression refers to a flexible array member in a
 | |
| /// struct. We disable array bounds checks for such members.
 | |
| static bool isFlexibleArrayMemberExpr(const Expr *E) {
 | |
|   // For compatibility with existing code, we treat arrays of length 0 or
 | |
|   // 1 as flexible array members.
 | |
|   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
 | |
|   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
 | |
|     if (CAT->getSize().ugt(1))
 | |
|       return false;
 | |
|   } else if (!isa<IncompleteArrayType>(AT))
 | |
|     return false;
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // A flexible array member must be the last member in the class.
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
 | |
|     // FIXME: If the base type of the member expr is not FD->getParent(),
 | |
|     // this should not be treated as a flexible array member access.
 | |
|     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
 | |
|       RecordDecl::field_iterator FI(
 | |
|           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
 | |
|       return ++FI == FD->getParent()->field_end();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If Base is known to point to the start of an array, return the length of
 | |
| /// that array. Return 0 if the length cannot be determined.
 | |
| static llvm::Value *getArrayIndexingBound(
 | |
|     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
 | |
|   // For the vector indexing extension, the bound is the number of elements.
 | |
|   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
 | |
|     IndexedType = Base->getType();
 | |
|     return CGF.Builder.getInt32(VT->getNumElements());
 | |
|   }
 | |
| 
 | |
|   Base = Base->IgnoreParens();
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
 | |
|     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
 | |
|         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
 | |
|       IndexedType = CE->getSubExpr()->getType();
 | |
|       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
 | |
|       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|         return CGF.Builder.getInt(CAT->getSize());
 | |
|       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
 | |
|         return CGF.getVLASize(VAT).first;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
 | |
|                                       llvm::Value *Index, QualType IndexType,
 | |
|                                       bool Accessed) {
 | |
|   assert(SanOpts->ArrayBounds &&
 | |
|          "should not be called unless adding bounds checks");
 | |
| 
 | |
|   QualType IndexedType;
 | |
|   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
 | |
|   if (!Bound)
 | |
|     return;
 | |
| 
 | |
|   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
 | |
|   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
 | |
|   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
 | |
| 
 | |
|   llvm::Constant *StaticData[] = {
 | |
|     EmitCheckSourceLocation(E->getExprLoc()),
 | |
|     EmitCheckTypeDescriptor(IndexedType),
 | |
|     EmitCheckTypeDescriptor(IndexType)
 | |
|   };
 | |
|   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
 | |
|                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
 | |
|   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
 | |
| }
 | |
| 
 | |
| 
 | |
| CodeGenFunction::ComplexPairTy CodeGenFunction::
 | |
| EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                          bool isInc, bool isPre) {
 | |
|   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
 | |
| 
 | |
|   llvm::Value *NextVal;
 | |
|   if (isa<llvm::IntegerType>(InVal.first->getType())) {
 | |
|     uint64_t AmountVal = isInc ? 1 : -1;
 | |
|     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
 | |
| 
 | |
|     // Add the inc/dec to the real part.
 | |
|     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
 | |
|   } else {
 | |
|     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
 | |
|     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
 | |
|     if (!isInc)
 | |
|       FVal.changeSign();
 | |
|     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
 | |
| 
 | |
|     // Add the inc/dec to the real part.
 | |
|     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
 | |
|   }
 | |
| 
 | |
|   ComplexPairTy IncVal(NextVal, InVal.second);
 | |
| 
 | |
|   // Store the updated result through the lvalue.
 | |
|   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
 | |
| 
 | |
|   // If this is a postinc, return the value read from memory, otherwise use the
 | |
|   // updated value.
 | |
|   return isPre ? IncVal : InVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         LValue Expression Emission
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
 | |
|   if (Ty->isVoidType())
 | |
|     return RValue::get(nullptr);
 | |
| 
 | |
|   switch (getEvaluationKind(Ty)) {
 | |
|   case TEK_Complex: {
 | |
|     llvm::Type *EltTy =
 | |
|       ConvertType(Ty->castAs<ComplexType>()->getElementType());
 | |
|     llvm::Value *U = llvm::UndefValue::get(EltTy);
 | |
|     return RValue::getComplex(std::make_pair(U, U));
 | |
|   }
 | |
| 
 | |
|   // If this is a use of an undefined aggregate type, the aggregate must have an
 | |
|   // identifiable address.  Just because the contents of the value are undefined
 | |
|   // doesn't mean that the address can't be taken and compared.
 | |
|   case TEK_Aggregate: {
 | |
|     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
 | |
|     return RValue::getAggregate(DestPtr);
 | |
|   }
 | |
| 
 | |
|   case TEK_Scalar:
 | |
|     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
 | |
|                                               const char *Name) {
 | |
|   ErrorUnsupported(E, Name);
 | |
|   return GetUndefRValue(E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
 | |
|                                               const char *Name) {
 | |
|   ErrorUnsupported(E, Name);
 | |
|   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
 | |
|   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
 | |
|   LValue LV;
 | |
|   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
 | |
|     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
 | |
|   else
 | |
|     LV = EmitLValue(E);
 | |
|   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
 | |
|     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
 | |
|                   E->getType(), LV.getAlignment());
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| /// EmitLValue - Emit code to compute a designator that specifies the location
 | |
| /// of the expression.
 | |
| ///
 | |
| /// This can return one of two things: a simple address or a bitfield reference.
 | |
| /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
 | |
| /// an LLVM pointer type.
 | |
| ///
 | |
| /// If this returns a bitfield reference, nothing about the pointee type of the
 | |
| /// LLVM value is known: For example, it may not be a pointer to an integer.
 | |
| ///
 | |
| /// If this returns a normal address, and if the lvalue's C type is fixed size,
 | |
| /// this method guarantees that the returned pointer type will point to an LLVM
 | |
| /// type of the same size of the lvalue's type.  If the lvalue has a variable
 | |
| /// length type, this is not possible.
 | |
| ///
 | |
| LValue CodeGenFunction::EmitLValue(const Expr *E) {
 | |
|   switch (E->getStmtClass()) {
 | |
|   default: return EmitUnsupportedLValue(E, "l-value expression");
 | |
| 
 | |
|   case Expr::ObjCPropertyRefExprClass:
 | |
|     llvm_unreachable("cannot emit a property reference directly");
 | |
| 
 | |
|   case Expr::ObjCSelectorExprClass:
 | |
|     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
 | |
|   case Expr::ObjCIsaExprClass:
 | |
|     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
 | |
|   case Expr::BinaryOperatorClass:
 | |
|     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
 | |
|   case Expr::CompoundAssignOperatorClass:
 | |
|     if (!E->getType()->isAnyComplexType())
 | |
|       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
 | |
|     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
 | |
|   case Expr::CallExprClass:
 | |
|   case Expr::CXXMemberCallExprClass:
 | |
|   case Expr::CXXOperatorCallExprClass:
 | |
|   case Expr::UserDefinedLiteralClass:
 | |
|     return EmitCallExprLValue(cast<CallExpr>(E));
 | |
|   case Expr::VAArgExprClass:
 | |
|     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
 | |
|   case Expr::DeclRefExprClass:
 | |
|     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
 | |
|   case Expr::ParenExprClass:
 | |
|     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
 | |
|   case Expr::GenericSelectionExprClass:
 | |
|     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
 | |
|   case Expr::PredefinedExprClass:
 | |
|     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
 | |
|   case Expr::StringLiteralClass:
 | |
|     return EmitStringLiteralLValue(cast<StringLiteral>(E));
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
 | |
|   case Expr::PseudoObjectExprClass:
 | |
|     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
 | |
|   case Expr::InitListExprClass:
 | |
|     return EmitInitListLValue(cast<InitListExpr>(E));
 | |
|   case Expr::CXXTemporaryObjectExprClass:
 | |
|   case Expr::CXXConstructExprClass:
 | |
|     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
 | |
|   case Expr::CXXBindTemporaryExprClass:
 | |
|     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
 | |
|   case Expr::CXXUuidofExprClass:
 | |
|     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
 | |
|   case Expr::LambdaExprClass:
 | |
|     return EmitLambdaLValue(cast<LambdaExpr>(E));
 | |
| 
 | |
|   case Expr::ExprWithCleanupsClass: {
 | |
|     const auto *cleanups = cast<ExprWithCleanups>(E);
 | |
|     enterFullExpression(cleanups);
 | |
|     RunCleanupsScope Scope(*this);
 | |
|     return EmitLValue(cleanups->getSubExpr());
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXDefaultArgExprClass:
 | |
|     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
 | |
|   case Expr::CXXDefaultInitExprClass: {
 | |
|     CXXDefaultInitExprScope Scope(*this);
 | |
|     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
 | |
|   }
 | |
|   case Expr::CXXTypeidExprClass:
 | |
|     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
 | |
| 
 | |
|   case Expr::ObjCMessageExprClass:
 | |
|     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
 | |
|   case Expr::ObjCIvarRefExprClass:
 | |
|     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
 | |
|   case Expr::StmtExprClass:
 | |
|     return EmitStmtExprLValue(cast<StmtExpr>(E));
 | |
|   case Expr::UnaryOperatorClass:
 | |
|     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
 | |
|   case Expr::ArraySubscriptExprClass:
 | |
|     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
 | |
|   case Expr::ExtVectorElementExprClass:
 | |
|     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
 | |
|   case Expr::MemberExprClass:
 | |
|     return EmitMemberExpr(cast<MemberExpr>(E));
 | |
|   case Expr::CompoundLiteralExprClass:
 | |
|     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
 | |
|   case Expr::ConditionalOperatorClass:
 | |
|     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
 | |
|   case Expr::BinaryConditionalOperatorClass:
 | |
|     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
 | |
|   case Expr::ChooseExprClass:
 | |
|     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
 | |
|   case Expr::OpaqueValueExprClass:
 | |
|     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
 | |
|   case Expr::SubstNonTypeTemplateParmExprClass:
 | |
|     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
 | |
|   case Expr::ImplicitCastExprClass:
 | |
|   case Expr::CStyleCastExprClass:
 | |
|   case Expr::CXXFunctionalCastExprClass:
 | |
|   case Expr::CXXStaticCastExprClass:
 | |
|   case Expr::CXXDynamicCastExprClass:
 | |
|   case Expr::CXXReinterpretCastExprClass:
 | |
|   case Expr::CXXConstCastExprClass:
 | |
|   case Expr::ObjCBridgedCastExprClass:
 | |
|     return EmitCastLValue(cast<CastExpr>(E));
 | |
| 
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given an object of the given canonical type, can we safely copy a
 | |
| /// value out of it based on its initializer?
 | |
| static bool isConstantEmittableObjectType(QualType type) {
 | |
|   assert(type.isCanonical());
 | |
|   assert(!type->isReferenceType());
 | |
| 
 | |
|   // Must be const-qualified but non-volatile.
 | |
|   Qualifiers qs = type.getLocalQualifiers();
 | |
|   if (!qs.hasConst() || qs.hasVolatile()) return false;
 | |
| 
 | |
|   // Otherwise, all object types satisfy this except C++ classes with
 | |
|   // mutable subobjects or non-trivial copy/destroy behavior.
 | |
|   if (const auto *RT = dyn_cast<RecordType>(type))
 | |
|     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
 | |
|       if (RD->hasMutableFields() || !RD->isTrivial())
 | |
|         return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Can we constant-emit a load of a reference to a variable of the
 | |
| /// given type?  This is different from predicates like
 | |
| /// Decl::isUsableInConstantExpressions because we do want it to apply
 | |
| /// in situations that don't necessarily satisfy the language's rules
 | |
| /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
 | |
| /// to do this with const float variables even if those variables
 | |
| /// aren't marked 'constexpr'.
 | |
| enum ConstantEmissionKind {
 | |
|   CEK_None,
 | |
|   CEK_AsReferenceOnly,
 | |
|   CEK_AsValueOrReference,
 | |
|   CEK_AsValueOnly
 | |
| };
 | |
| static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
 | |
|   type = type.getCanonicalType();
 | |
|   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
 | |
|     if (isConstantEmittableObjectType(ref->getPointeeType()))
 | |
|       return CEK_AsValueOrReference;
 | |
|     return CEK_AsReferenceOnly;
 | |
|   }
 | |
|   if (isConstantEmittableObjectType(type))
 | |
|     return CEK_AsValueOnly;
 | |
|   return CEK_None;
 | |
| }
 | |
| 
 | |
| /// Try to emit a reference to the given value without producing it as
 | |
| /// an l-value.  This is actually more than an optimization: we can't
 | |
| /// produce an l-value for variables that we never actually captured
 | |
| /// in a block or lambda, which means const int variables or constexpr
 | |
| /// literals or similar.
 | |
| CodeGenFunction::ConstantEmission
 | |
| CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
 | |
|   ValueDecl *value = refExpr->getDecl();
 | |
| 
 | |
|   // The value needs to be an enum constant or a constant variable.
 | |
|   ConstantEmissionKind CEK;
 | |
|   if (isa<ParmVarDecl>(value)) {
 | |
|     CEK = CEK_None;
 | |
|   } else if (auto *var = dyn_cast<VarDecl>(value)) {
 | |
|     CEK = checkVarTypeForConstantEmission(var->getType());
 | |
|   } else if (isa<EnumConstantDecl>(value)) {
 | |
|     CEK = CEK_AsValueOnly;
 | |
|   } else {
 | |
|     CEK = CEK_None;
 | |
|   }
 | |
|   if (CEK == CEK_None) return ConstantEmission();
 | |
| 
 | |
|   Expr::EvalResult result;
 | |
|   bool resultIsReference;
 | |
|   QualType resultType;
 | |
| 
 | |
|   // It's best to evaluate all the way as an r-value if that's permitted.
 | |
|   if (CEK != CEK_AsReferenceOnly &&
 | |
|       refExpr->EvaluateAsRValue(result, getContext())) {
 | |
|     resultIsReference = false;
 | |
|     resultType = refExpr->getType();
 | |
| 
 | |
|   // Otherwise, try to evaluate as an l-value.
 | |
|   } else if (CEK != CEK_AsValueOnly &&
 | |
|              refExpr->EvaluateAsLValue(result, getContext())) {
 | |
|     resultIsReference = true;
 | |
|     resultType = value->getType();
 | |
| 
 | |
|   // Failure.
 | |
|   } else {
 | |
|     return ConstantEmission();
 | |
|   }
 | |
| 
 | |
|   // In any case, if the initializer has side-effects, abandon ship.
 | |
|   if (result.HasSideEffects)
 | |
|     return ConstantEmission();
 | |
| 
 | |
|   // Emit as a constant.
 | |
|   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
 | |
| 
 | |
|   // Make sure we emit a debug reference to the global variable.
 | |
|   // This should probably fire even for
 | |
|   if (isa<VarDecl>(value)) {
 | |
|     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
 | |
|       EmitDeclRefExprDbgValue(refExpr, C);
 | |
|   } else {
 | |
|     assert(isa<EnumConstantDecl>(value));
 | |
|     EmitDeclRefExprDbgValue(refExpr, C);
 | |
|   }
 | |
| 
 | |
|   // If we emitted a reference constant, we need to dereference that.
 | |
|   if (resultIsReference)
 | |
|     return ConstantEmission::forReference(C);
 | |
| 
 | |
|   return ConstantEmission::forValue(C);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
 | |
|                                                SourceLocation Loc) {
 | |
|   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
 | |
|                           lvalue.getAlignment().getQuantity(),
 | |
|                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
 | |
|                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
 | |
| }
 | |
| 
 | |
| static bool hasBooleanRepresentation(QualType Ty) {
 | |
|   if (Ty->isBooleanType())
 | |
|     return true;
 | |
| 
 | |
|   if (const EnumType *ET = Ty->getAs<EnumType>())
 | |
|     return ET->getDecl()->getIntegerType()->isBooleanType();
 | |
| 
 | |
|   if (const AtomicType *AT = Ty->getAs<AtomicType>())
 | |
|     return hasBooleanRepresentation(AT->getValueType());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
 | |
|                             llvm::APInt &Min, llvm::APInt &End,
 | |
|                             bool StrictEnums) {
 | |
|   const EnumType *ET = Ty->getAs<EnumType>();
 | |
|   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
 | |
|                                 ET && !ET->getDecl()->isFixed();
 | |
|   bool IsBool = hasBooleanRepresentation(Ty);
 | |
|   if (!IsBool && !IsRegularCPlusPlusEnum)
 | |
|     return false;
 | |
| 
 | |
|   if (IsBool) {
 | |
|     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
 | |
|     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
 | |
|   } else {
 | |
|     const EnumDecl *ED = ET->getDecl();
 | |
|     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
 | |
|     unsigned Bitwidth = LTy->getScalarSizeInBits();
 | |
|     unsigned NumNegativeBits = ED->getNumNegativeBits();
 | |
|     unsigned NumPositiveBits = ED->getNumPositiveBits();
 | |
| 
 | |
|     if (NumNegativeBits) {
 | |
|       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
 | |
|       assert(NumBits <= Bitwidth);
 | |
|       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
 | |
|       Min = -End;
 | |
|     } else {
 | |
|       assert(NumPositiveBits <= Bitwidth);
 | |
|       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
 | |
|       Min = llvm::APInt(Bitwidth, 0);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
 | |
|   llvm::APInt Min, End;
 | |
|   if (!getRangeForType(*this, Ty, Min, End,
 | |
|                        CGM.getCodeGenOpts().StrictEnums))
 | |
|     return nullptr;
 | |
| 
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   return MDHelper.createRange(Min, End);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
 | |
|                                                unsigned Alignment, QualType Ty,
 | |
|                                                SourceLocation Loc,
 | |
|                                                llvm::MDNode *TBAAInfo,
 | |
|                                                QualType TBAABaseType,
 | |
|                                                uint64_t TBAAOffset) {
 | |
|   // For better performance, handle vector loads differently.
 | |
|   if (Ty->isVectorType()) {
 | |
|     llvm::Value *V;
 | |
|     const llvm::Type *EltTy =
 | |
|     cast<llvm::PointerType>(Addr->getType())->getElementType();
 | |
| 
 | |
|     const auto *VTy = cast<llvm::VectorType>(EltTy);
 | |
| 
 | |
|     // Handle vectors of size 3, like size 4 for better performance.
 | |
|     if (VTy->getNumElements() == 3) {
 | |
| 
 | |
|       // Bitcast to vec4 type.
 | |
|       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
 | |
|                                                          4);
 | |
|       llvm::PointerType *ptVec4Ty =
 | |
|       llvm::PointerType::get(vec4Ty,
 | |
|                              (cast<llvm::PointerType>(
 | |
|                                       Addr->getType()))->getAddressSpace());
 | |
|       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
 | |
|                                                 "castToVec4");
 | |
|       // Now load value.
 | |
|       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
 | |
| 
 | |
|       // Shuffle vector to get vec3.
 | |
|       llvm::Constant *Mask[] = {
 | |
|         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
 | |
|         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
 | |
|         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
 | |
|       };
 | |
| 
 | |
|       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | |
|       V = Builder.CreateShuffleVector(LoadVal,
 | |
|                                       llvm::UndefValue::get(vec4Ty),
 | |
|                                       MaskV, "extractVec");
 | |
|       return EmitFromMemory(V, Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Atomic operations have to be done on integral types.
 | |
|   if (Ty->isAtomicType()) {
 | |
|     LValue lvalue = LValue::MakeAddr(Addr, Ty,
 | |
|                                      CharUnits::fromQuantity(Alignment),
 | |
|                                      getContext(), TBAAInfo);
 | |
|     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
 | |
|   if (Volatile)
 | |
|     Load->setVolatile(true);
 | |
|   if (Alignment)
 | |
|     Load->setAlignment(Alignment);
 | |
|   if (TBAAInfo) {
 | |
|     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
 | |
|                                                       TBAAOffset);
 | |
|     if (TBAAPath)
 | |
|       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
 | |
|   }
 | |
| 
 | |
|   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
 | |
|       (SanOpts->Enum && Ty->getAs<EnumType>())) {
 | |
|     llvm::APInt Min, End;
 | |
|     if (getRangeForType(*this, Ty, Min, End, true)) {
 | |
|       --End;
 | |
|       llvm::Value *Check;
 | |
|       if (!Min)
 | |
|         Check = Builder.CreateICmpULE(
 | |
|           Load, llvm::ConstantInt::get(getLLVMContext(), End));
 | |
|       else {
 | |
|         llvm::Value *Upper = Builder.CreateICmpSLE(
 | |
|           Load, llvm::ConstantInt::get(getLLVMContext(), End));
 | |
|         llvm::Value *Lower = Builder.CreateICmpSGE(
 | |
|           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
 | |
|         Check = Builder.CreateAnd(Upper, Lower);
 | |
|       }
 | |
|       llvm::Constant *StaticArgs[] = {
 | |
|         EmitCheckSourceLocation(Loc),
 | |
|         EmitCheckTypeDescriptor(Ty)
 | |
|       };
 | |
|       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
 | |
|                 CRK_Recoverable);
 | |
|     }
 | |
|   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
 | |
|     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
 | |
|       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
 | |
| 
 | |
|   return EmitFromMemory(Load, Ty);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
 | |
|   // Bool has a different representation in memory than in registers.
 | |
|   if (hasBooleanRepresentation(Ty)) {
 | |
|     // This should really always be an i1, but sometimes it's already
 | |
|     // an i8, and it's awkward to track those cases down.
 | |
|     if (Value->getType()->isIntegerTy(1))
 | |
|       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
 | |
|     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
 | |
|            "wrong value rep of bool");
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
 | |
|   // Bool has a different representation in memory than in registers.
 | |
|   if (hasBooleanRepresentation(Ty)) {
 | |
|     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
 | |
|            "wrong value rep of bool");
 | |
|     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
 | |
|                                         bool Volatile, unsigned Alignment,
 | |
|                                         QualType Ty, llvm::MDNode *TBAAInfo,
 | |
|                                         bool isInit, QualType TBAABaseType,
 | |
|                                         uint64_t TBAAOffset) {
 | |
| 
 | |
|   // Handle vectors differently to get better performance.
 | |
|   if (Ty->isVectorType()) {
 | |
|     llvm::Type *SrcTy = Value->getType();
 | |
|     auto *VecTy = cast<llvm::VectorType>(SrcTy);
 | |
|     // Handle vec3 special.
 | |
|     if (VecTy->getNumElements() == 3) {
 | |
|       llvm::LLVMContext &VMContext = getLLVMContext();
 | |
| 
 | |
|       // Our source is a vec3, do a shuffle vector to make it a vec4.
 | |
|       SmallVector<llvm::Constant*, 4> Mask;
 | |
|       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
 | |
|                                             0));
 | |
|       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
 | |
|                                             1));
 | |
|       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
 | |
|                                             2));
 | |
|       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
 | |
| 
 | |
|       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | |
|       Value = Builder.CreateShuffleVector(Value,
 | |
|                                           llvm::UndefValue::get(VecTy),
 | |
|                                           MaskV, "extractVec");
 | |
|       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
 | |
|     }
 | |
|     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
 | |
|     if (DstPtr->getElementType() != SrcTy) {
 | |
|       llvm::Type *MemTy =
 | |
|       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
 | |
|       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value = EmitToMemory(Value, Ty);
 | |
| 
 | |
|   if (Ty->isAtomicType()) {
 | |
|     EmitAtomicStore(RValue::get(Value),
 | |
|                     LValue::MakeAddr(Addr, Ty,
 | |
|                                      CharUnits::fromQuantity(Alignment),
 | |
|                                      getContext(), TBAAInfo),
 | |
|                     isInit);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
 | |
|   if (Alignment)
 | |
|     Store->setAlignment(Alignment);
 | |
|   if (TBAAInfo) {
 | |
|     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
 | |
|                                                       TBAAOffset);
 | |
|     if (TBAAPath)
 | |
|       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
 | |
|                                         bool isInit) {
 | |
|   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
 | |
|                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
 | |
|                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
 | |
|                     lvalue.getTBAAOffset());
 | |
| }
 | |
| 
 | |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
 | |
| /// method emits the address of the lvalue, then loads the result as an rvalue,
 | |
| /// returning the rvalue.
 | |
| RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
 | |
|   if (LV.isObjCWeak()) {
 | |
|     // load of a __weak object.
 | |
|     llvm::Value *AddrWeakObj = LV.getAddress();
 | |
|     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
 | |
|                                                              AddrWeakObj));
 | |
|   }
 | |
|   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | |
|     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
 | |
|     Object = EmitObjCConsumeObject(LV.getType(), Object);
 | |
|     return RValue::get(Object);
 | |
|   }
 | |
| 
 | |
|   if (LV.isSimple()) {
 | |
|     assert(!LV.getType()->isFunctionType());
 | |
| 
 | |
|     // Everything needs a load.
 | |
|     return RValue::get(EmitLoadOfScalar(LV, Loc));
 | |
|   }
 | |
| 
 | |
|   if (LV.isVectorElt()) {
 | |
|     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
 | |
|                                               LV.isVolatileQualified());
 | |
|     Load->setAlignment(LV.getAlignment().getQuantity());
 | |
|     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
 | |
|                                                     "vecext"));
 | |
|   }
 | |
| 
 | |
|   // If this is a reference to a subset of the elements of a vector, either
 | |
|   // shuffle the input or extract/insert them as appropriate.
 | |
|   if (LV.isExtVectorElt())
 | |
|     return EmitLoadOfExtVectorElementLValue(LV);
 | |
| 
 | |
|   // Global Register variables always invoke intrinsics
 | |
|   if (LV.isGlobalReg())
 | |
|     return EmitLoadOfGlobalRegLValue(LV);
 | |
| 
 | |
|   assert(LV.isBitField() && "Unknown LValue type!");
 | |
|   return EmitLoadOfBitfieldLValue(LV);
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
 | |
|   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
 | |
| 
 | |
|   // Get the output type.
 | |
|   llvm::Type *ResLTy = ConvertType(LV.getType());
 | |
| 
 | |
|   llvm::Value *Ptr = LV.getBitFieldAddr();
 | |
|   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
 | |
|                                         "bf.load");
 | |
|   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
 | |
| 
 | |
|   if (Info.IsSigned) {
 | |
|     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
 | |
|     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
 | |
|     if (HighBits)
 | |
|       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
 | |
|     if (Info.Offset + HighBits)
 | |
|       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
 | |
|   } else {
 | |
|     if (Info.Offset)
 | |
|       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
 | |
|     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
 | |
|       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
 | |
|                                                               Info.Size),
 | |
|                               "bf.clear");
 | |
|   }
 | |
|   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
 | |
| 
 | |
|   return RValue::get(Val);
 | |
| }
 | |
| 
 | |
| // If this is a reference to a subset of the elements of a vector, create an
 | |
| // appropriate shufflevector.
 | |
| RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
 | |
|   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
 | |
|                                             LV.isVolatileQualified());
 | |
|   Load->setAlignment(LV.getAlignment().getQuantity());
 | |
|   llvm::Value *Vec = Load;
 | |
| 
 | |
|   const llvm::Constant *Elts = LV.getExtVectorElts();
 | |
| 
 | |
|   // If the result of the expression is a non-vector type, we must be extracting
 | |
|   // a single element.  Just codegen as an extractelement.
 | |
|   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
 | |
|   if (!ExprVT) {
 | |
|     unsigned InIdx = getAccessedFieldNo(0, Elts);
 | |
|     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
 | |
|     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
 | |
|   }
 | |
| 
 | |
|   // Always use shuffle vector to try to retain the original program structure
 | |
|   unsigned NumResultElts = ExprVT->getNumElements();
 | |
| 
 | |
|   SmallVector<llvm::Constant*, 4> Mask;
 | |
|   for (unsigned i = 0; i != NumResultElts; ++i)
 | |
|     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
 | |
| 
 | |
|   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | |
|   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
 | |
|                                     MaskV);
 | |
|   return RValue::get(Vec);
 | |
| }
 | |
| 
 | |
| /// @brief Load of global gamed gegisters are always calls to intrinsics.
 | |
| RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
 | |
|   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
 | |
|          "Bad type for register variable");
 | |
|   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
 | |
|   assert(RegName && "Register LValue is not metadata");
 | |
| 
 | |
|   // We accept integer and pointer types only
 | |
|   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
 | |
|   llvm::Type *Ty = OrigTy;
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
 | |
|   llvm::Type *Types[] = { Ty };
 | |
| 
 | |
|   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
 | |
|   llvm::Value *Call = Builder.CreateCall(F, RegName);
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Call = Builder.CreateIntToPtr(Call, OrigTy);
 | |
|   return RValue::get(Call);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified
 | |
| /// lvalue, where both are guaranteed to the have the same type, and that type
 | |
| /// is 'Ty'.
 | |
| void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
 | |
|                                              bool isInit) {
 | |
|   if (!Dst.isSimple()) {
 | |
|     if (Dst.isVectorElt()) {
 | |
|       // Read/modify/write the vector, inserting the new element.
 | |
|       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
 | |
|                                                 Dst.isVolatileQualified());
 | |
|       Load->setAlignment(Dst.getAlignment().getQuantity());
 | |
|       llvm::Value *Vec = Load;
 | |
|       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
 | |
|                                         Dst.getVectorIdx(), "vecins");
 | |
|       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
 | |
|                                                    Dst.isVolatileQualified());
 | |
|       Store->setAlignment(Dst.getAlignment().getQuantity());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If this is an update of extended vector elements, insert them as
 | |
|     // appropriate.
 | |
|     if (Dst.isExtVectorElt())
 | |
|       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
 | |
| 
 | |
|     if (Dst.isGlobalReg())
 | |
|       return EmitStoreThroughGlobalRegLValue(Src, Dst);
 | |
| 
 | |
|     assert(Dst.isBitField() && "Unknown LValue type");
 | |
|     return EmitStoreThroughBitfieldLValue(Src, Dst);
 | |
|   }
 | |
| 
 | |
|   // There's special magic for assigning into an ARC-qualified l-value.
 | |
|   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
 | |
|     switch (Lifetime) {
 | |
|     case Qualifiers::OCL_None:
 | |
|       llvm_unreachable("present but none");
 | |
| 
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|       // nothing special
 | |
|       break;
 | |
| 
 | |
|     case Qualifiers::OCL_Strong:
 | |
|       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
 | |
|       return;
 | |
| 
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
 | |
|       return;
 | |
| 
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
 | |
|                                                      Src.getScalarVal()));
 | |
|       // fall into the normal path
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
 | |
|     // load of a __weak object.
 | |
|     llvm::Value *LvalueDst = Dst.getAddress();
 | |
|     llvm::Value *src = Src.getScalarVal();
 | |
|      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
 | |
|     // load of a __strong object.
 | |
|     llvm::Value *LvalueDst = Dst.getAddress();
 | |
|     llvm::Value *src = Src.getScalarVal();
 | |
|     if (Dst.isObjCIvar()) {
 | |
|       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
 | |
|       llvm::Type *ResultType = ConvertType(getContext().LongTy);
 | |
|       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
 | |
|       llvm::Value *dst = RHS;
 | |
|       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
 | |
|       llvm::Value *LHS =
 | |
|         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
 | |
|       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
 | |
|       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
 | |
|                                               BytesBetween);
 | |
|     } else if (Dst.isGlobalObjCRef()) {
 | |
|       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
 | |
|                                                 Dst.isThreadLocalRef());
 | |
|     }
 | |
|     else
 | |
|       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(Src.isScalar() && "Can't emit an agg store with this method");
 | |
|   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
 | |
|                                                      llvm::Value **Result) {
 | |
|   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
 | |
|   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
 | |
|   llvm::Value *Ptr = Dst.getBitFieldAddr();
 | |
| 
 | |
|   // Get the source value, truncated to the width of the bit-field.
 | |
|   llvm::Value *SrcVal = Src.getScalarVal();
 | |
| 
 | |
|   // Cast the source to the storage type and shift it into place.
 | |
|   SrcVal = Builder.CreateIntCast(SrcVal,
 | |
|                                  Ptr->getType()->getPointerElementType(),
 | |
|                                  /*IsSigned=*/false);
 | |
|   llvm::Value *MaskedVal = SrcVal;
 | |
| 
 | |
|   // See if there are other bits in the bitfield's storage we'll need to load
 | |
|   // and mask together with source before storing.
 | |
|   if (Info.StorageSize != Info.Size) {
 | |
|     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
 | |
|     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
 | |
|                                           "bf.load");
 | |
|     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
 | |
| 
 | |
|     // Mask the source value as needed.
 | |
|     if (!hasBooleanRepresentation(Dst.getType()))
 | |
|       SrcVal = Builder.CreateAnd(SrcVal,
 | |
|                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
 | |
|                                                             Info.Size),
 | |
|                                  "bf.value");
 | |
|     MaskedVal = SrcVal;
 | |
|     if (Info.Offset)
 | |
|       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
 | |
| 
 | |
|     // Mask out the original value.
 | |
|     Val = Builder.CreateAnd(Val,
 | |
|                             ~llvm::APInt::getBitsSet(Info.StorageSize,
 | |
|                                                      Info.Offset,
 | |
|                                                      Info.Offset + Info.Size),
 | |
|                             "bf.clear");
 | |
| 
 | |
|     // Or together the unchanged values and the source value.
 | |
|     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
 | |
|   } else {
 | |
|     assert(Info.Offset == 0);
 | |
|   }
 | |
| 
 | |
|   // Write the new value back out.
 | |
|   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
 | |
|                                                Dst.isVolatileQualified());
 | |
|   Store->setAlignment(Info.StorageAlignment);
 | |
| 
 | |
|   // Return the new value of the bit-field, if requested.
 | |
|   if (Result) {
 | |
|     llvm::Value *ResultVal = MaskedVal;
 | |
| 
 | |
|     // Sign extend the value if needed.
 | |
|     if (Info.IsSigned) {
 | |
|       assert(Info.Size <= Info.StorageSize);
 | |
|       unsigned HighBits = Info.StorageSize - Info.Size;
 | |
|       if (HighBits) {
 | |
|         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
 | |
|         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
 | |
|                                       "bf.result.cast");
 | |
|     *Result = EmitFromMemory(ResultVal, Dst.getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
 | |
|                                                                LValue Dst) {
 | |
|   // This access turns into a read/modify/write of the vector.  Load the input
 | |
|   // value now.
 | |
|   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
 | |
|                                             Dst.isVolatileQualified());
 | |
|   Load->setAlignment(Dst.getAlignment().getQuantity());
 | |
|   llvm::Value *Vec = Load;
 | |
|   const llvm::Constant *Elts = Dst.getExtVectorElts();
 | |
| 
 | |
|   llvm::Value *SrcVal = Src.getScalarVal();
 | |
| 
 | |
|   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
 | |
|     unsigned NumSrcElts = VTy->getNumElements();
 | |
|     unsigned NumDstElts =
 | |
|        cast<llvm::VectorType>(Vec->getType())->getNumElements();
 | |
|     if (NumDstElts == NumSrcElts) {
 | |
|       // Use shuffle vector is the src and destination are the same number of
 | |
|       // elements and restore the vector mask since it is on the side it will be
 | |
|       // stored.
 | |
|       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
 | |
|       for (unsigned i = 0; i != NumSrcElts; ++i)
 | |
|         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
 | |
| 
 | |
|       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | |
|       Vec = Builder.CreateShuffleVector(SrcVal,
 | |
|                                         llvm::UndefValue::get(Vec->getType()),
 | |
|                                         MaskV);
 | |
|     } else if (NumDstElts > NumSrcElts) {
 | |
|       // Extended the source vector to the same length and then shuffle it
 | |
|       // into the destination.
 | |
|       // FIXME: since we're shuffling with undef, can we just use the indices
 | |
|       //        into that?  This could be simpler.
 | |
|       SmallVector<llvm::Constant*, 4> ExtMask;
 | |
|       for (unsigned i = 0; i != NumSrcElts; ++i)
 | |
|         ExtMask.push_back(Builder.getInt32(i));
 | |
|       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
 | |
|       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
 | |
|       llvm::Value *ExtSrcVal =
 | |
|         Builder.CreateShuffleVector(SrcVal,
 | |
|                                     llvm::UndefValue::get(SrcVal->getType()),
 | |
|                                     ExtMaskV);
 | |
|       // build identity
 | |
|       SmallVector<llvm::Constant*, 4> Mask;
 | |
|       for (unsigned i = 0; i != NumDstElts; ++i)
 | |
|         Mask.push_back(Builder.getInt32(i));
 | |
| 
 | |
|       // When the vector size is odd and .odd or .hi is used, the last element
 | |
|       // of the Elts constant array will be one past the size of the vector.
 | |
|       // Ignore the last element here, if it is greater than the mask size.
 | |
|       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
 | |
|         NumSrcElts--;
 | |
| 
 | |
|       // modify when what gets shuffled in
 | |
|       for (unsigned i = 0; i != NumSrcElts; ++i)
 | |
|         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
 | |
|       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
 | |
|       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
 | |
|     } else {
 | |
|       // We should never shorten the vector
 | |
|       llvm_unreachable("unexpected shorten vector length");
 | |
|     }
 | |
|   } else {
 | |
|     // If the Src is a scalar (not a vector) it must be updating one element.
 | |
|     unsigned InIdx = getAccessedFieldNo(0, Elts);
 | |
|     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
 | |
|     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
 | |
|   }
 | |
| 
 | |
|   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
 | |
|                                                Dst.isVolatileQualified());
 | |
|   Store->setAlignment(Dst.getAlignment().getQuantity());
 | |
| }
 | |
| 
 | |
| /// @brief Store of global named registers are always calls to intrinsics.
 | |
| void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
 | |
|   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
 | |
|          "Bad type for register variable");
 | |
|   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
 | |
|   assert(RegName && "Register LValue is not metadata");
 | |
| 
 | |
|   // We accept integer and pointer types only
 | |
|   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
 | |
|   llvm::Type *Ty = OrigTy;
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
 | |
|   llvm::Type *Types[] = { Ty };
 | |
| 
 | |
|   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
 | |
|   llvm::Value *Value = Src.getScalarVal();
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Value = Builder.CreatePtrToInt(Value, Ty);
 | |
|   Builder.CreateCall2(F, RegName, Value);
 | |
| }
 | |
| 
 | |
| // setObjCGCLValueClass - sets class of the lvalue for the purpose of
 | |
| // generating write-barries API. It is currently a global, ivar,
 | |
| // or neither.
 | |
| static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
 | |
|                                  LValue &LV,
 | |
|                                  bool IsMemberAccess=false) {
 | |
|   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
 | |
|     return;
 | |
| 
 | |
|   if (isa<ObjCIvarRefExpr>(E)) {
 | |
|     QualType ExpTy = E->getType();
 | |
|     if (IsMemberAccess && ExpTy->isPointerType()) {
 | |
|       // If ivar is a structure pointer, assigning to field of
 | |
|       // this struct follows gcc's behavior and makes it a non-ivar
 | |
|       // writer-barrier conservatively.
 | |
|       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
 | |
|       if (ExpTy->isRecordType()) {
 | |
|         LV.setObjCIvar(false);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     LV.setObjCIvar(true);
 | |
|     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
 | |
|     LV.setBaseIvarExp(Exp->getBase());
 | |
|     LV.setObjCArray(E->getType()->isArrayType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
 | |
|     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
 | |
|       if (VD->hasGlobalStorage()) {
 | |
|         LV.setGlobalObjCRef(true);
 | |
|         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
 | |
|       }
 | |
|     }
 | |
|     LV.setObjCArray(E->getType()->isArrayType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     if (LV.isObjCIvar()) {
 | |
|       // If cast is to a structure pointer, follow gcc's behavior and make it
 | |
|       // a non-ivar write-barrier.
 | |
|       QualType ExpTy = E->getType();
 | |
|       if (ExpTy->isPointerType())
 | |
|         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
 | |
|       if (ExpTy->isRecordType())
 | |
|         LV.setObjCIvar(false);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
 | |
|     if (LV.isObjCIvar() && !LV.isObjCArray())
 | |
|       // Using array syntax to assigning to what an ivar points to is not
 | |
|       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
 | |
|       LV.setObjCIvar(false);
 | |
|     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
 | |
|       // Using array syntax to assigning to what global points to is not
 | |
|       // same as assigning to the global itself. {id *G;} G[i] = 0;
 | |
|       LV.setGlobalObjCRef(false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
 | |
|     // We don't know if member is an 'ivar', but this flag is looked at
 | |
|     // only in the context of LV.isObjCIvar().
 | |
|     LV.setObjCArray(E->getType()->isArrayType());
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static llvm::Value *
 | |
| EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
 | |
|                                 llvm::Value *V, llvm::Type *IRType,
 | |
|                                 StringRef Name = StringRef()) {
 | |
|   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
 | |
|   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
 | |
| }
 | |
| 
 | |
| static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
 | |
|                                       const Expr *E, const VarDecl *VD) {
 | |
|   QualType T = E->getType();
 | |
| 
 | |
|   // If it's thread_local, emit a call to its wrapper function instead.
 | |
|   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
 | |
|     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
 | |
| 
 | |
|   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
 | |
|   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
 | |
|   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
 | |
|   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
 | |
|   LValue LV;
 | |
|   if (VD->getType()->isReferenceType()) {
 | |
|     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
 | |
|     LI->setAlignment(Alignment.getQuantity());
 | |
|     V = LI;
 | |
|     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
 | |
|   } else {
 | |
|     LV = CGF.MakeAddrLValue(V, T, Alignment);
 | |
|   }
 | |
|   setObjCGCLValueClass(CGF.getContext(), E, LV);
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
 | |
|                                      const Expr *E, const FunctionDecl *FD) {
 | |
|   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
 | |
|   if (!FD->hasPrototype()) {
 | |
|     if (const FunctionProtoType *Proto =
 | |
|             FD->getType()->getAs<FunctionProtoType>()) {
 | |
|       // Ugly case: for a K&R-style definition, the type of the definition
 | |
|       // isn't the same as the type of a use.  Correct for this with a
 | |
|       // bitcast.
 | |
|       QualType NoProtoType =
 | |
|           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
 | |
|       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
 | |
|       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
 | |
|     }
 | |
|   }
 | |
|   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
 | |
|   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
 | |
| }
 | |
| 
 | |
| static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
 | |
|                                       llvm::Value *ThisValue) {
 | |
|   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
 | |
|   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
 | |
|   return CGF.EmitLValueForField(LV, FD);
 | |
| }
 | |
| 
 | |
| /// Named Registers are named metadata pointing to the register name
 | |
| /// which will be read from/written to as an argument to the intrinsic
 | |
| /// @llvm.read/write_register.
 | |
| /// So far, only the name is being passed down, but other options such as
 | |
| /// register type, allocation type or even optimization options could be
 | |
| /// passed down via the metadata node.
 | |
| static LValue EmitGlobalNamedRegister(const VarDecl *VD,
 | |
|                                       CodeGenModule &CGM,
 | |
|                                       CharUnits Alignment) {
 | |
|   SmallString<64> Name("llvm.named.register.");
 | |
|   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
 | |
|   assert(Asm->getLabel().size() < 64-Name.size() &&
 | |
|       "Register name too big");
 | |
|   Name.append(Asm->getLabel());
 | |
|   llvm::NamedMDNode *M =
 | |
|     CGM.getModule().getOrInsertNamedMetadata(Name);
 | |
|   if (M->getNumOperands() == 0) {
 | |
|     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
 | |
|                                               Asm->getLabel());
 | |
|     llvm::Value *Ops[] = { Str };
 | |
|     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
 | |
|   }
 | |
|   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
 | |
|   const NamedDecl *ND = E->getDecl();
 | |
|   CharUnits Alignment = getContext().getDeclAlign(ND);
 | |
|   QualType T = E->getType();
 | |
| 
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
 | |
|     // Global Named registers access via intrinsics only
 | |
|     if (VD->getStorageClass() == SC_Register &&
 | |
|         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
 | |
|       return EmitGlobalNamedRegister(VD, CGM, Alignment);
 | |
| 
 | |
|     // A DeclRefExpr for a reference initialized by a constant expression can
 | |
|     // appear without being odr-used. Directly emit the constant initializer.
 | |
|     const Expr *Init = VD->getAnyInitializer(VD);
 | |
|     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
 | |
|         VD->isUsableInConstantExpressions(getContext()) &&
 | |
|         VD->checkInitIsICE()) {
 | |
|       llvm::Constant *Val =
 | |
|         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
 | |
|       assert(Val && "failed to emit reference constant expression");
 | |
|       // FIXME: Eventually we will want to emit vector element references.
 | |
|       return MakeAddrLValue(Val, T, Alignment);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: We should be able to assert this for FunctionDecls as well!
 | |
|   // FIXME: We should be able to assert this for all DeclRefExprs, not just
 | |
|   // those with a valid source location.
 | |
|   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
 | |
|           !E->getLocation().isValid()) &&
 | |
|          "Should not use decl without marking it used!");
 | |
| 
 | |
|   if (ND->hasAttr<WeakRefAttr>()) {
 | |
|     const auto *VD = cast<ValueDecl>(ND);
 | |
|     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
 | |
|     return MakeAddrLValue(Aliasee, T, Alignment);
 | |
|   }
 | |
| 
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
 | |
|     // Check if this is a global variable.
 | |
|     if (VD->hasLinkage() || VD->isStaticDataMember())
 | |
|       return EmitGlobalVarDeclLValue(*this, E, VD);
 | |
| 
 | |
|     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
 | |
| 
 | |
|     llvm::Value *V = LocalDeclMap.lookup(VD);
 | |
|     if (!V && VD->isStaticLocal())
 | |
|       V = CGM.getStaticLocalDeclAddress(VD);
 | |
| 
 | |
|     // Use special handling for lambdas.
 | |
|     if (!V) {
 | |
|       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
 | |
|         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
 | |
|       } else if (CapturedStmtInfo) {
 | |
|         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
 | |
|           return EmitCapturedFieldLValue(*this, FD,
 | |
|                                          CapturedStmtInfo->getContextValue());
 | |
|       }
 | |
| 
 | |
|       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
 | |
|       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
 | |
|                             T, Alignment);
 | |
|     }
 | |
| 
 | |
|     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
 | |
| 
 | |
|     if (isBlockVariable)
 | |
|       V = BuildBlockByrefAddress(V, VD);
 | |
| 
 | |
|     LValue LV;
 | |
|     if (VD->getType()->isReferenceType()) {
 | |
|       llvm::LoadInst *LI = Builder.CreateLoad(V);
 | |
|       LI->setAlignment(Alignment.getQuantity());
 | |
|       V = LI;
 | |
|       LV = MakeNaturalAlignAddrLValue(V, T);
 | |
|     } else {
 | |
|       LV = MakeAddrLValue(V, T, Alignment);
 | |
|     }
 | |
| 
 | |
|     bool isLocalStorage = VD->hasLocalStorage();
 | |
| 
 | |
|     bool NonGCable = isLocalStorage &&
 | |
|                      !VD->getType()->isReferenceType() &&
 | |
|                      !isBlockVariable;
 | |
|     if (NonGCable) {
 | |
|       LV.getQuals().removeObjCGCAttr();
 | |
|       LV.setNonGC(true);
 | |
|     }
 | |
| 
 | |
|     bool isImpreciseLifetime =
 | |
|       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
 | |
|     if (isImpreciseLifetime)
 | |
|       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
 | |
|     setObjCGCLValueClass(getContext(), E, LV);
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|     return EmitFunctionDeclLValue(*this, E, FD);
 | |
| 
 | |
|   llvm_unreachable("Unhandled DeclRefExpr");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
 | |
|   // __extension__ doesn't affect lvalue-ness.
 | |
|   if (E->getOpcode() == UO_Extension)
 | |
|     return EmitLValue(E->getSubExpr());
 | |
| 
 | |
|   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
 | |
|   switch (E->getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown unary operator lvalue!");
 | |
|   case UO_Deref: {
 | |
|     QualType T = E->getSubExpr()->getType()->getPointeeType();
 | |
|     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
 | |
| 
 | |
|     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
 | |
|     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
 | |
| 
 | |
|     // We should not generate __weak write barrier on indirect reference
 | |
|     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
 | |
|     // But, we continue to generate __strong write barrier on indirect write
 | |
|     // into a pointer to object.
 | |
|     if (getLangOpts().ObjC1 &&
 | |
|         getLangOpts().getGC() != LangOptions::NonGC &&
 | |
|         LV.isObjCWeak())
 | |
|       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
 | |
|     return LV;
 | |
|   }
 | |
|   case UO_Real:
 | |
|   case UO_Imag: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
 | |
|     llvm::Value *Addr = LV.getAddress();
 | |
| 
 | |
|     // __real is valid on scalars.  This is a faster way of testing that.
 | |
|     // __imag can only produce an rvalue on scalars.
 | |
|     if (E->getOpcode() == UO_Real &&
 | |
|         !cast<llvm::PointerType>(Addr->getType())
 | |
|            ->getElementType()->isStructTy()) {
 | |
|       assert(E->getSubExpr()->getType()->isArithmeticType());
 | |
|       return LV;
 | |
|     }
 | |
| 
 | |
|     assert(E->getSubExpr()->getType()->isAnyComplexType());
 | |
| 
 | |
|     unsigned Idx = E->getOpcode() == UO_Imag;
 | |
|     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
 | |
|                                                   Idx, "idx"),
 | |
|                           ExprTy);
 | |
|   }
 | |
|   case UO_PreInc:
 | |
|   case UO_PreDec: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     bool isInc = E->getOpcode() == UO_PreInc;
 | |
| 
 | |
|     if (E->getType()->isAnyComplexType())
 | |
|       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
 | |
|     else
 | |
|       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
 | |
|     return LV;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
 | |
|   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
 | |
|                         E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
 | |
|   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
 | |
|                         E->getType());
 | |
| }
 | |
| 
 | |
| static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
 | |
|                                     SmallString<32>& Target) {
 | |
|   Target.resize(CharByteWidth * (Source.size() + 1));
 | |
|   char *ResultPtr = &Target[0];
 | |
|   const UTF8 *ErrorPtr;
 | |
|   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
 | |
|   (void)success;
 | |
|   assert(success);
 | |
|   Target.resize(ResultPtr - &Target[0]);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
 | |
|   switch (E->getIdentType()) {
 | |
|   default:
 | |
|     return EmitUnsupportedLValue(E, "predefined expression");
 | |
| 
 | |
|   case PredefinedExpr::Func:
 | |
|   case PredefinedExpr::Function:
 | |
|   case PredefinedExpr::LFunction:
 | |
|   case PredefinedExpr::FuncDName:
 | |
|   case PredefinedExpr::FuncSig:
 | |
|   case PredefinedExpr::PrettyFunction: {
 | |
|     PredefinedExpr::IdentType IdentType = E->getIdentType();
 | |
|     std::string GVName;
 | |
| 
 | |
|     // FIXME: We should use the string literal mangling for the Microsoft C++
 | |
|     // ABI so that strings get merged.
 | |
|     switch (IdentType) {
 | |
|     default: llvm_unreachable("Invalid type");
 | |
|     case PredefinedExpr::Func:           GVName = "__func__."; break;
 | |
|     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
 | |
|     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
 | |
|     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
 | |
|     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
 | |
|     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
 | |
|     }
 | |
| 
 | |
|     StringRef FnName = CurFn->getName();
 | |
|     if (FnName.startswith("\01"))
 | |
|       FnName = FnName.substr(1);
 | |
|     GVName += FnName;
 | |
| 
 | |
|     // If this is outside of a function use the top level decl.
 | |
|     const Decl *CurDecl = CurCodeDecl;
 | |
|     if (!CurDecl || isa<VarDecl>(CurDecl))
 | |
|       CurDecl = getContext().getTranslationUnitDecl();
 | |
| 
 | |
|     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
 | |
|     std::string FunctionName;
 | |
|     if (isa<BlockDecl>(CurDecl)) {
 | |
|       // Blocks use the mangled function name.
 | |
|       // FIXME: ComputeName should handle blocks.
 | |
|       FunctionName = FnName.str();
 | |
|     } else if (isa<CapturedDecl>(CurDecl)) {
 | |
|       // For a captured statement, the function name is its enclosing
 | |
|       // function name not the one compiler generated.
 | |
|       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
 | |
|     } else {
 | |
|       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
 | |
|       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
 | |
|                  FunctionName.size() &&
 | |
|              "Computed __func__ length differs from type!");
 | |
|     }
 | |
| 
 | |
|     llvm::Constant *C;
 | |
|     if (ElemType->isWideCharType()) {
 | |
|       SmallString<32> RawChars;
 | |
|       ConvertUTF8ToWideString(
 | |
|           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
 | |
|           RawChars);
 | |
|       StringLiteral *SL = StringLiteral::Create(
 | |
|           getContext(), RawChars, StringLiteral::Wide,
 | |
|           /*Pascal = */ false, E->getType(), E->getLocation());
 | |
|       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
 | |
|     } else {
 | |
|       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
 | |
|     }
 | |
|     return MakeAddrLValue(C, E->getType());
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Emit a type description suitable for use by a runtime sanitizer library. The
 | |
| /// format of a type descriptor is
 | |
| ///
 | |
| /// \code
 | |
| ///   { i16 TypeKind, i16 TypeInfo }
 | |
| /// \endcode
 | |
| ///
 | |
| /// followed by an array of i8 containing the type name. TypeKind is 0 for an
 | |
| /// integer, 1 for a floating point value, and -1 for anything else.
 | |
| llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
 | |
|   // Only emit each type's descriptor once.
 | |
|   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
 | |
|     return C;
 | |
| 
 | |
|   uint16_t TypeKind = -1;
 | |
|   uint16_t TypeInfo = 0;
 | |
| 
 | |
|   if (T->isIntegerType()) {
 | |
|     TypeKind = 0;
 | |
|     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
 | |
|                (T->isSignedIntegerType() ? 1 : 0);
 | |
|   } else if (T->isFloatingType()) {
 | |
|     TypeKind = 1;
 | |
|     TypeInfo = getContext().getTypeSize(T);
 | |
|   }
 | |
| 
 | |
|   // Format the type name as if for a diagnostic, including quotes and
 | |
|   // optionally an 'aka'.
 | |
|   SmallString<32> Buffer;
 | |
|   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
 | |
|                                     (intptr_t)T.getAsOpaquePtr(),
 | |
|                                     StringRef(), StringRef(), None, Buffer,
 | |
|                                     ArrayRef<intptr_t>());
 | |
| 
 | |
|   llvm::Constant *Components[] = {
 | |
|     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
 | |
|     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
 | |
|   };
 | |
|   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
 | |
| 
 | |
|   auto *GV = new llvm::GlobalVariable(
 | |
|       CGM.getModule(), Descriptor->getType(),
 | |
|       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
 | |
|   GV->setUnnamedAddr(true);
 | |
| 
 | |
|   // Remember the descriptor for this type.
 | |
|   CGM.setTypeDescriptorInMap(T, GV);
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
 | |
|   llvm::Type *TargetTy = IntPtrTy;
 | |
| 
 | |
|   // Floating-point types which fit into intptr_t are bitcast to integers
 | |
|   // and then passed directly (after zero-extension, if necessary).
 | |
|   if (V->getType()->isFloatingPointTy()) {
 | |
|     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
 | |
|     if (Bits <= TargetTy->getIntegerBitWidth())
 | |
|       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
 | |
|                                                          Bits));
 | |
|   }
 | |
| 
 | |
|   // Integers which fit in intptr_t are zero-extended and passed directly.
 | |
|   if (V->getType()->isIntegerTy() &&
 | |
|       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
 | |
|     return Builder.CreateZExt(V, TargetTy);
 | |
| 
 | |
|   // Pointers are passed directly, everything else is passed by address.
 | |
|   if (!V->getType()->isPointerTy()) {
 | |
|     llvm::Value *Ptr = CreateTempAlloca(V->getType());
 | |
|     Builder.CreateStore(V, Ptr);
 | |
|     V = Ptr;
 | |
|   }
 | |
|   return Builder.CreatePtrToInt(V, TargetTy);
 | |
| }
 | |
| 
 | |
| /// \brief Emit a representation of a SourceLocation for passing to a handler
 | |
| /// in a sanitizer runtime library. The format for this data is:
 | |
| /// \code
 | |
| ///   struct SourceLocation {
 | |
| ///     const char *Filename;
 | |
| ///     int32_t Line, Column;
 | |
| ///   };
 | |
| /// \endcode
 | |
| /// For an invalid SourceLocation, the Filename pointer is null.
 | |
| llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
 | |
|   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
 | |
| 
 | |
|   llvm::Constant *Data[] = {
 | |
|     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
 | |
|                    : llvm::Constant::getNullValue(Int8PtrTy),
 | |
|     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
 | |
|     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
 | |
|   };
 | |
| 
 | |
|   return llvm::ConstantStruct::getAnon(Data);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
 | |
|                                 ArrayRef<llvm::Constant *> StaticArgs,
 | |
|                                 ArrayRef<llvm::Value *> DynamicArgs,
 | |
|                                 CheckRecoverableKind RecoverKind) {
 | |
|   assert(SanOpts != &SanitizerOptions::Disabled);
 | |
| 
 | |
|   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
 | |
|     assert (RecoverKind != CRK_AlwaysRecoverable &&
 | |
|             "Runtime call required for AlwaysRecoverable kind!");
 | |
|     return EmitTrapCheck(Checked);
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *Cont = createBasicBlock("cont");
 | |
| 
 | |
|   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
 | |
| 
 | |
|   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
 | |
| 
 | |
|   // Give hint that we very much don't expect to execute the handler
 | |
|   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
 | |
|   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
 | |
| 
 | |
|   EmitBlock(Handler);
 | |
| 
 | |
|   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
 | |
|   auto *InfoPtr =
 | |
|       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
 | |
|                                llvm::GlobalVariable::PrivateLinkage, Info);
 | |
|   InfoPtr->setUnnamedAddr(true);
 | |
| 
 | |
|   SmallVector<llvm::Value *, 4> Args;
 | |
|   SmallVector<llvm::Type *, 4> ArgTypes;
 | |
|   Args.reserve(DynamicArgs.size() + 1);
 | |
|   ArgTypes.reserve(DynamicArgs.size() + 1);
 | |
| 
 | |
|   // Handler functions take an i8* pointing to the (handler-specific) static
 | |
|   // information block, followed by a sequence of intptr_t arguments
 | |
|   // representing operand values.
 | |
|   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
 | |
|   ArgTypes.push_back(Int8PtrTy);
 | |
|   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
 | |
|     Args.push_back(EmitCheckValue(DynamicArgs[i]));
 | |
|     ArgTypes.push_back(IntPtrTy);
 | |
|   }
 | |
| 
 | |
|   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
 | |
|                  (RecoverKind == CRK_Recoverable &&
 | |
|                   CGM.getCodeGenOpts().SanitizeRecover);
 | |
| 
 | |
|   llvm::FunctionType *FnType =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
 | |
|   llvm::AttrBuilder B;
 | |
|   if (!Recover) {
 | |
|     B.addAttribute(llvm::Attribute::NoReturn)
 | |
|      .addAttribute(llvm::Attribute::NoUnwind);
 | |
|   }
 | |
|   B.addAttribute(llvm::Attribute::UWTable);
 | |
| 
 | |
|   // Checks that have two variants use a suffix to differentiate them
 | |
|   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
 | |
|                           !CGM.getCodeGenOpts().SanitizeRecover;
 | |
|   std::string FunctionName = ("__ubsan_handle_" + CheckName +
 | |
|                               (NeedsAbortSuffix? "_abort" : "")).str();
 | |
|   llvm::Value *Fn = CGM.CreateRuntimeFunction(
 | |
|       FnType, FunctionName,
 | |
|       llvm::AttributeSet::get(getLLVMContext(),
 | |
|                               llvm::AttributeSet::FunctionIndex, B));
 | |
|   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
 | |
|   if (Recover) {
 | |
|     Builder.CreateBr(Cont);
 | |
|   } else {
 | |
|     HandlerCall->setDoesNotReturn();
 | |
|     Builder.CreateUnreachable();
 | |
|   }
 | |
| 
 | |
|   EmitBlock(Cont);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
 | |
|   llvm::BasicBlock *Cont = createBasicBlock("cont");
 | |
| 
 | |
|   // If we're optimizing, collapse all calls to trap down to just one per
 | |
|   // function to save on code size.
 | |
|   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
 | |
|     TrapBB = createBasicBlock("trap");
 | |
|     Builder.CreateCondBr(Checked, Cont, TrapBB);
 | |
|     EmitBlock(TrapBB);
 | |
|     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
 | |
|     llvm::CallInst *TrapCall = Builder.CreateCall(F);
 | |
|     TrapCall->setDoesNotReturn();
 | |
|     TrapCall->setDoesNotThrow();
 | |
|     Builder.CreateUnreachable();
 | |
|   } else {
 | |
|     Builder.CreateCondBr(Checked, Cont, TrapBB);
 | |
|   }
 | |
| 
 | |
|   EmitBlock(Cont);
 | |
| }
 | |
| 
 | |
| /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
 | |
| /// array to pointer, return the array subexpression.
 | |
| static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
 | |
|   // If this isn't just an array->pointer decay, bail out.
 | |
|   const auto *CE = dyn_cast<CastExpr>(E);
 | |
|   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a decay from variable width array, bail out.
 | |
|   const Expr *SubExpr = CE->getSubExpr();
 | |
|   if (SubExpr->getType()->isVariableArrayType())
 | |
|     return nullptr;
 | |
| 
 | |
|   return SubExpr;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
 | |
|                                                bool Accessed) {
 | |
|   // The index must always be an integer, which is not an aggregate.  Emit it.
 | |
|   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
 | |
|   QualType IdxTy  = E->getIdx()->getType();
 | |
|   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
 | |
| 
 | |
|   if (SanOpts->ArrayBounds)
 | |
|     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
 | |
| 
 | |
|   // If the base is a vector type, then we are forming a vector element lvalue
 | |
|   // with this subscript.
 | |
|   if (E->getBase()->getType()->isVectorType()) {
 | |
|     // Emit the vector as an lvalue to get its address.
 | |
|     LValue LHS = EmitLValue(E->getBase());
 | |
|     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
 | |
|     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
 | |
|                                  E->getBase()->getType(), LHS.getAlignment());
 | |
|   }
 | |
| 
 | |
|   // Extend or truncate the index type to 32 or 64-bits.
 | |
|   if (Idx->getType() != IntPtrTy)
 | |
|     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
 | |
| 
 | |
|   // We know that the pointer points to a type of the correct size, unless the
 | |
|   // size is a VLA or Objective-C interface.
 | |
|   llvm::Value *Address = nullptr;
 | |
|   CharUnits ArrayAlignment;
 | |
|   if (const VariableArrayType *vla =
 | |
|         getContext().getAsVariableArrayType(E->getType())) {
 | |
|     // The base must be a pointer, which is not an aggregate.  Emit
 | |
|     // it.  It needs to be emitted first in case it's what captures
 | |
|     // the VLA bounds.
 | |
|     Address = EmitScalarExpr(E->getBase());
 | |
| 
 | |
|     // The element count here is the total number of non-VLA elements.
 | |
|     llvm::Value *numElements = getVLASize(vla).first;
 | |
| 
 | |
|     // Effectively, the multiply by the VLA size is part of the GEP.
 | |
|     // GEP indexes are signed, and scaling an index isn't permitted to
 | |
|     // signed-overflow, so we use the same semantics for our explicit
 | |
|     // multiply.  We suppress this if overflow is not undefined behavior.
 | |
|     if (getLangOpts().isSignedOverflowDefined()) {
 | |
|       Idx = Builder.CreateMul(Idx, numElements);
 | |
|       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
 | |
|     } else {
 | |
|       Idx = Builder.CreateNSWMul(Idx, numElements);
 | |
|       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
 | |
|     }
 | |
|   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
 | |
|     // Indexing over an interface, as in "NSString *P; P[4];"
 | |
|     llvm::Value *InterfaceSize =
 | |
|       llvm::ConstantInt::get(Idx->getType(),
 | |
|           getContext().getTypeSizeInChars(OIT).getQuantity());
 | |
| 
 | |
|     Idx = Builder.CreateMul(Idx, InterfaceSize);
 | |
| 
 | |
|     // The base must be a pointer, which is not an aggregate.  Emit it.
 | |
|     llvm::Value *Base = EmitScalarExpr(E->getBase());
 | |
|     Address = EmitCastToVoidPtr(Base);
 | |
|     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
 | |
|     Address = Builder.CreateBitCast(Address, Base->getType());
 | |
|   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
 | |
|     // If this is A[i] where A is an array, the frontend will have decayed the
 | |
|     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
 | |
|     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
 | |
|     // "gep x, i" here.  Emit one "gep A, 0, i".
 | |
|     assert(Array->getType()->isArrayType() &&
 | |
|            "Array to pointer decay must have array source type!");
 | |
|     LValue ArrayLV;
 | |
|     // For simple multidimensional array indexing, set the 'accessed' flag for
 | |
|     // better bounds-checking of the base expression.
 | |
|     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
 | |
|       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
 | |
|     else
 | |
|       ArrayLV = EmitLValue(Array);
 | |
|     llvm::Value *ArrayPtr = ArrayLV.getAddress();
 | |
|     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
 | |
|     llvm::Value *Args[] = { Zero, Idx };
 | |
| 
 | |
|     // Propagate the alignment from the array itself to the result.
 | |
|     ArrayAlignment = ArrayLV.getAlignment();
 | |
| 
 | |
|     if (getLangOpts().isSignedOverflowDefined())
 | |
|       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
 | |
|     else
 | |
|       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
 | |
|   } else {
 | |
|     // The base must be a pointer, which is not an aggregate.  Emit it.
 | |
|     llvm::Value *Base = EmitScalarExpr(E->getBase());
 | |
|     if (getLangOpts().isSignedOverflowDefined())
 | |
|       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
 | |
|     else
 | |
|       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
 | |
|   }
 | |
| 
 | |
|   QualType T = E->getBase()->getType()->getPointeeType();
 | |
|   assert(!T.isNull() &&
 | |
|          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
 | |
| 
 | |
| 
 | |
|   // Limit the alignment to that of the result type.
 | |
|   LValue LV;
 | |
|   if (!ArrayAlignment.isZero()) {
 | |
|     CharUnits Align = getContext().getTypeAlignInChars(T);
 | |
|     ArrayAlignment = std::min(Align, ArrayAlignment);
 | |
|     LV = MakeAddrLValue(Address, T, ArrayAlignment);
 | |
|   } else {
 | |
|     LV = MakeNaturalAlignAddrLValue(Address, T);
 | |
|   }
 | |
| 
 | |
|   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
 | |
| 
 | |
|   if (getLangOpts().ObjC1 &&
 | |
|       getLangOpts().getGC() != LangOptions::NonGC) {
 | |
|     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
 | |
|     setObjCGCLValueClass(getContext(), E, LV);
 | |
|   }
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| static
 | |
| llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
 | |
|                                        SmallVectorImpl<unsigned> &Elts) {
 | |
|   SmallVector<llvm::Constant*, 4> CElts;
 | |
|   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
 | |
|     CElts.push_back(Builder.getInt32(Elts[i]));
 | |
| 
 | |
|   return llvm::ConstantVector::get(CElts);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
 | |
|   // Emit the base vector as an l-value.
 | |
|   LValue Base;
 | |
| 
 | |
|   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
 | |
|   if (E->isArrow()) {
 | |
|     // If it is a pointer to a vector, emit the address and form an lvalue with
 | |
|     // it.
 | |
|     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
 | |
|     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
 | |
|     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
 | |
|     Base.getQuals().removeObjCGCAttr();
 | |
|   } else if (E->getBase()->isGLValue()) {
 | |
|     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
 | |
|     // emit the base as an lvalue.
 | |
|     assert(E->getBase()->getType()->isVectorType());
 | |
|     Base = EmitLValue(E->getBase());
 | |
|   } else {
 | |
|     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
 | |
|     assert(E->getBase()->getType()->isVectorType() &&
 | |
|            "Result must be a vector");
 | |
|     llvm::Value *Vec = EmitScalarExpr(E->getBase());
 | |
| 
 | |
|     // Store the vector to memory (because LValue wants an address).
 | |
|     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
 | |
|     Builder.CreateStore(Vec, VecMem);
 | |
|     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
 | |
|   }
 | |
| 
 | |
|   QualType type =
 | |
|     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
 | |
| 
 | |
|   // Encode the element access list into a vector of unsigned indices.
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   E->getEncodedElementAccess(Indices);
 | |
| 
 | |
|   if (Base.isSimple()) {
 | |
|     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
 | |
|     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
 | |
|                                     Base.getAlignment());
 | |
|   }
 | |
|   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
 | |
| 
 | |
|   llvm::Constant *BaseElts = Base.getExtVectorElts();
 | |
|   SmallVector<llvm::Constant *, 4> CElts;
 | |
| 
 | |
|   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | |
|     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
 | |
|   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
 | |
|   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
 | |
|                                   Base.getAlignment());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
 | |
|   Expr *BaseExpr = E->getBase();
 | |
| 
 | |
|   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
 | |
|   LValue BaseLV;
 | |
|   if (E->isArrow()) {
 | |
|     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
 | |
|     QualType PtrTy = BaseExpr->getType()->getPointeeType();
 | |
|     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
 | |
|     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
 | |
|   } else
 | |
|     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
 | |
| 
 | |
|   NamedDecl *ND = E->getMemberDecl();
 | |
|   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
 | |
|     LValue LV = EmitLValueForField(BaseLV, Field);
 | |
|     setObjCGCLValueClass(getContext(), E, LV);
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   if (auto *VD = dyn_cast<VarDecl>(ND))
 | |
|     return EmitGlobalVarDeclLValue(*this, E, VD);
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|     return EmitFunctionDeclLValue(*this, E, FD);
 | |
| 
 | |
|   llvm_unreachable("Unhandled member declaration!");
 | |
| }
 | |
| 
 | |
| /// Given that we are currently emitting a lambda, emit an l-value for
 | |
| /// one of its members.
 | |
| LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
 | |
|   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
 | |
|   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
 | |
|   QualType LambdaTagType =
 | |
|     getContext().getTagDeclType(Field->getParent());
 | |
|   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
 | |
|   return EmitLValueForField(LambdaLV, Field);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitLValueForField(LValue base,
 | |
|                                            const FieldDecl *field) {
 | |
|   if (field->isBitField()) {
 | |
|     const CGRecordLayout &RL =
 | |
|       CGM.getTypes().getCGRecordLayout(field->getParent());
 | |
|     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
 | |
|     llvm::Value *Addr = base.getAddress();
 | |
|     unsigned Idx = RL.getLLVMFieldNo(field);
 | |
|     if (Idx != 0)
 | |
|       // For structs, we GEP to the field that the record layout suggests.
 | |
|       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
 | |
|     // Get the access type.
 | |
|     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
 | |
|       getLLVMContext(), Info.StorageSize,
 | |
|       CGM.getContext().getTargetAddressSpace(base.getType()));
 | |
|     if (Addr->getType() != PtrTy)
 | |
|       Addr = Builder.CreateBitCast(Addr, PtrTy);
 | |
| 
 | |
|     QualType fieldType =
 | |
|       field->getType().withCVRQualifiers(base.getVRQualifiers());
 | |
|     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
 | |
|   }
 | |
| 
 | |
|   const RecordDecl *rec = field->getParent();
 | |
|   QualType type = field->getType();
 | |
|   CharUnits alignment = getContext().getDeclAlign(field);
 | |
| 
 | |
|   // FIXME: It should be impossible to have an LValue without alignment for a
 | |
|   // complete type.
 | |
|   if (!base.getAlignment().isZero())
 | |
|     alignment = std::min(alignment, base.getAlignment());
 | |
| 
 | |
|   bool mayAlias = rec->hasAttr<MayAliasAttr>();
 | |
| 
 | |
|   llvm::Value *addr = base.getAddress();
 | |
|   unsigned cvr = base.getVRQualifiers();
 | |
|   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
 | |
|   if (rec->isUnion()) {
 | |
|     // For unions, there is no pointer adjustment.
 | |
|     assert(!type->isReferenceType() && "union has reference member");
 | |
|     // TODO: handle path-aware TBAA for union.
 | |
|     TBAAPath = false;
 | |
|   } else {
 | |
|     // For structs, we GEP to the field that the record layout suggests.
 | |
|     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
 | |
|     addr = Builder.CreateStructGEP(addr, idx, field->getName());
 | |
| 
 | |
|     // If this is a reference field, load the reference right now.
 | |
|     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
 | |
|       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
 | |
|       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
 | |
|       load->setAlignment(alignment.getQuantity());
 | |
| 
 | |
|       // Loading the reference will disable path-aware TBAA.
 | |
|       TBAAPath = false;
 | |
|       if (CGM.shouldUseTBAA()) {
 | |
|         llvm::MDNode *tbaa;
 | |
|         if (mayAlias)
 | |
|           tbaa = CGM.getTBAAInfo(getContext().CharTy);
 | |
|         else
 | |
|           tbaa = CGM.getTBAAInfo(type);
 | |
|         if (tbaa)
 | |
|           CGM.DecorateInstruction(load, tbaa);
 | |
|       }
 | |
| 
 | |
|       addr = load;
 | |
|       mayAlias = false;
 | |
|       type = refType->getPointeeType();
 | |
|       if (type->isIncompleteType())
 | |
|         alignment = CharUnits();
 | |
|       else
 | |
|         alignment = getContext().getTypeAlignInChars(type);
 | |
|       cvr = 0; // qualifiers don't recursively apply to referencee
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that the address is pointing to the right type.  This is critical
 | |
|   // for both unions and structs.  A union needs a bitcast, a struct element
 | |
|   // will need a bitcast if the LLVM type laid out doesn't match the desired
 | |
|   // type.
 | |
|   addr = EmitBitCastOfLValueToProperType(*this, addr,
 | |
|                                          CGM.getTypes().ConvertTypeForMem(type),
 | |
|                                          field->getName());
 | |
| 
 | |
|   if (field->hasAttr<AnnotateAttr>())
 | |
|     addr = EmitFieldAnnotations(field, addr);
 | |
| 
 | |
|   LValue LV = MakeAddrLValue(addr, type, alignment);
 | |
|   LV.getQuals().addCVRQualifiers(cvr);
 | |
|   if (TBAAPath) {
 | |
|     const ASTRecordLayout &Layout =
 | |
|         getContext().getASTRecordLayout(field->getParent());
 | |
|     // Set the base type to be the base type of the base LValue and
 | |
|     // update offset to be relative to the base type.
 | |
|     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
 | |
|     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
 | |
|                      Layout.getFieldOffset(field->getFieldIndex()) /
 | |
|                                            getContext().getCharWidth());
 | |
|   }
 | |
| 
 | |
|   // __weak attribute on a field is ignored.
 | |
|   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
 | |
|     LV.getQuals().removeObjCGCAttr();
 | |
| 
 | |
|   // Fields of may_alias structs act like 'char' for TBAA purposes.
 | |
|   // FIXME: this should get propagated down through anonymous structs
 | |
|   // and unions.
 | |
|   if (mayAlias && LV.getTBAAInfo())
 | |
|     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
 | |
| 
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
 | |
|                                                   const FieldDecl *Field) {
 | |
|   QualType FieldType = Field->getType();
 | |
| 
 | |
|   if (!FieldType->isReferenceType())
 | |
|     return EmitLValueForField(Base, Field);
 | |
| 
 | |
|   const CGRecordLayout &RL =
 | |
|     CGM.getTypes().getCGRecordLayout(Field->getParent());
 | |
|   unsigned idx = RL.getLLVMFieldNo(Field);
 | |
|   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
 | |
|   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
 | |
| 
 | |
|   // Make sure that the address is pointing to the right type.  This is critical
 | |
|   // for both unions and structs.  A union needs a bitcast, a struct element
 | |
|   // will need a bitcast if the LLVM type laid out doesn't match the desired
 | |
|   // type.
 | |
|   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
 | |
|   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
 | |
| 
 | |
|   CharUnits Alignment = getContext().getDeclAlign(Field);
 | |
| 
 | |
|   // FIXME: It should be impossible to have an LValue without alignment for a
 | |
|   // complete type.
 | |
|   if (!Base.getAlignment().isZero())
 | |
|     Alignment = std::min(Alignment, Base.getAlignment());
 | |
| 
 | |
|   return MakeAddrLValue(V, FieldType, Alignment);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
 | |
|   if (E->isFileScope()) {
 | |
|     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
 | |
|     return MakeAddrLValue(GlobalPtr, E->getType());
 | |
|   }
 | |
|   if (E->getType()->isVariablyModifiedType())
 | |
|     // make sure to emit the VLA size.
 | |
|     EmitVariablyModifiedType(E->getType());
 | |
| 
 | |
|   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
 | |
|   const Expr *InitExpr = E->getInitializer();
 | |
|   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
 | |
| 
 | |
|   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
 | |
|                    /*Init*/ true);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
 | |
|   if (!E->isGLValue())
 | |
|     // Initializing an aggregate temporary in C++11: T{...}.
 | |
|     return EmitAggExprToLValue(E);
 | |
| 
 | |
|   // An lvalue initializer list must be initializing a reference.
 | |
|   assert(E->getNumInits() == 1 && "reference init with multiple values");
 | |
|   return EmitLValue(E->getInit(0));
 | |
| }
 | |
| 
 | |
| /// Emit the operand of a glvalue conditional operator. This is either a glvalue
 | |
| /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
 | |
| /// LValue is returned and the current block has been terminated.
 | |
| static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
 | |
|                                                     const Expr *Operand) {
 | |
|   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
 | |
|     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return CGF.EmitLValue(Operand);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
 | |
|   if (!expr->isGLValue()) {
 | |
|     // ?: here should be an aggregate.
 | |
|     assert(hasAggregateEvaluationKind(expr->getType()) &&
 | |
|            "Unexpected conditional operator!");
 | |
|     return EmitAggExprToLValue(expr);
 | |
|   }
 | |
| 
 | |
|   OpaqueValueMapping binding(*this, expr);
 | |
|   RegionCounter Cnt = getPGORegionCounter(expr);
 | |
| 
 | |
|   const Expr *condExpr = expr->getCond();
 | |
|   bool CondExprBool;
 | |
|   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
 | |
|     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
 | |
|     if (!CondExprBool) std::swap(live, dead);
 | |
| 
 | |
|     if (!ContainsLabel(dead)) {
 | |
|       // If the true case is live, we need to track its region.
 | |
|       if (CondExprBool)
 | |
|         Cnt.beginRegion(Builder);
 | |
|       return EmitLValue(live);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
 | |
|   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
 | |
|   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
 | |
| 
 | |
|   ConditionalEvaluation eval(*this);
 | |
|   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
 | |
| 
 | |
|   // Any temporaries created here are conditional.
 | |
|   EmitBlock(lhsBlock);
 | |
|   Cnt.beginRegion(Builder);
 | |
|   eval.begin(*this);
 | |
|   Optional<LValue> lhs =
 | |
|       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
 | |
|   eval.end(*this);
 | |
| 
 | |
|   if (lhs && !lhs->isSimple())
 | |
|     return EmitUnsupportedLValue(expr, "conditional operator");
 | |
| 
 | |
|   lhsBlock = Builder.GetInsertBlock();
 | |
|   if (lhs)
 | |
|     Builder.CreateBr(contBlock);
 | |
| 
 | |
|   // Any temporaries created here are conditional.
 | |
|   EmitBlock(rhsBlock);
 | |
|   eval.begin(*this);
 | |
|   Optional<LValue> rhs =
 | |
|       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
 | |
|   eval.end(*this);
 | |
|   if (rhs && !rhs->isSimple())
 | |
|     return EmitUnsupportedLValue(expr, "conditional operator");
 | |
|   rhsBlock = Builder.GetInsertBlock();
 | |
| 
 | |
|   EmitBlock(contBlock);
 | |
| 
 | |
|   if (lhs && rhs) {
 | |
|     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
 | |
|                                            2, "cond-lvalue");
 | |
|     phi->addIncoming(lhs->getAddress(), lhsBlock);
 | |
|     phi->addIncoming(rhs->getAddress(), rhsBlock);
 | |
|     return MakeAddrLValue(phi, expr->getType());
 | |
|   } else {
 | |
|     assert((lhs || rhs) &&
 | |
|            "both operands of glvalue conditional are throw-expressions?");
 | |
|     return lhs ? *lhs : *rhs;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
 | |
| /// type. If the cast is to a reference, we can have the usual lvalue result,
 | |
| /// otherwise if a cast is needed by the code generator in an lvalue context,
 | |
| /// then it must mean that we need the address of an aggregate in order to
 | |
| /// access one of its members.  This can happen for all the reasons that casts
 | |
| /// are permitted with aggregate result, including noop aggregate casts, and
 | |
| /// cast from scalar to union.
 | |
| LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_ToVoid:
 | |
|   case CK_BitCast:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_PointerToIntegral:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralCast:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexToReal:
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_ARCProduceObject:
 | |
|   case CK_ARCConsumeObject:
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|   case CK_ARCExtendBlockObject:
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|   case CK_AddressSpaceConversion:
 | |
|     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
 | |
| 
 | |
|   case CK_Dependent:
 | |
|     llvm_unreachable("dependent cast kind in IR gen!");
 | |
| 
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|     llvm_unreachable("builtin functions are handled elsewhere");
 | |
| 
 | |
|   // These are never l-values; just use the aggregate emission code.
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_AtomicToNonAtomic:
 | |
|     return EmitAggExprToLValue(E);
 | |
| 
 | |
|   case CK_Dynamic: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     llvm::Value *V = LV.getAddress();
 | |
|     const auto *DCE = cast<CXXDynamicCastExpr>(E);
 | |
|     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
 | |
|   }
 | |
| 
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_UserDefinedConversion:
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_NoOp:
 | |
|   case CK_LValueToRValue:
 | |
|     return EmitLValue(E->getSubExpr());
 | |
| 
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_DerivedToBase: {
 | |
|     const RecordType *DerivedClassTy =
 | |
|       E->getSubExpr()->getType()->getAs<RecordType>();
 | |
|     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | |
| 
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     llvm::Value *This = LV.getAddress();
 | |
| 
 | |
|     // Perform the derived-to-base conversion
 | |
|     llvm::Value *Base =
 | |
|       GetAddressOfBaseClass(This, DerivedClassDecl,
 | |
|                             E->path_begin(), E->path_end(),
 | |
|                             /*NullCheckValue=*/false);
 | |
| 
 | |
|     return MakeAddrLValue(Base, E->getType());
 | |
|   }
 | |
|   case CK_ToUnion:
 | |
|     return EmitAggExprToLValue(E);
 | |
|   case CK_BaseToDerived: {
 | |
|     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
 | |
|     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | |
| 
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
| 
 | |
|     // Perform the base-to-derived conversion
 | |
|     llvm::Value *Derived =
 | |
|       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
 | |
|                                E->path_begin(), E->path_end(),
 | |
|                                /*NullCheckValue=*/false);
 | |
| 
 | |
|     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
 | |
|     // performed and the object is not of the derived type.
 | |
|     if (SanitizePerformTypeCheck)
 | |
|       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
 | |
|                     Derived, E->getType());
 | |
| 
 | |
|     return MakeAddrLValue(Derived, E->getType());
 | |
|   }
 | |
|   case CK_LValueBitCast: {
 | |
|     // This must be a reinterpret_cast (or c-style equivalent).
 | |
|     const auto *CE = cast<ExplicitCastExpr>(E);
 | |
| 
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
 | |
|                                            ConvertType(CE->getTypeAsWritten()));
 | |
|     return MakeAddrLValue(V, E->getType());
 | |
|   }
 | |
|   case CK_ObjCObjectLValueCast: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     QualType ToType = getContext().getLValueReferenceType(E->getType());
 | |
|     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
 | |
|                                            ConvertType(ToType));
 | |
|     return MakeAddrLValue(V, E->getType());
 | |
|   }
 | |
|   case CK_ZeroToOCLEvent:
 | |
|     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled lvalue cast kind?");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
 | |
|   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
 | |
|   return getOpaqueLValueMapping(e);
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitRValueForField(LValue LV,
 | |
|                                            const FieldDecl *FD,
 | |
|                                            SourceLocation Loc) {
 | |
|   QualType FT = FD->getType();
 | |
|   LValue FieldLV = EmitLValueForField(LV, FD);
 | |
|   switch (getEvaluationKind(FT)) {
 | |
|   case TEK_Complex:
 | |
|     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
 | |
|   case TEK_Aggregate:
 | |
|     return FieldLV.asAggregateRValue();
 | |
|   case TEK_Scalar:
 | |
|     return EmitLoadOfLValue(FieldLV, Loc);
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| //                             Expression Emission
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
 | |
|                                      ReturnValueSlot ReturnValue) {
 | |
|   if (CGDebugInfo *DI = getDebugInfo()) {
 | |
|     SourceLocation Loc = E->getLocStart();
 | |
|     // Force column info to be generated so we can differentiate
 | |
|     // multiple call sites on the same line in the debug info.
 | |
|     // FIXME: This is insufficient. Two calls coming from the same macro
 | |
|     // expansion will still get the same line/column and break debug info. It's
 | |
|     // possible that LLVM can be fixed to not rely on this uniqueness, at which
 | |
|     // point this workaround can be removed.
 | |
|     const FunctionDecl* Callee = E->getDirectCallee();
 | |
|     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
 | |
|     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
 | |
|   }
 | |
| 
 | |
|   // Builtins never have block type.
 | |
|   if (E->getCallee()->getType()->isBlockPointerType())
 | |
|     return EmitBlockCallExpr(E, ReturnValue);
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
 | |
|     return EmitCXXMemberCallExpr(CE, ReturnValue);
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
 | |
|     return EmitCUDAKernelCallExpr(CE, ReturnValue);
 | |
| 
 | |
|   const Decl *TargetDecl = E->getCalleeDecl();
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
 | |
|     if (unsigned builtinID = FD->getBuiltinID())
 | |
|       return EmitBuiltinExpr(FD, builtinID, E);
 | |
|   }
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
 | |
|     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
 | |
|       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
 | |
| 
 | |
|   if (const auto *PseudoDtor =
 | |
|           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
 | |
|     QualType DestroyedType = PseudoDtor->getDestroyedType();
 | |
|     if (getLangOpts().ObjCAutoRefCount &&
 | |
|         DestroyedType->isObjCLifetimeType() &&
 | |
|         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
 | |
|          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
 | |
|       // Automatic Reference Counting:
 | |
|       //   If the pseudo-expression names a retainable object with weak or
 | |
|       //   strong lifetime, the object shall be released.
 | |
|       Expr *BaseExpr = PseudoDtor->getBase();
 | |
|       llvm::Value *BaseValue = nullptr;
 | |
|       Qualifiers BaseQuals;
 | |
| 
 | |
|       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
 | |
|       if (PseudoDtor->isArrow()) {
 | |
|         BaseValue = EmitScalarExpr(BaseExpr);
 | |
|         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
 | |
|         BaseQuals = PTy->getPointeeType().getQualifiers();
 | |
|       } else {
 | |
|         LValue BaseLV = EmitLValue(BaseExpr);
 | |
|         BaseValue = BaseLV.getAddress();
 | |
|         QualType BaseTy = BaseExpr->getType();
 | |
|         BaseQuals = BaseTy.getQualifiers();
 | |
|       }
 | |
| 
 | |
|       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
 | |
|       case Qualifiers::OCL_None:
 | |
|       case Qualifiers::OCL_ExplicitNone:
 | |
|       case Qualifiers::OCL_Autoreleasing:
 | |
|         break;
 | |
| 
 | |
|       case Qualifiers::OCL_Strong:
 | |
|         EmitARCRelease(Builder.CreateLoad(BaseValue,
 | |
|                           PseudoDtor->getDestroyedType().isVolatileQualified()),
 | |
|                        ARCPreciseLifetime);
 | |
|         break;
 | |
| 
 | |
|       case Qualifiers::OCL_Weak:
 | |
|         EmitARCDestroyWeak(BaseValue);
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       // C++ [expr.pseudo]p1:
 | |
|       //   The result shall only be used as the operand for the function call
 | |
|       //   operator (), and the result of such a call has type void. The only
 | |
|       //   effect is the evaluation of the postfix-expression before the dot or
 | |
|       //   arrow.
 | |
|       EmitScalarExpr(E->getCallee());
 | |
|     }
 | |
| 
 | |
|     return RValue::get(nullptr);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
 | |
|   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
 | |
|                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
 | |
|   // Comma expressions just emit their LHS then their RHS as an l-value.
 | |
|   if (E->getOpcode() == BO_Comma) {
 | |
|     EmitIgnoredExpr(E->getLHS());
 | |
|     EnsureInsertPoint();
 | |
|     return EmitLValue(E->getRHS());
 | |
|   }
 | |
| 
 | |
|   if (E->getOpcode() == BO_PtrMemD ||
 | |
|       E->getOpcode() == BO_PtrMemI)
 | |
|     return EmitPointerToDataMemberBinaryExpr(E);
 | |
| 
 | |
|   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
 | |
| 
 | |
|   // Note that in all of these cases, __block variables need the RHS
 | |
|   // evaluated first just in case the variable gets moved by the RHS.
 | |
| 
 | |
|   switch (getEvaluationKind(E->getType())) {
 | |
|   case TEK_Scalar: {
 | |
|     switch (E->getLHS()->getType().getObjCLifetime()) {
 | |
|     case Qualifiers::OCL_Strong:
 | |
|       return EmitARCStoreStrong(E, /*ignored*/ false).first;
 | |
| 
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       return EmitARCStoreAutoreleasing(E).first;
 | |
| 
 | |
|     // No reason to do any of these differently.
 | |
|     case Qualifiers::OCL_None:
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     RValue RV = EmitAnyExpr(E->getRHS());
 | |
|     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
 | |
|     EmitStoreThroughLValue(RV, LV);
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   case TEK_Complex:
 | |
|     return EmitComplexAssignmentLValue(E);
 | |
| 
 | |
|   case TEK_Aggregate:
 | |
|     return EmitAggExprToLValue(E);
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
 | |
|   RValue RV = EmitCallExpr(E);
 | |
| 
 | |
|   if (!RV.isScalar())
 | |
|     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
 | |
| 
 | |
|   assert(E->getCallReturnType()->isReferenceType() &&
 | |
|          "Can't have a scalar return unless the return type is a "
 | |
|          "reference type!");
 | |
| 
 | |
|   return MakeAddrLValue(RV.getScalarVal(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
 | |
|   // FIXME: This shouldn't require another copy.
 | |
|   return EmitAggExprToLValue(E);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
 | |
|   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
 | |
|          && "binding l-value to type which needs a temporary");
 | |
|   AggValueSlot Slot = CreateAggTemp(E->getType());
 | |
|   EmitCXXConstructExpr(E, Slot);
 | |
|   return MakeAddrLValue(Slot.getAddr(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
 | |
|   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | |
|   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
 | |
|                                ConvertType(E->getType())->getPointerTo());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
 | |
|   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
 | |
|   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
 | |
|   Slot.setExternallyDestructed();
 | |
|   EmitAggExpr(E->getSubExpr(), Slot);
 | |
|   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
 | |
|   return MakeAddrLValue(Slot.getAddr(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
 | |
|   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
 | |
|   EmitLambdaExpr(E, Slot);
 | |
|   return MakeAddrLValue(Slot.getAddr(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
 | |
|   RValue RV = EmitObjCMessageExpr(E);
 | |
| 
 | |
|   if (!RV.isScalar())
 | |
|     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
 | |
| 
 | |
|   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
 | |
|          "Can't have a scalar return unless the return type is a "
 | |
|          "reference type!");
 | |
| 
 | |
|   return MakeAddrLValue(RV.getScalarVal(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
 | |
|   llvm::Value *V =
 | |
|     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
 | |
|   return MakeAddrLValue(V, E->getType());
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
 | |
|                                              const ObjCIvarDecl *Ivar) {
 | |
|   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
 | |
|                                           llvm::Value *BaseValue,
 | |
|                                           const ObjCIvarDecl *Ivar,
 | |
|                                           unsigned CVRQualifiers) {
 | |
|   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
 | |
|                                                    Ivar, CVRQualifiers);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
 | |
|   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
 | |
|   llvm::Value *BaseValue = nullptr;
 | |
|   const Expr *BaseExpr = E->getBase();
 | |
|   Qualifiers BaseQuals;
 | |
|   QualType ObjectTy;
 | |
|   if (E->isArrow()) {
 | |
|     BaseValue = EmitScalarExpr(BaseExpr);
 | |
|     ObjectTy = BaseExpr->getType()->getPointeeType();
 | |
|     BaseQuals = ObjectTy.getQualifiers();
 | |
|   } else {
 | |
|     LValue BaseLV = EmitLValue(BaseExpr);
 | |
|     // FIXME: this isn't right for bitfields.
 | |
|     BaseValue = BaseLV.getAddress();
 | |
|     ObjectTy = BaseExpr->getType();
 | |
|     BaseQuals = ObjectTy.getQualifiers();
 | |
|   }
 | |
| 
 | |
|   LValue LV =
 | |
|     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
 | |
|                       BaseQuals.getCVRQualifiers());
 | |
|   setObjCGCLValueClass(getContext(), E, LV);
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
 | |
|   // Can only get l-value for message expression returning aggregate type
 | |
|   RValue RV = EmitAnyExprToTemp(E);
 | |
|   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
 | |
|                                  SourceLocation CallLoc,
 | |
|                                  ReturnValueSlot ReturnValue,
 | |
|                                  CallExpr::const_arg_iterator ArgBeg,
 | |
|                                  CallExpr::const_arg_iterator ArgEnd,
 | |
|                                  const Decl *TargetDecl) {
 | |
|   // Get the actual function type. The callee type will always be a pointer to
 | |
|   // function type or a block pointer type.
 | |
|   assert(CalleeType->isFunctionPointerType() &&
 | |
|          "Call must have function pointer type!");
 | |
| 
 | |
|   CalleeType = getContext().getCanonicalType(CalleeType);
 | |
| 
 | |
|   const auto *FnType =
 | |
|       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
 | |
| 
 | |
|   // Force column info to differentiate multiple inlined call sites on
 | |
|   // the same line, analoguous to EmitCallExpr.
 | |
|   // FIXME: This is insufficient. Two calls coming from the same macro expansion
 | |
|   // will still get the same line/column and break debug info. It's possible
 | |
|   // that LLVM can be fixed to not rely on this uniqueness, at which point this
 | |
|   // workaround can be removed.
 | |
|   bool ForceColumnInfo = false;
 | |
|   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
 | |
|     ForceColumnInfo = FD->isInlineSpecified();
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus && SanOpts->Function &&
 | |
|       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
 | |
|     if (llvm::Constant *PrefixSig =
 | |
|             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
 | |
|       llvm::Constant *FTRTTIConst =
 | |
|           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
 | |
|       llvm::Type *PrefixStructTyElems[] = {
 | |
|         PrefixSig->getType(),
 | |
|         FTRTTIConst->getType()
 | |
|       };
 | |
|       llvm::StructType *PrefixStructTy = llvm::StructType::get(
 | |
|           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
 | |
| 
 | |
|       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
 | |
|           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
 | |
|       llvm::Value *CalleeSigPtr =
 | |
|           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
 | |
|       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
 | |
|       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
 | |
| 
 | |
|       llvm::BasicBlock *Cont = createBasicBlock("cont");
 | |
|       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
 | |
|       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
 | |
| 
 | |
|       EmitBlock(TypeCheck);
 | |
|       llvm::Value *CalleeRTTIPtr =
 | |
|           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
 | |
|       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
 | |
|       llvm::Value *CalleeRTTIMatch =
 | |
|           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
 | |
|       llvm::Constant *StaticData[] = {
 | |
|         EmitCheckSourceLocation(CallLoc),
 | |
|         EmitCheckTypeDescriptor(CalleeType)
 | |
|       };
 | |
|       EmitCheck(CalleeRTTIMatch,
 | |
|                 "function_type_mismatch",
 | |
|                 StaticData,
 | |
|                 Callee,
 | |
|                 CRK_Recoverable);
 | |
| 
 | |
|       Builder.CreateBr(Cont);
 | |
|       EmitBlock(Cont);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CallArgList Args;
 | |
|   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
 | |
|                ForceColumnInfo);
 | |
| 
 | |
|   const CGFunctionInfo &FnInfo =
 | |
|     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
 | |
| 
 | |
|   // C99 6.5.2.2p6:
 | |
|   //   If the expression that denotes the called function has a type
 | |
|   //   that does not include a prototype, [the default argument
 | |
|   //   promotions are performed]. If the number of arguments does not
 | |
|   //   equal the number of parameters, the behavior is undefined. If
 | |
|   //   the function is defined with a type that includes a prototype,
 | |
|   //   and either the prototype ends with an ellipsis (, ...) or the
 | |
|   //   types of the arguments after promotion are not compatible with
 | |
|   //   the types of the parameters, the behavior is undefined. If the
 | |
|   //   function is defined with a type that does not include a
 | |
|   //   prototype, and the types of the arguments after promotion are
 | |
|   //   not compatible with those of the parameters after promotion,
 | |
|   //   the behavior is undefined [except in some trivial cases].
 | |
|   // That is, in the general case, we should assume that a call
 | |
|   // through an unprototyped function type works like a *non-variadic*
 | |
|   // call.  The way we make this work is to cast to the exact type
 | |
|   // of the promoted arguments.
 | |
|   if (isa<FunctionNoProtoType>(FnType)) {
 | |
|     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
 | |
|     CalleeTy = CalleeTy->getPointerTo();
 | |
|     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
 | |
|   }
 | |
| 
 | |
|   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
 | |
|   llvm::Value *BaseV;
 | |
|   if (E->getOpcode() == BO_PtrMemI)
 | |
|     BaseV = EmitScalarExpr(E->getLHS());
 | |
|   else
 | |
|     BaseV = EmitLValue(E->getLHS()).getAddress();
 | |
| 
 | |
|   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
 | |
| 
 | |
|   const MemberPointerType *MPT
 | |
|     = E->getRHS()->getType()->getAs<MemberPointerType>();
 | |
| 
 | |
|   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
 | |
|       *this, E, BaseV, OffsetV, MPT);
 | |
| 
 | |
|   return MakeAddrLValue(AddV, MPT->getPointeeType());
 | |
| }
 | |
| 
 | |
| /// Given the address of a temporary variable, produce an r-value of
 | |
| /// its type.
 | |
| RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
 | |
|                                             QualType type,
 | |
|                                             SourceLocation loc) {
 | |
|   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
 | |
|   switch (getEvaluationKind(type)) {
 | |
|   case TEK_Complex:
 | |
|     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
 | |
|   case TEK_Aggregate:
 | |
|     return lvalue.asAggregateRValue();
 | |
|   case TEK_Scalar:
 | |
|     return RValue::get(EmitLoadOfScalar(lvalue, loc));
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
 | |
|   assert(Val->getType()->isFPOrFPVectorTy());
 | |
|   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
 | |
|     return;
 | |
| 
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
 | |
| 
 | |
|   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct LValueOrRValue {
 | |
|     LValue LV;
 | |
|     RValue RV;
 | |
|   };
 | |
| }
 | |
| 
 | |
| static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
 | |
|                                            const PseudoObjectExpr *E,
 | |
|                                            bool forLValue,
 | |
|                                            AggValueSlot slot) {
 | |
|   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
 | |
| 
 | |
|   // Find the result expression, if any.
 | |
|   const Expr *resultExpr = E->getResultExpr();
 | |
|   LValueOrRValue result;
 | |
| 
 | |
|   for (PseudoObjectExpr::const_semantics_iterator
 | |
|          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
 | |
|     const Expr *semantic = *i;
 | |
| 
 | |
|     // If this semantic expression is an opaque value, bind it
 | |
|     // to the result of its source expression.
 | |
|     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
 | |
| 
 | |
|       // If this is the result expression, we may need to evaluate
 | |
|       // directly into the slot.
 | |
|       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
 | |
|       OVMA opaqueData;
 | |
|       if (ov == resultExpr && ov->isRValue() && !forLValue &&
 | |
|           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
 | |
|         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
 | |
| 
 | |
|         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
 | |
|         opaqueData = OVMA::bind(CGF, ov, LV);
 | |
|         result.RV = slot.asRValue();
 | |
| 
 | |
|       // Otherwise, emit as normal.
 | |
|       } else {
 | |
|         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
 | |
| 
 | |
|         // If this is the result, also evaluate the result now.
 | |
|         if (ov == resultExpr) {
 | |
|           if (forLValue)
 | |
|             result.LV = CGF.EmitLValue(ov);
 | |
|           else
 | |
|             result.RV = CGF.EmitAnyExpr(ov, slot);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       opaques.push_back(opaqueData);
 | |
| 
 | |
|     // Otherwise, if the expression is the result, evaluate it
 | |
|     // and remember the result.
 | |
|     } else if (semantic == resultExpr) {
 | |
|       if (forLValue)
 | |
|         result.LV = CGF.EmitLValue(semantic);
 | |
|       else
 | |
|         result.RV = CGF.EmitAnyExpr(semantic, slot);
 | |
| 
 | |
|     // Otherwise, evaluate the expression in an ignored context.
 | |
|     } else {
 | |
|       CGF.EmitIgnoredExpr(semantic);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unbind all the opaques now.
 | |
|   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
 | |
|     opaques[i].unbind(CGF);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
 | |
|                                                AggValueSlot slot) {
 | |
|   return emitPseudoObjectExpr(*this, E, false, slot).RV;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
 | |
|   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
 | |
| }
 |