1787 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1787 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code dealing with code generation of C++ expressions
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGCUDARuntime.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "clang/CodeGen/CGFunctionInfo.h"
 | |
| #include "clang/Frontend/CodeGenOptions.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
 | |
|                                           SourceLocation CallLoc,
 | |
|                                           llvm::Value *Callee,
 | |
|                                           ReturnValueSlot ReturnValue,
 | |
|                                           llvm::Value *This,
 | |
|                                           llvm::Value *ImplicitParam,
 | |
|                                           QualType ImplicitParamTy,
 | |
|                                           CallExpr::const_arg_iterator ArgBeg,
 | |
|                                           CallExpr::const_arg_iterator ArgEnd) {
 | |
|   assert(MD->isInstance() &&
 | |
|          "Trying to emit a member call expr on a static method!");
 | |
| 
 | |
|   // C++11 [class.mfct.non-static]p2:
 | |
|   //   If a non-static member function of a class X is called for an object that
 | |
|   //   is not of type X, or of a type derived from X, the behavior is undefined.
 | |
|   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
 | |
|                                             : TCK_MemberCall,
 | |
|                 CallLoc, This, getContext().getRecordType(MD->getParent()));
 | |
| 
 | |
|   CallArgList Args;
 | |
| 
 | |
|   // Push the this ptr.
 | |
|   Args.add(RValue::get(This), MD->getThisType(getContext()));
 | |
| 
 | |
|   // If there is an implicit parameter (e.g. VTT), emit it.
 | |
|   if (ImplicitParam) {
 | |
|     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | |
|   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
 | |
|   
 | |
|   // And the rest of the call args.
 | |
|   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
 | |
| 
 | |
|   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
 | |
|                   Callee, ReturnValue, Args, MD);
 | |
| }
 | |
| 
 | |
| static CXXRecordDecl *getCXXRecord(const Expr *E) {
 | |
|   QualType T = E->getType();
 | |
|   if (const PointerType *PTy = T->getAs<PointerType>())
 | |
|     T = PTy->getPointeeType();
 | |
|   const RecordType *Ty = T->castAs<RecordType>();
 | |
|   return cast<CXXRecordDecl>(Ty->getDecl());
 | |
| }
 | |
| 
 | |
| // Note: This function also emit constructor calls to support a MSVC
 | |
| // extensions allowing explicit constructor function call.
 | |
| RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
 | |
|                                               ReturnValueSlot ReturnValue) {
 | |
|   const Expr *callee = CE->getCallee()->IgnoreParens();
 | |
| 
 | |
|   if (isa<BinaryOperator>(callee))
 | |
|     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
 | |
| 
 | |
|   const MemberExpr *ME = cast<MemberExpr>(callee);
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
 | |
| 
 | |
|   if (MD->isStatic()) {
 | |
|     // The method is static, emit it as we would a regular call.
 | |
|     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
 | |
|     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
 | |
|                     CE->getLocStart(), ReturnValue, CE->arg_begin(),
 | |
|                     CE->arg_end());
 | |
|   }
 | |
| 
 | |
|   // Compute the object pointer.
 | |
|   const Expr *Base = ME->getBase();
 | |
|   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
 | |
| 
 | |
|   const CXXMethodDecl *DevirtualizedMethod = nullptr;
 | |
|   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
 | |
|     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
 | |
|     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
 | |
|     assert(DevirtualizedMethod);
 | |
|     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
 | |
|     const Expr *Inner = Base->ignoreParenBaseCasts();
 | |
|     if (getCXXRecord(Inner) == DevirtualizedClass)
 | |
|       // If the class of the Inner expression is where the dynamic method
 | |
|       // is defined, build the this pointer from it.
 | |
|       Base = Inner;
 | |
|     else if (getCXXRecord(Base) != DevirtualizedClass) {
 | |
|       // If the method is defined in a class that is not the best dynamic
 | |
|       // one or the one of the full expression, we would have to build
 | |
|       // a derived-to-base cast to compute the correct this pointer, but
 | |
|       // we don't have support for that yet, so do a virtual call.
 | |
|       DevirtualizedMethod = nullptr;
 | |
|     }
 | |
|     // If the return types are not the same, this might be a case where more
 | |
|     // code needs to run to compensate for it. For example, the derived
 | |
|     // method might return a type that inherits form from the return
 | |
|     // type of MD and has a prefix.
 | |
|     // For now we just avoid devirtualizing these covariant cases.
 | |
|     if (DevirtualizedMethod &&
 | |
|         DevirtualizedMethod->getReturnType().getCanonicalType() !=
 | |
|             MD->getReturnType().getCanonicalType())
 | |
|       DevirtualizedMethod = nullptr;
 | |
|   }
 | |
| 
 | |
|   llvm::Value *This;
 | |
|   if (ME->isArrow())
 | |
|     This = EmitScalarExpr(Base);
 | |
|   else
 | |
|     This = EmitLValue(Base).getAddress();
 | |
| 
 | |
| 
 | |
|   if (MD->isTrivial()) {
 | |
|     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
 | |
|     if (isa<CXXConstructorDecl>(MD) && 
 | |
|         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
 | |
|       return RValue::get(nullptr);
 | |
| 
 | |
|     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
 | |
|       // We don't like to generate the trivial copy/move assignment operator
 | |
|       // when it isn't necessary; just produce the proper effect here.
 | |
|       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
 | |
|       EmitAggregateAssign(This, RHS, CE->getType());
 | |
|       return RValue::get(This);
 | |
|     }
 | |
|     
 | |
|     if (isa<CXXConstructorDecl>(MD) && 
 | |
|         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
 | |
|       // Trivial move and copy ctor are the same.
 | |
|       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
 | |
|       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
 | |
|                                      CE->arg_begin(), CE->arg_end());
 | |
|       return RValue::get(This);
 | |
|     }
 | |
|     llvm_unreachable("unknown trivial member function");
 | |
|   }
 | |
| 
 | |
|   // Compute the function type we're calling.
 | |
|   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
 | |
|   const CGFunctionInfo *FInfo = nullptr;
 | |
|   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
 | |
|     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
 | |
|                                                  Dtor_Complete);
 | |
|   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
 | |
|     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
 | |
|                                                              Ctor_Complete);
 | |
|   else
 | |
|     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
 | |
| 
 | |
|   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
 | |
| 
 | |
|   // C++ [class.virtual]p12:
 | |
|   //   Explicit qualification with the scope operator (5.1) suppresses the
 | |
|   //   virtual call mechanism.
 | |
|   //
 | |
|   // We also don't emit a virtual call if the base expression has a record type
 | |
|   // because then we know what the type is.
 | |
|   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
 | |
|   llvm::Value *Callee;
 | |
| 
 | |
|   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|     assert(CE->arg_begin() == CE->arg_end() &&
 | |
|            "Destructor shouldn't have explicit parameters");
 | |
|     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
 | |
|     if (UseVirtualCall) {
 | |
|       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
 | |
|                                                 CE->getExprLoc(), This);
 | |
|     } else {
 | |
|       if (getLangOpts().AppleKext &&
 | |
|           MD->isVirtual() &&
 | |
|           ME->hasQualifier())
 | |
|         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
 | |
|       else if (!DevirtualizedMethod)
 | |
|         Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
 | |
|       else {
 | |
|         const CXXDestructorDecl *DDtor =
 | |
|           cast<CXXDestructorDecl>(DevirtualizedMethod);
 | |
|         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
 | |
|       }
 | |
|       EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
 | |
|                         /*ImplicitParam=*/nullptr, QualType(), nullptr,nullptr);
 | |
|     }
 | |
|     return RValue::get(nullptr);
 | |
|   }
 | |
|   
 | |
|   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
 | |
|     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
 | |
|   } else if (UseVirtualCall) {
 | |
|     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
 | |
|   } else {
 | |
|     if (getLangOpts().AppleKext &&
 | |
|         MD->isVirtual() &&
 | |
|         ME->hasQualifier())
 | |
|       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
 | |
|     else if (!DevirtualizedMethod)
 | |
|       Callee = CGM.GetAddrOfFunction(MD, Ty);
 | |
|     else {
 | |
|       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MD->isVirtual()) {
 | |
|     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
 | |
|         *this, MD, This, UseVirtualCall);
 | |
|   }
 | |
| 
 | |
|   return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
 | |
|                            /*ImplicitParam=*/nullptr, QualType(),
 | |
|                            CE->arg_begin(), CE->arg_end());
 | |
| }
 | |
| 
 | |
| RValue
 | |
| CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
 | |
|                                               ReturnValueSlot ReturnValue) {
 | |
|   const BinaryOperator *BO =
 | |
|       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
 | |
|   const Expr *BaseExpr = BO->getLHS();
 | |
|   const Expr *MemFnExpr = BO->getRHS();
 | |
|   
 | |
|   const MemberPointerType *MPT = 
 | |
|     MemFnExpr->getType()->castAs<MemberPointerType>();
 | |
| 
 | |
|   const FunctionProtoType *FPT = 
 | |
|     MPT->getPointeeType()->castAs<FunctionProtoType>();
 | |
|   const CXXRecordDecl *RD = 
 | |
|     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|   // Get the member function pointer.
 | |
|   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
 | |
| 
 | |
|   // Emit the 'this' pointer.
 | |
|   llvm::Value *This;
 | |
|   
 | |
|   if (BO->getOpcode() == BO_PtrMemI)
 | |
|     This = EmitScalarExpr(BaseExpr);
 | |
|   else 
 | |
|     This = EmitLValue(BaseExpr).getAddress();
 | |
| 
 | |
|   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
 | |
|                 QualType(MPT->getClass(), 0));
 | |
| 
 | |
|   // Ask the ABI to load the callee.  Note that This is modified.
 | |
|   llvm::Value *Callee =
 | |
|     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
 | |
|   
 | |
|   CallArgList Args;
 | |
| 
 | |
|   QualType ThisType = 
 | |
|     getContext().getPointerType(getContext().getTagDeclType(RD));
 | |
| 
 | |
|   // Push the this ptr.
 | |
|   Args.add(RValue::get(This), ThisType);
 | |
| 
 | |
|   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
 | |
|   
 | |
|   // And the rest of the call args
 | |
|   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
 | |
|   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
 | |
|                   Callee, ReturnValue, Args);
 | |
| }
 | |
| 
 | |
| RValue
 | |
| CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
 | |
|                                                const CXXMethodDecl *MD,
 | |
|                                                ReturnValueSlot ReturnValue) {
 | |
|   assert(MD->isInstance() &&
 | |
|          "Trying to emit a member call expr on a static method!");
 | |
|   LValue LV = EmitLValue(E->getArg(0));
 | |
|   llvm::Value *This = LV.getAddress();
 | |
| 
 | |
|   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
 | |
|       MD->isTrivial()) {
 | |
|     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
 | |
|     QualType Ty = E->getType();
 | |
|     EmitAggregateAssign(This, Src, Ty);
 | |
|     return RValue::get(This);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
 | |
|   return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
 | |
|                            /*ImplicitParam=*/nullptr, QualType(),
 | |
|                            E->arg_begin() + 1, E->arg_end());
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
 | |
|                                                ReturnValueSlot ReturnValue) {
 | |
|   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
 | |
| }
 | |
| 
 | |
| static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
 | |
|                                             llvm::Value *DestPtr,
 | |
|                                             const CXXRecordDecl *Base) {
 | |
|   if (Base->isEmpty())
 | |
|     return;
 | |
| 
 | |
|   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
 | |
| 
 | |
|   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
 | |
|   CharUnits Size = Layout.getNonVirtualSize();
 | |
|   CharUnits Align = Layout.getNonVirtualAlignment();
 | |
| 
 | |
|   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
 | |
| 
 | |
|   // If the type contains a pointer to data member we can't memset it to zero.
 | |
|   // Instead, create a null constant and copy it to the destination.
 | |
|   // TODO: there are other patterns besides zero that we can usefully memset,
 | |
|   // like -1, which happens to be the pattern used by member-pointers.
 | |
|   // TODO: isZeroInitializable can be over-conservative in the case where a
 | |
|   // virtual base contains a member pointer.
 | |
|   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
 | |
|     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
 | |
| 
 | |
|     llvm::GlobalVariable *NullVariable = 
 | |
|       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
 | |
|                                /*isConstant=*/true, 
 | |
|                                llvm::GlobalVariable::PrivateLinkage,
 | |
|                                NullConstant, Twine());
 | |
|     NullVariable->setAlignment(Align.getQuantity());
 | |
|     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
 | |
| 
 | |
|     // Get and call the appropriate llvm.memcpy overload.
 | |
|     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
 | |
|     return;
 | |
|   } 
 | |
|   
 | |
|   // Otherwise, just memset the whole thing to zero.  This is legal
 | |
|   // because in LLVM, all default initializers (other than the ones we just
 | |
|   // handled above) are guaranteed to have a bit pattern of all zeros.
 | |
|   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
 | |
|                            Align.getQuantity());
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
 | |
|                                       AggValueSlot Dest) {
 | |
|   assert(!Dest.isIgnored() && "Must have a destination!");
 | |
|   const CXXConstructorDecl *CD = E->getConstructor();
 | |
|   
 | |
|   // If we require zero initialization before (or instead of) calling the
 | |
|   // constructor, as can be the case with a non-user-provided default
 | |
|   // constructor, emit the zero initialization now, unless destination is
 | |
|   // already zeroed.
 | |
|   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
 | |
|     switch (E->getConstructionKind()) {
 | |
|     case CXXConstructExpr::CK_Delegating:
 | |
|     case CXXConstructExpr::CK_Complete:
 | |
|       EmitNullInitialization(Dest.getAddr(), E->getType());
 | |
|       break;
 | |
|     case CXXConstructExpr::CK_VirtualBase:
 | |
|     case CXXConstructExpr::CK_NonVirtualBase:
 | |
|       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a call to a trivial default constructor, do nothing.
 | |
|   if (CD->isTrivial() && CD->isDefaultConstructor())
 | |
|     return;
 | |
|   
 | |
|   // Elide the constructor if we're constructing from a temporary.
 | |
|   // The temporary check is required because Sema sets this on NRVO
 | |
|   // returns.
 | |
|   if (getLangOpts().ElideConstructors && E->isElidable()) {
 | |
|     assert(getContext().hasSameUnqualifiedType(E->getType(),
 | |
|                                                E->getArg(0)->getType()));
 | |
|     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
 | |
|       EmitAggExpr(E->getArg(0), Dest);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (const ConstantArrayType *arrayType 
 | |
|         = getContext().getAsConstantArrayType(E->getType())) {
 | |
|     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 
 | |
|                                E->arg_begin(), E->arg_end());
 | |
|   } else {
 | |
|     CXXCtorType Type = Ctor_Complete;
 | |
|     bool ForVirtualBase = false;
 | |
|     bool Delegating = false;
 | |
|     
 | |
|     switch (E->getConstructionKind()) {
 | |
|      case CXXConstructExpr::CK_Delegating:
 | |
|       // We should be emitting a constructor; GlobalDecl will assert this
 | |
|       Type = CurGD.getCtorType();
 | |
|       Delegating = true;
 | |
|       break;
 | |
| 
 | |
|      case CXXConstructExpr::CK_Complete:
 | |
|       Type = Ctor_Complete;
 | |
|       break;
 | |
| 
 | |
|      case CXXConstructExpr::CK_VirtualBase:
 | |
|       ForVirtualBase = true;
 | |
|       // fall-through
 | |
| 
 | |
|      case CXXConstructExpr::CK_NonVirtualBase:
 | |
|       Type = Ctor_Base;
 | |
|     }
 | |
|     
 | |
|     // Call the constructor.
 | |
|     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
 | |
|                            E->arg_begin(), E->arg_end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 
 | |
|                                             llvm::Value *Src,
 | |
|                                             const Expr *Exp) {
 | |
|   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
 | |
|     Exp = E->getSubExpr();
 | |
|   assert(isa<CXXConstructExpr>(Exp) && 
 | |
|          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
 | |
|   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
 | |
|   const CXXConstructorDecl *CD = E->getConstructor();
 | |
|   RunCleanupsScope Scope(*this);
 | |
|   
 | |
|   // If we require zero initialization before (or instead of) calling the
 | |
|   // constructor, as can be the case with a non-user-provided default
 | |
|   // constructor, emit the zero initialization now.
 | |
|   // FIXME. Do I still need this for a copy ctor synthesis?
 | |
|   if (E->requiresZeroInitialization())
 | |
|     EmitNullInitialization(Dest, E->getType());
 | |
|   
 | |
|   assert(!getContext().getAsConstantArrayType(E->getType())
 | |
|          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
 | |
|   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end());
 | |
| }
 | |
| 
 | |
| static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
 | |
|                                         const CXXNewExpr *E) {
 | |
|   if (!E->isArray())
 | |
|     return CharUnits::Zero();
 | |
| 
 | |
|   // No cookie is required if the operator new[] being used is the
 | |
|   // reserved placement operator new[].
 | |
|   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
 | |
|     return CharUnits::Zero();
 | |
| 
 | |
|   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
 | |
| }
 | |
| 
 | |
| static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
 | |
|                                         const CXXNewExpr *e,
 | |
|                                         unsigned minElements,
 | |
|                                         llvm::Value *&numElements,
 | |
|                                         llvm::Value *&sizeWithoutCookie) {
 | |
|   QualType type = e->getAllocatedType();
 | |
| 
 | |
|   if (!e->isArray()) {
 | |
|     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
 | |
|     sizeWithoutCookie
 | |
|       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
 | |
|     return sizeWithoutCookie;
 | |
|   }
 | |
| 
 | |
|   // The width of size_t.
 | |
|   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
 | |
| 
 | |
|   // Figure out the cookie size.
 | |
|   llvm::APInt cookieSize(sizeWidth,
 | |
|                          CalculateCookiePadding(CGF, e).getQuantity());
 | |
| 
 | |
|   // Emit the array size expression.
 | |
|   // We multiply the size of all dimensions for NumElements.
 | |
|   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
 | |
|   numElements = CGF.EmitScalarExpr(e->getArraySize());
 | |
|   assert(isa<llvm::IntegerType>(numElements->getType()));
 | |
| 
 | |
|   // The number of elements can be have an arbitrary integer type;
 | |
|   // essentially, we need to multiply it by a constant factor, add a
 | |
|   // cookie size, and verify that the result is representable as a
 | |
|   // size_t.  That's just a gloss, though, and it's wrong in one
 | |
|   // important way: if the count is negative, it's an error even if
 | |
|   // the cookie size would bring the total size >= 0.
 | |
|   bool isSigned 
 | |
|     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
 | |
|   llvm::IntegerType *numElementsType
 | |
|     = cast<llvm::IntegerType>(numElements->getType());
 | |
|   unsigned numElementsWidth = numElementsType->getBitWidth();
 | |
| 
 | |
|   // Compute the constant factor.
 | |
|   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
 | |
|   while (const ConstantArrayType *CAT
 | |
|              = CGF.getContext().getAsConstantArrayType(type)) {
 | |
|     type = CAT->getElementType();
 | |
|     arraySizeMultiplier *= CAT->getSize();
 | |
|   }
 | |
| 
 | |
|   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
 | |
|   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
 | |
|   typeSizeMultiplier *= arraySizeMultiplier;
 | |
| 
 | |
|   // This will be a size_t.
 | |
|   llvm::Value *size;
 | |
|   
 | |
|   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
 | |
|   // Don't bloat the -O0 code.
 | |
|   if (llvm::ConstantInt *numElementsC =
 | |
|         dyn_cast<llvm::ConstantInt>(numElements)) {
 | |
|     const llvm::APInt &count = numElementsC->getValue();
 | |
| 
 | |
|     bool hasAnyOverflow = false;
 | |
| 
 | |
|     // If 'count' was a negative number, it's an overflow.
 | |
|     if (isSigned && count.isNegative())
 | |
|       hasAnyOverflow = true;
 | |
| 
 | |
|     // We want to do all this arithmetic in size_t.  If numElements is
 | |
|     // wider than that, check whether it's already too big, and if so,
 | |
|     // overflow.
 | |
|     else if (numElementsWidth > sizeWidth &&
 | |
|              numElementsWidth - sizeWidth > count.countLeadingZeros())
 | |
|       hasAnyOverflow = true;
 | |
| 
 | |
|     // Okay, compute a count at the right width.
 | |
|     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
 | |
| 
 | |
|     // If there is a brace-initializer, we cannot allocate fewer elements than
 | |
|     // there are initializers. If we do, that's treated like an overflow.
 | |
|     if (adjustedCount.ult(minElements))
 | |
|       hasAnyOverflow = true;
 | |
| 
 | |
|     // Scale numElements by that.  This might overflow, but we don't
 | |
|     // care because it only overflows if allocationSize does, too, and
 | |
|     // if that overflows then we shouldn't use this.
 | |
|     numElements = llvm::ConstantInt::get(CGF.SizeTy,
 | |
|                                          adjustedCount * arraySizeMultiplier);
 | |
| 
 | |
|     // Compute the size before cookie, and track whether it overflowed.
 | |
|     bool overflow;
 | |
|     llvm::APInt allocationSize
 | |
|       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
 | |
|     hasAnyOverflow |= overflow;
 | |
| 
 | |
|     // Add in the cookie, and check whether it's overflowed.
 | |
|     if (cookieSize != 0) {
 | |
|       // Save the current size without a cookie.  This shouldn't be
 | |
|       // used if there was overflow.
 | |
|       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
 | |
| 
 | |
|       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
 | |
|       hasAnyOverflow |= overflow;
 | |
|     }
 | |
| 
 | |
|     // On overflow, produce a -1 so operator new will fail.
 | |
|     if (hasAnyOverflow) {
 | |
|       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
 | |
|     } else {
 | |
|       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
 | |
|     }
 | |
| 
 | |
|   // Otherwise, we might need to use the overflow intrinsics.
 | |
|   } else {
 | |
|     // There are up to five conditions we need to test for:
 | |
|     // 1) if isSigned, we need to check whether numElements is negative;
 | |
|     // 2) if numElementsWidth > sizeWidth, we need to check whether
 | |
|     //   numElements is larger than something representable in size_t;
 | |
|     // 3) if minElements > 0, we need to check whether numElements is smaller
 | |
|     //    than that.
 | |
|     // 4) we need to compute
 | |
|     //      sizeWithoutCookie := numElements * typeSizeMultiplier
 | |
|     //    and check whether it overflows; and
 | |
|     // 5) if we need a cookie, we need to compute
 | |
|     //      size := sizeWithoutCookie + cookieSize
 | |
|     //    and check whether it overflows.
 | |
| 
 | |
|     llvm::Value *hasOverflow = nullptr;
 | |
| 
 | |
|     // If numElementsWidth > sizeWidth, then one way or another, we're
 | |
|     // going to have to do a comparison for (2), and this happens to
 | |
|     // take care of (1), too.
 | |
|     if (numElementsWidth > sizeWidth) {
 | |
|       llvm::APInt threshold(numElementsWidth, 1);
 | |
|       threshold <<= sizeWidth;
 | |
| 
 | |
|       llvm::Value *thresholdV
 | |
|         = llvm::ConstantInt::get(numElementsType, threshold);
 | |
| 
 | |
|       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
 | |
|       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
 | |
| 
 | |
|     // Otherwise, if we're signed, we want to sext up to size_t.
 | |
|     } else if (isSigned) {
 | |
|       if (numElementsWidth < sizeWidth)
 | |
|         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
 | |
|       
 | |
|       // If there's a non-1 type size multiplier, then we can do the
 | |
|       // signedness check at the same time as we do the multiply
 | |
|       // because a negative number times anything will cause an
 | |
|       // unsigned overflow.  Otherwise, we have to do it here. But at least
 | |
|       // in this case, we can subsume the >= minElements check.
 | |
|       if (typeSizeMultiplier == 1)
 | |
|         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
 | |
|                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
 | |
| 
 | |
|     // Otherwise, zext up to size_t if necessary.
 | |
|     } else if (numElementsWidth < sizeWidth) {
 | |
|       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
 | |
|     }
 | |
| 
 | |
|     assert(numElements->getType() == CGF.SizeTy);
 | |
| 
 | |
|     if (minElements) {
 | |
|       // Don't allow allocation of fewer elements than we have initializers.
 | |
|       if (!hasOverflow) {
 | |
|         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
 | |
|                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
 | |
|       } else if (numElementsWidth > sizeWidth) {
 | |
|         // The other existing overflow subsumes this check.
 | |
|         // We do an unsigned comparison, since any signed value < -1 is
 | |
|         // taken care of either above or below.
 | |
|         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
 | |
|                           CGF.Builder.CreateICmpULT(numElements,
 | |
|                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     size = numElements;
 | |
| 
 | |
|     // Multiply by the type size if necessary.  This multiplier
 | |
|     // includes all the factors for nested arrays.
 | |
|     //
 | |
|     // This step also causes numElements to be scaled up by the
 | |
|     // nested-array factor if necessary.  Overflow on this computation
 | |
|     // can be ignored because the result shouldn't be used if
 | |
|     // allocation fails.
 | |
|     if (typeSizeMultiplier != 1) {
 | |
|       llvm::Value *umul_with_overflow
 | |
|         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
 | |
| 
 | |
|       llvm::Value *tsmV =
 | |
|         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
 | |
|       llvm::Value *result =
 | |
|         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
 | |
| 
 | |
|       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
 | |
|       if (hasOverflow)
 | |
|         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
 | |
|       else
 | |
|         hasOverflow = overflowed;
 | |
| 
 | |
|       size = CGF.Builder.CreateExtractValue(result, 0);
 | |
| 
 | |
|       // Also scale up numElements by the array size multiplier.
 | |
|       if (arraySizeMultiplier != 1) {
 | |
|         // If the base element type size is 1, then we can re-use the
 | |
|         // multiply we just did.
 | |
|         if (typeSize.isOne()) {
 | |
|           assert(arraySizeMultiplier == typeSizeMultiplier);
 | |
|           numElements = size;
 | |
| 
 | |
|         // Otherwise we need a separate multiply.
 | |
|         } else {
 | |
|           llvm::Value *asmV =
 | |
|             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
 | |
|           numElements = CGF.Builder.CreateMul(numElements, asmV);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // numElements doesn't need to be scaled.
 | |
|       assert(arraySizeMultiplier == 1);
 | |
|     }
 | |
|     
 | |
|     // Add in the cookie size if necessary.
 | |
|     if (cookieSize != 0) {
 | |
|       sizeWithoutCookie = size;
 | |
| 
 | |
|       llvm::Value *uadd_with_overflow
 | |
|         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
 | |
| 
 | |
|       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
 | |
|       llvm::Value *result =
 | |
|         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
 | |
| 
 | |
|       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
 | |
|       if (hasOverflow)
 | |
|         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
 | |
|       else
 | |
|         hasOverflow = overflowed;
 | |
| 
 | |
|       size = CGF.Builder.CreateExtractValue(result, 0);
 | |
|     }
 | |
| 
 | |
|     // If we had any possibility of dynamic overflow, make a select to
 | |
|     // overwrite 'size' with an all-ones value, which should cause
 | |
|     // operator new to throw.
 | |
|     if (hasOverflow)
 | |
|       size = CGF.Builder.CreateSelect(hasOverflow,
 | |
|                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
 | |
|                                       size);
 | |
|   }
 | |
| 
 | |
|   if (cookieSize == 0)
 | |
|     sizeWithoutCookie = size;
 | |
|   else
 | |
|     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
 | |
| 
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
 | |
|                                     QualType AllocType, llvm::Value *NewPtr) {
 | |
|   // FIXME: Refactor with EmitExprAsInit.
 | |
|   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
 | |
|   switch (CGF.getEvaluationKind(AllocType)) {
 | |
|   case TEK_Scalar:
 | |
|     CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType,
 | |
|                                                          Alignment),
 | |
|                        false);
 | |
|     return;
 | |
|   case TEK_Complex:
 | |
|     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
 | |
|                                                            Alignment),
 | |
|                                   /*isInit*/ true);
 | |
|     return;
 | |
|   case TEK_Aggregate: {
 | |
|     AggValueSlot Slot
 | |
|       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
 | |
|                               AggValueSlot::IsDestructed,
 | |
|                               AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                               AggValueSlot::IsNotAliased);
 | |
|     CGF.EmitAggExpr(Init, Slot);
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
 | |
|                                          QualType ElementType,
 | |
|                                          llvm::Value *BeginPtr,
 | |
|                                          llvm::Value *NumElements,
 | |
|                                          llvm::Value *AllocSizeWithoutCookie) {
 | |
|   // If we have a type with trivial initialization and no initializer,
 | |
|   // there's nothing to do.
 | |
|   if (!E->hasInitializer())
 | |
|     return;
 | |
| 
 | |
|   llvm::Value *CurPtr = BeginPtr;
 | |
| 
 | |
|   unsigned InitListElements = 0;
 | |
| 
 | |
|   const Expr *Init = E->getInitializer();
 | |
|   llvm::AllocaInst *EndOfInit = nullptr;
 | |
|   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
 | |
|   EHScopeStack::stable_iterator Cleanup;
 | |
|   llvm::Instruction *CleanupDominator = nullptr;
 | |
| 
 | |
|   // If the initializer is an initializer list, first do the explicit elements.
 | |
|   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | |
|     InitListElements = ILE->getNumInits();
 | |
| 
 | |
|     // If this is a multi-dimensional array new, we will initialize multiple
 | |
|     // elements with each init list element.
 | |
|     QualType AllocType = E->getAllocatedType();
 | |
|     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
 | |
|             AllocType->getAsArrayTypeUnsafe())) {
 | |
|       unsigned AS = CurPtr->getType()->getPointerAddressSpace();
 | |
|       llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS);
 | |
|       CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
 | |
|       InitListElements *= getContext().getConstantArrayElementCount(CAT);
 | |
|     }
 | |
| 
 | |
|     // Enter a partial-destruction Cleanup if necessary.
 | |
|     if (needsEHCleanup(DtorKind)) {
 | |
|       // In principle we could tell the Cleanup where we are more
 | |
|       // directly, but the control flow can get so varied here that it
 | |
|       // would actually be quite complex.  Therefore we go through an
 | |
|       // alloca.
 | |
|       EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
 | |
|       CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
 | |
|       pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
 | |
|                                        getDestroyer(DtorKind));
 | |
|       Cleanup = EHStack.stable_begin();
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
 | |
|       // Tell the cleanup that it needs to destroy up to this
 | |
|       // element.  TODO: some of these stores can be trivially
 | |
|       // observed to be unnecessary.
 | |
|       if (EndOfInit)
 | |
|         Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
 | |
|                             EndOfInit);
 | |
|       // FIXME: If the last initializer is an incomplete initializer list for
 | |
|       // an array, and we have an array filler, we can fold together the two
 | |
|       // initialization loops.
 | |
|       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
 | |
|                               ILE->getInit(i)->getType(), CurPtr);
 | |
|       CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next");
 | |
|     }
 | |
| 
 | |
|     // The remaining elements are filled with the array filler expression.
 | |
|     Init = ILE->getArrayFiller();
 | |
| 
 | |
|     // Extract the initializer for the individual array elements by pulling
 | |
|     // out the array filler from all the nested initializer lists. This avoids
 | |
|     // generating a nested loop for the initialization.
 | |
|     while (Init && Init->getType()->isConstantArrayType()) {
 | |
|       auto *SubILE = dyn_cast<InitListExpr>(Init);
 | |
|       if (!SubILE)
 | |
|         break;
 | |
|       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
 | |
|       Init = SubILE->getArrayFiller();
 | |
|     }
 | |
| 
 | |
|     // Switch back to initializing one base element at a time.
 | |
|     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
 | |
|   }
 | |
| 
 | |
|   // Attempt to perform zero-initialization using memset.
 | |
|   auto TryMemsetInitialization = [&]() -> bool {
 | |
|     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
 | |
|     // we can initialize with a memset to -1.
 | |
|     if (!CGM.getTypes().isZeroInitializable(ElementType))
 | |
|       return false;
 | |
| 
 | |
|     // Optimization: since zero initialization will just set the memory
 | |
|     // to all zeroes, generate a single memset to do it in one shot.
 | |
| 
 | |
|     // Subtract out the size of any elements we've already initialized.
 | |
|     auto *RemainingSize = AllocSizeWithoutCookie;
 | |
|     if (InitListElements) {
 | |
|       // We know this can't overflow; we check this when doing the allocation.
 | |
|       auto *InitializedSize = llvm::ConstantInt::get(
 | |
|           RemainingSize->getType(),
 | |
|           getContext().getTypeSizeInChars(ElementType).getQuantity() *
 | |
|               InitListElements);
 | |
|       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
 | |
|     }
 | |
| 
 | |
|     // Create the memset.
 | |
|     CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
 | |
|     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
 | |
|                          Alignment.getQuantity(), false);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // If all elements have already been initialized, skip any further
 | |
|   // initialization.
 | |
|   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
 | |
|   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
 | |
|     // If there was a Cleanup, deactivate it.
 | |
|     if (CleanupDominator)
 | |
|       DeactivateCleanupBlock(Cleanup, CleanupDominator);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(Init && "have trailing elements to initialize but no initializer");
 | |
| 
 | |
|   // If this is a constructor call, try to optimize it out, and failing that
 | |
|   // emit a single loop to initialize all remaining elements.
 | |
|   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
 | |
|     CXXConstructorDecl *Ctor = CCE->getConstructor();
 | |
|     if (Ctor->isTrivial()) {
 | |
|       // If new expression did not specify value-initialization, then there
 | |
|       // is no initialization.
 | |
|       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
 | |
|         return;
 | |
| 
 | |
|       if (TryMemsetInitialization())
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Store the new Cleanup position for irregular Cleanups.
 | |
|     //
 | |
|     // FIXME: Share this cleanup with the constructor call emission rather than
 | |
|     // having it create a cleanup of its own.
 | |
|     if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
 | |
| 
 | |
|     // Emit a constructor call loop to initialize the remaining elements.
 | |
|     if (InitListElements)
 | |
|       NumElements = Builder.CreateSub(
 | |
|           NumElements,
 | |
|           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
 | |
|     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr,
 | |
|                                CCE->arg_begin(), CCE->arg_end(),
 | |
|                                CCE->requiresZeroInitialization());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this is value-initialization, we can usually use memset.
 | |
|   ImplicitValueInitExpr IVIE(ElementType);
 | |
|   if (isa<ImplicitValueInitExpr>(Init)) {
 | |
|     if (TryMemsetInitialization())
 | |
|       return;
 | |
| 
 | |
|     // Switch to an ImplicitValueInitExpr for the element type. This handles
 | |
|     // only one case: multidimensional array new of pointers to members. In
 | |
|     // all other cases, we already have an initializer for the array element.
 | |
|     Init = &IVIE;
 | |
|   }
 | |
| 
 | |
|   // At this point we should have found an initializer for the individual
 | |
|   // elements of the array.
 | |
|   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
 | |
|          "got wrong type of element to initialize");
 | |
| 
 | |
|   // If we have an empty initializer list, we can usually use memset.
 | |
|   if (auto *ILE = dyn_cast<InitListExpr>(Init))
 | |
|     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
 | |
|       return;
 | |
| 
 | |
|   // Create the loop blocks.
 | |
|   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
 | |
|   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
 | |
|   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
 | |
| 
 | |
|   // Find the end of the array, hoisted out of the loop.
 | |
|   llvm::Value *EndPtr =
 | |
|     Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
 | |
| 
 | |
|   // If the number of elements isn't constant, we have to now check if there is
 | |
|   // anything left to initialize.
 | |
|   if (!ConstNum) {
 | |
|     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
 | |
|                                                 "array.isempty");
 | |
|     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
 | |
|   }
 | |
| 
 | |
|   // Enter the loop.
 | |
|   EmitBlock(LoopBB);
 | |
| 
 | |
|   // Set up the current-element phi.
 | |
|   llvm::PHINode *CurPtrPhi =
 | |
|     Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
 | |
|   CurPtrPhi->addIncoming(CurPtr, EntryBB);
 | |
|   CurPtr = CurPtrPhi;
 | |
| 
 | |
|   // Store the new Cleanup position for irregular Cleanups.
 | |
|   if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
 | |
| 
 | |
|   // Enter a partial-destruction Cleanup if necessary.
 | |
|   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
 | |
|     pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
 | |
|                                    getDestroyer(DtorKind));
 | |
|     Cleanup = EHStack.stable_begin();
 | |
|     CleanupDominator = Builder.CreateUnreachable();
 | |
|   }
 | |
| 
 | |
|   // Emit the initializer into this element.
 | |
|   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
 | |
| 
 | |
|   // Leave the Cleanup if we entered one.
 | |
|   if (CleanupDominator) {
 | |
|     DeactivateCleanupBlock(Cleanup, CleanupDominator);
 | |
|     CleanupDominator->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Advance to the next element by adjusting the pointer type as necessary.
 | |
|   llvm::Value *NextPtr =
 | |
|       Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next");
 | |
| 
 | |
|   // Check whether we've gotten to the end of the array and, if so,
 | |
|   // exit the loop.
 | |
|   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
 | |
|   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
 | |
|   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
 | |
| 
 | |
|   EmitBlock(ContBB);
 | |
| }
 | |
| 
 | |
| static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
 | |
|                                QualType ElementType,
 | |
|                                llvm::Value *NewPtr,
 | |
|                                llvm::Value *NumElements,
 | |
|                                llvm::Value *AllocSizeWithoutCookie) {
 | |
|   if (E->isArray())
 | |
|     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements,
 | |
|                                 AllocSizeWithoutCookie);
 | |
|   else if (const Expr *Init = E->getInitializer())
 | |
|     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
 | |
| }
 | |
| 
 | |
| /// Emit a call to an operator new or operator delete function, as implicitly
 | |
| /// created by new-expressions and delete-expressions.
 | |
| static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
 | |
|                                 const FunctionDecl *Callee,
 | |
|                                 const FunctionProtoType *CalleeType,
 | |
|                                 const CallArgList &Args) {
 | |
|   llvm::Instruction *CallOrInvoke;
 | |
|   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
 | |
|   RValue RV =
 | |
|       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
 | |
|                    CalleeAddr, ReturnValueSlot(), Args,
 | |
|                    Callee, &CallOrInvoke);
 | |
| 
 | |
|   /// C++1y [expr.new]p10:
 | |
|   ///   [In a new-expression,] an implementation is allowed to omit a call
 | |
|   ///   to a replaceable global allocation function.
 | |
|   ///
 | |
|   /// We model such elidable calls with the 'builtin' attribute.
 | |
|   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
 | |
|   if (Callee->isReplaceableGlobalAllocationFunction() &&
 | |
|       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
 | |
|     // FIXME: Add addAttribute to CallSite.
 | |
|     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
 | |
|       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
 | |
|                        llvm::Attribute::Builtin);
 | |
|     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
 | |
|       II->addAttribute(llvm::AttributeSet::FunctionIndex,
 | |
|                        llvm::Attribute::Builtin);
 | |
|     else
 | |
|       llvm_unreachable("unexpected kind of call instruction");
 | |
|   }
 | |
| 
 | |
|   return RV;
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
 | |
|                                                  const Expr *Arg,
 | |
|                                                  bool IsDelete) {
 | |
|   CallArgList Args;
 | |
|   const Stmt *ArgS = Arg;
 | |
|   EmitCallArgs(Args, *Type->param_type_begin(),
 | |
|                ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
 | |
|   // Find the allocation or deallocation function that we're calling.
 | |
|   ASTContext &Ctx = getContext();
 | |
|   DeclarationName Name = Ctx.DeclarationNames
 | |
|       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
 | |
|   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
 | |
|     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
 | |
|       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
 | |
|         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
 | |
|   llvm_unreachable("predeclared global operator new/delete is missing");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A cleanup to call the given 'operator delete' function upon
 | |
|   /// abnormal exit from a new expression.
 | |
|   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
 | |
|     size_t NumPlacementArgs;
 | |
|     const FunctionDecl *OperatorDelete;
 | |
|     llvm::Value *Ptr;
 | |
|     llvm::Value *AllocSize;
 | |
| 
 | |
|     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
 | |
| 
 | |
|   public:
 | |
|     static size_t getExtraSize(size_t NumPlacementArgs) {
 | |
|       return NumPlacementArgs * sizeof(RValue);
 | |
|     }
 | |
| 
 | |
|     CallDeleteDuringNew(size_t NumPlacementArgs,
 | |
|                         const FunctionDecl *OperatorDelete,
 | |
|                         llvm::Value *Ptr,
 | |
|                         llvm::Value *AllocSize) 
 | |
|       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
 | |
|         Ptr(Ptr), AllocSize(AllocSize) {}
 | |
| 
 | |
|     void setPlacementArg(unsigned I, RValue Arg) {
 | |
|       assert(I < NumPlacementArgs && "index out of range");
 | |
|       getPlacementArgs()[I] = Arg;
 | |
|     }
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       const FunctionProtoType *FPT
 | |
|         = OperatorDelete->getType()->getAs<FunctionProtoType>();
 | |
|       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
 | |
|              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
 | |
| 
 | |
|       CallArgList DeleteArgs;
 | |
| 
 | |
|       // The first argument is always a void*.
 | |
|       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
 | |
|       DeleteArgs.add(RValue::get(Ptr), *AI++);
 | |
| 
 | |
|       // A member 'operator delete' can take an extra 'size_t' argument.
 | |
|       if (FPT->getNumParams() == NumPlacementArgs + 2)
 | |
|         DeleteArgs.add(RValue::get(AllocSize), *AI++);
 | |
| 
 | |
|       // Pass the rest of the arguments, which must match exactly.
 | |
|       for (unsigned I = 0; I != NumPlacementArgs; ++I)
 | |
|         DeleteArgs.add(getPlacementArgs()[I], *AI++);
 | |
| 
 | |
|       // Call 'operator delete'.
 | |
|       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// A cleanup to call the given 'operator delete' function upon
 | |
|   /// abnormal exit from a new expression when the new expression is
 | |
|   /// conditional.
 | |
|   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
 | |
|     size_t NumPlacementArgs;
 | |
|     const FunctionDecl *OperatorDelete;
 | |
|     DominatingValue<RValue>::saved_type Ptr;
 | |
|     DominatingValue<RValue>::saved_type AllocSize;
 | |
| 
 | |
|     DominatingValue<RValue>::saved_type *getPlacementArgs() {
 | |
|       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     static size_t getExtraSize(size_t NumPlacementArgs) {
 | |
|       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
 | |
|     }
 | |
| 
 | |
|     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
 | |
|                                    const FunctionDecl *OperatorDelete,
 | |
|                                    DominatingValue<RValue>::saved_type Ptr,
 | |
|                               DominatingValue<RValue>::saved_type AllocSize)
 | |
|       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
 | |
|         Ptr(Ptr), AllocSize(AllocSize) {}
 | |
| 
 | |
|     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
 | |
|       assert(I < NumPlacementArgs && "index out of range");
 | |
|       getPlacementArgs()[I] = Arg;
 | |
|     }
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       const FunctionProtoType *FPT
 | |
|         = OperatorDelete->getType()->getAs<FunctionProtoType>();
 | |
|       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
 | |
|              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
 | |
| 
 | |
|       CallArgList DeleteArgs;
 | |
| 
 | |
|       // The first argument is always a void*.
 | |
|       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
 | |
|       DeleteArgs.add(Ptr.restore(CGF), *AI++);
 | |
| 
 | |
|       // A member 'operator delete' can take an extra 'size_t' argument.
 | |
|       if (FPT->getNumParams() == NumPlacementArgs + 2) {
 | |
|         RValue RV = AllocSize.restore(CGF);
 | |
|         DeleteArgs.add(RV, *AI++);
 | |
|       }
 | |
| 
 | |
|       // Pass the rest of the arguments, which must match exactly.
 | |
|       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
 | |
|         RValue RV = getPlacementArgs()[I].restore(CGF);
 | |
|         DeleteArgs.add(RV, *AI++);
 | |
|       }
 | |
| 
 | |
|       // Call 'operator delete'.
 | |
|       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Enter a cleanup to call 'operator delete' if the initializer in a
 | |
| /// new-expression throws.
 | |
| static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
 | |
|                                   const CXXNewExpr *E,
 | |
|                                   llvm::Value *NewPtr,
 | |
|                                   llvm::Value *AllocSize,
 | |
|                                   const CallArgList &NewArgs) {
 | |
|   // If we're not inside a conditional branch, then the cleanup will
 | |
|   // dominate and we can do the easier (and more efficient) thing.
 | |
|   if (!CGF.isInConditionalBranch()) {
 | |
|     CallDeleteDuringNew *Cleanup = CGF.EHStack
 | |
|       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
 | |
|                                                  E->getNumPlacementArgs(),
 | |
|                                                  E->getOperatorDelete(),
 | |
|                                                  NewPtr, AllocSize);
 | |
|     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
 | |
|       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we need to save all this stuff.
 | |
|   DominatingValue<RValue>::saved_type SavedNewPtr =
 | |
|     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
 | |
|   DominatingValue<RValue>::saved_type SavedAllocSize =
 | |
|     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
 | |
| 
 | |
|   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
 | |
|     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
 | |
|                                                  E->getNumPlacementArgs(),
 | |
|                                                  E->getOperatorDelete(),
 | |
|                                                  SavedNewPtr,
 | |
|                                                  SavedAllocSize);
 | |
|   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
 | |
|     Cleanup->setPlacementArg(I,
 | |
|                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
 | |
| 
 | |
|   CGF.initFullExprCleanup();
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
 | |
|   // The element type being allocated.
 | |
|   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
 | |
| 
 | |
|   // 1. Build a call to the allocation function.
 | |
|   FunctionDecl *allocator = E->getOperatorNew();
 | |
|   const FunctionProtoType *allocatorType =
 | |
|     allocator->getType()->castAs<FunctionProtoType>();
 | |
| 
 | |
|   CallArgList allocatorArgs;
 | |
| 
 | |
|   // The allocation size is the first argument.
 | |
|   QualType sizeType = getContext().getSizeType();
 | |
| 
 | |
|   // If there is a brace-initializer, cannot allocate fewer elements than inits.
 | |
|   unsigned minElements = 0;
 | |
|   if (E->isArray() && E->hasInitializer()) {
 | |
|     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
 | |
|       minElements = ILE->getNumInits();
 | |
|   }
 | |
| 
 | |
|   llvm::Value *numElements = nullptr;
 | |
|   llvm::Value *allocSizeWithoutCookie = nullptr;
 | |
|   llvm::Value *allocSize =
 | |
|     EmitCXXNewAllocSize(*this, E, minElements, numElements,
 | |
|                         allocSizeWithoutCookie);
 | |
|   
 | |
|   allocatorArgs.add(RValue::get(allocSize), sizeType);
 | |
| 
 | |
|   // We start at 1 here because the first argument (the allocation size)
 | |
|   // has already been emitted.
 | |
|   EmitCallArgs(allocatorArgs, allocatorType->isVariadic(),
 | |
|                allocatorType->param_type_begin() + 1,
 | |
|                allocatorType->param_type_end(), E->placement_arg_begin(),
 | |
|                E->placement_arg_end());
 | |
| 
 | |
|   // Emit the allocation call.  If the allocator is a global placement
 | |
|   // operator, just "inline" it directly.
 | |
|   RValue RV;
 | |
|   if (allocator->isReservedGlobalPlacementOperator()) {
 | |
|     assert(allocatorArgs.size() == 2);
 | |
|     RV = allocatorArgs[1].RV;
 | |
|     // TODO: kill any unnecessary computations done for the size
 | |
|     // argument.
 | |
|   } else {
 | |
|     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
 | |
|   }
 | |
| 
 | |
|   // Emit a null check on the allocation result if the allocation
 | |
|   // function is allowed to return null (because it has a non-throwing
 | |
|   // exception spec; for this part, we inline
 | |
|   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
 | |
|   // interesting initializer.
 | |
|   bool nullCheck = allocatorType->isNothrow(getContext()) &&
 | |
|     (!allocType.isPODType(getContext()) || E->hasInitializer());
 | |
| 
 | |
|   llvm::BasicBlock *nullCheckBB = nullptr;
 | |
|   llvm::BasicBlock *contBB = nullptr;
 | |
| 
 | |
|   llvm::Value *allocation = RV.getScalarVal();
 | |
|   unsigned AS = allocation->getType()->getPointerAddressSpace();
 | |
| 
 | |
|   // The null-check means that the initializer is conditionally
 | |
|   // evaluated.
 | |
|   ConditionalEvaluation conditional(*this);
 | |
| 
 | |
|   if (nullCheck) {
 | |
|     conditional.begin(*this);
 | |
| 
 | |
|     nullCheckBB = Builder.GetInsertBlock();
 | |
|     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
 | |
|     contBB = createBasicBlock("new.cont");
 | |
| 
 | |
|     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
 | |
|     Builder.CreateCondBr(isNull, contBB, notNullBB);
 | |
|     EmitBlock(notNullBB);
 | |
|   }
 | |
| 
 | |
|   // If there's an operator delete, enter a cleanup to call it if an
 | |
|   // exception is thrown.
 | |
|   EHScopeStack::stable_iterator operatorDeleteCleanup;
 | |
|   llvm::Instruction *cleanupDominator = nullptr;
 | |
|   if (E->getOperatorDelete() &&
 | |
|       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
 | |
|     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
 | |
|     operatorDeleteCleanup = EHStack.stable_begin();
 | |
|     cleanupDominator = Builder.CreateUnreachable();
 | |
|   }
 | |
| 
 | |
|   assert((allocSize == allocSizeWithoutCookie) ==
 | |
|          CalculateCookiePadding(*this, E).isZero());
 | |
|   if (allocSize != allocSizeWithoutCookie) {
 | |
|     assert(E->isArray());
 | |
|     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
 | |
|                                                        numElements,
 | |
|                                                        E, allocType);
 | |
|   }
 | |
| 
 | |
|   llvm::Type *elementPtrTy
 | |
|     = ConvertTypeForMem(allocType)->getPointerTo(AS);
 | |
|   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
 | |
| 
 | |
|   EmitNewInitializer(*this, E, allocType, result, numElements,
 | |
|                      allocSizeWithoutCookie);
 | |
|   if (E->isArray()) {
 | |
|     // NewPtr is a pointer to the base element type.  If we're
 | |
|     // allocating an array of arrays, we'll need to cast back to the
 | |
|     // array pointer type.
 | |
|     llvm::Type *resultType = ConvertTypeForMem(E->getType());
 | |
|     if (result->getType() != resultType)
 | |
|       result = Builder.CreateBitCast(result, resultType);
 | |
|   }
 | |
| 
 | |
|   // Deactivate the 'operator delete' cleanup if we finished
 | |
|   // initialization.
 | |
|   if (operatorDeleteCleanup.isValid()) {
 | |
|     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
 | |
|     cleanupDominator->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   if (nullCheck) {
 | |
|     conditional.end(*this);
 | |
| 
 | |
|     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
 | |
|     EmitBlock(contBB);
 | |
| 
 | |
|     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
 | |
|     PHI->addIncoming(result, notNullBB);
 | |
|     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
 | |
|                      nullCheckBB);
 | |
| 
 | |
|     result = PHI;
 | |
|   }
 | |
|   
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
 | |
|                                      llvm::Value *Ptr,
 | |
|                                      QualType DeleteTy) {
 | |
|   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
 | |
| 
 | |
|   const FunctionProtoType *DeleteFTy =
 | |
|     DeleteFD->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   CallArgList DeleteArgs;
 | |
| 
 | |
|   // Check if we need to pass the size to the delete operator.
 | |
|   llvm::Value *Size = nullptr;
 | |
|   QualType SizeTy;
 | |
|   if (DeleteFTy->getNumParams() == 2) {
 | |
|     SizeTy = DeleteFTy->getParamType(1);
 | |
|     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
 | |
|     Size = llvm::ConstantInt::get(ConvertType(SizeTy), 
 | |
|                                   DeleteTypeSize.getQuantity());
 | |
|   }
 | |
| 
 | |
|   QualType ArgTy = DeleteFTy->getParamType(0);
 | |
|   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
 | |
|   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
 | |
| 
 | |
|   if (Size)
 | |
|     DeleteArgs.add(RValue::get(Size), SizeTy);
 | |
| 
 | |
|   // Emit the call to delete.
 | |
|   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// Calls the given 'operator delete' on a single object.
 | |
|   struct CallObjectDelete : EHScopeStack::Cleanup {
 | |
|     llvm::Value *Ptr;
 | |
|     const FunctionDecl *OperatorDelete;
 | |
|     QualType ElementType;
 | |
| 
 | |
|     CallObjectDelete(llvm::Value *Ptr,
 | |
|                      const FunctionDecl *OperatorDelete,
 | |
|                      QualType ElementType)
 | |
|       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Emit the code for deleting a single object.
 | |
| static void EmitObjectDelete(CodeGenFunction &CGF,
 | |
|                              const FunctionDecl *OperatorDelete,
 | |
|                              llvm::Value *Ptr,
 | |
|                              QualType ElementType,
 | |
|                              bool UseGlobalDelete) {
 | |
|   // Find the destructor for the type, if applicable.  If the
 | |
|   // destructor is virtual, we'll just emit the vcall and return.
 | |
|   const CXXDestructorDecl *Dtor = nullptr;
 | |
|   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
 | |
|     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
 | |
|       Dtor = RD->getDestructor();
 | |
| 
 | |
|       if (Dtor->isVirtual()) {
 | |
|         if (UseGlobalDelete) {
 | |
|           // If we're supposed to call the global delete, make sure we do so
 | |
|           // even if the destructor throws.
 | |
| 
 | |
|           // Derive the complete-object pointer, which is what we need
 | |
|           // to pass to the deallocation function.
 | |
|           llvm::Value *completePtr =
 | |
|             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
 | |
| 
 | |
|           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
 | |
|                                                     completePtr, OperatorDelete,
 | |
|                                                     ElementType);
 | |
|         }
 | |
| 
 | |
|         // FIXME: Provide a source location here.
 | |
|         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
 | |
|         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
 | |
|                                                       SourceLocation(), Ptr);
 | |
| 
 | |
|         if (UseGlobalDelete) {
 | |
|           CGF.PopCleanupBlock();
 | |
|         }
 | |
|         
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that we call delete even if the dtor throws.
 | |
|   // This doesn't have to a conditional cleanup because we're going
 | |
|   // to pop it off in a second.
 | |
|   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
 | |
|                                             Ptr, OperatorDelete, ElementType);
 | |
| 
 | |
|   if (Dtor)
 | |
|     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
 | |
|                               /*ForVirtualBase=*/false,
 | |
|                               /*Delegating=*/false,
 | |
|                               Ptr);
 | |
|   else if (CGF.getLangOpts().ObjCAutoRefCount &&
 | |
|            ElementType->isObjCLifetimeType()) {
 | |
|     switch (ElementType.getObjCLifetime()) {
 | |
|     case Qualifiers::OCL_None:
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       break;
 | |
| 
 | |
|     case Qualifiers::OCL_Strong: {
 | |
|       // Load the pointer value.
 | |
|       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 
 | |
|                                              ElementType.isVolatileQualified());
 | |
|         
 | |
|       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
 | |
|       break;
 | |
|     }
 | |
|         
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       CGF.EmitARCDestroyWeak(Ptr);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|            
 | |
|   CGF.PopCleanupBlock();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// Calls the given 'operator delete' on an array of objects.
 | |
|   struct CallArrayDelete : EHScopeStack::Cleanup {
 | |
|     llvm::Value *Ptr;
 | |
|     const FunctionDecl *OperatorDelete;
 | |
|     llvm::Value *NumElements;
 | |
|     QualType ElementType;
 | |
|     CharUnits CookieSize;
 | |
| 
 | |
|     CallArrayDelete(llvm::Value *Ptr,
 | |
|                     const FunctionDecl *OperatorDelete,
 | |
|                     llvm::Value *NumElements,
 | |
|                     QualType ElementType,
 | |
|                     CharUnits CookieSize)
 | |
|       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
 | |
|         ElementType(ElementType), CookieSize(CookieSize) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       const FunctionProtoType *DeleteFTy =
 | |
|         OperatorDelete->getType()->getAs<FunctionProtoType>();
 | |
|       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
 | |
| 
 | |
|       CallArgList Args;
 | |
|       
 | |
|       // Pass the pointer as the first argument.
 | |
|       QualType VoidPtrTy = DeleteFTy->getParamType(0);
 | |
|       llvm::Value *DeletePtr
 | |
|         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
 | |
|       Args.add(RValue::get(DeletePtr), VoidPtrTy);
 | |
| 
 | |
|       // Pass the original requested size as the second argument.
 | |
|       if (DeleteFTy->getNumParams() == 2) {
 | |
|         QualType size_t = DeleteFTy->getParamType(1);
 | |
|         llvm::IntegerType *SizeTy
 | |
|           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
 | |
|         
 | |
|         CharUnits ElementTypeSize =
 | |
|           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
 | |
| 
 | |
|         // The size of an element, multiplied by the number of elements.
 | |
|         llvm::Value *Size
 | |
|           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
 | |
|         Size = CGF.Builder.CreateMul(Size, NumElements);
 | |
| 
 | |
|         // Plus the size of the cookie if applicable.
 | |
|         if (!CookieSize.isZero()) {
 | |
|           llvm::Value *CookieSizeV
 | |
|             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
 | |
|           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
 | |
|         }
 | |
| 
 | |
|         Args.add(RValue::get(Size), size_t);
 | |
|       }
 | |
| 
 | |
|       // Emit the call to delete.
 | |
|       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Emit the code for deleting an array of objects.
 | |
| static void EmitArrayDelete(CodeGenFunction &CGF,
 | |
|                             const CXXDeleteExpr *E,
 | |
|                             llvm::Value *deletedPtr,
 | |
|                             QualType elementType) {
 | |
|   llvm::Value *numElements = nullptr;
 | |
|   llvm::Value *allocatedPtr = nullptr;
 | |
|   CharUnits cookieSize;
 | |
|   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
 | |
|                                       numElements, allocatedPtr, cookieSize);
 | |
| 
 | |
|   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
 | |
| 
 | |
|   // Make sure that we call delete even if one of the dtors throws.
 | |
|   const FunctionDecl *operatorDelete = E->getOperatorDelete();
 | |
|   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
 | |
|                                            allocatedPtr, operatorDelete,
 | |
|                                            numElements, elementType,
 | |
|                                            cookieSize);
 | |
| 
 | |
|   // Destroy the elements.
 | |
|   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
 | |
|     assert(numElements && "no element count for a type with a destructor!");
 | |
| 
 | |
|     llvm::Value *arrayEnd =
 | |
|       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
 | |
| 
 | |
|     // Note that it is legal to allocate a zero-length array, and we
 | |
|     // can never fold the check away because the length should always
 | |
|     // come from a cookie.
 | |
|     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
 | |
|                          CGF.getDestroyer(dtorKind),
 | |
|                          /*checkZeroLength*/ true,
 | |
|                          CGF.needsEHCleanup(dtorKind));
 | |
|   }
 | |
| 
 | |
|   // Pop the cleanup block.
 | |
|   CGF.PopCleanupBlock();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
 | |
|   const Expr *Arg = E->getArgument();
 | |
|   llvm::Value *Ptr = EmitScalarExpr(Arg);
 | |
| 
 | |
|   // Null check the pointer.
 | |
|   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
 | |
|   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
 | |
| 
 | |
|   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
 | |
| 
 | |
|   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
 | |
|   EmitBlock(DeleteNotNull);
 | |
| 
 | |
|   // We might be deleting a pointer to array.  If so, GEP down to the
 | |
|   // first non-array element.
 | |
|   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
 | |
|   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
 | |
|   if (DeleteTy->isConstantArrayType()) {
 | |
|     llvm::Value *Zero = Builder.getInt32(0);
 | |
|     SmallVector<llvm::Value*,8> GEP;
 | |
| 
 | |
|     GEP.push_back(Zero); // point at the outermost array
 | |
| 
 | |
|     // For each layer of array type we're pointing at:
 | |
|     while (const ConstantArrayType *Arr
 | |
|              = getContext().getAsConstantArrayType(DeleteTy)) {
 | |
|       // 1. Unpeel the array type.
 | |
|       DeleteTy = Arr->getElementType();
 | |
| 
 | |
|       // 2. GEP to the first element of the array.
 | |
|       GEP.push_back(Zero);
 | |
|     }
 | |
| 
 | |
|     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
 | |
|   }
 | |
| 
 | |
|   assert(ConvertTypeForMem(DeleteTy) ==
 | |
|          cast<llvm::PointerType>(Ptr->getType())->getElementType());
 | |
| 
 | |
|   if (E->isArrayForm()) {
 | |
|     EmitArrayDelete(*this, E, Ptr, DeleteTy);
 | |
|   } else {
 | |
|     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
 | |
|                      E->isGlobalDelete());
 | |
|   }
 | |
| 
 | |
|   EmitBlock(DeleteEnd);
 | |
| }
 | |
| 
 | |
| static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
 | |
|                                          llvm::Type *StdTypeInfoPtrTy) {
 | |
|   // Get the vtable pointer.
 | |
|   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
 | |
| 
 | |
|   // C++ [expr.typeid]p2:
 | |
|   //   If the glvalue expression is obtained by applying the unary * operator to
 | |
|   //   a pointer and the pointer is a null pointer value, the typeid expression
 | |
|   //   throws the std::bad_typeid exception.
 | |
|   bool IsDeref = false;
 | |
|   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens()))
 | |
|     if (UO->getOpcode() == UO_Deref)
 | |
|       IsDeref = true;
 | |
| 
 | |
|   QualType SrcRecordTy = E->getType();
 | |
|   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(IsDeref, SrcRecordTy)) {
 | |
|     llvm::BasicBlock *BadTypeidBlock =
 | |
|         CGF.createBasicBlock("typeid.bad_typeid");
 | |
|     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
 | |
| 
 | |
|     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
 | |
|     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
 | |
| 
 | |
|     CGF.EmitBlock(BadTypeidBlock);
 | |
|     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
 | |
|     CGF.EmitBlock(EndBlock);
 | |
|   }
 | |
| 
 | |
|   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
 | |
|                                         StdTypeInfoPtrTy);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
 | |
|   llvm::Type *StdTypeInfoPtrTy = 
 | |
|     ConvertType(E->getType())->getPointerTo();
 | |
|   
 | |
|   if (E->isTypeOperand()) {
 | |
|     llvm::Constant *TypeInfo =
 | |
|         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
 | |
|     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.typeid]p2:
 | |
|   //   When typeid is applied to a glvalue expression whose type is a
 | |
|   //   polymorphic class type, the result refers to a std::type_info object
 | |
|   //   representing the type of the most derived object (that is, the dynamic
 | |
|   //   type) to which the glvalue refers.
 | |
|   if (E->isPotentiallyEvaluated())
 | |
|     return EmitTypeidFromVTable(*this, E->getExprOperand(), 
 | |
|                                 StdTypeInfoPtrTy);
 | |
| 
 | |
|   QualType OperandTy = E->getExprOperand()->getType();
 | |
|   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
 | |
|                                StdTypeInfoPtrTy);
 | |
| }
 | |
| 
 | |
| static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
 | |
|                                           QualType DestTy) {
 | |
|   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
 | |
|   if (DestTy->isPointerType())
 | |
|     return llvm::Constant::getNullValue(DestLTy);
 | |
| 
 | |
|   /// C++ [expr.dynamic.cast]p9:
 | |
|   ///   A failed cast to reference type throws std::bad_cast
 | |
|   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
 | |
|     return nullptr;
 | |
| 
 | |
|   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
 | |
|   return llvm::UndefValue::get(DestLTy);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
 | |
|                                               const CXXDynamicCastExpr *DCE) {
 | |
|   QualType DestTy = DCE->getTypeAsWritten();
 | |
| 
 | |
|   if (DCE->isAlwaysNull())
 | |
|     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
 | |
|       return T;
 | |
| 
 | |
|   QualType SrcTy = DCE->getSubExpr()->getType();
 | |
| 
 | |
|   // C++ [expr.dynamic.cast]p7:
 | |
|   //   If T is "pointer to cv void," then the result is a pointer to the most
 | |
|   //   derived object pointed to by v.
 | |
|   const PointerType *DestPTy = DestTy->getAs<PointerType>();
 | |
| 
 | |
|   bool isDynamicCastToVoid;
 | |
|   QualType SrcRecordTy;
 | |
|   QualType DestRecordTy;
 | |
|   if (DestPTy) {
 | |
|     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
 | |
|     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
 | |
|     DestRecordTy = DestPTy->getPointeeType();
 | |
|   } else {
 | |
|     isDynamicCastToVoid = false;
 | |
|     SrcRecordTy = SrcTy;
 | |
|     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
 | |
| 
 | |
|   // C++ [expr.dynamic.cast]p4: 
 | |
|   //   If the value of v is a null pointer value in the pointer case, the result
 | |
|   //   is the null pointer value of type T.
 | |
|   bool ShouldNullCheckSrcValue =
 | |
|       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
 | |
|                                                          SrcRecordTy);
 | |
| 
 | |
|   llvm::BasicBlock *CastNull = nullptr;
 | |
|   llvm::BasicBlock *CastNotNull = nullptr;
 | |
|   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
 | |
|   
 | |
|   if (ShouldNullCheckSrcValue) {
 | |
|     CastNull = createBasicBlock("dynamic_cast.null");
 | |
|     CastNotNull = createBasicBlock("dynamic_cast.notnull");
 | |
| 
 | |
|     llvm::Value *IsNull = Builder.CreateIsNull(Value);
 | |
|     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
 | |
|     EmitBlock(CastNotNull);
 | |
|   }
 | |
| 
 | |
|   if (isDynamicCastToVoid) {
 | |
|     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
 | |
|                                                   DestTy);
 | |
|   } else {
 | |
|     assert(DestRecordTy->isRecordType() &&
 | |
|            "destination type must be a record type!");
 | |
|     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
 | |
|                                                 DestTy, DestRecordTy, CastEnd);
 | |
|   }
 | |
| 
 | |
|   if (ShouldNullCheckSrcValue) {
 | |
|     EmitBranch(CastEnd);
 | |
| 
 | |
|     EmitBlock(CastNull);
 | |
|     EmitBranch(CastEnd);
 | |
|   }
 | |
| 
 | |
|   EmitBlock(CastEnd);
 | |
| 
 | |
|   if (ShouldNullCheckSrcValue) {
 | |
|     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
 | |
|     PHI->addIncoming(Value, CastNotNull);
 | |
|     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
 | |
| 
 | |
|     Value = PHI;
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
 | |
|   RunCleanupsScope Scope(*this);
 | |
|   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
 | |
|                                  Slot.getAlignment());
 | |
| 
 | |
|   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
 | |
|   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
 | |
|                                          e = E->capture_init_end();
 | |
|        i != e; ++i, ++CurField) {
 | |
|     // Emit initialization
 | |
|     
 | |
|     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
 | |
|     ArrayRef<VarDecl *> ArrayIndexes;
 | |
|     if (CurField->getType()->isArrayType())
 | |
|       ArrayIndexes = E->getCaptureInitIndexVars(i);
 | |
|     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
 | |
|   }
 | |
| }
 |