2153 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2153 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Stmt nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/PrettyStackTrace.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Sema/LoopHint.h"
 | |
| #include "clang/Sema/SemaDiagnostic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Statement Emission
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void CodeGenFunction::EmitStopPoint(const Stmt *S) {
 | |
|   if (CGDebugInfo *DI = getDebugInfo()) {
 | |
|     SourceLocation Loc;
 | |
|     Loc = S->getLocStart();
 | |
|     DI->EmitLocation(Builder, Loc);
 | |
| 
 | |
|     LastStopPoint = Loc;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStmt(const Stmt *S) {
 | |
|   assert(S && "Null statement?");
 | |
|   PGO.setCurrentStmt(S);
 | |
| 
 | |
|   // These statements have their own debug info handling.
 | |
|   if (EmitSimpleStmt(S))
 | |
|     return;
 | |
| 
 | |
|   // Check if we are generating unreachable code.
 | |
|   if (!HaveInsertPoint()) {
 | |
|     // If so, and the statement doesn't contain a label, then we do not need to
 | |
|     // generate actual code. This is safe because (1) the current point is
 | |
|     // unreachable, so we don't need to execute the code, and (2) we've already
 | |
|     // handled the statements which update internal data structures (like the
 | |
|     // local variable map) which could be used by subsequent statements.
 | |
|     if (!ContainsLabel(S)) {
 | |
|       // Verify that any decl statements were handled as simple, they may be in
 | |
|       // scope of subsequent reachable statements.
 | |
|       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, make a new block to hold the code.
 | |
|     EnsureInsertPoint();
 | |
|   }
 | |
| 
 | |
|   // Generate a stoppoint if we are emitting debug info.
 | |
|   EmitStopPoint(S);
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|   case Stmt::NoStmtClass:
 | |
|   case Stmt::CXXCatchStmtClass:
 | |
|   case Stmt::SEHExceptStmtClass:
 | |
|   case Stmt::SEHFinallyStmtClass:
 | |
|   case Stmt::MSDependentExistsStmtClass:
 | |
|     llvm_unreachable("invalid statement class to emit generically");
 | |
|   case Stmt::NullStmtClass:
 | |
|   case Stmt::CompoundStmtClass:
 | |
|   case Stmt::DeclStmtClass:
 | |
|   case Stmt::LabelStmtClass:
 | |
|   case Stmt::AttributedStmtClass:
 | |
|   case Stmt::GotoStmtClass:
 | |
|   case Stmt::BreakStmtClass:
 | |
|   case Stmt::ContinueStmtClass:
 | |
|   case Stmt::DefaultStmtClass:
 | |
|   case Stmt::CaseStmtClass:
 | |
|     llvm_unreachable("should have emitted these statements as simple");
 | |
| 
 | |
| #define STMT(Type, Base)
 | |
| #define ABSTRACT_STMT(Op)
 | |
| #define EXPR(Type, Base) \
 | |
|   case Stmt::Type##Class:
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   {
 | |
|     // Remember the block we came in on.
 | |
|     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
 | |
|     assert(incoming && "expression emission must have an insertion point");
 | |
| 
 | |
|     EmitIgnoredExpr(cast<Expr>(S));
 | |
| 
 | |
|     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
 | |
|     assert(outgoing && "expression emission cleared block!");
 | |
| 
 | |
|     // The expression emitters assume (reasonably!) that the insertion
 | |
|     // point is always set.  To maintain that, the call-emission code
 | |
|     // for noreturn functions has to enter a new block with no
 | |
|     // predecessors.  We want to kill that block and mark the current
 | |
|     // insertion point unreachable in the common case of a call like
 | |
|     // "exit();".  Since expression emission doesn't otherwise create
 | |
|     // blocks with no predecessors, we can just test for that.
 | |
|     // However, we must be careful not to do this to our incoming
 | |
|     // block, because *statement* emission does sometimes create
 | |
|     // reachable blocks which will have no predecessors until later in
 | |
|     // the function.  This occurs with, e.g., labels that are not
 | |
|     // reachable by fallthrough.
 | |
|     if (incoming != outgoing && outgoing->use_empty()) {
 | |
|       outgoing->eraseFromParent();
 | |
|       Builder.ClearInsertionPoint();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Stmt::IndirectGotoStmtClass:
 | |
|     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
 | |
| 
 | |
|   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
 | |
|   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
 | |
|   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
 | |
|   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
 | |
| 
 | |
|   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
 | |
| 
 | |
|   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
 | |
|   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
 | |
|   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
 | |
|   case Stmt::CapturedStmtClass: {
 | |
|     const CapturedStmt *CS = cast<CapturedStmt>(S);
 | |
|     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
 | |
|     }
 | |
|     break;
 | |
|   case Stmt::ObjCAtTryStmtClass:
 | |
|     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCAtCatchStmtClass:
 | |
|     llvm_unreachable(
 | |
|                     "@catch statements should be handled by EmitObjCAtTryStmt");
 | |
|   case Stmt::ObjCAtFinallyStmtClass:
 | |
|     llvm_unreachable(
 | |
|                   "@finally statements should be handled by EmitObjCAtTryStmt");
 | |
|   case Stmt::ObjCAtThrowStmtClass:
 | |
|     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCAtSynchronizedStmtClass:
 | |
|     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCForCollectionStmtClass:
 | |
|     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCAutoreleasePoolStmtClass:
 | |
|     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
 | |
|     break;
 | |
| 
 | |
|   case Stmt::CXXTryStmtClass:
 | |
|     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::CXXForRangeStmtClass:
 | |
|     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::SEHTryStmtClass:
 | |
|     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::OMPParallelDirectiveClass:
 | |
|     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
 | |
|     break;
 | |
|   case Stmt::OMPSimdDirectiveClass:
 | |
|     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
 | |
|     break;
 | |
|   case Stmt::OMPForDirectiveClass:
 | |
|     EmitOMPForDirective(cast<OMPForDirective>(*S));
 | |
|     break;
 | |
|   case Stmt::OMPSectionsDirectiveClass:
 | |
|     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
 | |
|     break;
 | |
|   case Stmt::OMPSectionDirectiveClass:
 | |
|     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
 | |
|     break;
 | |
|   case Stmt::OMPSingleDirectiveClass:
 | |
|     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
 | |
|   switch (S->getStmtClass()) {
 | |
|   default: return false;
 | |
|   case Stmt::NullStmtClass: break;
 | |
|   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
 | |
|   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
 | |
|   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
 | |
|   case Stmt::AttributedStmtClass:
 | |
|                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
 | |
|   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
 | |
|   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
 | |
|   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
 | |
|   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
 | |
|   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
 | |
| /// this captures the expression result of the last sub-statement and returns it
 | |
| /// (for use by the statement expression extension).
 | |
| llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
 | |
|                                                AggValueSlot AggSlot) {
 | |
|   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
 | |
|                              "LLVM IR generation of compound statement ('{}')");
 | |
| 
 | |
|   // Keep track of the current cleanup stack depth, including debug scopes.
 | |
|   LexicalScope Scope(*this, S.getSourceRange());
 | |
| 
 | |
|   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
 | |
| }
 | |
| 
 | |
| llvm::Value*
 | |
| CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
 | |
|                                               bool GetLast,
 | |
|                                               AggValueSlot AggSlot) {
 | |
| 
 | |
|   for (CompoundStmt::const_body_iterator I = S.body_begin(),
 | |
|        E = S.body_end()-GetLast; I != E; ++I)
 | |
|     EmitStmt(*I);
 | |
| 
 | |
|   llvm::Value *RetAlloca = nullptr;
 | |
|   if (GetLast) {
 | |
|     // We have to special case labels here.  They are statements, but when put
 | |
|     // at the end of a statement expression, they yield the value of their
 | |
|     // subexpression.  Handle this by walking through all labels we encounter,
 | |
|     // emitting them before we evaluate the subexpr.
 | |
|     const Stmt *LastStmt = S.body_back();
 | |
|     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
 | |
|       EmitLabel(LS->getDecl());
 | |
|       LastStmt = LS->getSubStmt();
 | |
|     }
 | |
| 
 | |
|     EnsureInsertPoint();
 | |
| 
 | |
|     QualType ExprTy = cast<Expr>(LastStmt)->getType();
 | |
|     if (hasAggregateEvaluationKind(ExprTy)) {
 | |
|       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
 | |
|     } else {
 | |
|       // We can't return an RValue here because there might be cleanups at
 | |
|       // the end of the StmtExpr.  Because of that, we have to emit the result
 | |
|       // here into a temporary alloca.
 | |
|       RetAlloca = CreateMemTemp(ExprTy);
 | |
|       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
 | |
|                        /*IsInit*/false);
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return RetAlloca;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
 | |
|   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
 | |
| 
 | |
|   // If there is a cleanup stack, then we it isn't worth trying to
 | |
|   // simplify this block (we would need to remove it from the scope map
 | |
|   // and cleanup entry).
 | |
|   if (!EHStack.empty())
 | |
|     return;
 | |
| 
 | |
|   // Can only simplify direct branches.
 | |
|   if (!BI || !BI->isUnconditional())
 | |
|     return;
 | |
| 
 | |
|   // Can only simplify empty blocks.
 | |
|   if (BI != BB->begin())
 | |
|     return;
 | |
| 
 | |
|   BB->replaceAllUsesWith(BI->getSuccessor(0));
 | |
|   BI->eraseFromParent();
 | |
|   BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
 | |
|   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Fall out of the current block (if necessary).
 | |
|   EmitBranch(BB);
 | |
| 
 | |
|   if (IsFinished && BB->use_empty()) {
 | |
|     delete BB;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Place the block after the current block, if possible, or else at
 | |
|   // the end of the function.
 | |
|   if (CurBB && CurBB->getParent())
 | |
|     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
 | |
|   else
 | |
|     CurFn->getBasicBlockList().push_back(BB);
 | |
|   Builder.SetInsertPoint(BB);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
 | |
|   // Emit a branch from the current block to the target one if this
 | |
|   // was a real block.  If this was just a fall-through block after a
 | |
|   // terminator, don't emit it.
 | |
|   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   if (!CurBB || CurBB->getTerminator()) {
 | |
|     // If there is no insert point or the previous block is already
 | |
|     // terminated, don't touch it.
 | |
|   } else {
 | |
|     // Otherwise, create a fall-through branch.
 | |
|     Builder.CreateBr(Target);
 | |
|   }
 | |
| 
 | |
|   Builder.ClearInsertionPoint();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
 | |
|   bool inserted = false;
 | |
|   for (llvm::User *u : block->users()) {
 | |
|     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
 | |
|       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
 | |
|       inserted = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!inserted)
 | |
|     CurFn->getBasicBlockList().push_back(block);
 | |
| 
 | |
|   Builder.SetInsertPoint(block);
 | |
| }
 | |
| 
 | |
| CodeGenFunction::JumpDest
 | |
| CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
 | |
|   JumpDest &Dest = LabelMap[D];
 | |
|   if (Dest.isValid()) return Dest;
 | |
| 
 | |
|   // Create, but don't insert, the new block.
 | |
|   Dest = JumpDest(createBasicBlock(D->getName()),
 | |
|                   EHScopeStack::stable_iterator::invalid(),
 | |
|                   NextCleanupDestIndex++);
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitLabel(const LabelDecl *D) {
 | |
|   // Add this label to the current lexical scope if we're within any
 | |
|   // normal cleanups.  Jumps "in" to this label --- when permitted by
 | |
|   // the language --- may need to be routed around such cleanups.
 | |
|   if (EHStack.hasNormalCleanups() && CurLexicalScope)
 | |
|     CurLexicalScope->addLabel(D);
 | |
| 
 | |
|   JumpDest &Dest = LabelMap[D];
 | |
| 
 | |
|   // If we didn't need a forward reference to this label, just go
 | |
|   // ahead and create a destination at the current scope.
 | |
|   if (!Dest.isValid()) {
 | |
|     Dest = getJumpDestInCurrentScope(D->getName());
 | |
| 
 | |
|   // Otherwise, we need to give this label a target depth and remove
 | |
|   // it from the branch-fixups list.
 | |
|   } else {
 | |
|     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
 | |
|     Dest.setScopeDepth(EHStack.stable_begin());
 | |
|     ResolveBranchFixups(Dest.getBlock());
 | |
|   }
 | |
| 
 | |
|   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
 | |
|   EmitBlock(Dest.getBlock());
 | |
|   Cnt.beginRegion(Builder);
 | |
| }
 | |
| 
 | |
| /// Change the cleanup scope of the labels in this lexical scope to
 | |
| /// match the scope of the enclosing context.
 | |
| void CodeGenFunction::LexicalScope::rescopeLabels() {
 | |
|   assert(!Labels.empty());
 | |
|   EHScopeStack::stable_iterator innermostScope
 | |
|     = CGF.EHStack.getInnermostNormalCleanup();
 | |
| 
 | |
|   // Change the scope depth of all the labels.
 | |
|   for (SmallVectorImpl<const LabelDecl*>::const_iterator
 | |
|          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
 | |
|     assert(CGF.LabelMap.count(*i));
 | |
|     JumpDest &dest = CGF.LabelMap.find(*i)->second;
 | |
|     assert(dest.getScopeDepth().isValid());
 | |
|     assert(innermostScope.encloses(dest.getScopeDepth()));
 | |
|     dest.setScopeDepth(innermostScope);
 | |
|   }
 | |
| 
 | |
|   // Reparent the labels if the new scope also has cleanups.
 | |
|   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
 | |
|     ParentScope->Labels.append(Labels.begin(), Labels.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
 | |
|   EmitLabel(S.getDecl());
 | |
|   EmitStmt(S.getSubStmt());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
 | |
|   const Stmt *SubStmt = S.getSubStmt();
 | |
|   switch (SubStmt->getStmtClass()) {
 | |
|   case Stmt::DoStmtClass:
 | |
|     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
 | |
|     break;
 | |
|   case Stmt::ForStmtClass:
 | |
|     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
 | |
|     break;
 | |
|   case Stmt::WhileStmtClass:
 | |
|     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
 | |
|     break;
 | |
|   case Stmt::CXXForRangeStmtClass:
 | |
|     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
 | |
|     break;
 | |
|   default:
 | |
|     EmitStmt(SubStmt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
 | |
|   // If this code is reachable then emit a stop point (if generating
 | |
|   // debug info). We have to do this ourselves because we are on the
 | |
|   // "simple" statement path.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
 | |
| }
 | |
| 
 | |
| 
 | |
| void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
 | |
|   if (const LabelDecl *Target = S.getConstantTarget()) {
 | |
|     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Ensure that we have an i8* for our PHI node.
 | |
|   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
 | |
|                                          Int8PtrTy, "addr");
 | |
|   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Get the basic block for the indirect goto.
 | |
|   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
 | |
| 
 | |
|   // The first instruction in the block has to be the PHI for the switch dest,
 | |
|   // add an entry for this branch.
 | |
|   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
 | |
| 
 | |
|   EmitBranch(IndGotoBB);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
 | |
|   // C99 6.8.4.1: The first substatement is executed if the expression compares
 | |
|   // unequal to 0.  The condition must be a scalar type.
 | |
|   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
 | |
|   RegionCounter Cnt = getPGORegionCounter(&S);
 | |
| 
 | |
|   if (S.getConditionVariable())
 | |
|     EmitAutoVarDecl(*S.getConditionVariable());
 | |
| 
 | |
|   // If the condition constant folds and can be elided, try to avoid emitting
 | |
|   // the condition and the dead arm of the if/else.
 | |
|   bool CondConstant;
 | |
|   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
 | |
|     // Figure out which block (then or else) is executed.
 | |
|     const Stmt *Executed = S.getThen();
 | |
|     const Stmt *Skipped  = S.getElse();
 | |
|     if (!CondConstant)  // Condition false?
 | |
|       std::swap(Executed, Skipped);
 | |
| 
 | |
|     // If the skipped block has no labels in it, just emit the executed block.
 | |
|     // This avoids emitting dead code and simplifies the CFG substantially.
 | |
|     if (!ContainsLabel(Skipped)) {
 | |
|       if (CondConstant)
 | |
|         Cnt.beginRegion(Builder);
 | |
|       if (Executed) {
 | |
|         RunCleanupsScope ExecutedScope(*this);
 | |
|         EmitStmt(Executed);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
 | |
|   // the conditional branch.
 | |
|   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
 | |
|   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
 | |
|   llvm::BasicBlock *ElseBlock = ContBlock;
 | |
|   if (S.getElse())
 | |
|     ElseBlock = createBasicBlock("if.else");
 | |
| 
 | |
|   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
 | |
| 
 | |
|   // Emit the 'then' code.
 | |
|   EmitBlock(ThenBlock);
 | |
|   Cnt.beginRegion(Builder);
 | |
|   {
 | |
|     RunCleanupsScope ThenScope(*this);
 | |
|     EmitStmt(S.getThen());
 | |
|   }
 | |
|   EmitBranch(ContBlock);
 | |
| 
 | |
|   // Emit the 'else' code if present.
 | |
|   if (const Stmt *Else = S.getElse()) {
 | |
|     // There is no need to emit line number for unconditional branch.
 | |
|     if (getDebugInfo())
 | |
|       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
 | |
|     EmitBlock(ElseBlock);
 | |
|     {
 | |
|       RunCleanupsScope ElseScope(*this);
 | |
|       EmitStmt(Else);
 | |
|     }
 | |
|     // There is no need to emit line number for unconditional branch.
 | |
|     if (getDebugInfo())
 | |
|       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
 | |
|     EmitBranch(ContBlock);
 | |
|   }
 | |
| 
 | |
|   // Emit the continuation block for code after the if.
 | |
|   EmitBlock(ContBlock, true);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
 | |
|                                       llvm::BranchInst *CondBr,
 | |
|                                       const ArrayRef<const Attr *> &Attrs) {
 | |
|   // Return if there are no hints.
 | |
|   if (Attrs.empty())
 | |
|     return;
 | |
| 
 | |
|   // Add vectorize and unroll hints to the metadata on the conditional branch.
 | |
|   SmallVector<llvm::Value *, 2> Metadata(1);
 | |
|   for (const auto *Attr : Attrs) {
 | |
|     const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
 | |
| 
 | |
|     // Skip non loop hint attributes
 | |
|     if (!LH)
 | |
|       continue;
 | |
| 
 | |
|     LoopHintAttr::OptionType Option = LH->getOption();
 | |
|     int ValueInt = LH->getValue();
 | |
| 
 | |
|     const char *MetadataName;
 | |
|     switch (Option) {
 | |
|     case LoopHintAttr::Vectorize:
 | |
|     case LoopHintAttr::VectorizeWidth:
 | |
|       MetadataName = "llvm.loop.vectorize.width";
 | |
|       break;
 | |
|     case LoopHintAttr::Interleave:
 | |
|     case LoopHintAttr::InterleaveCount:
 | |
|       MetadataName = "llvm.loop.vectorize.unroll";
 | |
|       break;
 | |
|     case LoopHintAttr::Unroll:
 | |
|       MetadataName = "llvm.loop.unroll.enable";
 | |
|       break;
 | |
|     case LoopHintAttr::UnrollCount:
 | |
|       MetadataName = "llvm.loop.unroll.count";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     llvm::Value *Value;
 | |
|     llvm::MDString *Name;
 | |
|     switch (Option) {
 | |
|     case LoopHintAttr::Vectorize:
 | |
|     case LoopHintAttr::Interleave:
 | |
|       if (ValueInt == 1) {
 | |
|         // FIXME: In the future I will modifiy the behavior of the metadata
 | |
|         // so we can enable/disable vectorization and interleaving separately.
 | |
|         Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
 | |
|         Value = Builder.getTrue();
 | |
|         break;
 | |
|       }
 | |
|       // Vectorization/interleaving is disabled, set width/count to 1.
 | |
|       ValueInt = 1;
 | |
|       // Fallthrough.
 | |
|     case LoopHintAttr::VectorizeWidth:
 | |
|     case LoopHintAttr::InterleaveCount:
 | |
|       Name = llvm::MDString::get(Context, MetadataName);
 | |
|       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
 | |
|       break;
 | |
|     case LoopHintAttr::Unroll:
 | |
|       Name = llvm::MDString::get(Context, MetadataName);
 | |
|       Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue();
 | |
|       break;
 | |
|     case LoopHintAttr::UnrollCount:
 | |
|       Name = llvm::MDString::get(Context, MetadataName);
 | |
|       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SmallVector<llvm::Value *, 2> OpValues;
 | |
|     OpValues.push_back(Name);
 | |
|     OpValues.push_back(Value);
 | |
| 
 | |
|     // Set or overwrite metadata indicated by Name.
 | |
|     Metadata.push_back(llvm::MDNode::get(Context, OpValues));
 | |
|   }
 | |
| 
 | |
|   if (!Metadata.empty()) {
 | |
|     // Add llvm.loop MDNode to CondBr.
 | |
|     llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
 | |
|     LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
 | |
| 
 | |
|     CondBr->setMetadata("llvm.loop", LoopID);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
 | |
|                                     const ArrayRef<const Attr *> &WhileAttrs) {
 | |
|   RegionCounter Cnt = getPGORegionCounter(&S);
 | |
| 
 | |
|   // Emit the header for the loop, which will also become
 | |
|   // the continue target.
 | |
|   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
 | |
|   EmitBlock(LoopHeader.getBlock());
 | |
| 
 | |
|   LoopStack.push(LoopHeader.getBlock());
 | |
| 
 | |
|   // Create an exit block for when the condition fails, which will
 | |
|   // also become the break target.
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
 | |
| 
 | |
|   // C++ [stmt.while]p2:
 | |
|   //   When the condition of a while statement is a declaration, the
 | |
|   //   scope of the variable that is declared extends from its point
 | |
|   //   of declaration (3.3.2) to the end of the while statement.
 | |
|   //   [...]
 | |
|   //   The object created in a condition is destroyed and created
 | |
|   //   with each iteration of the loop.
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
| 
 | |
|   if (S.getConditionVariable())
 | |
|     EmitAutoVarDecl(*S.getConditionVariable());
 | |
| 
 | |
|   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
 | |
|   // evaluation of the controlling expression takes place before each
 | |
|   // execution of the loop body.
 | |
|   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
| 
 | |
|   // while(1) is common, avoid extra exit blocks.  Be sure
 | |
|   // to correctly handle break/continue though.
 | |
|   bool EmitBoolCondBranch = true;
 | |
|   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
 | |
|     if (C->isOne())
 | |
|       EmitBoolCondBranch = false;
 | |
| 
 | |
|   // As long as the condition is true, go to the loop body.
 | |
|   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
 | |
|   if (EmitBoolCondBranch) {
 | |
|     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
 | |
|     if (ConditionScope.requiresCleanups())
 | |
|       ExitBlock = createBasicBlock("while.exit");
 | |
|     llvm::BranchInst *CondBr =
 | |
|         Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
 | |
|                              PGO.createLoopWeights(S.getCond(), Cnt));
 | |
| 
 | |
|     if (ExitBlock != LoopExit.getBlock()) {
 | |
|       EmitBlock(ExitBlock);
 | |
|       EmitBranchThroughCleanup(LoopExit);
 | |
|     }
 | |
| 
 | |
|     // Attach metadata to loop body conditional branch.
 | |
|     EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
 | |
|   }
 | |
| 
 | |
|   // Emit the loop body.  We have to emit this in a cleanup scope
 | |
|   // because it might be a singleton DeclStmt.
 | |
|   {
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitBlock(LoopBody);
 | |
|     Cnt.beginRegion(Builder);
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   // Immediately force cleanup.
 | |
|   ConditionScope.ForceCleanup();
 | |
| 
 | |
|   // Branch to the loop header again.
 | |
|   EmitBranch(LoopHeader.getBlock());
 | |
| 
 | |
|   LoopStack.pop();
 | |
| 
 | |
|   // Emit the exit block.
 | |
|   EmitBlock(LoopExit.getBlock(), true);
 | |
| 
 | |
|   // The LoopHeader typically is just a branch if we skipped emitting
 | |
|   // a branch, try to erase it.
 | |
|   if (!EmitBoolCondBranch)
 | |
|     SimplifyForwardingBlocks(LoopHeader.getBlock());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDoStmt(const DoStmt &S,
 | |
|                                  const ArrayRef<const Attr *> &DoAttrs) {
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
 | |
|   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
 | |
| 
 | |
|   RegionCounter Cnt = getPGORegionCounter(&S);
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
 | |
| 
 | |
|   // Emit the body of the loop.
 | |
|   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
 | |
| 
 | |
|   LoopStack.push(LoopBody);
 | |
| 
 | |
|   EmitBlockWithFallThrough(LoopBody, Cnt);
 | |
|   {
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   EmitBlock(LoopCond.getBlock());
 | |
| 
 | |
|   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
 | |
|   // after each execution of the loop body."
 | |
| 
 | |
|   // Evaluate the conditional in the while header.
 | |
|   // C99 6.8.5p2/p4: The first substatement is executed if the expression
 | |
|   // compares unequal to 0.  The condition must be a scalar type.
 | |
|   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
 | |
|   // to correctly handle break/continue though.
 | |
|   bool EmitBoolCondBranch = true;
 | |
|   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
 | |
|     if (C->isZero())
 | |
|       EmitBoolCondBranch = false;
 | |
| 
 | |
|   // As long as the condition is true, iterate the loop.
 | |
|   if (EmitBoolCondBranch) {
 | |
|     llvm::BranchInst *CondBr =
 | |
|         Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
 | |
|                              PGO.createLoopWeights(S.getCond(), Cnt));
 | |
| 
 | |
|     // Attach metadata to loop body conditional branch.
 | |
|     EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
 | |
|   }
 | |
| 
 | |
|   LoopStack.pop();
 | |
| 
 | |
|   // Emit the exit block.
 | |
|   EmitBlock(LoopExit.getBlock());
 | |
| 
 | |
|   // The DoCond block typically is just a branch if we skipped
 | |
|   // emitting a branch, try to erase it.
 | |
|   if (!EmitBoolCondBranch)
 | |
|     SimplifyForwardingBlocks(LoopCond.getBlock());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitForStmt(const ForStmt &S,
 | |
|                                   const ArrayRef<const Attr *> &ForAttrs) {
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
 | |
| 
 | |
|   RunCleanupsScope ForScope(*this);
 | |
| 
 | |
|   CGDebugInfo *DI = getDebugInfo();
 | |
|   if (DI)
 | |
|     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
 | |
| 
 | |
|   // Evaluate the first part before the loop.
 | |
|   if (S.getInit())
 | |
|     EmitStmt(S.getInit());
 | |
| 
 | |
|   RegionCounter Cnt = getPGORegionCounter(&S);
 | |
| 
 | |
|   // Start the loop with a block that tests the condition.
 | |
|   // If there's an increment, the continue scope will be overwritten
 | |
|   // later.
 | |
|   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
 | |
|   llvm::BasicBlock *CondBlock = Continue.getBlock();
 | |
|   EmitBlock(CondBlock);
 | |
| 
 | |
|   LoopStack.push(CondBlock);
 | |
| 
 | |
|   // If the for loop doesn't have an increment we can just use the
 | |
|   // condition as the continue block.  Otherwise we'll need to create
 | |
|   // a block for it (in the current scope, i.e. in the scope of the
 | |
|   // condition), and that we will become our continue block.
 | |
|   if (S.getInc())
 | |
|     Continue = getJumpDestInCurrentScope("for.inc");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
 | |
| 
 | |
|   // Create a cleanup scope for the condition variable cleanups.
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
| 
 | |
|   if (S.getCond()) {
 | |
|     // If the for statement has a condition scope, emit the local variable
 | |
|     // declaration.
 | |
|     if (S.getConditionVariable()) {
 | |
|       EmitAutoVarDecl(*S.getConditionVariable());
 | |
|     }
 | |
| 
 | |
|     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
 | |
|     // If there are any cleanups between here and the loop-exit scope,
 | |
|     // create a block to stage a loop exit along.
 | |
|     if (ForScope.requiresCleanups())
 | |
|       ExitBlock = createBasicBlock("for.cond.cleanup");
 | |
| 
 | |
|     // As long as the condition is true, iterate the loop.
 | |
|     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
 | |
| 
 | |
|     // C99 6.8.5p2/p4: The first substatement is executed if the expression
 | |
|     // compares unequal to 0.  The condition must be a scalar type.
 | |
|     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
|     llvm::BranchInst *CondBr =
 | |
|         Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
 | |
|                              PGO.createLoopWeights(S.getCond(), Cnt));
 | |
| 
 | |
|     // Attach metadata to loop body conditional branch.
 | |
|     EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
 | |
| 
 | |
|     if (ExitBlock != LoopExit.getBlock()) {
 | |
|       EmitBlock(ExitBlock);
 | |
|       EmitBranchThroughCleanup(LoopExit);
 | |
|     }
 | |
| 
 | |
|     EmitBlock(ForBody);
 | |
|   } else {
 | |
|     // Treat it as a non-zero constant.  Don't even create a new block for the
 | |
|     // body, just fall into it.
 | |
|   }
 | |
|   Cnt.beginRegion(Builder);
 | |
| 
 | |
|   {
 | |
|     // Create a separate cleanup scope for the body, in case it is not
 | |
|     // a compound statement.
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   // If there is an increment, emit it next.
 | |
|   if (S.getInc()) {
 | |
|     EmitBlock(Continue.getBlock());
 | |
|     EmitStmt(S.getInc());
 | |
|   }
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   ConditionScope.ForceCleanup();
 | |
|   EmitBranch(CondBlock);
 | |
| 
 | |
|   ForScope.ForceCleanup();
 | |
| 
 | |
|   if (DI)
 | |
|     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
 | |
| 
 | |
|   LoopStack.pop();
 | |
| 
 | |
|   // Emit the fall-through block.
 | |
|   EmitBlock(LoopExit.getBlock(), true);
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
 | |
|                                      const ArrayRef<const Attr *> &ForAttrs) {
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
 | |
| 
 | |
|   RunCleanupsScope ForScope(*this);
 | |
| 
 | |
|   CGDebugInfo *DI = getDebugInfo();
 | |
|   if (DI)
 | |
|     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
 | |
| 
 | |
|   // Evaluate the first pieces before the loop.
 | |
|   EmitStmt(S.getRangeStmt());
 | |
|   EmitStmt(S.getBeginEndStmt());
 | |
| 
 | |
|   RegionCounter Cnt = getPGORegionCounter(&S);
 | |
| 
 | |
|   // Start the loop with a block that tests the condition.
 | |
|   // If there's an increment, the continue scope will be overwritten
 | |
|   // later.
 | |
|   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
 | |
|   EmitBlock(CondBlock);
 | |
| 
 | |
|   LoopStack.push(CondBlock);
 | |
| 
 | |
|   // If there are any cleanups between here and the loop-exit scope,
 | |
|   // create a block to stage a loop exit along.
 | |
|   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
 | |
|   if (ForScope.requiresCleanups())
 | |
|     ExitBlock = createBasicBlock("for.cond.cleanup");
 | |
| 
 | |
|   // The loop body, consisting of the specified body and the loop variable.
 | |
|   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
 | |
| 
 | |
|   // The body is executed if the expression, contextually converted
 | |
|   // to bool, is true.
 | |
|   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
|   llvm::BranchInst *CondBr = Builder.CreateCondBr(
 | |
|       BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
 | |
| 
 | |
|   // Attach metadata to loop body conditional branch.
 | |
|   EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
 | |
| 
 | |
|   if (ExitBlock != LoopExit.getBlock()) {
 | |
|     EmitBlock(ExitBlock);
 | |
|     EmitBranchThroughCleanup(LoopExit);
 | |
|   }
 | |
| 
 | |
|   EmitBlock(ForBody);
 | |
|   Cnt.beginRegion(Builder);
 | |
| 
 | |
|   // Create a block for the increment. In case of a 'continue', we jump there.
 | |
|   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
 | |
| 
 | |
|   {
 | |
|     // Create a separate cleanup scope for the loop variable and body.
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitStmt(S.getLoopVarStmt());
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   // If there is an increment, emit it next.
 | |
|   EmitBlock(Continue.getBlock());
 | |
|   EmitStmt(S.getInc());
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   EmitBranch(CondBlock);
 | |
| 
 | |
|   ForScope.ForceCleanup();
 | |
| 
 | |
|   if (DI)
 | |
|     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
 | |
| 
 | |
|   LoopStack.pop();
 | |
| 
 | |
|   // Emit the fall-through block.
 | |
|   EmitBlock(LoopExit.getBlock(), true);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
 | |
|   if (RV.isScalar()) {
 | |
|     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
 | |
|   } else if (RV.isAggregate()) {
 | |
|     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
 | |
|   } else {
 | |
|     EmitStoreOfComplex(RV.getComplexVal(),
 | |
|                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
 | |
|                        /*init*/ true);
 | |
|   }
 | |
|   EmitBranchThroughCleanup(ReturnBlock);
 | |
| }
 | |
| 
 | |
| /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
 | |
| /// if the function returns void, or may be missing one if the function returns
 | |
| /// non-void.  Fun stuff :).
 | |
| void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
 | |
|   // Emit the result value, even if unused, to evalute the side effects.
 | |
|   const Expr *RV = S.getRetValue();
 | |
| 
 | |
|   // Treat block literals in a return expression as if they appeared
 | |
|   // in their own scope.  This permits a small, easily-implemented
 | |
|   // exception to our over-conservative rules about not jumping to
 | |
|   // statements following block literals with non-trivial cleanups.
 | |
|   RunCleanupsScope cleanupScope(*this);
 | |
|   if (const ExprWithCleanups *cleanups =
 | |
|         dyn_cast_or_null<ExprWithCleanups>(RV)) {
 | |
|     enterFullExpression(cleanups);
 | |
|     RV = cleanups->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   // FIXME: Clean this up by using an LValue for ReturnTemp,
 | |
|   // EmitStoreThroughLValue, and EmitAnyExpr.
 | |
|   if (getLangOpts().ElideConstructors &&
 | |
|       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
 | |
|     // Apply the named return value optimization for this return statement,
 | |
|     // which means doing nothing: the appropriate result has already been
 | |
|     // constructed into the NRVO variable.
 | |
| 
 | |
|     // If there is an NRVO flag for this variable, set it to 1 into indicate
 | |
|     // that the cleanup code should not destroy the variable.
 | |
|     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
 | |
|       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
 | |
|   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
 | |
|     // Make sure not to return anything, but evaluate the expression
 | |
|     // for side effects.
 | |
|     if (RV)
 | |
|       EmitAnyExpr(RV);
 | |
|   } else if (!RV) {
 | |
|     // Do nothing (return value is left uninitialized)
 | |
|   } else if (FnRetTy->isReferenceType()) {
 | |
|     // If this function returns a reference, take the address of the expression
 | |
|     // rather than the value.
 | |
|     RValue Result = EmitReferenceBindingToExpr(RV);
 | |
|     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
 | |
|   } else {
 | |
|     switch (getEvaluationKind(RV->getType())) {
 | |
|     case TEK_Scalar:
 | |
|       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
 | |
|       break;
 | |
|     case TEK_Complex:
 | |
|       EmitComplexExprIntoLValue(RV,
 | |
|                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
 | |
|                                 /*isInit*/ true);
 | |
|       break;
 | |
|     case TEK_Aggregate: {
 | |
|       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
 | |
|       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
 | |
|                                             Qualifiers(),
 | |
|                                             AggValueSlot::IsDestructed,
 | |
|                                             AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                             AggValueSlot::IsNotAliased));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ++NumReturnExprs;
 | |
|   if (!RV || RV->isEvaluatable(getContext()))
 | |
|     ++NumSimpleReturnExprs;
 | |
| 
 | |
|   cleanupScope.ForceCleanup();
 | |
|   EmitBranchThroughCleanup(ReturnBlock);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
 | |
|   // As long as debug info is modeled with instructions, we have to ensure we
 | |
|   // have a place to insert here and write the stop point here.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   for (const auto *I : S.decls())
 | |
|     EmitDecl(*I);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
 | |
|   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
 | |
| 
 | |
|   // If this code is reachable then emit a stop point (if generating
 | |
|   // debug info). We have to do this ourselves because we are on the
 | |
|   // "simple" statement path.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
 | |
|   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
 | |
| 
 | |
|   // If this code is reachable then emit a stop point (if generating
 | |
|   // debug info). We have to do this ourselves because we are on the
 | |
|   // "simple" statement path.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
 | |
| }
 | |
| 
 | |
| /// EmitCaseStmtRange - If case statement range is not too big then
 | |
| /// add multiple cases to switch instruction, one for each value within
 | |
| /// the range. If range is too big then emit "if" condition check.
 | |
| void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
 | |
|   assert(S.getRHS() && "Expected RHS value in CaseStmt");
 | |
| 
 | |
|   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
 | |
|   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
 | |
| 
 | |
|   RegionCounter CaseCnt = getPGORegionCounter(&S);
 | |
| 
 | |
|   // Emit the code for this case. We do this first to make sure it is
 | |
|   // properly chained from our predecessor before generating the
 | |
|   // switch machinery to enter this block.
 | |
|   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
 | |
|   EmitBlockWithFallThrough(CaseDest, CaseCnt);
 | |
|   EmitStmt(S.getSubStmt());
 | |
| 
 | |
|   // If range is empty, do nothing.
 | |
|   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
 | |
|     return;
 | |
| 
 | |
|   llvm::APInt Range = RHS - LHS;
 | |
|   // FIXME: parameters such as this should not be hardcoded.
 | |
|   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
 | |
|     // Range is small enough to add multiple switch instruction cases.
 | |
|     uint64_t Total = CaseCnt.getCount();
 | |
|     unsigned NCases = Range.getZExtValue() + 1;
 | |
|     // We only have one region counter for the entire set of cases here, so we
 | |
|     // need to divide the weights evenly between the generated cases, ensuring
 | |
|     // that the total weight is preserved. E.g., a weight of 5 over three cases
 | |
|     // will be distributed as weights of 2, 2, and 1.
 | |
|     uint64_t Weight = Total / NCases, Rem = Total % NCases;
 | |
|     for (unsigned I = 0; I != NCases; ++I) {
 | |
|       if (SwitchWeights)
 | |
|         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
 | |
|       if (Rem)
 | |
|         Rem--;
 | |
|       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
 | |
|       LHS++;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The range is too big. Emit "if" condition into a new block,
 | |
|   // making sure to save and restore the current insertion point.
 | |
|   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Push this test onto the chain of range checks (which terminates
 | |
|   // in the default basic block). The switch's default will be changed
 | |
|   // to the top of this chain after switch emission is complete.
 | |
|   llvm::BasicBlock *FalseDest = CaseRangeBlock;
 | |
|   CaseRangeBlock = createBasicBlock("sw.caserange");
 | |
| 
 | |
|   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
 | |
|   Builder.SetInsertPoint(CaseRangeBlock);
 | |
| 
 | |
|   // Emit range check.
 | |
|   llvm::Value *Diff =
 | |
|     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
 | |
|   llvm::Value *Cond =
 | |
|     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
 | |
| 
 | |
|   llvm::MDNode *Weights = nullptr;
 | |
|   if (SwitchWeights) {
 | |
|     uint64_t ThisCount = CaseCnt.getCount();
 | |
|     uint64_t DefaultCount = (*SwitchWeights)[0];
 | |
|     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
 | |
| 
 | |
|     // Since we're chaining the switch default through each large case range, we
 | |
|     // need to update the weight for the default, ie, the first case, to include
 | |
|     // this case.
 | |
|     (*SwitchWeights)[0] += ThisCount;
 | |
|   }
 | |
|   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
 | |
| 
 | |
|   // Restore the appropriate insertion point.
 | |
|   if (RestoreBB)
 | |
|     Builder.SetInsertPoint(RestoreBB);
 | |
|   else
 | |
|     Builder.ClearInsertionPoint();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
 | |
|   // If there is no enclosing switch instance that we're aware of, then this
 | |
|   // case statement and its block can be elided.  This situation only happens
 | |
|   // when we've constant-folded the switch, are emitting the constant case,
 | |
|   // and part of the constant case includes another case statement.  For
 | |
|   // instance: switch (4) { case 4: do { case 5: } while (1); }
 | |
|   if (!SwitchInsn) {
 | |
|     EmitStmt(S.getSubStmt());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle case ranges.
 | |
|   if (S.getRHS()) {
 | |
|     EmitCaseStmtRange(S);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   RegionCounter CaseCnt = getPGORegionCounter(&S);
 | |
|   llvm::ConstantInt *CaseVal =
 | |
|     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
 | |
| 
 | |
|   // If the body of the case is just a 'break', try to not emit an empty block.
 | |
|   // If we're profiling or we're not optimizing, leave the block in for better
 | |
|   // debug and coverage analysis.
 | |
|   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
 | |
|       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
 | |
|       isa<BreakStmt>(S.getSubStmt())) {
 | |
|     JumpDest Block = BreakContinueStack.back().BreakBlock;
 | |
| 
 | |
|     // Only do this optimization if there are no cleanups that need emitting.
 | |
|     if (isObviouslyBranchWithoutCleanups(Block)) {
 | |
|       if (SwitchWeights)
 | |
|         SwitchWeights->push_back(CaseCnt.getCount());
 | |
|       SwitchInsn->addCase(CaseVal, Block.getBlock());
 | |
| 
 | |
|       // If there was a fallthrough into this case, make sure to redirect it to
 | |
|       // the end of the switch as well.
 | |
|       if (Builder.GetInsertBlock()) {
 | |
|         Builder.CreateBr(Block.getBlock());
 | |
|         Builder.ClearInsertionPoint();
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
 | |
|   EmitBlockWithFallThrough(CaseDest, CaseCnt);
 | |
|   if (SwitchWeights)
 | |
|     SwitchWeights->push_back(CaseCnt.getCount());
 | |
|   SwitchInsn->addCase(CaseVal, CaseDest);
 | |
| 
 | |
|   // Recursively emitting the statement is acceptable, but is not wonderful for
 | |
|   // code where we have many case statements nested together, i.e.:
 | |
|   //  case 1:
 | |
|   //    case 2:
 | |
|   //      case 3: etc.
 | |
|   // Handling this recursively will create a new block for each case statement
 | |
|   // that falls through to the next case which is IR intensive.  It also causes
 | |
|   // deep recursion which can run into stack depth limitations.  Handle
 | |
|   // sequential non-range case statements specially.
 | |
|   const CaseStmt *CurCase = &S;
 | |
|   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
 | |
| 
 | |
|   // Otherwise, iteratively add consecutive cases to this switch stmt.
 | |
|   while (NextCase && NextCase->getRHS() == nullptr) {
 | |
|     CurCase = NextCase;
 | |
|     llvm::ConstantInt *CaseVal =
 | |
|       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
 | |
| 
 | |
|     CaseCnt = getPGORegionCounter(NextCase);
 | |
|     if (SwitchWeights)
 | |
|       SwitchWeights->push_back(CaseCnt.getCount());
 | |
|     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
 | |
|       CaseDest = createBasicBlock("sw.bb");
 | |
|       EmitBlockWithFallThrough(CaseDest, CaseCnt);
 | |
|     }
 | |
| 
 | |
|     SwitchInsn->addCase(CaseVal, CaseDest);
 | |
|     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
 | |
|   }
 | |
| 
 | |
|   // Normal default recursion for non-cases.
 | |
|   EmitStmt(CurCase->getSubStmt());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
 | |
|   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
 | |
|   assert(DefaultBlock->empty() &&
 | |
|          "EmitDefaultStmt: Default block already defined?");
 | |
| 
 | |
|   RegionCounter Cnt = getPGORegionCounter(&S);
 | |
|   EmitBlockWithFallThrough(DefaultBlock, Cnt);
 | |
| 
 | |
|   EmitStmt(S.getSubStmt());
 | |
| }
 | |
| 
 | |
| /// CollectStatementsForCase - Given the body of a 'switch' statement and a
 | |
| /// constant value that is being switched on, see if we can dead code eliminate
 | |
| /// the body of the switch to a simple series of statements to emit.  Basically,
 | |
| /// on a switch (5) we want to find these statements:
 | |
| ///    case 5:
 | |
| ///      printf(...);    <--
 | |
| ///      ++i;            <--
 | |
| ///      break;
 | |
| ///
 | |
| /// and add them to the ResultStmts vector.  If it is unsafe to do this
 | |
| /// transformation (for example, one of the elided statements contains a label
 | |
| /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
 | |
| /// should include statements after it (e.g. the printf() line is a substmt of
 | |
| /// the case) then return CSFC_FallThrough.  If we handled it and found a break
 | |
| /// statement, then return CSFC_Success.
 | |
| ///
 | |
| /// If Case is non-null, then we are looking for the specified case, checking
 | |
| /// that nothing we jump over contains labels.  If Case is null, then we found
 | |
| /// the case and are looking for the break.
 | |
| ///
 | |
| /// If the recursive walk actually finds our Case, then we set FoundCase to
 | |
| /// true.
 | |
| ///
 | |
| enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
 | |
| static CSFC_Result CollectStatementsForCase(const Stmt *S,
 | |
|                                             const SwitchCase *Case,
 | |
|                                             bool &FoundCase,
 | |
|                               SmallVectorImpl<const Stmt*> &ResultStmts) {
 | |
|   // If this is a null statement, just succeed.
 | |
|   if (!S)
 | |
|     return Case ? CSFC_Success : CSFC_FallThrough;
 | |
| 
 | |
|   // If this is the switchcase (case 4: or default) that we're looking for, then
 | |
|   // we're in business.  Just add the substatement.
 | |
|   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
 | |
|     if (S == Case) {
 | |
|       FoundCase = true;
 | |
|       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
 | |
|                                       ResultStmts);
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is some other case or default statement, just ignore it.
 | |
|     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
 | |
|                                     ResultStmts);
 | |
|   }
 | |
| 
 | |
|   // If we are in the live part of the code and we found our break statement,
 | |
|   // return a success!
 | |
|   if (!Case && isa<BreakStmt>(S))
 | |
|     return CSFC_Success;
 | |
| 
 | |
|   // If this is a switch statement, then it might contain the SwitchCase, the
 | |
|   // break, or neither.
 | |
|   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
 | |
|     // Handle this as two cases: we might be looking for the SwitchCase (if so
 | |
|     // the skipped statements must be skippable) or we might already have it.
 | |
|     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
 | |
|     if (Case) {
 | |
|       // Keep track of whether we see a skipped declaration.  The code could be
 | |
|       // using the declaration even if it is skipped, so we can't optimize out
 | |
|       // the decl if the kept statements might refer to it.
 | |
|       bool HadSkippedDecl = false;
 | |
| 
 | |
|       // If we're looking for the case, just see if we can skip each of the
 | |
|       // substatements.
 | |
|       for (; Case && I != E; ++I) {
 | |
|         HadSkippedDecl |= isa<DeclStmt>(*I);
 | |
| 
 | |
|         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
 | |
|         case CSFC_Failure: return CSFC_Failure;
 | |
|         case CSFC_Success:
 | |
|           // A successful result means that either 1) that the statement doesn't
 | |
|           // have the case and is skippable, or 2) does contain the case value
 | |
|           // and also contains the break to exit the switch.  In the later case,
 | |
|           // we just verify the rest of the statements are elidable.
 | |
|           if (FoundCase) {
 | |
|             // If we found the case and skipped declarations, we can't do the
 | |
|             // optimization.
 | |
|             if (HadSkippedDecl)
 | |
|               return CSFC_Failure;
 | |
| 
 | |
|             for (++I; I != E; ++I)
 | |
|               if (CodeGenFunction::ContainsLabel(*I, true))
 | |
|                 return CSFC_Failure;
 | |
|             return CSFC_Success;
 | |
|           }
 | |
|           break;
 | |
|         case CSFC_FallThrough:
 | |
|           // If we have a fallthrough condition, then we must have found the
 | |
|           // case started to include statements.  Consider the rest of the
 | |
|           // statements in the compound statement as candidates for inclusion.
 | |
|           assert(FoundCase && "Didn't find case but returned fallthrough?");
 | |
|           // We recursively found Case, so we're not looking for it anymore.
 | |
|           Case = nullptr;
 | |
| 
 | |
|           // If we found the case and skipped declarations, we can't do the
 | |
|           // optimization.
 | |
|           if (HadSkippedDecl)
 | |
|             return CSFC_Failure;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we have statements in our range, then we know that the statements are
 | |
|     // live and need to be added to the set of statements we're tracking.
 | |
|     for (; I != E; ++I) {
 | |
|       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
 | |
|       case CSFC_Failure: return CSFC_Failure;
 | |
|       case CSFC_FallThrough:
 | |
|         // A fallthrough result means that the statement was simple and just
 | |
|         // included in ResultStmt, keep adding them afterwards.
 | |
|         break;
 | |
|       case CSFC_Success:
 | |
|         // A successful result means that we found the break statement and
 | |
|         // stopped statement inclusion.  We just ensure that any leftover stmts
 | |
|         // are skippable and return success ourselves.
 | |
|         for (++I; I != E; ++I)
 | |
|           if (CodeGenFunction::ContainsLabel(*I, true))
 | |
|             return CSFC_Failure;
 | |
|         return CSFC_Success;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Case ? CSFC_Success : CSFC_FallThrough;
 | |
|   }
 | |
| 
 | |
|   // Okay, this is some other statement that we don't handle explicitly, like a
 | |
|   // for statement or increment etc.  If we are skipping over this statement,
 | |
|   // just verify it doesn't have labels, which would make it invalid to elide.
 | |
|   if (Case) {
 | |
|     if (CodeGenFunction::ContainsLabel(S, true))
 | |
|       return CSFC_Failure;
 | |
|     return CSFC_Success;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we want to include this statement.  Everything is cool with that
 | |
|   // so long as it doesn't contain a break out of the switch we're in.
 | |
|   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
 | |
| 
 | |
|   // Otherwise, everything is great.  Include the statement and tell the caller
 | |
|   // that we fall through and include the next statement as well.
 | |
|   ResultStmts.push_back(S);
 | |
|   return CSFC_FallThrough;
 | |
| }
 | |
| 
 | |
| /// FindCaseStatementsForValue - Find the case statement being jumped to and
 | |
| /// then invoke CollectStatementsForCase to find the list of statements to emit
 | |
| /// for a switch on constant.  See the comment above CollectStatementsForCase
 | |
| /// for more details.
 | |
| static bool FindCaseStatementsForValue(const SwitchStmt &S,
 | |
|                                        const llvm::APSInt &ConstantCondValue,
 | |
|                                 SmallVectorImpl<const Stmt*> &ResultStmts,
 | |
|                                        ASTContext &C,
 | |
|                                        const SwitchCase *&ResultCase) {
 | |
|   // First step, find the switch case that is being branched to.  We can do this
 | |
|   // efficiently by scanning the SwitchCase list.
 | |
|   const SwitchCase *Case = S.getSwitchCaseList();
 | |
|   const DefaultStmt *DefaultCase = nullptr;
 | |
| 
 | |
|   for (; Case; Case = Case->getNextSwitchCase()) {
 | |
|     // It's either a default or case.  Just remember the default statement in
 | |
|     // case we're not jumping to any numbered cases.
 | |
|     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
 | |
|       DefaultCase = DS;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to see if this case is the one we're looking for.
 | |
|     const CaseStmt *CS = cast<CaseStmt>(Case);
 | |
|     // Don't handle case ranges yet.
 | |
|     if (CS->getRHS()) return false;
 | |
| 
 | |
|     // If we found our case, remember it as 'case'.
 | |
|     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a matching case, we use a default if it exists, or we
 | |
|   // elide the whole switch body!
 | |
|   if (!Case) {
 | |
|     // It is safe to elide the body of the switch if it doesn't contain labels
 | |
|     // etc.  If it is safe, return successfully with an empty ResultStmts list.
 | |
|     if (!DefaultCase)
 | |
|       return !CodeGenFunction::ContainsLabel(&S);
 | |
|     Case = DefaultCase;
 | |
|   }
 | |
| 
 | |
|   // Ok, we know which case is being jumped to, try to collect all the
 | |
|   // statements that follow it.  This can fail for a variety of reasons.  Also,
 | |
|   // check to see that the recursive walk actually found our case statement.
 | |
|   // Insane cases like this can fail to find it in the recursive walk since we
 | |
|   // don't handle every stmt kind:
 | |
|   // switch (4) {
 | |
|   //   while (1) {
 | |
|   //     case 4: ...
 | |
|   bool FoundCase = false;
 | |
|   ResultCase = Case;
 | |
|   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
 | |
|                                   ResultStmts) != CSFC_Failure &&
 | |
|          FoundCase;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
 | |
|   // Handle nested switch statements.
 | |
|   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
 | |
|   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
 | |
|   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
 | |
| 
 | |
|   // See if we can constant fold the condition of the switch and therefore only
 | |
|   // emit the live case statement (if any) of the switch.
 | |
|   llvm::APSInt ConstantCondValue;
 | |
|   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
 | |
|     SmallVector<const Stmt*, 4> CaseStmts;
 | |
|     const SwitchCase *Case = nullptr;
 | |
|     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
 | |
|                                    getContext(), Case)) {
 | |
|       if (Case) {
 | |
|         RegionCounter CaseCnt = getPGORegionCounter(Case);
 | |
|         CaseCnt.beginRegion(Builder);
 | |
|       }
 | |
|       RunCleanupsScope ExecutedScope(*this);
 | |
| 
 | |
|       // Emit the condition variable if needed inside the entire cleanup scope
 | |
|       // used by this special case for constant folded switches.
 | |
|       if (S.getConditionVariable())
 | |
|         EmitAutoVarDecl(*S.getConditionVariable());
 | |
| 
 | |
|       // At this point, we are no longer "within" a switch instance, so
 | |
|       // we can temporarily enforce this to ensure that any embedded case
 | |
|       // statements are not emitted.
 | |
|       SwitchInsn = nullptr;
 | |
| 
 | |
|       // Okay, we can dead code eliminate everything except this case.  Emit the
 | |
|       // specified series of statements and we're good.
 | |
|       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
 | |
|         EmitStmt(CaseStmts[i]);
 | |
|       RegionCounter ExitCnt = getPGORegionCounter(&S);
 | |
|       ExitCnt.beginRegion(Builder);
 | |
| 
 | |
|       // Now we want to restore the saved switch instance so that nested
 | |
|       // switches continue to function properly
 | |
|       SwitchInsn = SavedSwitchInsn;
 | |
| 
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
 | |
| 
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
|   if (S.getConditionVariable())
 | |
|     EmitAutoVarDecl(*S.getConditionVariable());
 | |
|   llvm::Value *CondV = EmitScalarExpr(S.getCond());
 | |
| 
 | |
|   // Create basic block to hold stuff that comes after switch
 | |
|   // statement. We also need to create a default block now so that
 | |
|   // explicit case ranges tests can have a place to jump to on
 | |
|   // failure.
 | |
|   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
 | |
|   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
 | |
|   if (PGO.haveRegionCounts()) {
 | |
|     // Walk the SwitchCase list to find how many there are.
 | |
|     uint64_t DefaultCount = 0;
 | |
|     unsigned NumCases = 0;
 | |
|     for (const SwitchCase *Case = S.getSwitchCaseList();
 | |
|          Case;
 | |
|          Case = Case->getNextSwitchCase()) {
 | |
|       if (isa<DefaultStmt>(Case))
 | |
|         DefaultCount = getPGORegionCounter(Case).getCount();
 | |
|       NumCases += 1;
 | |
|     }
 | |
|     SwitchWeights = new SmallVector<uint64_t, 16>();
 | |
|     SwitchWeights->reserve(NumCases);
 | |
|     // The default needs to be first. We store the edge count, so we already
 | |
|     // know the right weight.
 | |
|     SwitchWeights->push_back(DefaultCount);
 | |
|   }
 | |
|   CaseRangeBlock = DefaultBlock;
 | |
| 
 | |
|   // Clear the insertion point to indicate we are in unreachable code.
 | |
|   Builder.ClearInsertionPoint();
 | |
| 
 | |
|   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
 | |
|   // then reuse last ContinueBlock.
 | |
|   JumpDest OuterContinue;
 | |
|   if (!BreakContinueStack.empty())
 | |
|     OuterContinue = BreakContinueStack.back().ContinueBlock;
 | |
| 
 | |
|   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
 | |
| 
 | |
|   // Emit switch body.
 | |
|   EmitStmt(S.getBody());
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   // Update the default block in case explicit case range tests have
 | |
|   // been chained on top.
 | |
|   SwitchInsn->setDefaultDest(CaseRangeBlock);
 | |
| 
 | |
|   // If a default was never emitted:
 | |
|   if (!DefaultBlock->getParent()) {
 | |
|     // If we have cleanups, emit the default block so that there's a
 | |
|     // place to jump through the cleanups from.
 | |
|     if (ConditionScope.requiresCleanups()) {
 | |
|       EmitBlock(DefaultBlock);
 | |
| 
 | |
|     // Otherwise, just forward the default block to the switch end.
 | |
|     } else {
 | |
|       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
 | |
|       delete DefaultBlock;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConditionScope.ForceCleanup();
 | |
| 
 | |
|   // Emit continuation.
 | |
|   EmitBlock(SwitchExit.getBlock(), true);
 | |
|   RegionCounter ExitCnt = getPGORegionCounter(&S);
 | |
|   ExitCnt.beginRegion(Builder);
 | |
| 
 | |
|   if (SwitchWeights) {
 | |
|     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
 | |
|            "switch weights do not match switch cases");
 | |
|     // If there's only one jump destination there's no sense weighting it.
 | |
|     if (SwitchWeights->size() > 1)
 | |
|       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
 | |
|                               PGO.createBranchWeights(*SwitchWeights));
 | |
|     delete SwitchWeights;
 | |
|   }
 | |
|   SwitchInsn = SavedSwitchInsn;
 | |
|   SwitchWeights = SavedSwitchWeights;
 | |
|   CaseRangeBlock = SavedCRBlock;
 | |
| }
 | |
| 
 | |
| static std::string
 | |
| SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
 | |
|                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
 | |
|   std::string Result;
 | |
| 
 | |
|   while (*Constraint) {
 | |
|     switch (*Constraint) {
 | |
|     default:
 | |
|       Result += Target.convertConstraint(Constraint);
 | |
|       break;
 | |
|     // Ignore these
 | |
|     case '*':
 | |
|     case '?':
 | |
|     case '!':
 | |
|     case '=': // Will see this and the following in mult-alt constraints.
 | |
|     case '+':
 | |
|       break;
 | |
|     case '#': // Ignore the rest of the constraint alternative.
 | |
|       while (Constraint[1] && Constraint[1] != ',')
 | |
|         Constraint++;
 | |
|       break;
 | |
|     case ',':
 | |
|       Result += "|";
 | |
|       break;
 | |
|     case 'g':
 | |
|       Result += "imr";
 | |
|       break;
 | |
|     case '[': {
 | |
|       assert(OutCons &&
 | |
|              "Must pass output names to constraints with a symbolic name");
 | |
|       unsigned Index;
 | |
|       bool result = Target.resolveSymbolicName(Constraint,
 | |
|                                                &(*OutCons)[0],
 | |
|                                                OutCons->size(), Index);
 | |
|       assert(result && "Could not resolve symbolic name"); (void)result;
 | |
|       Result += llvm::utostr(Index);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     Constraint++;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
 | |
| /// as using a particular register add that as a constraint that will be used
 | |
| /// in this asm stmt.
 | |
| static std::string
 | |
| AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
 | |
|                        const TargetInfo &Target, CodeGenModule &CGM,
 | |
|                        const AsmStmt &Stmt) {
 | |
|   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
 | |
|   if (!AsmDeclRef)
 | |
|     return Constraint;
 | |
|   const ValueDecl &Value = *AsmDeclRef->getDecl();
 | |
|   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
 | |
|   if (!Variable)
 | |
|     return Constraint;
 | |
|   if (Variable->getStorageClass() != SC_Register)
 | |
|     return Constraint;
 | |
|   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
 | |
|   if (!Attr)
 | |
|     return Constraint;
 | |
|   StringRef Register = Attr->getLabel();
 | |
|   assert(Target.isValidGCCRegisterName(Register));
 | |
|   // We're using validateOutputConstraint here because we only care if
 | |
|   // this is a register constraint.
 | |
|   TargetInfo::ConstraintInfo Info(Constraint, "");
 | |
|   if (Target.validateOutputConstraint(Info) &&
 | |
|       !Info.allowsRegister()) {
 | |
|     CGM.ErrorUnsupported(&Stmt, "__asm__");
 | |
|     return Constraint;
 | |
|   }
 | |
|   // Canonicalize the register here before returning it.
 | |
|   Register = Target.getNormalizedGCCRegisterName(Register);
 | |
|   return "{" + Register.str() + "}";
 | |
| }
 | |
| 
 | |
| llvm::Value*
 | |
| CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
 | |
|                                     LValue InputValue, QualType InputType,
 | |
|                                     std::string &ConstraintStr,
 | |
|                                     SourceLocation Loc) {
 | |
|   llvm::Value *Arg;
 | |
|   if (Info.allowsRegister() || !Info.allowsMemory()) {
 | |
|     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
 | |
|       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
 | |
|     } else {
 | |
|       llvm::Type *Ty = ConvertType(InputType);
 | |
|       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
 | |
|       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
 | |
|         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
 | |
|         Ty = llvm::PointerType::getUnqual(Ty);
 | |
| 
 | |
|         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
 | |
|                                                        Ty));
 | |
|       } else {
 | |
|         Arg = InputValue.getAddress();
 | |
|         ConstraintStr += '*';
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     Arg = InputValue.getAddress();
 | |
|     ConstraintStr += '*';
 | |
|   }
 | |
| 
 | |
|   return Arg;
 | |
| }
 | |
| 
 | |
| llvm::Value* CodeGenFunction::EmitAsmInput(
 | |
|                                          const TargetInfo::ConstraintInfo &Info,
 | |
|                                            const Expr *InputExpr,
 | |
|                                            std::string &ConstraintStr) {
 | |
|   if (Info.allowsRegister() || !Info.allowsMemory())
 | |
|     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
 | |
|       return EmitScalarExpr(InputExpr);
 | |
| 
 | |
|   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
 | |
|   LValue Dest = EmitLValue(InputExpr);
 | |
|   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
 | |
|                             InputExpr->getExprLoc());
 | |
| }
 | |
| 
 | |
| /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
 | |
| /// asm call instruction.  The !srcloc MDNode contains a list of constant
 | |
| /// integers which are the source locations of the start of each line in the
 | |
| /// asm.
 | |
| static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
 | |
|                                       CodeGenFunction &CGF) {
 | |
|   SmallVector<llvm::Value *, 8> Locs;
 | |
|   // Add the location of the first line to the MDNode.
 | |
|   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
 | |
|                                         Str->getLocStart().getRawEncoding()));
 | |
|   StringRef StrVal = Str->getString();
 | |
|   if (!StrVal.empty()) {
 | |
|     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
 | |
|     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
 | |
| 
 | |
|     // Add the location of the start of each subsequent line of the asm to the
 | |
|     // MDNode.
 | |
|     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
 | |
|       if (StrVal[i] != '\n') continue;
 | |
|       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
 | |
|                                                       CGF.getTarget());
 | |
|       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
 | |
|                                             LineLoc.getRawEncoding()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
 | |
|   // Assemble the final asm string.
 | |
|   std::string AsmString = S.generateAsmString(getContext());
 | |
| 
 | |
|   // Get all the output and input constraints together.
 | |
|   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | |
|   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
 | |
|     StringRef Name;
 | |
|     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
 | |
|       Name = GAS->getOutputName(i);
 | |
|     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
 | |
|     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
 | |
|     assert(IsValid && "Failed to parse output constraint");
 | |
|     OutputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
 | |
|     StringRef Name;
 | |
|     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
 | |
|       Name = GAS->getInputName(i);
 | |
|     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
 | |
|     bool IsValid =
 | |
|       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
 | |
|                                           S.getNumOutputs(), Info);
 | |
|     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
 | |
|     InputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   std::string Constraints;
 | |
| 
 | |
|   std::vector<LValue> ResultRegDests;
 | |
|   std::vector<QualType> ResultRegQualTys;
 | |
|   std::vector<llvm::Type *> ResultRegTypes;
 | |
|   std::vector<llvm::Type *> ResultTruncRegTypes;
 | |
|   std::vector<llvm::Type *> ArgTypes;
 | |
|   std::vector<llvm::Value*> Args;
 | |
| 
 | |
|   // Keep track of inout constraints.
 | |
|   std::string InOutConstraints;
 | |
|   std::vector<llvm::Value*> InOutArgs;
 | |
|   std::vector<llvm::Type*> InOutArgTypes;
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
 | |
|     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
 | |
| 
 | |
|     // Simplify the output constraint.
 | |
|     std::string OutputConstraint(S.getOutputConstraint(i));
 | |
|     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
 | |
|                                           getTarget());
 | |
| 
 | |
|     const Expr *OutExpr = S.getOutputExpr(i);
 | |
|     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
 | |
| 
 | |
|     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
 | |
|                                               getTarget(), CGM, S);
 | |
| 
 | |
|     LValue Dest = EmitLValue(OutExpr);
 | |
|     if (!Constraints.empty())
 | |
|       Constraints += ',';
 | |
| 
 | |
|     // If this is a register output, then make the inline asm return it
 | |
|     // by-value.  If this is a memory result, return the value by-reference.
 | |
|     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
 | |
|       Constraints += "=" + OutputConstraint;
 | |
|       ResultRegQualTys.push_back(OutExpr->getType());
 | |
|       ResultRegDests.push_back(Dest);
 | |
|       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
 | |
|       ResultTruncRegTypes.push_back(ResultRegTypes.back());
 | |
| 
 | |
|       // If this output is tied to an input, and if the input is larger, then
 | |
|       // we need to set the actual result type of the inline asm node to be the
 | |
|       // same as the input type.
 | |
|       if (Info.hasMatchingInput()) {
 | |
|         unsigned InputNo;
 | |
|         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
 | |
|           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
 | |
|           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
 | |
|             break;
 | |
|         }
 | |
|         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
 | |
| 
 | |
|         QualType InputTy = S.getInputExpr(InputNo)->getType();
 | |
|         QualType OutputType = OutExpr->getType();
 | |
| 
 | |
|         uint64_t InputSize = getContext().getTypeSize(InputTy);
 | |
|         if (getContext().getTypeSize(OutputType) < InputSize) {
 | |
|           // Form the asm to return the value as a larger integer or fp type.
 | |
|           ResultRegTypes.back() = ConvertType(InputTy);
 | |
|         }
 | |
|       }
 | |
|       if (llvm::Type* AdjTy =
 | |
|             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
 | |
|                                                  ResultRegTypes.back()))
 | |
|         ResultRegTypes.back() = AdjTy;
 | |
|       else {
 | |
|         CGM.getDiags().Report(S.getAsmLoc(),
 | |
|                               diag::err_asm_invalid_type_in_input)
 | |
|             << OutExpr->getType() << OutputConstraint;
 | |
|       }
 | |
|     } else {
 | |
|       ArgTypes.push_back(Dest.getAddress()->getType());
 | |
|       Args.push_back(Dest.getAddress());
 | |
|       Constraints += "=*";
 | |
|       Constraints += OutputConstraint;
 | |
|     }
 | |
| 
 | |
|     if (Info.isReadWrite()) {
 | |
|       InOutConstraints += ',';
 | |
| 
 | |
|       const Expr *InputExpr = S.getOutputExpr(i);
 | |
|       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
 | |
|                                             InOutConstraints,
 | |
|                                             InputExpr->getExprLoc());
 | |
| 
 | |
|       if (llvm::Type* AdjTy =
 | |
|           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
 | |
|                                                Arg->getType()))
 | |
|         Arg = Builder.CreateBitCast(Arg, AdjTy);
 | |
| 
 | |
|       if (Info.allowsRegister())
 | |
|         InOutConstraints += llvm::utostr(i);
 | |
|       else
 | |
|         InOutConstraints += OutputConstraint;
 | |
| 
 | |
|       InOutArgTypes.push_back(Arg->getType());
 | |
|       InOutArgs.push_back(Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
 | |
|     const Expr *InputExpr = S.getInputExpr(i);
 | |
| 
 | |
|     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | |
| 
 | |
|     if (!Constraints.empty())
 | |
|       Constraints += ',';
 | |
| 
 | |
|     // Simplify the input constraint.
 | |
|     std::string InputConstraint(S.getInputConstraint(i));
 | |
|     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
 | |
|                                          &OutputConstraintInfos);
 | |
| 
 | |
|     InputConstraint =
 | |
|       AddVariableConstraints(InputConstraint,
 | |
|                             *InputExpr->IgnoreParenNoopCasts(getContext()),
 | |
|                             getTarget(), CGM, S);
 | |
| 
 | |
|     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
 | |
| 
 | |
|     // If this input argument is tied to a larger output result, extend the
 | |
|     // input to be the same size as the output.  The LLVM backend wants to see
 | |
|     // the input and output of a matching constraint be the same size.  Note
 | |
|     // that GCC does not define what the top bits are here.  We use zext because
 | |
|     // that is usually cheaper, but LLVM IR should really get an anyext someday.
 | |
|     if (Info.hasTiedOperand()) {
 | |
|       unsigned Output = Info.getTiedOperand();
 | |
|       QualType OutputType = S.getOutputExpr(Output)->getType();
 | |
|       QualType InputTy = InputExpr->getType();
 | |
| 
 | |
|       if (getContext().getTypeSize(OutputType) >
 | |
|           getContext().getTypeSize(InputTy)) {
 | |
|         // Use ptrtoint as appropriate so that we can do our extension.
 | |
|         if (isa<llvm::PointerType>(Arg->getType()))
 | |
|           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
 | |
|         llvm::Type *OutputTy = ConvertType(OutputType);
 | |
|         if (isa<llvm::IntegerType>(OutputTy))
 | |
|           Arg = Builder.CreateZExt(Arg, OutputTy);
 | |
|         else if (isa<llvm::PointerType>(OutputTy))
 | |
|           Arg = Builder.CreateZExt(Arg, IntPtrTy);
 | |
|         else {
 | |
|           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
 | |
|           Arg = Builder.CreateFPExt(Arg, OutputTy);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (llvm::Type* AdjTy =
 | |
|               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
 | |
|                                                    Arg->getType()))
 | |
|       Arg = Builder.CreateBitCast(Arg, AdjTy);
 | |
|     else
 | |
|       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
 | |
|           << InputExpr->getType() << InputConstraint;
 | |
| 
 | |
|     ArgTypes.push_back(Arg->getType());
 | |
|     Args.push_back(Arg);
 | |
|     Constraints += InputConstraint;
 | |
|   }
 | |
| 
 | |
|   // Append the "input" part of inout constraints last.
 | |
|   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
 | |
|     ArgTypes.push_back(InOutArgTypes[i]);
 | |
|     Args.push_back(InOutArgs[i]);
 | |
|   }
 | |
|   Constraints += InOutConstraints;
 | |
| 
 | |
|   // Clobbers
 | |
|   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
 | |
|     StringRef Clobber = S.getClobber(i);
 | |
| 
 | |
|     if (Clobber != "memory" && Clobber != "cc")
 | |
|     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
 | |
| 
 | |
|     if (i != 0 || NumConstraints != 0)
 | |
|       Constraints += ',';
 | |
| 
 | |
|     Constraints += "~{";
 | |
|     Constraints += Clobber;
 | |
|     Constraints += '}';
 | |
|   }
 | |
| 
 | |
|   // Add machine specific clobbers
 | |
|   std::string MachineClobbers = getTarget().getClobbers();
 | |
|   if (!MachineClobbers.empty()) {
 | |
|     if (!Constraints.empty())
 | |
|       Constraints += ',';
 | |
|     Constraints += MachineClobbers;
 | |
|   }
 | |
| 
 | |
|   llvm::Type *ResultType;
 | |
|   if (ResultRegTypes.empty())
 | |
|     ResultType = VoidTy;
 | |
|   else if (ResultRegTypes.size() == 1)
 | |
|     ResultType = ResultRegTypes[0];
 | |
|   else
 | |
|     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
 | |
| 
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(ResultType, ArgTypes, false);
 | |
| 
 | |
|   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
 | |
|   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
 | |
|     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
 | |
|   llvm::InlineAsm *IA =
 | |
|     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
 | |
|                          /* IsAlignStack */ false, AsmDialect);
 | |
|   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
 | |
|   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
 | |
|                        llvm::Attribute::NoUnwind);
 | |
| 
 | |
|   // Slap the source location of the inline asm into a !srcloc metadata on the
 | |
|   // call.  FIXME: Handle metadata for MS-style inline asms.
 | |
|   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
 | |
|     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
 | |
|                                                    *this));
 | |
| 
 | |
|   // Extract all of the register value results from the asm.
 | |
|   std::vector<llvm::Value*> RegResults;
 | |
|   if (ResultRegTypes.size() == 1) {
 | |
|     RegResults.push_back(Result);
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
 | |
|       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
 | |
|       RegResults.push_back(Tmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
 | |
|     llvm::Value *Tmp = RegResults[i];
 | |
| 
 | |
|     // If the result type of the LLVM IR asm doesn't match the result type of
 | |
|     // the expression, do the conversion.
 | |
|     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
 | |
|       llvm::Type *TruncTy = ResultTruncRegTypes[i];
 | |
| 
 | |
|       // Truncate the integer result to the right size, note that TruncTy can be
 | |
|       // a pointer.
 | |
|       if (TruncTy->isFloatingPointTy())
 | |
|         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
 | |
|       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
 | |
|         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
 | |
|         Tmp = Builder.CreateTrunc(Tmp,
 | |
|                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
 | |
|         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
 | |
|       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
 | |
|         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
 | |
|         Tmp = Builder.CreatePtrToInt(Tmp,
 | |
|                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
 | |
|         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
 | |
|       } else if (TruncTy->isIntegerTy()) {
 | |
|         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
 | |
|       } else if (TruncTy->isVectorTy()) {
 | |
|         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
 | |
|   const RecordDecl *RD = S.getCapturedRecordDecl();
 | |
|   QualType RecordTy = CGF.getContext().getRecordType(RD);
 | |
| 
 | |
|   // Initialize the captured struct.
 | |
|   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
 | |
|                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
 | |
| 
 | |
|   RecordDecl::field_iterator CurField = RD->field_begin();
 | |
|   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
 | |
|                                            E = S.capture_init_end();
 | |
|        I != E; ++I, ++CurField) {
 | |
|     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
 | |
|     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
 | |
|   }
 | |
| 
 | |
|   return SlotLV;
 | |
| }
 | |
| 
 | |
| static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) {
 | |
|   for (auto &C : S.captures()) {
 | |
|     if (C.capturesVariable()) {
 | |
|       QualType QTy;
 | |
|       auto VD = C.getCapturedVar();
 | |
|       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
 | |
|         QTy = PVD->getOriginalType();
 | |
|       else
 | |
|         QTy = VD->getType();
 | |
|       if (QTy->isVariablyModifiedType()) {
 | |
|         CGF.EmitVariablyModifiedType(QTy);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate an outlined function for the body of a CapturedStmt, store any
 | |
| /// captured variables into the captured struct, and call the outlined function.
 | |
| llvm::Function *
 | |
| CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
 | |
|   LValue CapStruct = InitCapturedStruct(*this, S);
 | |
| 
 | |
|   // Emit the CapturedDecl
 | |
|   CodeGenFunction CGF(CGM, true);
 | |
|   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
 | |
|   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
 | |
|   delete CGF.CapturedStmtInfo;
 | |
| 
 | |
|   // Emit call to the helper function.
 | |
|   EmitCallOrInvoke(F, CapStruct.getAddress());
 | |
| 
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| llvm::Value *
 | |
| CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
 | |
|   LValue CapStruct = InitCapturedStruct(*this, S);
 | |
|   return CapStruct.getAddress();
 | |
| }
 | |
| 
 | |
| /// Creates the outlined function for a CapturedStmt.
 | |
| llvm::Function *
 | |
| CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
 | |
|   assert(CapturedStmtInfo &&
 | |
|     "CapturedStmtInfo should be set when generating the captured function");
 | |
|   const CapturedDecl *CD = S.getCapturedDecl();
 | |
|   const RecordDecl *RD = S.getCapturedRecordDecl();
 | |
|   SourceLocation Loc = S.getLocStart();
 | |
|   assert(CD->hasBody() && "missing CapturedDecl body");
 | |
| 
 | |
|   // Build the argument list.
 | |
|   ASTContext &Ctx = CGM.getContext();
 | |
|   FunctionArgList Args;
 | |
|   Args.append(CD->param_begin(), CD->param_end());
 | |
| 
 | |
|   // Create the function declaration.
 | |
|   FunctionType::ExtInfo ExtInfo;
 | |
|   const CGFunctionInfo &FuncInfo =
 | |
|       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
 | |
|                                                     /*IsVariadic=*/false);
 | |
|   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
 | |
| 
 | |
|   llvm::Function *F =
 | |
|     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
 | |
|                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
 | |
|   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
 | |
| 
 | |
|   // Generate the function.
 | |
|   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
 | |
|                 CD->getLocation(),
 | |
|                 CD->getBody()->getLocStart());
 | |
|   // Set the context parameter in CapturedStmtInfo.
 | |
|   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
 | |
|   assert(DeclPtr && "missing context parameter for CapturedStmt");
 | |
|   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
 | |
| 
 | |
|   // Initialize variable-length arrays.
 | |
|   InitVLACaptures(*this, S);
 | |
| 
 | |
|   // If 'this' is captured, load it into CXXThisValue.
 | |
|   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
 | |
|     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
 | |
|     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
 | |
|                                            Ctx.getTagDeclType(RD));
 | |
|     LValue ThisLValue = EmitLValueForField(LV, FD);
 | |
|     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   PGO.assignRegionCounters(CD, F);
 | |
|   CapturedStmtInfo->EmitBody(*this, CD->getBody());
 | |
|   FinishFunction(CD->getBodyRBrace());
 | |
|   PGO.emitInstrumentationData();
 | |
|   PGO.destroyRegionCounters();
 | |
| 
 | |
|   return F;
 | |
| }
 |