1740 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1740 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis member access expressions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/ASTLambda.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
 | |
| static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
 | |
|   const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
 | |
|   return !Bases.count(Base->getCanonicalDecl());
 | |
| }
 | |
| 
 | |
| /// Determines if the given class is provably not derived from all of
 | |
| /// the prospective base classes.
 | |
| static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
 | |
|                                      const BaseSet &Bases) {
 | |
|   void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
 | |
|   return BaseIsNotInSet(Record, BasesPtr) &&
 | |
|          Record->forallBases(BaseIsNotInSet, BasesPtr);
 | |
| }
 | |
| 
 | |
| enum IMAKind {
 | |
|   /// The reference is definitely not an instance member access.
 | |
|   IMA_Static,
 | |
| 
 | |
|   /// The reference may be an implicit instance member access.
 | |
|   IMA_Mixed,
 | |
| 
 | |
|   /// The reference may be to an instance member, but it might be invalid if
 | |
|   /// so, because the context is not an instance method.
 | |
|   IMA_Mixed_StaticContext,
 | |
| 
 | |
|   /// The reference may be to an instance member, but it is invalid if
 | |
|   /// so, because the context is from an unrelated class.
 | |
|   IMA_Mixed_Unrelated,
 | |
| 
 | |
|   /// The reference is definitely an implicit instance member access.
 | |
|   IMA_Instance,
 | |
| 
 | |
|   /// The reference may be to an unresolved using declaration.
 | |
|   IMA_Unresolved,
 | |
| 
 | |
|   /// The reference is a contextually-permitted abstract member reference.
 | |
|   IMA_Abstract,
 | |
| 
 | |
|   /// The reference may be to an unresolved using declaration and the
 | |
|   /// context is not an instance method.
 | |
|   IMA_Unresolved_StaticContext,
 | |
| 
 | |
|   // The reference refers to a field which is not a member of the containing
 | |
|   // class, which is allowed because we're in C++11 mode and the context is
 | |
|   // unevaluated.
 | |
|   IMA_Field_Uneval_Context,
 | |
| 
 | |
|   /// All possible referrents are instance members and the current
 | |
|   /// context is not an instance method.
 | |
|   IMA_Error_StaticContext,
 | |
| 
 | |
|   /// All possible referrents are instance members of an unrelated
 | |
|   /// class.
 | |
|   IMA_Error_Unrelated
 | |
| };
 | |
| 
 | |
| /// The given lookup names class member(s) and is not being used for
 | |
| /// an address-of-member expression.  Classify the type of access
 | |
| /// according to whether it's possible that this reference names an
 | |
| /// instance member.  This is best-effort in dependent contexts; it is okay to
 | |
| /// conservatively answer "yes", in which case some errors will simply
 | |
| /// not be caught until template-instantiation.
 | |
| static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
 | |
|                                             Scope *CurScope,
 | |
|                                             const LookupResult &R) {
 | |
|   assert(!R.empty() && (*R.begin())->isCXXClassMember());
 | |
| 
 | |
|   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
 | |
| 
 | |
|   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
 | |
|     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
 | |
| 
 | |
|   if (R.isUnresolvableResult())
 | |
|     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
 | |
| 
 | |
|   // Collect all the declaring classes of instance members we find.
 | |
|   bool hasNonInstance = false;
 | |
|   bool isField = false;
 | |
|   BaseSet Classes;
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
| 
 | |
|     if (D->isCXXInstanceMember()) {
 | |
|       if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
 | |
|           || dyn_cast<IndirectFieldDecl>(D))
 | |
|         isField = true;
 | |
| 
 | |
|       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|       Classes.insert(R->getCanonicalDecl());
 | |
|     }
 | |
|     else
 | |
|       hasNonInstance = true;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find any instance members, it can't be an implicit
 | |
|   // member reference.
 | |
|   if (Classes.empty())
 | |
|     return IMA_Static;
 | |
|   
 | |
|   // C++11 [expr.prim.general]p12:
 | |
|   //   An id-expression that denotes a non-static data member or non-static
 | |
|   //   member function of a class can only be used:
 | |
|   //   (...)
 | |
|   //   - if that id-expression denotes a non-static data member and it
 | |
|   //     appears in an unevaluated operand.
 | |
|   //
 | |
|   // This rule is specific to C++11.  However, we also permit this form
 | |
|   // in unevaluated inline assembly operands, like the operand to a SIZE.
 | |
|   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
 | |
|   assert(!AbstractInstanceResult);
 | |
|   switch (SemaRef.ExprEvalContexts.back().Context) {
 | |
|   case Sema::Unevaluated:
 | |
|     if (isField && SemaRef.getLangOpts().CPlusPlus11)
 | |
|       AbstractInstanceResult = IMA_Field_Uneval_Context;
 | |
|     break;
 | |
| 
 | |
|   case Sema::UnevaluatedAbstract:
 | |
|     AbstractInstanceResult = IMA_Abstract;
 | |
|     break;
 | |
| 
 | |
|   case Sema::ConstantEvaluated:
 | |
|   case Sema::PotentiallyEvaluated:
 | |
|   case Sema::PotentiallyEvaluatedIfUsed:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If the current context is not an instance method, it can't be
 | |
|   // an implicit member reference.
 | |
|   if (isStaticContext) {
 | |
|     if (hasNonInstance)
 | |
|       return IMA_Mixed_StaticContext;
 | |
| 
 | |
|     return AbstractInstanceResult ? AbstractInstanceResult
 | |
|                                   : IMA_Error_StaticContext;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *contextClass;
 | |
|   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
 | |
|     contextClass = MD->getParent()->getCanonicalDecl();
 | |
|   else
 | |
|     contextClass = cast<CXXRecordDecl>(DC);
 | |
| 
 | |
|   // [class.mfct.non-static]p3: 
 | |
|   // ...is used in the body of a non-static member function of class X,
 | |
|   // if name lookup (3.4.1) resolves the name in the id-expression to a
 | |
|   // non-static non-type member of some class C [...]
 | |
|   // ...if C is not X or a base class of X, the class member access expression
 | |
|   // is ill-formed.
 | |
|   if (R.getNamingClass() &&
 | |
|       contextClass->getCanonicalDecl() !=
 | |
|         R.getNamingClass()->getCanonicalDecl()) {
 | |
|     // If the naming class is not the current context, this was a qualified
 | |
|     // member name lookup, and it's sufficient to check that we have the naming
 | |
|     // class as a base class.
 | |
|     Classes.clear();
 | |
|     Classes.insert(R.getNamingClass()->getCanonicalDecl());
 | |
|   }
 | |
| 
 | |
|   // If we can prove that the current context is unrelated to all the
 | |
|   // declaring classes, it can't be an implicit member reference (in
 | |
|   // which case it's an error if any of those members are selected).
 | |
|   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
 | |
|     return hasNonInstance ? IMA_Mixed_Unrelated :
 | |
|            AbstractInstanceResult ? AbstractInstanceResult :
 | |
|                                     IMA_Error_Unrelated;
 | |
| 
 | |
|   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
 | |
| }
 | |
| 
 | |
| /// Diagnose a reference to a field with no object available.
 | |
| static void diagnoseInstanceReference(Sema &SemaRef,
 | |
|                                       const CXXScopeSpec &SS,
 | |
|                                       NamedDecl *Rep,
 | |
|                                       const DeclarationNameInfo &nameInfo) {
 | |
|   SourceLocation Loc = nameInfo.getLoc();
 | |
|   SourceRange Range(Loc);
 | |
|   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
 | |
| 
 | |
|   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
 | |
|   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
 | |
|   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
 | |
|   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
 | |
| 
 | |
|   bool InStaticMethod = Method && Method->isStatic();
 | |
|   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
 | |
| 
 | |
|   if (IsField && InStaticMethod)
 | |
|     // "invalid use of member 'x' in static member function"
 | |
|     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
 | |
|         << Range << nameInfo.getName();
 | |
|   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
 | |
|            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
 | |
|     // Unqualified lookup in a non-static member function found a member of an
 | |
|     // enclosing class.
 | |
|     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
 | |
|       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
 | |
|   else if (IsField)
 | |
|     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
 | |
|       << nameInfo.getName() << Range;
 | |
|   else
 | |
|     SemaRef.Diag(Loc, diag::err_member_call_without_object)
 | |
|       << Range;
 | |
| }
 | |
| 
 | |
| /// Builds an expression which might be an implicit member expression.
 | |
| ExprResult
 | |
| Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
 | |
|                                       SourceLocation TemplateKWLoc,
 | |
|                                       LookupResult &R,
 | |
|                                 const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
 | |
|   case IMA_Instance:
 | |
|     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
 | |
| 
 | |
|   case IMA_Mixed:
 | |
|   case IMA_Mixed_Unrelated:
 | |
|   case IMA_Unresolved:
 | |
|     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
 | |
| 
 | |
|   case IMA_Field_Uneval_Context:
 | |
|     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
 | |
|       << R.getLookupNameInfo().getName();
 | |
|     // Fall through.
 | |
|   case IMA_Static:
 | |
|   case IMA_Abstract:
 | |
|   case IMA_Mixed_StaticContext:
 | |
|   case IMA_Unresolved_StaticContext:
 | |
|     if (TemplateArgs || TemplateKWLoc.isValid())
 | |
|       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
 | |
|     return BuildDeclarationNameExpr(SS, R, false);
 | |
| 
 | |
|   case IMA_Error_StaticContext:
 | |
|   case IMA_Error_Unrelated:
 | |
|     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
 | |
|                               R.getLookupNameInfo());
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unexpected instance member access kind");
 | |
| }
 | |
| 
 | |
| /// Check an ext-vector component access expression.
 | |
| ///
 | |
| /// VK should be set in advance to the value kind of the base
 | |
| /// expression.
 | |
| static QualType
 | |
| CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
 | |
|                         SourceLocation OpLoc, const IdentifierInfo *CompName,
 | |
|                         SourceLocation CompLoc) {
 | |
|   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
 | |
|   // see FIXME there.
 | |
|   //
 | |
|   // FIXME: This logic can be greatly simplified by splitting it along
 | |
|   // halving/not halving and reworking the component checking.
 | |
|   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
 | |
| 
 | |
|   // The vector accessor can't exceed the number of elements.
 | |
|   const char *compStr = CompName->getNameStart();
 | |
| 
 | |
|   // This flag determines whether or not the component is one of the four
 | |
|   // special names that indicate a subset of exactly half the elements are
 | |
|   // to be selected.
 | |
|   bool HalvingSwizzle = false;
 | |
| 
 | |
|   // This flag determines whether or not CompName has an 's' char prefix,
 | |
|   // indicating that it is a string of hex values to be used as vector indices.
 | |
|   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
 | |
| 
 | |
|   bool HasRepeated = false;
 | |
|   bool HasIndex[16] = {};
 | |
| 
 | |
|   int Idx;
 | |
| 
 | |
|   // Check that we've found one of the special components, or that the component
 | |
|   // names must come from the same set.
 | |
|   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
 | |
|       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
 | |
|     HalvingSwizzle = true;
 | |
|   } else if (!HexSwizzle &&
 | |
|              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
 | |
|     do {
 | |
|       if (HasIndex[Idx]) HasRepeated = true;
 | |
|       HasIndex[Idx] = true;
 | |
|       compStr++;
 | |
|     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
 | |
|   } else {
 | |
|     if (HexSwizzle) compStr++;
 | |
|     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
 | |
|       if (HasIndex[Idx]) HasRepeated = true;
 | |
|       HasIndex[Idx] = true;
 | |
|       compStr++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!HalvingSwizzle && *compStr) {
 | |
|     // We didn't get to the end of the string. This means the component names
 | |
|     // didn't come from the same set *or* we encountered an illegal name.
 | |
|     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
 | |
|       << StringRef(compStr, 1) << SourceRange(CompLoc);
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Ensure no component accessor exceeds the width of the vector type it
 | |
|   // operates on.
 | |
|   if (!HalvingSwizzle) {
 | |
|     compStr = CompName->getNameStart();
 | |
| 
 | |
|     if (HexSwizzle)
 | |
|       compStr++;
 | |
| 
 | |
|     while (*compStr) {
 | |
|       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
 | |
|         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
 | |
|           << baseType << SourceRange(CompLoc);
 | |
|         return QualType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The component accessor looks fine - now we need to compute the actual type.
 | |
|   // The vector type is implied by the component accessor. For example,
 | |
|   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
 | |
|   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
 | |
|   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
 | |
|   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
 | |
|                                      : CompName->getLength();
 | |
|   if (HexSwizzle)
 | |
|     CompSize--;
 | |
| 
 | |
|   if (CompSize == 1)
 | |
|     return vecType->getElementType();
 | |
| 
 | |
|   if (HasRepeated) VK = VK_RValue;
 | |
| 
 | |
|   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
 | |
|   // Now look up the TypeDefDecl from the vector type. Without this,
 | |
|   // diagostics look bad. We want extended vector types to appear built-in.
 | |
|   for (Sema::ExtVectorDeclsType::iterator 
 | |
|          I = S.ExtVectorDecls.begin(S.getExternalSource()),
 | |
|          E = S.ExtVectorDecls.end(); 
 | |
|        I != E; ++I) {
 | |
|     if ((*I)->getUnderlyingType() == VT)
 | |
|       return S.Context.getTypedefType(*I);
 | |
|   }
 | |
|   
 | |
|   return VT; // should never get here (a typedef type should always be found).
 | |
| }
 | |
| 
 | |
| static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
 | |
|                                                 IdentifierInfo *Member,
 | |
|                                                 const Selector &Sel,
 | |
|                                                 ASTContext &Context) {
 | |
|   if (Member)
 | |
|     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
 | |
|       return PD;
 | |
|   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
 | |
|     return OMD;
 | |
| 
 | |
|   for (const auto *I : PDecl->protocols()) {
 | |
|     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
 | |
|                                                            Context))
 | |
|       return D;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
 | |
|                                       IdentifierInfo *Member,
 | |
|                                       const Selector &Sel,
 | |
|                                       ASTContext &Context) {
 | |
|   // Check protocols on qualified interfaces.
 | |
|   Decl *GDecl = nullptr;
 | |
|   for (const auto *I : QIdTy->quals()) {
 | |
|     if (Member)
 | |
|       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
 | |
|         GDecl = PD;
 | |
|         break;
 | |
|       }
 | |
|     // Also must look for a getter or setter name which uses property syntax.
 | |
|     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
 | |
|       GDecl = OMD;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!GDecl) {
 | |
|     for (const auto *I : QIdTy->quals()) {
 | |
|       // Search in the protocol-qualifier list of current protocol.
 | |
|       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
 | |
|       if (GDecl)
 | |
|         return GDecl;
 | |
|     }
 | |
|   }
 | |
|   return GDecl;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
 | |
|                                bool IsArrow, SourceLocation OpLoc,
 | |
|                                const CXXScopeSpec &SS,
 | |
|                                SourceLocation TemplateKWLoc,
 | |
|                                NamedDecl *FirstQualifierInScope,
 | |
|                                const DeclarationNameInfo &NameInfo,
 | |
|                                const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   // Even in dependent contexts, try to diagnose base expressions with
 | |
|   // obviously wrong types, e.g.:
 | |
|   //
 | |
|   // T* t;
 | |
|   // t.f;
 | |
|   //
 | |
|   // In Obj-C++, however, the above expression is valid, since it could be
 | |
|   // accessing the 'f' property if T is an Obj-C interface. The extra check
 | |
|   // allows this, while still reporting an error if T is a struct pointer.
 | |
|   if (!IsArrow) {
 | |
|     const PointerType *PT = BaseType->getAs<PointerType>();
 | |
|     if (PT && (!getLangOpts().ObjC1 ||
 | |
|                PT->getPointeeType()->isRecordType())) {
 | |
|       assert(BaseExpr && "cannot happen with implicit member accesses");
 | |
|       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
 | |
|         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(BaseType->isDependentType() ||
 | |
|          NameInfo.getName().isDependentName() ||
 | |
|          isDependentScopeSpecifier(SS));
 | |
| 
 | |
|   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
 | |
|   // must have pointer type, and the accessed type is the pointee.
 | |
|   return CXXDependentScopeMemberExpr::Create(
 | |
|       Context, BaseExpr, BaseType, IsArrow, OpLoc,
 | |
|       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
 | |
|       NameInfo, TemplateArgs);
 | |
| }
 | |
| 
 | |
| /// We know that the given qualified member reference points only to
 | |
| /// declarations which do not belong to the static type of the base
 | |
| /// expression.  Diagnose the problem.
 | |
| static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
 | |
|                                              Expr *BaseExpr,
 | |
|                                              QualType BaseType,
 | |
|                                              const CXXScopeSpec &SS,
 | |
|                                              NamedDecl *rep,
 | |
|                                        const DeclarationNameInfo &nameInfo) {
 | |
|   // If this is an implicit member access, use a different set of
 | |
|   // diagnostics.
 | |
|   if (!BaseExpr)
 | |
|     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
 | |
| 
 | |
|   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
 | |
|     << SS.getRange() << rep << BaseType;
 | |
| }
 | |
| 
 | |
| // Check whether the declarations we found through a nested-name
 | |
| // specifier in a member expression are actually members of the base
 | |
| // type.  The restriction here is:
 | |
| //
 | |
| //   C++ [expr.ref]p2:
 | |
| //     ... In these cases, the id-expression shall name a
 | |
| //     member of the class or of one of its base classes.
 | |
| //
 | |
| // So it's perfectly legitimate for the nested-name specifier to name
 | |
| // an unrelated class, and for us to find an overload set including
 | |
| // decls from classes which are not superclasses, as long as the decl
 | |
| // we actually pick through overload resolution is from a superclass.
 | |
| bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
 | |
|                                          QualType BaseType,
 | |
|                                          const CXXScopeSpec &SS,
 | |
|                                          const LookupResult &R) {
 | |
|   CXXRecordDecl *BaseRecord =
 | |
|     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
 | |
|   if (!BaseRecord) {
 | |
|     // We can't check this yet because the base type is still
 | |
|     // dependent.
 | |
|     assert(BaseType->isDependentType());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     // If this is an implicit member reference and we find a
 | |
|     // non-instance member, it's not an error.
 | |
|     if (!BaseExpr && !(*I)->isCXXInstanceMember())
 | |
|       return false;
 | |
| 
 | |
|     // Note that we use the DC of the decl, not the underlying decl.
 | |
|     DeclContext *DC = (*I)->getDeclContext();
 | |
|     while (DC->isTransparentContext())
 | |
|       DC = DC->getParent();
 | |
| 
 | |
|     if (!DC->isRecord())
 | |
|       continue;
 | |
| 
 | |
|     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
 | |
|     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
 | |
|         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
 | |
|                                    R.getRepresentativeDecl(),
 | |
|                                    R.getLookupNameInfo());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that are either a ValueDecl or a
 | |
| // FunctionTemplateDecl and are declared in the current record or, for a C++
 | |
| // classes, one of its base classes.
 | |
| class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
 | |
|  public:
 | |
|   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
 | |
|       : Record(RTy->getDecl()) {}
 | |
| 
 | |
|   bool ValidateCandidate(const TypoCorrection &candidate) override {
 | |
|     NamedDecl *ND = candidate.getCorrectionDecl();
 | |
|     // Don't accept candidates that cannot be member functions, constants,
 | |
|     // variables, or templates.
 | |
|     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
 | |
|       return false;
 | |
| 
 | |
|     // Accept candidates that occur in the current record.
 | |
|     if (Record->containsDecl(ND))
 | |
|       return true;
 | |
| 
 | |
|     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
 | |
|       // Accept candidates that occur in any of the current class' base classes.
 | |
|       for (const auto &BS : RD->bases()) {
 | |
|         if (const RecordType *BSTy = dyn_cast_or_null<RecordType>(
 | |
|                 BS.getType().getTypePtrOrNull())) {
 | |
|           if (BSTy->getDecl()->containsDecl(ND))
 | |
|             return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const RecordDecl *const Record;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| static bool
 | |
| LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, 
 | |
|                          SourceRange BaseRange, const RecordType *RTy,
 | |
|                          SourceLocation OpLoc, CXXScopeSpec &SS,
 | |
|                          bool HasTemplateArgs) {
 | |
|   RecordDecl *RDecl = RTy->getDecl();
 | |
|   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
 | |
|       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
 | |
|                                   diag::err_typecheck_incomplete_tag,
 | |
|                                   BaseRange))
 | |
|     return true;
 | |
| 
 | |
|   if (HasTemplateArgs) {
 | |
|     // LookupTemplateName doesn't expect these both to exist simultaneously.
 | |
|     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
 | |
| 
 | |
|     bool MOUS;
 | |
|     SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DeclContext *DC = RDecl;
 | |
|   if (SS.isSet()) {
 | |
|     // If the member name was a qualified-id, look into the
 | |
|     // nested-name-specifier.
 | |
|     DC = SemaRef.computeDeclContext(SS, false);
 | |
| 
 | |
|     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
 | |
|       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
 | |
|         << SS.getRange() << DC;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
 | |
| 
 | |
|     if (!isa<TypeDecl>(DC)) {
 | |
|       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
 | |
|         << DC << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The record definition is complete, now look up the member.
 | |
|   SemaRef.LookupQualifiedName(R, DC);
 | |
| 
 | |
|   if (!R.empty())
 | |
|     return false;
 | |
| 
 | |
|   // We didn't find anything with the given name, so try to correct
 | |
|   // for typos.
 | |
|   DeclarationName Name = R.getLookupName();
 | |
|   RecordMemberExprValidatorCCC Validator(RTy);
 | |
|   TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
 | |
|                                                  R.getLookupKind(), nullptr,
 | |
|                                                  &SS, Validator,
 | |
|                                                  Sema::CTK_ErrorRecovery, DC);
 | |
|   R.clear();
 | |
|   if (Corrected.isResolved() && !Corrected.isKeyword()) {
 | |
|     R.setLookupName(Corrected.getCorrection());
 | |
|     for (TypoCorrection::decl_iterator DI = Corrected.begin(),
 | |
|                                        DIEnd = Corrected.end();
 | |
|          DI != DIEnd; ++DI) {
 | |
|       R.addDecl(*DI);
 | |
|     }
 | |
|     R.resolveKind();
 | |
| 
 | |
|     // If we're typo-correcting to an overloaded name, we don't yet have enough
 | |
|     // information to do overload resolution, so we don't know which previous
 | |
|     // declaration to point to.
 | |
|     if (Corrected.isOverloaded())
 | |
|       Corrected.setCorrectionDecl(nullptr);
 | |
|     bool DroppedSpecifier =
 | |
|         Corrected.WillReplaceSpecifier() &&
 | |
|         Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts());
 | |
|     SemaRef.diagnoseTypo(Corrected,
 | |
|                          SemaRef.PDiag(diag::err_no_member_suggest)
 | |
|                            << Name << DC << DroppedSpecifier << SS.getRange());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
 | |
|                                    ExprResult &BaseExpr, bool &IsArrow,
 | |
|                                    SourceLocation OpLoc, CXXScopeSpec &SS,
 | |
|                                    Decl *ObjCImpDecl, bool HasTemplateArgs);
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
 | |
|                                SourceLocation OpLoc, bool IsArrow,
 | |
|                                CXXScopeSpec &SS,
 | |
|                                SourceLocation TemplateKWLoc,
 | |
|                                NamedDecl *FirstQualifierInScope,
 | |
|                                const DeclarationNameInfo &NameInfo,
 | |
|                                const TemplateArgumentListInfo *TemplateArgs,
 | |
|                                ActOnMemberAccessExtraArgs *ExtraArgs) {
 | |
|   if (BaseType->isDependentType() ||
 | |
|       (SS.isSet() && isDependentScopeSpecifier(SS)))
 | |
|     return ActOnDependentMemberExpr(Base, BaseType,
 | |
|                                     IsArrow, OpLoc,
 | |
|                                     SS, TemplateKWLoc, FirstQualifierInScope,
 | |
|                                     NameInfo, TemplateArgs);
 | |
| 
 | |
|   LookupResult R(*this, NameInfo, LookupMemberName);
 | |
| 
 | |
|   // Implicit member accesses.
 | |
|   if (!Base) {
 | |
|     QualType RecordTy = BaseType;
 | |
|     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
 | |
|     if (LookupMemberExprInRecord(*this, R, SourceRange(),
 | |
|                                  RecordTy->getAs<RecordType>(),
 | |
|                                  OpLoc, SS, TemplateArgs != nullptr))
 | |
|       return ExprError();
 | |
| 
 | |
|   // Explicit member accesses.
 | |
|   } else {
 | |
|     ExprResult BaseResult = Base;
 | |
|     ExprResult Result = LookupMemberExpr(
 | |
|         *this, R, BaseResult, IsArrow, OpLoc, SS,
 | |
|         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
 | |
|         TemplateArgs != nullptr);
 | |
| 
 | |
|     if (BaseResult.isInvalid())
 | |
|       return ExprError();
 | |
|     Base = BaseResult.get();
 | |
| 
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (Result.get())
 | |
|       return Result;
 | |
| 
 | |
|     // LookupMemberExpr can modify Base, and thus change BaseType
 | |
|     BaseType = Base->getType();
 | |
|   }
 | |
| 
 | |
|   return BuildMemberReferenceExpr(Base, BaseType,
 | |
|                                   OpLoc, IsArrow, SS, TemplateKWLoc,
 | |
|                                   FirstQualifierInScope, R, TemplateArgs,
 | |
|                                   false, ExtraArgs);
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
 | |
|                         const CXXScopeSpec &SS, FieldDecl *Field,
 | |
|                         DeclAccessPair FoundDecl,
 | |
|                         const DeclarationNameInfo &MemberNameInfo);
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
 | |
|                                                SourceLocation loc,
 | |
|                                                IndirectFieldDecl *indirectField,
 | |
|                                                DeclAccessPair foundDecl,
 | |
|                                                Expr *baseObjectExpr,
 | |
|                                                SourceLocation opLoc) {
 | |
|   // First, build the expression that refers to the base object.
 | |
|   
 | |
|   bool baseObjectIsPointer = false;
 | |
|   Qualifiers baseQuals;
 | |
|   
 | |
|   // Case 1:  the base of the indirect field is not a field.
 | |
|   VarDecl *baseVariable = indirectField->getVarDecl();
 | |
|   CXXScopeSpec EmptySS;
 | |
|   if (baseVariable) {
 | |
|     assert(baseVariable->getType()->isRecordType());
 | |
|     
 | |
|     // In principle we could have a member access expression that
 | |
|     // accesses an anonymous struct/union that's a static member of
 | |
|     // the base object's class.  However, under the current standard,
 | |
|     // static data members cannot be anonymous structs or unions.
 | |
|     // Supporting this is as easy as building a MemberExpr here.
 | |
|     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
 | |
|     
 | |
|     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
 | |
|     
 | |
|     ExprResult result 
 | |
|       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
 | |
|     if (result.isInvalid()) return ExprError();
 | |
|     
 | |
|     baseObjectExpr = result.get();    
 | |
|     baseObjectIsPointer = false;
 | |
|     baseQuals = baseObjectExpr->getType().getQualifiers();
 | |
|     
 | |
|     // Case 2: the base of the indirect field is a field and the user
 | |
|     // wrote a member expression.
 | |
|   } else if (baseObjectExpr) {
 | |
|     // The caller provided the base object expression. Determine
 | |
|     // whether its a pointer and whether it adds any qualifiers to the
 | |
|     // anonymous struct/union fields we're looking into.
 | |
|     QualType objectType = baseObjectExpr->getType();
 | |
|     
 | |
|     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
 | |
|       baseObjectIsPointer = true;
 | |
|       objectType = ptr->getPointeeType();
 | |
|     } else {
 | |
|       baseObjectIsPointer = false;
 | |
|     }
 | |
|     baseQuals = objectType.getQualifiers();
 | |
|     
 | |
|     // Case 3: the base of the indirect field is a field and we should
 | |
|     // build an implicit member access.
 | |
|   } else {
 | |
|     // We've found a member of an anonymous struct/union that is
 | |
|     // inside a non-anonymous struct/union, so in a well-formed
 | |
|     // program our base object expression is "this".
 | |
|     QualType ThisTy = getCurrentThisType();
 | |
|     if (ThisTy.isNull()) {
 | |
|       Diag(loc, diag::err_invalid_member_use_in_static_method)
 | |
|         << indirectField->getDeclName();
 | |
|       return ExprError();
 | |
|     }
 | |
|     
 | |
|     // Our base object expression is "this".
 | |
|     CheckCXXThisCapture(loc);
 | |
|     baseObjectExpr 
 | |
|       = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
 | |
|     baseObjectIsPointer = true;
 | |
|     baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
 | |
|   }
 | |
|   
 | |
|   // Build the implicit member references to the field of the
 | |
|   // anonymous struct/union.
 | |
|   Expr *result = baseObjectExpr;
 | |
|   IndirectFieldDecl::chain_iterator
 | |
|   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
 | |
|   
 | |
|   // Build the first member access in the chain with full information.
 | |
|   if (!baseVariable) {
 | |
|     FieldDecl *field = cast<FieldDecl>(*FI);
 | |
|     
 | |
|     // Make a nameInfo that properly uses the anonymous name.
 | |
|     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
 | |
|     
 | |
|     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
 | |
|                                      EmptySS, field, foundDecl,
 | |
|                                      memberNameInfo).get();
 | |
|     if (!result)
 | |
|       return ExprError();
 | |
| 
 | |
|     // FIXME: check qualified member access
 | |
|   }
 | |
|   
 | |
|   // In all cases, we should now skip the first declaration in the chain.
 | |
|   ++FI;
 | |
|   
 | |
|   while (FI != FEnd) {
 | |
|     FieldDecl *field = cast<FieldDecl>(*FI++);
 | |
| 
 | |
|     // FIXME: these are somewhat meaningless
 | |
|     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
 | |
|     DeclAccessPair fakeFoundDecl =
 | |
|         DeclAccessPair::make(field, field->getAccess());
 | |
| 
 | |
|     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
 | |
|                                      (FI == FEnd? SS : EmptySS), field,
 | |
|                                      fakeFoundDecl, memberNameInfo).get();
 | |
|   }
 | |
|   
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
 | |
|                        const CXXScopeSpec &SS,
 | |
|                        MSPropertyDecl *PD,
 | |
|                        const DeclarationNameInfo &NameInfo) {
 | |
|   // Property names are always simple identifiers and therefore never
 | |
|   // require any interesting additional storage.
 | |
|   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
 | |
|                                            S.Context.PseudoObjectTy, VK_LValue,
 | |
|                                            SS.getWithLocInContext(S.Context),
 | |
|                                            NameInfo.getLoc());
 | |
| }
 | |
| 
 | |
| /// \brief Build a MemberExpr AST node.
 | |
| static MemberExpr *
 | |
| BuildMemberExpr(Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
 | |
|                 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
 | |
|                 ValueDecl *Member, DeclAccessPair FoundDecl,
 | |
|                 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
 | |
|                 ExprValueKind VK, ExprObjectKind OK,
 | |
|                 const TemplateArgumentListInfo *TemplateArgs = nullptr) {
 | |
|   assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
 | |
|   MemberExpr *E =
 | |
|       MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
 | |
|                          TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
 | |
|                          TemplateArgs, Ty, VK, OK);
 | |
|   SemaRef.MarkMemberReferenced(E);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
 | |
|                                SourceLocation OpLoc, bool IsArrow,
 | |
|                                const CXXScopeSpec &SS,
 | |
|                                SourceLocation TemplateKWLoc,
 | |
|                                NamedDecl *FirstQualifierInScope,
 | |
|                                LookupResult &R,
 | |
|                                const TemplateArgumentListInfo *TemplateArgs,
 | |
|                                bool SuppressQualifierCheck,
 | |
|                                ActOnMemberAccessExtraArgs *ExtraArgs) {
 | |
|   QualType BaseType = BaseExprType;
 | |
|   if (IsArrow) {
 | |
|     assert(BaseType->isPointerType());
 | |
|     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
 | |
|   }
 | |
|   R.setBaseObjectType(BaseType);
 | |
|   
 | |
|   LambdaScopeInfo *const CurLSI = getCurLambda();
 | |
|   // If this is an implicit member reference and the overloaded
 | |
|   // name refers to both static and non-static member functions
 | |
|   // (i.e. BaseExpr is null) and if we are currently processing a lambda, 
 | |
|   // check if we should/can capture 'this'...
 | |
|   // Keep this example in mind:
 | |
|   //  struct X {
 | |
|   //   void f(int) { }
 | |
|   //   static void f(double) { }
 | |
|   // 
 | |
|   //   int g() {
 | |
|   //     auto L = [=](auto a) { 
 | |
|   //       return [](int i) {
 | |
|   //         return [=](auto b) {
 | |
|   //           f(b); 
 | |
|   //           //f(decltype(a){});
 | |
|   //         };
 | |
|   //       };
 | |
|   //     };
 | |
|   //     auto M = L(0.0); 
 | |
|   //     auto N = M(3);
 | |
|   //     N(5.32); // OK, must not error. 
 | |
|   //     return 0;
 | |
|   //   }
 | |
|   //  };
 | |
|   //
 | |
|   if (!BaseExpr && CurLSI) {
 | |
|     SourceLocation Loc = R.getNameLoc();
 | |
|     if (SS.getRange().isValid())
 | |
|       Loc = SS.getRange().getBegin();    
 | |
|     DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
 | |
|     // If the enclosing function is not dependent, then this lambda is 
 | |
|     // capture ready, so if we can capture this, do so.
 | |
|     if (!EnclosingFunctionCtx->isDependentContext()) {
 | |
|       // If the current lambda and all enclosing lambdas can capture 'this' -
 | |
|       // then go ahead and capture 'this' (since our unresolved overload set 
 | |
|       // contains both static and non-static member functions). 
 | |
|       if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
 | |
|         CheckCXXThisCapture(Loc);
 | |
|     } else if (CurContext->isDependentContext()) { 
 | |
|       // ... since this is an implicit member reference, that might potentially
 | |
|       // involve a 'this' capture, mark 'this' for potential capture in 
 | |
|       // enclosing lambdas.
 | |
|       if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
 | |
|         CurLSI->addPotentialThisCapture(Loc);
 | |
|     }
 | |
|   }
 | |
|   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
 | |
|   DeclarationName MemberName = MemberNameInfo.getName();
 | |
|   SourceLocation MemberLoc = MemberNameInfo.getLoc();
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     // Rederive where we looked up.
 | |
|     DeclContext *DC = (SS.isSet()
 | |
|                        ? computeDeclContext(SS, false)
 | |
|                        : BaseType->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     if (ExtraArgs) {
 | |
|       ExprResult RetryExpr;
 | |
|       if (!IsArrow && BaseExpr) {
 | |
|         SFINAETrap Trap(*this, true);
 | |
|         ParsedType ObjectType;
 | |
|         bool MayBePseudoDestructor = false;
 | |
|         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
 | |
|                                                  OpLoc, tok::arrow, ObjectType,
 | |
|                                                  MayBePseudoDestructor);
 | |
|         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
 | |
|           CXXScopeSpec TempSS(SS);
 | |
|           RetryExpr = ActOnMemberAccessExpr(
 | |
|               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
 | |
|               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
 | |
|               ExtraArgs->HasTrailingLParen);
 | |
|         }
 | |
|         if (Trap.hasErrorOccurred())
 | |
|           RetryExpr = ExprError();
 | |
|       }
 | |
|       if (RetryExpr.isUsable()) {
 | |
|         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
 | |
|           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
 | |
|         return RetryExpr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Diag(R.getNameLoc(), diag::err_no_member)
 | |
|       << MemberName << DC
 | |
|       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Diagnose lookups that find only declarations from a non-base
 | |
|   // type.  This is possible for either qualified lookups (which may
 | |
|   // have been qualified with an unrelated type) or implicit member
 | |
|   // expressions (which were found with unqualified lookup and thus
 | |
|   // may have come from an enclosing scope).  Note that it's okay for
 | |
|   // lookup to find declarations from a non-base type as long as those
 | |
|   // aren't the ones picked by overload resolution.
 | |
|   if ((SS.isSet() || !BaseExpr ||
 | |
|        (isa<CXXThisExpr>(BaseExpr) &&
 | |
|         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
 | |
|       !SuppressQualifierCheck &&
 | |
|       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
 | |
|     return ExprError();
 | |
|   
 | |
|   // Construct an unresolved result if we in fact got an unresolved
 | |
|   // result.
 | |
|   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
 | |
|     // Suppress any lookup-related diagnostics; we'll do these when we
 | |
|     // pick a member.
 | |
|     R.suppressDiagnostics();
 | |
| 
 | |
|     UnresolvedMemberExpr *MemExpr
 | |
|       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
 | |
|                                      BaseExpr, BaseExprType,
 | |
|                                      IsArrow, OpLoc,
 | |
|                                      SS.getWithLocInContext(Context),
 | |
|                                      TemplateKWLoc, MemberNameInfo,
 | |
|                                      TemplateArgs, R.begin(), R.end());
 | |
| 
 | |
|     return MemExpr;
 | |
|   }
 | |
| 
 | |
|   assert(R.isSingleResult());
 | |
|   DeclAccessPair FoundDecl = R.begin().getPair();
 | |
|   NamedDecl *MemberDecl = R.getFoundDecl();
 | |
| 
 | |
|   // FIXME: diagnose the presence of template arguments now.
 | |
| 
 | |
|   // If the decl being referenced had an error, return an error for this
 | |
|   // sub-expr without emitting another error, in order to avoid cascading
 | |
|   // error cases.
 | |
|   if (MemberDecl->isInvalidDecl())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Handle the implicit-member-access case.
 | |
|   if (!BaseExpr) {
 | |
|     // If this is not an instance member, convert to a non-member access.
 | |
|     if (!MemberDecl->isCXXInstanceMember())
 | |
|       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
 | |
| 
 | |
|     SourceLocation Loc = R.getNameLoc();
 | |
|     if (SS.getRange().isValid())
 | |
|       Loc = SS.getRange().getBegin();
 | |
|     CheckCXXThisCapture(Loc);
 | |
|     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
 | |
|   }
 | |
| 
 | |
|   bool ShouldCheckUse = true;
 | |
|   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
 | |
|     // Don't diagnose the use of a virtual member function unless it's
 | |
|     // explicitly qualified.
 | |
|     if (MD->isVirtual() && !SS.isSet())
 | |
|       ShouldCheckUse = false;
 | |
|   }
 | |
| 
 | |
|   // Check the use of this member.
 | |
|   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
 | |
|     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
 | |
|                                    SS, FD, FoundDecl, MemberNameInfo);
 | |
| 
 | |
|   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
 | |
|     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
 | |
|                                   MemberNameInfo);
 | |
| 
 | |
|   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
 | |
|     // We may have found a field within an anonymous union or struct
 | |
|     // (C++ [class.union]).
 | |
|     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
 | |
|                                                     FoundDecl, BaseExpr,
 | |
|                                                     OpLoc);
 | |
| 
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
 | |
|     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
 | |
|                            Var, FoundDecl, MemberNameInfo,
 | |
|                            Var->getType().getNonReferenceType(), VK_LValue,
 | |
|                            OK_Ordinary);
 | |
|   }
 | |
| 
 | |
|   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
 | |
|     ExprValueKind valueKind;
 | |
|     QualType type;
 | |
|     if (MemberFn->isInstance()) {
 | |
|       valueKind = VK_RValue;
 | |
|       type = Context.BoundMemberTy;
 | |
|     } else {
 | |
|       valueKind = VK_LValue;
 | |
|       type = MemberFn->getType();
 | |
|     }
 | |
| 
 | |
|     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
 | |
|                            MemberFn, FoundDecl, MemberNameInfo, type, valueKind,
 | |
|                            OK_Ordinary);
 | |
|   }
 | |
|   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
 | |
| 
 | |
|   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
 | |
|     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
 | |
|                            Enum, FoundDecl, MemberNameInfo, Enum->getType(),
 | |
|                            VK_RValue, OK_Ordinary);
 | |
|   }
 | |
| 
 | |
|   // We found something that we didn't expect. Complain.
 | |
|   if (isa<TypeDecl>(MemberDecl))
 | |
|     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
 | |
|       << MemberName << BaseType << int(IsArrow);
 | |
|   else
 | |
|     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
 | |
|       << MemberName << BaseType << int(IsArrow);
 | |
| 
 | |
|   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
 | |
|     << MemberName;
 | |
|   R.suppressDiagnostics();
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// Given that normal member access failed on the given expression,
 | |
| /// and given that the expression's type involves builtin-id or
 | |
| /// builtin-Class, decide whether substituting in the redefinition
 | |
| /// types would be profitable.  The redefinition type is whatever
 | |
| /// this translation unit tried to typedef to id/Class;  we store
 | |
| /// it to the side and then re-use it in places like this.
 | |
| static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
 | |
|   const ObjCObjectPointerType *opty
 | |
|     = base.get()->getType()->getAs<ObjCObjectPointerType>();
 | |
|   if (!opty) return false;
 | |
| 
 | |
|   const ObjCObjectType *ty = opty->getObjectType();
 | |
| 
 | |
|   QualType redef;
 | |
|   if (ty->isObjCId()) {
 | |
|     redef = S.Context.getObjCIdRedefinitionType();
 | |
|   } else if (ty->isObjCClass()) {
 | |
|     redef = S.Context.getObjCClassRedefinitionType();
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do the substitution as long as the redefinition type isn't just a
 | |
|   // possibly-qualified pointer to builtin-id or builtin-Class again.
 | |
|   opty = redef->getAs<ObjCObjectPointerType>();
 | |
|   if (opty && !opty->getObjectType()->getInterface())
 | |
|     return false;
 | |
| 
 | |
|   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isRecordType(QualType T) {
 | |
|   return T->isRecordType();
 | |
| }
 | |
| static bool isPointerToRecordType(QualType T) {
 | |
|   if (const PointerType *PT = T->getAs<PointerType>())
 | |
|     return PT->getPointeeType()->isRecordType();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform conversions on the LHS of a member access expression.
 | |
| ExprResult
 | |
| Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
 | |
|   if (IsArrow && !Base->getType()->isFunctionType())
 | |
|     return DefaultFunctionArrayLvalueConversion(Base);
 | |
| 
 | |
|   return CheckPlaceholderExpr(Base);
 | |
| }
 | |
| 
 | |
| /// Look up the given member of the given non-type-dependent
 | |
| /// expression.  This can return in one of two ways:
 | |
| ///  * If it returns a sentinel null-but-valid result, the caller will
 | |
| ///    assume that lookup was performed and the results written into
 | |
| ///    the provided structure.  It will take over from there.
 | |
| ///  * Otherwise, the returned expression will be produced in place of
 | |
| ///    an ordinary member expression.
 | |
| ///
 | |
| /// The ObjCImpDecl bit is a gross hack that will need to be properly
 | |
| /// fixed for ObjC++.
 | |
| static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
 | |
|                                    ExprResult &BaseExpr, bool &IsArrow,
 | |
|                                    SourceLocation OpLoc, CXXScopeSpec &SS,
 | |
|                                    Decl *ObjCImpDecl, bool HasTemplateArgs) {
 | |
|   assert(BaseExpr.get() && "no base expression");
 | |
| 
 | |
|   // Perform default conversions.
 | |
|   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
 | |
|   if (BaseExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType BaseType = BaseExpr.get()->getType();
 | |
|   assert(!BaseType->isDependentType());
 | |
| 
 | |
|   DeclarationName MemberName = R.getLookupName();
 | |
|   SourceLocation MemberLoc = R.getNameLoc();
 | |
| 
 | |
|   // For later type-checking purposes, turn arrow accesses into dot
 | |
|   // accesses.  The only access type we support that doesn't follow
 | |
|   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
 | |
|   // and those never use arrows, so this is unaffected.
 | |
|   if (IsArrow) {
 | |
|     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | |
|       BaseType = Ptr->getPointeeType();
 | |
|     else if (const ObjCObjectPointerType *Ptr
 | |
|                = BaseType->getAs<ObjCObjectPointerType>())
 | |
|       BaseType = Ptr->getPointeeType();
 | |
|     else if (BaseType->isRecordType()) {
 | |
|       // Recover from arrow accesses to records, e.g.:
 | |
|       //   struct MyRecord foo;
 | |
|       //   foo->bar
 | |
|       // This is actually well-formed in C++ if MyRecord has an
 | |
|       // overloaded operator->, but that should have been dealt with
 | |
|       // by now--or a diagnostic message already issued if a problem
 | |
|       // was encountered while looking for the overloaded operator->.
 | |
|       if (!S.getLangOpts().CPlusPlus) {
 | |
|         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
 | |
|           << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|       }
 | |
|       IsArrow = false;
 | |
|     } else if (BaseType->isFunctionType()) {
 | |
|       goto fail;
 | |
|     } else {
 | |
|       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
 | |
|         << BaseType << BaseExpr.get()->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle field access to simple records.
 | |
|   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
 | |
|     if (LookupMemberExprInRecord(S, R, BaseExpr.get()->getSourceRange(),
 | |
|                                  RTy, OpLoc, SS, HasTemplateArgs))
 | |
|       return ExprError();
 | |
| 
 | |
|     // Returning valid-but-null is how we indicate to the caller that
 | |
|     // the lookup result was filled in.
 | |
|     return ExprResult((Expr *)nullptr);
 | |
|   }
 | |
| 
 | |
|   // Handle ivar access to Objective-C objects.
 | |
|   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
 | |
|     if (!SS.isEmpty() && !SS.isInvalid()) {
 | |
|       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
 | |
|         << 1 << SS.getScopeRep()
 | |
|         << FixItHint::CreateRemoval(SS.getRange());
 | |
|       SS.clear();
 | |
|     }
 | |
| 
 | |
|     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | |
| 
 | |
|     // There are three cases for the base type:
 | |
|     //   - builtin id (qualified or unqualified)
 | |
|     //   - builtin Class (qualified or unqualified)
 | |
|     //   - an interface
 | |
|     ObjCInterfaceDecl *IDecl = OTy->getInterface();
 | |
|     if (!IDecl) {
 | |
|       if (S.getLangOpts().ObjCAutoRefCount &&
 | |
|           (OTy->isObjCId() || OTy->isObjCClass()))
 | |
|         goto fail;
 | |
|       // There's an implicit 'isa' ivar on all objects.
 | |
|       // But we only actually find it this way on objects of type 'id',
 | |
|       // apparently.
 | |
|       if (OTy->isObjCId() && Member->isStr("isa"))
 | |
|         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
 | |
|                                            OpLoc, S.Context.getObjCClassType());
 | |
|       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | |
|         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                 ObjCImpDecl, HasTemplateArgs);
 | |
|       goto fail;
 | |
|     }
 | |
| 
 | |
|     if (S.RequireCompleteType(OpLoc, BaseType,
 | |
|                               diag::err_typecheck_incomplete_tag,
 | |
|                               BaseExpr.get()))
 | |
|       return ExprError();
 | |
| 
 | |
|     ObjCInterfaceDecl *ClassDeclared = nullptr;
 | |
|     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
 | |
| 
 | |
|     if (!IV) {
 | |
|       // Attempt to correct for typos in ivar names.
 | |
|       DeclFilterCCC<ObjCIvarDecl> Validator;
 | |
|       Validator.IsObjCIvarLookup = IsArrow;
 | |
|       if (TypoCorrection Corrected = S.CorrectTypo(
 | |
|               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
 | |
|               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
 | |
|         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
 | |
|         S.diagnoseTypo(
 | |
|             Corrected,
 | |
|             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
 | |
|                 << IDecl->getDeclName() << MemberName);
 | |
| 
 | |
|         // Figure out the class that declares the ivar.
 | |
|         assert(!ClassDeclared);
 | |
|         Decl *D = cast<Decl>(IV->getDeclContext());
 | |
|         if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
 | |
|           D = CAT->getClassInterface();
 | |
|         ClassDeclared = cast<ObjCInterfaceDecl>(D);
 | |
|       } else {
 | |
|         if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
 | |
|           S.Diag(MemberLoc, diag::err_property_found_suggest)
 | |
|               << Member << BaseExpr.get()->getType()
 | |
|               << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|           return ExprError();
 | |
|         }
 | |
| 
 | |
|         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
 | |
|             << IDecl->getDeclName() << MemberName
 | |
|             << BaseExpr.get()->getSourceRange();
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(ClassDeclared);
 | |
| 
 | |
|     // If the decl being referenced had an error, return an error for this
 | |
|     // sub-expr without emitting another error, in order to avoid cascading
 | |
|     // error cases.
 | |
|     if (IV->isInvalidDecl())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Check whether we can reference this field.
 | |
|     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
 | |
|       return ExprError();
 | |
|     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
 | |
|         IV->getAccessControl() != ObjCIvarDecl::Package) {
 | |
|       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
 | |
|       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
 | |
|         ClassOfMethodDecl =  MD->getClassInterface();
 | |
|       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
 | |
|         // Case of a c-function declared inside an objc implementation.
 | |
|         // FIXME: For a c-style function nested inside an objc implementation
 | |
|         // class, there is no implementation context available, so we pass
 | |
|         // down the context as argument to this routine. Ideally, this context
 | |
|         // need be passed down in the AST node and somehow calculated from the
 | |
|         // AST for a function decl.
 | |
|         if (ObjCImplementationDecl *IMPD =
 | |
|               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
 | |
|           ClassOfMethodDecl = IMPD->getClassInterface();
 | |
|         else if (ObjCCategoryImplDecl* CatImplClass =
 | |
|                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
 | |
|           ClassOfMethodDecl = CatImplClass->getClassInterface();
 | |
|       }
 | |
|       if (!S.getLangOpts().DebuggerSupport) {
 | |
|         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
 | |
|           if (!declaresSameEntity(ClassDeclared, IDecl) ||
 | |
|               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
 | |
|             S.Diag(MemberLoc, diag::error_private_ivar_access)
 | |
|               << IV->getDeclName();
 | |
|         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
 | |
|           // @protected
 | |
|           S.Diag(MemberLoc, diag::error_protected_ivar_access)
 | |
|               << IV->getDeclName();
 | |
|       }
 | |
|     }
 | |
|     bool warn = true;
 | |
|     if (S.getLangOpts().ObjCAutoRefCount) {
 | |
|       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
 | |
|       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
 | |
|         if (UO->getOpcode() == UO_Deref)
 | |
|           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
 | |
|       
 | |
|       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
 | |
|         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | |
|           S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
 | |
|           warn = false;
 | |
|         }
 | |
|     }
 | |
|     if (warn) {
 | |
|       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
 | |
|         ObjCMethodFamily MF = MD->getMethodFamily();
 | |
|         warn = (MF != OMF_init && MF != OMF_dealloc && 
 | |
|                 MF != OMF_finalize &&
 | |
|                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
 | |
|       }
 | |
|       if (warn)
 | |
|         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
 | |
|     }
 | |
| 
 | |
|     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
 | |
|         IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
 | |
| 
 | |
|     if (S.getLangOpts().ObjCAutoRefCount) {
 | |
|       if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | |
|         if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
 | |
|           S.recordUseOfEvaluatedWeak(Result);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // Objective-C property access.
 | |
|   const ObjCObjectPointerType *OPT;
 | |
|   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
 | |
|     if (!SS.isEmpty() && !SS.isInvalid()) {
 | |
|       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
 | |
|           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
 | |
|       SS.clear();
 | |
|     }
 | |
| 
 | |
|     // This actually uses the base as an r-value.
 | |
|     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
 | |
|     if (BaseExpr.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     assert(S.Context.hasSameUnqualifiedType(BaseType,
 | |
|                                             BaseExpr.get()->getType()));
 | |
| 
 | |
|     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | |
| 
 | |
|     const ObjCObjectType *OT = OPT->getObjectType();
 | |
| 
 | |
|     // id, with and without qualifiers.
 | |
|     if (OT->isObjCId()) {
 | |
|       // Check protocols on qualified interfaces.
 | |
|       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
 | |
|       if (Decl *PMDecl =
 | |
|               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
 | |
|         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
 | |
|           // Check the use of this declaration
 | |
|           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
 | |
|             return ExprError();
 | |
| 
 | |
|           return new (S.Context)
 | |
|               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
 | |
|                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
 | |
|         }
 | |
| 
 | |
|         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
 | |
|           // Check the use of this method.
 | |
|           if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
 | |
|             return ExprError();
 | |
|           Selector SetterSel =
 | |
|             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
 | |
|                                                    S.PP.getSelectorTable(),
 | |
|                                                    Member);
 | |
|           ObjCMethodDecl *SMD = nullptr;
 | |
|           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
 | |
|                                                      /*Property id*/ nullptr,
 | |
|                                                      SetterSel, S.Context))
 | |
|             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
 | |
| 
 | |
|           return new (S.Context)
 | |
|               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
 | |
|                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
 | |
|         }
 | |
|       }
 | |
|       // Use of id.member can only be for a property reference. Do not
 | |
|       // use the 'id' redefinition in this case.
 | |
|       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | |
|         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                 ObjCImpDecl, HasTemplateArgs);
 | |
| 
 | |
|       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
 | |
|                          << MemberName << BaseType);
 | |
|     }
 | |
| 
 | |
|     // 'Class', unqualified only.
 | |
|     if (OT->isObjCClass()) {
 | |
|       // Only works in a method declaration (??!).
 | |
|       ObjCMethodDecl *MD = S.getCurMethodDecl();
 | |
|       if (!MD) {
 | |
|         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | |
|           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                   ObjCImpDecl, HasTemplateArgs);
 | |
| 
 | |
|         goto fail;
 | |
|       }
 | |
| 
 | |
|       // Also must look for a getter name which uses property syntax.
 | |
|       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
 | |
|       ObjCInterfaceDecl *IFace = MD->getClassInterface();
 | |
|       ObjCMethodDecl *Getter;
 | |
|       if ((Getter = IFace->lookupClassMethod(Sel))) {
 | |
|         // Check the use of this method.
 | |
|         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
 | |
|           return ExprError();
 | |
|       } else
 | |
|         Getter = IFace->lookupPrivateMethod(Sel, false);
 | |
|       // If we found a getter then this may be a valid dot-reference, we
 | |
|       // will look for the matching setter, in case it is needed.
 | |
|       Selector SetterSel =
 | |
|         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
 | |
|                                                S.PP.getSelectorTable(),
 | |
|                                                Member);
 | |
|       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
 | |
|       if (!Setter) {
 | |
|         // If this reference is in an @implementation, also check for 'private'
 | |
|         // methods.
 | |
|         Setter = IFace->lookupPrivateMethod(SetterSel, false);
 | |
|       }
 | |
| 
 | |
|       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
 | |
|         return ExprError();
 | |
| 
 | |
|       if (Getter || Setter) {
 | |
|         return new (S.Context) ObjCPropertyRefExpr(
 | |
|             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
 | |
|             OK_ObjCProperty, MemberLoc, BaseExpr.get());
 | |
|       }
 | |
| 
 | |
|       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | |
|         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                 ObjCImpDecl, HasTemplateArgs);
 | |
| 
 | |
|       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
 | |
|                          << MemberName << BaseType);
 | |
|     }
 | |
| 
 | |
|     // Normal property access.
 | |
|     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
 | |
|                                        MemberLoc, SourceLocation(), QualType(),
 | |
|                                        false);
 | |
|   }
 | |
| 
 | |
|   // Handle 'field access' to vectors, such as 'V.xx'.
 | |
|   if (BaseType->isExtVectorType()) {
 | |
|     // FIXME: this expr should store IsArrow.
 | |
|     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | |
|     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
 | |
|     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
 | |
|                                            Member, MemberLoc);
 | |
|     if (ret.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     return new (S.Context)
 | |
|         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
 | |
|   }
 | |
| 
 | |
|   // Adjust builtin-sel to the appropriate redefinition type if that's
 | |
|   // not just a pointer to builtin-sel again.
 | |
|   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
 | |
|       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
 | |
|     BaseExpr = S.ImpCastExprToType(
 | |
|         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
 | |
|     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                             ObjCImpDecl, HasTemplateArgs);
 | |
|   }
 | |
| 
 | |
|   // Failure cases.
 | |
|  fail:
 | |
| 
 | |
|   // Recover from dot accesses to pointers, e.g.:
 | |
|   //   type *foo;
 | |
|   //   foo.bar
 | |
|   // This is actually well-formed in two cases:
 | |
|   //   - 'type' is an Objective C type
 | |
|   //   - 'bar' is a pseudo-destructor name which happens to refer to
 | |
|   //     the appropriate pointer type
 | |
|   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
 | |
|     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
 | |
|         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
 | |
|       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
 | |
|           << FixItHint::CreateReplacement(OpLoc, "->");
 | |
| 
 | |
|       // Recurse as an -> access.
 | |
|       IsArrow = true;
 | |
|       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                               ObjCImpDecl, HasTemplateArgs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the user is trying to apply -> or . to a function name, it's probably
 | |
|   // because they forgot parentheses to call that function.
 | |
|   if (S.tryToRecoverWithCall(
 | |
|           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
 | |
|           /*complain*/ false,
 | |
|           IsArrow ? &isPointerToRecordType : &isRecordType)) {
 | |
|     if (BaseExpr.isInvalid())
 | |
|       return ExprError();
 | |
|     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
 | |
|     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                             ObjCImpDecl, HasTemplateArgs);
 | |
|   }
 | |
| 
 | |
|   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
 | |
|     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
 | |
| 
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// The main callback when the parser finds something like
 | |
| ///   expression . [nested-name-specifier] identifier
 | |
| ///   expression -> [nested-name-specifier] identifier
 | |
| /// where 'identifier' encompasses a fairly broad spectrum of
 | |
| /// possibilities, including destructor and operator references.
 | |
| ///
 | |
| /// \param OpKind either tok::arrow or tok::period
 | |
| /// \param HasTrailingLParen whether the next token is '(', which
 | |
| ///   is used to diagnose mis-uses of special members that can
 | |
| ///   only be called
 | |
| /// \param ObjCImpDecl the current Objective-C \@implementation
 | |
| ///   decl; this is an ugly hack around the fact that Objective-C
 | |
| ///   \@implementations aren't properly put in the context chain
 | |
| ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
 | |
|                                        SourceLocation OpLoc,
 | |
|                                        tok::TokenKind OpKind,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        SourceLocation TemplateKWLoc,
 | |
|                                        UnqualifiedId &Id,
 | |
|                                        Decl *ObjCImpDecl,
 | |
|                                        bool HasTrailingLParen) {
 | |
|   if (SS.isSet() && SS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // The only way a reference to a destructor can be used is to
 | |
|   // immediately call it. If the next token is not a '(', produce
 | |
|   // a diagnostic and build the call now.
 | |
|   if (!HasTrailingLParen &&
 | |
|       Id.getKind() == UnqualifiedId::IK_DestructorName) {
 | |
|     ExprResult DtorAccess =
 | |
|         ActOnMemberAccessExpr(S, Base, OpLoc, OpKind, SS, TemplateKWLoc, Id,
 | |
|                               ObjCImpDecl, /*HasTrailingLParen*/true);
 | |
|     if (DtorAccess.isInvalid())
 | |
|       return DtorAccess;
 | |
|     return DiagnoseDtorReference(Id.getLocStart(), DtorAccess.get());
 | |
|   }
 | |
| 
 | |
|   // Warn about the explicit constructor calls Microsoft extension.
 | |
|   if (getLangOpts().MicrosoftExt &&
 | |
|       Id.getKind() == UnqualifiedId::IK_ConstructorName)
 | |
|     Diag(Id.getSourceRange().getBegin(),
 | |
|          diag::ext_ms_explicit_constructor_call);
 | |
| 
 | |
|   TemplateArgumentListInfo TemplateArgsBuffer;
 | |
| 
 | |
|   // Decompose the name into its component parts.
 | |
|   DeclarationNameInfo NameInfo;
 | |
|   const TemplateArgumentListInfo *TemplateArgs;
 | |
|   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
 | |
|                          NameInfo, TemplateArgs);
 | |
| 
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   bool IsArrow = (OpKind == tok::arrow);
 | |
| 
 | |
|   NamedDecl *FirstQualifierInScope
 | |
|     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
 | |
| 
 | |
|   // This is a postfix expression, so get rid of ParenListExprs.
 | |
|   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Base = Result.get();
 | |
| 
 | |
|   if (Base->getType()->isDependentType() || Name.isDependentName() ||
 | |
|       isDependentScopeSpecifier(SS)) {
 | |
|     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
 | |
|                                     TemplateKWLoc, FirstQualifierInScope,
 | |
|                                     NameInfo, TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl,
 | |
|                                           HasTrailingLParen};
 | |
|   return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
 | |
|                                   TemplateKWLoc, FirstQualifierInScope,
 | |
|                                   NameInfo, TemplateArgs, &ExtraArgs);
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
 | |
|                         const CXXScopeSpec &SS, FieldDecl *Field,
 | |
|                         DeclAccessPair FoundDecl,
 | |
|                         const DeclarationNameInfo &MemberNameInfo) {
 | |
|   // x.a is an l-value if 'a' has a reference type. Otherwise:
 | |
|   // x.a is an l-value/x-value/pr-value if the base is (and note
 | |
|   //   that *x is always an l-value), except that if the base isn't
 | |
|   //   an ordinary object then we must have an rvalue.
 | |
|   ExprValueKind VK = VK_LValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   if (!IsArrow) {
 | |
|     if (BaseExpr->getObjectKind() == OK_Ordinary)
 | |
|       VK = BaseExpr->getValueKind();
 | |
|     else
 | |
|       VK = VK_RValue;
 | |
|   }
 | |
|   if (VK != VK_RValue && Field->isBitField())
 | |
|     OK = OK_BitField;
 | |
|   
 | |
|   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
 | |
|   QualType MemberType = Field->getType();
 | |
|   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
 | |
|     MemberType = Ref->getPointeeType();
 | |
|     VK = VK_LValue;
 | |
|   } else {
 | |
|     QualType BaseType = BaseExpr->getType();
 | |
|     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|     Qualifiers BaseQuals = BaseType.getQualifiers();
 | |
| 
 | |
|     // GC attributes are never picked up by members.
 | |
|     BaseQuals.removeObjCGCAttr();
 | |
| 
 | |
|     // CVR attributes from the base are picked up by members,
 | |
|     // except that 'mutable' members don't pick up 'const'.
 | |
|     if (Field->isMutable()) BaseQuals.removeConst();
 | |
| 
 | |
|     Qualifiers MemberQuals
 | |
|     = S.Context.getCanonicalType(MemberType).getQualifiers();
 | |
| 
 | |
|     assert(!MemberQuals.hasAddressSpace());
 | |
| 
 | |
| 
 | |
|     Qualifiers Combined = BaseQuals + MemberQuals;
 | |
|     if (Combined != MemberQuals)
 | |
|       MemberType = S.Context.getQualifiedType(MemberType, Combined);
 | |
|   }
 | |
| 
 | |
|   S.UnusedPrivateFields.remove(Field);
 | |
| 
 | |
|   ExprResult Base =
 | |
|   S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
 | |
|                                   FoundDecl, Field);
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
|   return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, SS,
 | |
|                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
 | |
|                          MemberNameInfo, MemberType, VK, OK);
 | |
| }
 | |
| 
 | |
| /// Builds an implicit member access expression.  The current context
 | |
| /// is known to be an instance method, and the given unqualified lookup
 | |
| /// set is known to contain only instance members, at least one of which
 | |
| /// is from an appropriate type.
 | |
| ExprResult
 | |
| Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
 | |
|                               SourceLocation TemplateKWLoc,
 | |
|                               LookupResult &R,
 | |
|                               const TemplateArgumentListInfo *TemplateArgs,
 | |
|                               bool IsKnownInstance) {
 | |
|   assert(!R.empty() && !R.isAmbiguous());
 | |
|   
 | |
|   SourceLocation loc = R.getNameLoc();
 | |
| 
 | |
|   // If this is known to be an instance access, go ahead and build an
 | |
|   // implicit 'this' expression now.
 | |
|   // 'this' expression now.
 | |
|   QualType ThisTy = getCurrentThisType();
 | |
|   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
 | |
| 
 | |
|   Expr *baseExpr = nullptr; // null signifies implicit access
 | |
|   if (IsKnownInstance) {
 | |
|     SourceLocation Loc = R.getNameLoc();
 | |
|     if (SS.getRange().isValid())
 | |
|       Loc = SS.getRange().getBegin();
 | |
|     CheckCXXThisCapture(Loc);
 | |
|     baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
 | |
|   }
 | |
| 
 | |
|   return BuildMemberReferenceExpr(baseExpr, ThisTy,
 | |
|                                   /*OpLoc*/ SourceLocation(),
 | |
|                                   /*IsArrow*/ true,
 | |
|                                   SS, TemplateKWLoc,
 | |
|                                   /*FirstQualifierInScope*/ nullptr,
 | |
|                                   R, TemplateArgs);
 | |
| }
 |