12277 lines
		
	
	
		
			489 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			12277 lines
		
	
	
		
			489 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file provides Sema routines for C++ overloading.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/Overload.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/TypeOrdering.h"
 | |
| #include "clang/Basic/Diagnostic.h"
 | |
| #include "clang/Basic/DiagnosticOptions.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Template.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include <algorithm>
 | |
| #include <cstdlib>
 | |
| 
 | |
| namespace clang {
 | |
| using namespace sema;
 | |
| 
 | |
| /// A convenience routine for creating a decayed reference to a function.
 | |
| static ExprResult
 | |
| CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
 | |
|                       bool HadMultipleCandidates,
 | |
|                       SourceLocation Loc = SourceLocation(), 
 | |
|                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
 | |
|   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
 | |
|     return ExprError(); 
 | |
|   // If FoundDecl is different from Fn (such as if one is a template
 | |
|   // and the other a specialization), make sure DiagnoseUseOfDecl is 
 | |
|   // called on both.
 | |
|   // FIXME: This would be more comprehensively addressed by modifying
 | |
|   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
 | |
|   // being used.
 | |
|   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
 | |
|     return ExprError();
 | |
|   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
 | |
|                                                  VK_LValue, Loc, LocInfo);
 | |
|   if (HadMultipleCandidates)
 | |
|     DRE->setHadMultipleCandidates(true);
 | |
| 
 | |
|   S.MarkDeclRefReferenced(DRE);
 | |
| 
 | |
|   ExprResult E = DRE;
 | |
|   E = S.DefaultFunctionArrayConversion(E.get());
 | |
|   if (E.isInvalid())
 | |
|     return ExprError();
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
 | |
|                                  bool InOverloadResolution,
 | |
|                                  StandardConversionSequence &SCS,
 | |
|                                  bool CStyle,
 | |
|                                  bool AllowObjCWritebackConversion);
 | |
| 
 | |
| static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
 | |
|                                                  QualType &ToType,
 | |
|                                                  bool InOverloadResolution,
 | |
|                                                  StandardConversionSequence &SCS,
 | |
|                                                  bool CStyle);
 | |
| static OverloadingResult
 | |
| IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                         UserDefinedConversionSequence& User,
 | |
|                         OverloadCandidateSet& Conversions,
 | |
|                         bool AllowExplicit,
 | |
|                         bool AllowObjCConversionOnExplicit);
 | |
| 
 | |
| 
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| CompareStandardConversionSequences(Sema &S,
 | |
|                                    const StandardConversionSequence& SCS1,
 | |
|                                    const StandardConversionSequence& SCS2);
 | |
| 
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| CompareQualificationConversions(Sema &S,
 | |
|                                 const StandardConversionSequence& SCS1,
 | |
|                                 const StandardConversionSequence& SCS2);
 | |
| 
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| CompareDerivedToBaseConversions(Sema &S,
 | |
|                                 const StandardConversionSequence& SCS1,
 | |
|                                 const StandardConversionSequence& SCS2);
 | |
| 
 | |
| 
 | |
| 
 | |
| /// GetConversionCategory - Retrieve the implicit conversion
 | |
| /// category corresponding to the given implicit conversion kind.
 | |
| ImplicitConversionCategory
 | |
| GetConversionCategory(ImplicitConversionKind Kind) {
 | |
|   static const ImplicitConversionCategory
 | |
|     Category[(int)ICK_Num_Conversion_Kinds] = {
 | |
|     ICC_Identity,
 | |
|     ICC_Lvalue_Transformation,
 | |
|     ICC_Lvalue_Transformation,
 | |
|     ICC_Lvalue_Transformation,
 | |
|     ICC_Identity,
 | |
|     ICC_Qualification_Adjustment,
 | |
|     ICC_Promotion,
 | |
|     ICC_Promotion,
 | |
|     ICC_Promotion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion,
 | |
|     ICC_Conversion
 | |
|   };
 | |
|   return Category[(int)Kind];
 | |
| }
 | |
| 
 | |
| /// GetConversionRank - Retrieve the implicit conversion rank
 | |
| /// corresponding to the given implicit conversion kind.
 | |
| ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
 | |
|   static const ImplicitConversionRank
 | |
|     Rank[(int)ICK_Num_Conversion_Kinds] = {
 | |
|     ICR_Exact_Match,
 | |
|     ICR_Exact_Match,
 | |
|     ICR_Exact_Match,
 | |
|     ICR_Exact_Match,
 | |
|     ICR_Exact_Match,
 | |
|     ICR_Exact_Match,
 | |
|     ICR_Promotion,
 | |
|     ICR_Promotion,
 | |
|     ICR_Promotion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Complex_Real_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Conversion,
 | |
|     ICR_Writeback_Conversion
 | |
|   };
 | |
|   return Rank[(int)Kind];
 | |
| }
 | |
| 
 | |
| /// GetImplicitConversionName - Return the name of this kind of
 | |
| /// implicit conversion.
 | |
| const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
 | |
|   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
 | |
|     "No conversion",
 | |
|     "Lvalue-to-rvalue",
 | |
|     "Array-to-pointer",
 | |
|     "Function-to-pointer",
 | |
|     "Noreturn adjustment",
 | |
|     "Qualification",
 | |
|     "Integral promotion",
 | |
|     "Floating point promotion",
 | |
|     "Complex promotion",
 | |
|     "Integral conversion",
 | |
|     "Floating conversion",
 | |
|     "Complex conversion",
 | |
|     "Floating-integral conversion",
 | |
|     "Pointer conversion",
 | |
|     "Pointer-to-member conversion",
 | |
|     "Boolean conversion",
 | |
|     "Compatible-types conversion",
 | |
|     "Derived-to-base conversion",
 | |
|     "Vector conversion",
 | |
|     "Vector splat",
 | |
|     "Complex-real conversion",
 | |
|     "Block Pointer conversion",
 | |
|     "Transparent Union Conversion"
 | |
|     "Writeback conversion"
 | |
|   };
 | |
|   return Name[Kind];
 | |
| }
 | |
| 
 | |
| /// StandardConversionSequence - Set the standard conversion
 | |
| /// sequence to the identity conversion.
 | |
| void StandardConversionSequence::setAsIdentityConversion() {
 | |
|   First = ICK_Identity;
 | |
|   Second = ICK_Identity;
 | |
|   Third = ICK_Identity;
 | |
|   DeprecatedStringLiteralToCharPtr = false;
 | |
|   QualificationIncludesObjCLifetime = false;
 | |
|   ReferenceBinding = false;
 | |
|   DirectBinding = false;
 | |
|   IsLvalueReference = true;
 | |
|   BindsToFunctionLvalue = false;
 | |
|   BindsToRvalue = false;
 | |
|   BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | |
|   ObjCLifetimeConversionBinding = false;
 | |
|   CopyConstructor = nullptr;
 | |
| }
 | |
| 
 | |
| /// getRank - Retrieve the rank of this standard conversion sequence
 | |
| /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
 | |
| /// implicit conversions.
 | |
| ImplicitConversionRank StandardConversionSequence::getRank() const {
 | |
|   ImplicitConversionRank Rank = ICR_Exact_Match;
 | |
|   if  (GetConversionRank(First) > Rank)
 | |
|     Rank = GetConversionRank(First);
 | |
|   if  (GetConversionRank(Second) > Rank)
 | |
|     Rank = GetConversionRank(Second);
 | |
|   if  (GetConversionRank(Third) > Rank)
 | |
|     Rank = GetConversionRank(Third);
 | |
|   return Rank;
 | |
| }
 | |
| 
 | |
| /// isPointerConversionToBool - Determines whether this conversion is
 | |
| /// a conversion of a pointer or pointer-to-member to bool. This is
 | |
| /// used as part of the ranking of standard conversion sequences
 | |
| /// (C++ 13.3.3.2p4).
 | |
| bool StandardConversionSequence::isPointerConversionToBool() const {
 | |
|   // Note that FromType has not necessarily been transformed by the
 | |
|   // array-to-pointer or function-to-pointer implicit conversions, so
 | |
|   // check for their presence as well as checking whether FromType is
 | |
|   // a pointer.
 | |
|   if (getToType(1)->isBooleanType() &&
 | |
|       (getFromType()->isPointerType() ||
 | |
|        getFromType()->isObjCObjectPointerType() ||
 | |
|        getFromType()->isBlockPointerType() ||
 | |
|        getFromType()->isNullPtrType() ||
 | |
|        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPointerConversionToVoidPointer - Determines whether this
 | |
| /// conversion is a conversion of a pointer to a void pointer. This is
 | |
| /// used as part of the ranking of standard conversion sequences (C++
 | |
| /// 13.3.3.2p4).
 | |
| bool
 | |
| StandardConversionSequence::
 | |
| isPointerConversionToVoidPointer(ASTContext& Context) const {
 | |
|   QualType FromType = getFromType();
 | |
|   QualType ToType = getToType(1);
 | |
| 
 | |
|   // Note that FromType has not necessarily been transformed by the
 | |
|   // array-to-pointer implicit conversion, so check for its presence
 | |
|   // and redo the conversion to get a pointer.
 | |
|   if (First == ICK_Array_To_Pointer)
 | |
|     FromType = Context.getArrayDecayedType(FromType);
 | |
| 
 | |
|   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
 | |
|     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
 | |
|       return ToPtrType->getPointeeType()->isVoidType();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Skip any implicit casts which could be either part of a narrowing conversion
 | |
| /// or after one in an implicit conversion.
 | |
| static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
 | |
|     switch (ICE->getCastKind()) {
 | |
|     case CK_NoOp:
 | |
|     case CK_IntegralCast:
 | |
|     case CK_IntegralToBoolean:
 | |
|     case CK_IntegralToFloating:
 | |
|     case CK_FloatingToIntegral:
 | |
|     case CK_FloatingToBoolean:
 | |
|     case CK_FloatingCast:
 | |
|       Converted = ICE->getSubExpr();
 | |
|       continue;
 | |
| 
 | |
|     default:
 | |
|       return Converted;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Converted;
 | |
| }
 | |
| 
 | |
| /// Check if this standard conversion sequence represents a narrowing
 | |
| /// conversion, according to C++11 [dcl.init.list]p7.
 | |
| ///
 | |
| /// \param Ctx  The AST context.
 | |
| /// \param Converted  The result of applying this standard conversion sequence.
 | |
| /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
 | |
| ///        value of the expression prior to the narrowing conversion.
 | |
| /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
 | |
| ///        type of the expression prior to the narrowing conversion.
 | |
| NarrowingKind
 | |
| StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
 | |
|                                              const Expr *Converted,
 | |
|                                              APValue &ConstantValue,
 | |
|                                              QualType &ConstantType) const {
 | |
|   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
 | |
| 
 | |
|   // C++11 [dcl.init.list]p7:
 | |
|   //   A narrowing conversion is an implicit conversion ...
 | |
|   QualType FromType = getToType(0);
 | |
|   QualType ToType = getToType(1);
 | |
|   switch (Second) {
 | |
|   // -- from a floating-point type to an integer type, or
 | |
|   //
 | |
|   // -- from an integer type or unscoped enumeration type to a floating-point
 | |
|   //    type, except where the source is a constant expression and the actual
 | |
|   //    value after conversion will fit into the target type and will produce
 | |
|   //    the original value when converted back to the original type, or
 | |
|   case ICK_Floating_Integral:
 | |
|     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
 | |
|       return NK_Type_Narrowing;
 | |
|     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
 | |
|       llvm::APSInt IntConstantValue;
 | |
|       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
 | |
|       if (Initializer &&
 | |
|           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
 | |
|         // Convert the integer to the floating type.
 | |
|         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
 | |
|         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
 | |
|                                 llvm::APFloat::rmNearestTiesToEven);
 | |
|         // And back.
 | |
|         llvm::APSInt ConvertedValue = IntConstantValue;
 | |
|         bool ignored;
 | |
|         Result.convertToInteger(ConvertedValue,
 | |
|                                 llvm::APFloat::rmTowardZero, &ignored);
 | |
|         // If the resulting value is different, this was a narrowing conversion.
 | |
|         if (IntConstantValue != ConvertedValue) {
 | |
|           ConstantValue = APValue(IntConstantValue);
 | |
|           ConstantType = Initializer->getType();
 | |
|           return NK_Constant_Narrowing;
 | |
|         }
 | |
|       } else {
 | |
|         // Variables are always narrowings.
 | |
|         return NK_Variable_Narrowing;
 | |
|       }
 | |
|     }
 | |
|     return NK_Not_Narrowing;
 | |
| 
 | |
|   // -- from long double to double or float, or from double to float, except
 | |
|   //    where the source is a constant expression and the actual value after
 | |
|   //    conversion is within the range of values that can be represented (even
 | |
|   //    if it cannot be represented exactly), or
 | |
|   case ICK_Floating_Conversion:
 | |
|     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
 | |
|         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
 | |
|       // FromType is larger than ToType.
 | |
|       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
 | |
|       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
 | |
|         // Constant!
 | |
|         assert(ConstantValue.isFloat());
 | |
|         llvm::APFloat FloatVal = ConstantValue.getFloat();
 | |
|         // Convert the source value into the target type.
 | |
|         bool ignored;
 | |
|         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
 | |
|           Ctx.getFloatTypeSemantics(ToType),
 | |
|           llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
|         // If there was no overflow, the source value is within the range of
 | |
|         // values that can be represented.
 | |
|         if (ConvertStatus & llvm::APFloat::opOverflow) {
 | |
|           ConstantType = Initializer->getType();
 | |
|           return NK_Constant_Narrowing;
 | |
|         }
 | |
|       } else {
 | |
|         return NK_Variable_Narrowing;
 | |
|       }
 | |
|     }
 | |
|     return NK_Not_Narrowing;
 | |
| 
 | |
|   // -- from an integer type or unscoped enumeration type to an integer type
 | |
|   //    that cannot represent all the values of the original type, except where
 | |
|   //    the source is a constant expression and the actual value after
 | |
|   //    conversion will fit into the target type and will produce the original
 | |
|   //    value when converted back to the original type.
 | |
|   case ICK_Boolean_Conversion:  // Bools are integers too.
 | |
|     if (!FromType->isIntegralOrUnscopedEnumerationType()) {
 | |
|       // Boolean conversions can be from pointers and pointers to members
 | |
|       // [conv.bool], and those aren't considered narrowing conversions.
 | |
|       return NK_Not_Narrowing;
 | |
|     }  // Otherwise, fall through to the integral case.
 | |
|   case ICK_Integral_Conversion: {
 | |
|     assert(FromType->isIntegralOrUnscopedEnumerationType());
 | |
|     assert(ToType->isIntegralOrUnscopedEnumerationType());
 | |
|     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
 | |
|     const unsigned FromWidth = Ctx.getIntWidth(FromType);
 | |
|     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
 | |
|     const unsigned ToWidth = Ctx.getIntWidth(ToType);
 | |
| 
 | |
|     if (FromWidth > ToWidth ||
 | |
|         (FromWidth == ToWidth && FromSigned != ToSigned) ||
 | |
|         (FromSigned && !ToSigned)) {
 | |
|       // Not all values of FromType can be represented in ToType.
 | |
|       llvm::APSInt InitializerValue;
 | |
|       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
 | |
|       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
 | |
|         // Such conversions on variables are always narrowing.
 | |
|         return NK_Variable_Narrowing;
 | |
|       }
 | |
|       bool Narrowing = false;
 | |
|       if (FromWidth < ToWidth) {
 | |
|         // Negative -> unsigned is narrowing. Otherwise, more bits is never
 | |
|         // narrowing.
 | |
|         if (InitializerValue.isSigned() && InitializerValue.isNegative())
 | |
|           Narrowing = true;
 | |
|       } else {
 | |
|         // Add a bit to the InitializerValue so we don't have to worry about
 | |
|         // signed vs. unsigned comparisons.
 | |
|         InitializerValue = InitializerValue.extend(
 | |
|           InitializerValue.getBitWidth() + 1);
 | |
|         // Convert the initializer to and from the target width and signed-ness.
 | |
|         llvm::APSInt ConvertedValue = InitializerValue;
 | |
|         ConvertedValue = ConvertedValue.trunc(ToWidth);
 | |
|         ConvertedValue.setIsSigned(ToSigned);
 | |
|         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
 | |
|         ConvertedValue.setIsSigned(InitializerValue.isSigned());
 | |
|         // If the result is different, this was a narrowing conversion.
 | |
|         if (ConvertedValue != InitializerValue)
 | |
|           Narrowing = true;
 | |
|       }
 | |
|       if (Narrowing) {
 | |
|         ConstantType = Initializer->getType();
 | |
|         ConstantValue = APValue(InitializerValue);
 | |
|         return NK_Constant_Narrowing;
 | |
|       }
 | |
|     }
 | |
|     return NK_Not_Narrowing;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // Other kinds of conversions are not narrowings.
 | |
|     return NK_Not_Narrowing;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dump - Print this standard conversion sequence to standard
 | |
| /// error. Useful for debugging overloading issues.
 | |
| void StandardConversionSequence::dump() const {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
|   bool PrintedSomething = false;
 | |
|   if (First != ICK_Identity) {
 | |
|     OS << GetImplicitConversionName(First);
 | |
|     PrintedSomething = true;
 | |
|   }
 | |
| 
 | |
|   if (Second != ICK_Identity) {
 | |
|     if (PrintedSomething) {
 | |
|       OS << " -> ";
 | |
|     }
 | |
|     OS << GetImplicitConversionName(Second);
 | |
| 
 | |
|     if (CopyConstructor) {
 | |
|       OS << " (by copy constructor)";
 | |
|     } else if (DirectBinding) {
 | |
|       OS << " (direct reference binding)";
 | |
|     } else if (ReferenceBinding) {
 | |
|       OS << " (reference binding)";
 | |
|     }
 | |
|     PrintedSomething = true;
 | |
|   }
 | |
| 
 | |
|   if (Third != ICK_Identity) {
 | |
|     if (PrintedSomething) {
 | |
|       OS << " -> ";
 | |
|     }
 | |
|     OS << GetImplicitConversionName(Third);
 | |
|     PrintedSomething = true;
 | |
|   }
 | |
| 
 | |
|   if (!PrintedSomething) {
 | |
|     OS << "No conversions required";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dump - Print this user-defined conversion sequence to standard
 | |
| /// error. Useful for debugging overloading issues.
 | |
| void UserDefinedConversionSequence::dump() const {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
|   if (Before.First || Before.Second || Before.Third) {
 | |
|     Before.dump();
 | |
|     OS << " -> ";
 | |
|   }
 | |
|   if (ConversionFunction)
 | |
|     OS << '\'' << *ConversionFunction << '\'';
 | |
|   else
 | |
|     OS << "aggregate initialization";
 | |
|   if (After.First || After.Second || After.Third) {
 | |
|     OS << " -> ";
 | |
|     After.dump();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dump - Print this implicit conversion sequence to standard
 | |
| /// error. Useful for debugging overloading issues.
 | |
| void ImplicitConversionSequence::dump() const {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
|   if (isStdInitializerListElement())
 | |
|     OS << "Worst std::initializer_list element conversion: ";
 | |
|   switch (ConversionKind) {
 | |
|   case StandardConversion:
 | |
|     OS << "Standard conversion: ";
 | |
|     Standard.dump();
 | |
|     break;
 | |
|   case UserDefinedConversion:
 | |
|     OS << "User-defined conversion: ";
 | |
|     UserDefined.dump();
 | |
|     break;
 | |
|   case EllipsisConversion:
 | |
|     OS << "Ellipsis conversion";
 | |
|     break;
 | |
|   case AmbiguousConversion:
 | |
|     OS << "Ambiguous conversion";
 | |
|     break;
 | |
|   case BadConversion:
 | |
|     OS << "Bad conversion";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| void AmbiguousConversionSequence::construct() {
 | |
|   new (&conversions()) ConversionSet();
 | |
| }
 | |
| 
 | |
| void AmbiguousConversionSequence::destruct() {
 | |
|   conversions().~ConversionSet();
 | |
| }
 | |
| 
 | |
| void
 | |
| AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
 | |
|   FromTypePtr = O.FromTypePtr;
 | |
|   ToTypePtr = O.ToTypePtr;
 | |
|   new (&conversions()) ConversionSet(O.conversions());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Structure used by DeductionFailureInfo to store
 | |
|   // template argument information.
 | |
|   struct DFIArguments {
 | |
|     TemplateArgument FirstArg;
 | |
|     TemplateArgument SecondArg;
 | |
|   };
 | |
|   // Structure used by DeductionFailureInfo to store
 | |
|   // template parameter and template argument information.
 | |
|   struct DFIParamWithArguments : DFIArguments {
 | |
|     TemplateParameter Param;
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// \brief Convert from Sema's representation of template deduction information
 | |
| /// to the form used in overload-candidate information.
 | |
| DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context,
 | |
|                                               Sema::TemplateDeductionResult TDK,
 | |
|                                               TemplateDeductionInfo &Info) {
 | |
|   DeductionFailureInfo Result;
 | |
|   Result.Result = static_cast<unsigned>(TDK);
 | |
|   Result.HasDiagnostic = false;
 | |
|   Result.Data = nullptr;
 | |
|   switch (TDK) {
 | |
|   case Sema::TDK_Success:
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|     break;
 | |
| 
 | |
|   case Sema::TDK_Incomplete:
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|     Result.Data = Info.Param.getOpaqueValue();
 | |
|     break;
 | |
| 
 | |
|   case Sema::TDK_NonDeducedMismatch: {
 | |
|     // FIXME: Should allocate from normal heap so that we can free this later.
 | |
|     DFIArguments *Saved = new (Context) DFIArguments;
 | |
|     Saved->FirstArg = Info.FirstArg;
 | |
|     Saved->SecondArg = Info.SecondArg;
 | |
|     Result.Data = Saved;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_Inconsistent:
 | |
|   case Sema::TDK_Underqualified: {
 | |
|     // FIXME: Should allocate from normal heap so that we can free this later.
 | |
|     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
 | |
|     Saved->Param = Info.Param;
 | |
|     Saved->FirstArg = Info.FirstArg;
 | |
|     Saved->SecondArg = Info.SecondArg;
 | |
|     Result.Data = Saved;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|     Result.Data = Info.take();
 | |
|     if (Info.hasSFINAEDiagnostic()) {
 | |
|       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
 | |
|           SourceLocation(), PartialDiagnostic::NullDiagnostic());
 | |
|       Info.takeSFINAEDiagnostic(*Diag);
 | |
|       Result.HasDiagnostic = true;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     Result.Data = Info.Expression;
 | |
|     break;
 | |
| 
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void DeductionFailureInfo::Destroy() {
 | |
|   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | |
|   case Sema::TDK_Success:
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_Incomplete:
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     break;
 | |
| 
 | |
|   case Sema::TDK_Inconsistent:
 | |
|   case Sema::TDK_Underqualified:
 | |
|   case Sema::TDK_NonDeducedMismatch:
 | |
|     // FIXME: Destroy the data?
 | |
|     Data = nullptr;
 | |
|     break;
 | |
| 
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|     // FIXME: Destroy the template argument list?
 | |
|     Data = nullptr;
 | |
|     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
 | |
|       Diag->~PartialDiagnosticAt();
 | |
|       HasDiagnostic = false;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   // Unhandled
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
 | |
|   if (HasDiagnostic)
 | |
|     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| TemplateParameter DeductionFailureInfo::getTemplateParameter() {
 | |
|   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | |
|   case Sema::TDK_Success:
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|   case Sema::TDK_NonDeducedMismatch:
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     return TemplateParameter();
 | |
| 
 | |
|   case Sema::TDK_Incomplete:
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|     return TemplateParameter::getFromOpaqueValue(Data);
 | |
| 
 | |
|   case Sema::TDK_Inconsistent:
 | |
|   case Sema::TDK_Underqualified:
 | |
|     return static_cast<DFIParamWithArguments*>(Data)->Param;
 | |
| 
 | |
|   // Unhandled
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return TemplateParameter();
 | |
| }
 | |
| 
 | |
| TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
 | |
|   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | |
|   case Sema::TDK_Success:
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|   case Sema::TDK_Incomplete:
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|   case Sema::TDK_Inconsistent:
 | |
|   case Sema::TDK_Underqualified:
 | |
|   case Sema::TDK_NonDeducedMismatch:
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     return nullptr;
 | |
| 
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|     return static_cast<TemplateArgumentList*>(Data);
 | |
| 
 | |
|   // Unhandled
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const TemplateArgument *DeductionFailureInfo::getFirstArg() {
 | |
|   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | |
|   case Sema::TDK_Success:
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_Incomplete:
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     return nullptr;
 | |
| 
 | |
|   case Sema::TDK_Inconsistent:
 | |
|   case Sema::TDK_Underqualified:
 | |
|   case Sema::TDK_NonDeducedMismatch:
 | |
|     return &static_cast<DFIArguments*>(Data)->FirstArg;
 | |
| 
 | |
|   // Unhandled
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const TemplateArgument *DeductionFailureInfo::getSecondArg() {
 | |
|   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | |
|   case Sema::TDK_Success:
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_Incomplete:
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     return nullptr;
 | |
| 
 | |
|   case Sema::TDK_Inconsistent:
 | |
|   case Sema::TDK_Underqualified:
 | |
|   case Sema::TDK_NonDeducedMismatch:
 | |
|     return &static_cast<DFIArguments*>(Data)->SecondArg;
 | |
| 
 | |
|   // Unhandled
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Expr *DeductionFailureInfo::getExpr() {
 | |
|   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
 | |
|         Sema::TDK_FailedOverloadResolution)
 | |
|     return static_cast<Expr*>(Data);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void OverloadCandidateSet::destroyCandidates() {
 | |
|   for (iterator i = begin(), e = end(); i != e; ++i) {
 | |
|     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
 | |
|       i->Conversions[ii].~ImplicitConversionSequence();
 | |
|     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
 | |
|       i->DeductionFailure.Destroy();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void OverloadCandidateSet::clear() {
 | |
|   destroyCandidates();
 | |
|   NumInlineSequences = 0;
 | |
|   Candidates.clear();
 | |
|   Functions.clear();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class UnbridgedCastsSet {
 | |
|     struct Entry {
 | |
|       Expr **Addr;
 | |
|       Expr *Saved;
 | |
|     };
 | |
|     SmallVector<Entry, 2> Entries;
 | |
|     
 | |
|   public:
 | |
|     void save(Sema &S, Expr *&E) {
 | |
|       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
 | |
|       Entry entry = { &E, E };
 | |
|       Entries.push_back(entry);
 | |
|       E = S.stripARCUnbridgedCast(E);
 | |
|     }
 | |
| 
 | |
|     void restore() {
 | |
|       for (SmallVectorImpl<Entry>::iterator
 | |
|              i = Entries.begin(), e = Entries.end(); i != e; ++i) 
 | |
|         *i->Addr = i->Saved;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// checkPlaceholderForOverload - Do any interesting placeholder-like
 | |
| /// preprocessing on the given expression.
 | |
| ///
 | |
| /// \param unbridgedCasts a collection to which to add unbridged casts;
 | |
| ///   without this, they will be immediately diagnosed as errors
 | |
| ///
 | |
| /// Return true on unrecoverable error.
 | |
| static bool
 | |
| checkPlaceholderForOverload(Sema &S, Expr *&E,
 | |
|                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
 | |
|   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
 | |
|     // We can't handle overloaded expressions here because overload
 | |
|     // resolution might reasonably tweak them.
 | |
|     if (placeholder->getKind() == BuiltinType::Overload) return false;
 | |
| 
 | |
|     // If the context potentially accepts unbridged ARC casts, strip
 | |
|     // the unbridged cast and add it to the collection for later restoration.
 | |
|     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
 | |
|         unbridgedCasts) {
 | |
|       unbridgedCasts->save(S, E);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Go ahead and check everything else.
 | |
|     ExprResult result = S.CheckPlaceholderExpr(E);
 | |
|     if (result.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     E = result.get();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Nothing to do.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// checkArgPlaceholdersForOverload - Check a set of call operands for
 | |
| /// placeholders.
 | |
| static bool checkArgPlaceholdersForOverload(Sema &S,
 | |
|                                             MultiExprArg Args,
 | |
|                                             UnbridgedCastsSet &unbridged) {
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // IsOverload - Determine whether the given New declaration is an
 | |
| // overload of the declarations in Old. This routine returns false if
 | |
| // New and Old cannot be overloaded, e.g., if New has the same
 | |
| // signature as some function in Old (C++ 1.3.10) or if the Old
 | |
| // declarations aren't functions (or function templates) at all. When
 | |
| // it does return false, MatchedDecl will point to the decl that New
 | |
| // cannot be overloaded with.  This decl may be a UsingShadowDecl on
 | |
| // top of the underlying declaration.
 | |
| //
 | |
| // Example: Given the following input:
 | |
| //
 | |
| //   void f(int, float); // #1
 | |
| //   void f(int, int); // #2
 | |
| //   int f(int, int); // #3
 | |
| //
 | |
| // When we process #1, there is no previous declaration of "f",
 | |
| // so IsOverload will not be used.
 | |
| //
 | |
| // When we process #2, Old contains only the FunctionDecl for #1.  By
 | |
| // comparing the parameter types, we see that #1 and #2 are overloaded
 | |
| // (since they have different signatures), so this routine returns
 | |
| // false; MatchedDecl is unchanged.
 | |
| //
 | |
| // When we process #3, Old is an overload set containing #1 and #2. We
 | |
| // compare the signatures of #3 to #1 (they're overloaded, so we do
 | |
| // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
 | |
| // identical (return types of functions are not part of the
 | |
| // signature), IsOverload returns false and MatchedDecl will be set to
 | |
| // point to the FunctionDecl for #2.
 | |
| //
 | |
| // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
 | |
| // into a class by a using declaration.  The rules for whether to hide
 | |
| // shadow declarations ignore some properties which otherwise figure
 | |
| // into a function template's signature.
 | |
| Sema::OverloadKind
 | |
| Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
 | |
|                     NamedDecl *&Match, bool NewIsUsingDecl) {
 | |
|   for (LookupResult::iterator I = Old.begin(), E = Old.end();
 | |
|          I != E; ++I) {
 | |
|     NamedDecl *OldD = *I;
 | |
| 
 | |
|     bool OldIsUsingDecl = false;
 | |
|     if (isa<UsingShadowDecl>(OldD)) {
 | |
|       OldIsUsingDecl = true;
 | |
| 
 | |
|       // We can always introduce two using declarations into the same
 | |
|       // context, even if they have identical signatures.
 | |
|       if (NewIsUsingDecl) continue;
 | |
| 
 | |
|       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
 | |
|     }
 | |
| 
 | |
|     // If either declaration was introduced by a using declaration,
 | |
|     // we'll need to use slightly different rules for matching.
 | |
|     // Essentially, these rules are the normal rules, except that
 | |
|     // function templates hide function templates with different
 | |
|     // return types or template parameter lists.
 | |
|     bool UseMemberUsingDeclRules =
 | |
|       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
 | |
|       !New->getFriendObjectKind();
 | |
| 
 | |
|     if (FunctionDecl *OldF = OldD->getAsFunction()) {
 | |
|       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
 | |
|         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
 | |
|           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (!isa<FunctionTemplateDecl>(OldD) &&
 | |
|             !shouldLinkPossiblyHiddenDecl(*I, New))
 | |
|           continue;
 | |
| 
 | |
|         Match = *I;
 | |
|         return Ovl_Match;
 | |
|       }
 | |
|     } else if (isa<UsingDecl>(OldD)) {
 | |
|       // We can overload with these, which can show up when doing
 | |
|       // redeclaration checks for UsingDecls.
 | |
|       assert(Old.getLookupKind() == LookupUsingDeclName);
 | |
|     } else if (isa<TagDecl>(OldD)) {
 | |
|       // We can always overload with tags by hiding them.
 | |
|     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
 | |
|       // Optimistically assume that an unresolved using decl will
 | |
|       // overload; if it doesn't, we'll have to diagnose during
 | |
|       // template instantiation.
 | |
|     } else {
 | |
|       // (C++ 13p1):
 | |
|       //   Only function declarations can be overloaded; object and type
 | |
|       //   declarations cannot be overloaded.
 | |
|       Match = *I;
 | |
|       return Ovl_NonFunction;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Ovl_Overload;
 | |
| }
 | |
| 
 | |
| bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
 | |
|                       bool UseUsingDeclRules) {
 | |
|   // C++ [basic.start.main]p2: This function shall not be overloaded.
 | |
|   if (New->isMain())
 | |
|     return false;
 | |
| 
 | |
|   // MSVCRT user defined entry points cannot be overloaded.
 | |
|   if (New->isMSVCRTEntryPoint())
 | |
|     return false;
 | |
| 
 | |
|   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
 | |
|   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
 | |
| 
 | |
|   // C++ [temp.fct]p2:
 | |
|   //   A function template can be overloaded with other function templates
 | |
|   //   and with normal (non-template) functions.
 | |
|   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
 | |
|     return true;
 | |
| 
 | |
|   // Is the function New an overload of the function Old?
 | |
|   QualType OldQType = Context.getCanonicalType(Old->getType());
 | |
|   QualType NewQType = Context.getCanonicalType(New->getType());
 | |
| 
 | |
|   // Compare the signatures (C++ 1.3.10) of the two functions to
 | |
|   // determine whether they are overloads. If we find any mismatch
 | |
|   // in the signature, they are overloads.
 | |
| 
 | |
|   // If either of these functions is a K&R-style function (no
 | |
|   // prototype), then we consider them to have matching signatures.
 | |
|   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
 | |
|       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
 | |
|     return false;
 | |
| 
 | |
|   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
 | |
|   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
 | |
| 
 | |
|   // The signature of a function includes the types of its
 | |
|   // parameters (C++ 1.3.10), which includes the presence or absence
 | |
|   // of the ellipsis; see C++ DR 357).
 | |
|   if (OldQType != NewQType &&
 | |
|       (OldType->getNumParams() != NewType->getNumParams() ||
 | |
|        OldType->isVariadic() != NewType->isVariadic() ||
 | |
|        !FunctionParamTypesAreEqual(OldType, NewType)))
 | |
|     return true;
 | |
| 
 | |
|   // C++ [temp.over.link]p4:
 | |
|   //   The signature of a function template consists of its function
 | |
|   //   signature, its return type and its template parameter list. The names
 | |
|   //   of the template parameters are significant only for establishing the
 | |
|   //   relationship between the template parameters and the rest of the
 | |
|   //   signature.
 | |
|   //
 | |
|   // We check the return type and template parameter lists for function
 | |
|   // templates first; the remaining checks follow.
 | |
|   //
 | |
|   // However, we don't consider either of these when deciding whether
 | |
|   // a member introduced by a shadow declaration is hidden.
 | |
|   if (!UseUsingDeclRules && NewTemplate &&
 | |
|       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
 | |
|                                        OldTemplate->getTemplateParameters(),
 | |
|                                        false, TPL_TemplateMatch) ||
 | |
|        OldType->getReturnType() != NewType->getReturnType()))
 | |
|     return true;
 | |
| 
 | |
|   // If the function is a class member, its signature includes the
 | |
|   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
 | |
|   //
 | |
|   // As part of this, also check whether one of the member functions
 | |
|   // is static, in which case they are not overloads (C++
 | |
|   // 13.1p2). While not part of the definition of the signature,
 | |
|   // this check is important to determine whether these functions
 | |
|   // can be overloaded.
 | |
|   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | |
|   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
 | |
|   if (OldMethod && NewMethod &&
 | |
|       !OldMethod->isStatic() && !NewMethod->isStatic()) {
 | |
|     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
 | |
|       if (!UseUsingDeclRules &&
 | |
|           (OldMethod->getRefQualifier() == RQ_None ||
 | |
|            NewMethod->getRefQualifier() == RQ_None)) {
 | |
|         // C++0x [over.load]p2:
 | |
|         //   - Member function declarations with the same name and the same
 | |
|         //     parameter-type-list as well as member function template
 | |
|         //     declarations with the same name, the same parameter-type-list, and
 | |
|         //     the same template parameter lists cannot be overloaded if any of
 | |
|         //     them, but not all, have a ref-qualifier (8.3.5).
 | |
|         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
 | |
|           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
 | |
|         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // We may not have applied the implicit const for a constexpr member
 | |
|     // function yet (because we haven't yet resolved whether this is a static
 | |
|     // or non-static member function). Add it now, on the assumption that this
 | |
|     // is a redeclaration of OldMethod.
 | |
|     unsigned OldQuals = OldMethod->getTypeQualifiers();
 | |
|     unsigned NewQuals = NewMethod->getTypeQualifiers();
 | |
|     if (!getLangOpts().CPlusPlus1y && NewMethod->isConstexpr() &&
 | |
|         !isa<CXXConstructorDecl>(NewMethod))
 | |
|       NewQuals |= Qualifiers::Const;
 | |
| 
 | |
|     // We do not allow overloading based off of '__restrict'.
 | |
|     OldQuals &= ~Qualifiers::Restrict;
 | |
|     NewQuals &= ~Qualifiers::Restrict;
 | |
|     if (OldQuals != NewQuals)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // enable_if attributes are an order-sensitive part of the signature.
 | |
|   for (specific_attr_iterator<EnableIfAttr>
 | |
|          NewI = New->specific_attr_begin<EnableIfAttr>(),
 | |
|          NewE = New->specific_attr_end<EnableIfAttr>(),
 | |
|          OldI = Old->specific_attr_begin<EnableIfAttr>(),
 | |
|          OldE = Old->specific_attr_end<EnableIfAttr>();
 | |
|        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
 | |
|     if (NewI == NewE || OldI == OldE)
 | |
|       return true;
 | |
|     llvm::FoldingSetNodeID NewID, OldID;
 | |
|     NewI->getCond()->Profile(NewID, Context, true);
 | |
|     OldI->getCond()->Profile(OldID, Context, true);
 | |
|     if (NewID != OldID)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // The signatures match; this is not an overload.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Checks availability of the function depending on the current
 | |
| /// function context. Inside an unavailable function, unavailability is ignored.
 | |
| ///
 | |
| /// \returns true if \arg FD is unavailable and current context is inside
 | |
| /// an available function, false otherwise.
 | |
| bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
 | |
|   return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
 | |
| }
 | |
| 
 | |
| /// \brief Tries a user-defined conversion from From to ToType.
 | |
| ///
 | |
| /// Produces an implicit conversion sequence for when a standard conversion
 | |
| /// is not an option. See TryImplicitConversion for more information.
 | |
| static ImplicitConversionSequence
 | |
| TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                          bool SuppressUserConversions,
 | |
|                          bool AllowExplicit,
 | |
|                          bool InOverloadResolution,
 | |
|                          bool CStyle,
 | |
|                          bool AllowObjCWritebackConversion,
 | |
|                          bool AllowObjCConversionOnExplicit) {
 | |
|   ImplicitConversionSequence ICS;
 | |
| 
 | |
|   if (SuppressUserConversions) {
 | |
|     // We're not in the case above, so there is no conversion that
 | |
|     // we can perform.
 | |
|     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   // Attempt user-defined conversion.
 | |
|   OverloadCandidateSet Conversions(From->getExprLoc(),
 | |
|                                    OverloadCandidateSet::CSK_Normal);
 | |
|   OverloadingResult UserDefResult
 | |
|     = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
 | |
|                               AllowExplicit, AllowObjCConversionOnExplicit);
 | |
| 
 | |
|   if (UserDefResult == OR_Success) {
 | |
|     ICS.setUserDefined();
 | |
|     ICS.UserDefined.Before.setAsIdentityConversion();
 | |
|     // C++ [over.ics.user]p4:
 | |
|     //   A conversion of an expression of class type to the same class
 | |
|     //   type is given Exact Match rank, and a conversion of an
 | |
|     //   expression of class type to a base class of that type is
 | |
|     //   given Conversion rank, in spite of the fact that a copy
 | |
|     //   constructor (i.e., a user-defined conversion function) is
 | |
|     //   called for those cases.
 | |
|     if (CXXConstructorDecl *Constructor
 | |
|           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
 | |
|       QualType FromCanon
 | |
|         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
 | |
|       QualType ToCanon
 | |
|         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
 | |
|       if (Constructor->isCopyConstructor() &&
 | |
|           (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
 | |
|         // Turn this into a "standard" conversion sequence, so that it
 | |
|         // gets ranked with standard conversion sequences.
 | |
|         ICS.setStandard();
 | |
|         ICS.Standard.setAsIdentityConversion();
 | |
|         ICS.Standard.setFromType(From->getType());
 | |
|         ICS.Standard.setAllToTypes(ToType);
 | |
|         ICS.Standard.CopyConstructor = Constructor;
 | |
|         if (ToCanon != FromCanon)
 | |
|           ICS.Standard.Second = ICK_Derived_To_Base;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // C++ [over.best.ics]p4:
 | |
|     //   However, when considering the argument of a user-defined
 | |
|     //   conversion function that is a candidate by 13.3.1.3 when
 | |
|     //   invoked for the copying of the temporary in the second step
 | |
|     //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
 | |
|     //   13.3.1.6 in all cases, only standard conversion sequences and
 | |
|     //   ellipsis conversion sequences are allowed.
 | |
|     if (SuppressUserConversions && ICS.isUserDefined()) {
 | |
|       ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
 | |
|     }
 | |
|   } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
 | |
|     ICS.setAmbiguous();
 | |
|     ICS.Ambiguous.setFromType(From->getType());
 | |
|     ICS.Ambiguous.setToType(ToType);
 | |
|     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
 | |
|          Cand != Conversions.end(); ++Cand)
 | |
|       if (Cand->Viable)
 | |
|         ICS.Ambiguous.addConversion(Cand->Function);
 | |
|   } else {
 | |
|     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
 | |
|   }
 | |
| 
 | |
|   return ICS;
 | |
| }
 | |
| 
 | |
| /// TryImplicitConversion - Attempt to perform an implicit conversion
 | |
| /// from the given expression (Expr) to the given type (ToType). This
 | |
| /// function returns an implicit conversion sequence that can be used
 | |
| /// to perform the initialization. Given
 | |
| ///
 | |
| ///   void f(float f);
 | |
| ///   void g(int i) { f(i); }
 | |
| ///
 | |
| /// this routine would produce an implicit conversion sequence to
 | |
| /// describe the initialization of f from i, which will be a standard
 | |
| /// conversion sequence containing an lvalue-to-rvalue conversion (C++
 | |
| /// 4.1) followed by a floating-integral conversion (C++ 4.9).
 | |
| //
 | |
| /// Note that this routine only determines how the conversion can be
 | |
| /// performed; it does not actually perform the conversion. As such,
 | |
| /// it will not produce any diagnostics if no conversion is available,
 | |
| /// but will instead return an implicit conversion sequence of kind
 | |
| /// "BadConversion".
 | |
| ///
 | |
| /// If @p SuppressUserConversions, then user-defined conversions are
 | |
| /// not permitted.
 | |
| /// If @p AllowExplicit, then explicit user-defined conversions are
 | |
| /// permitted.
 | |
| ///
 | |
| /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
 | |
| /// writeback conversion, which allows __autoreleasing id* parameters to
 | |
| /// be initialized with __strong id* or __weak id* arguments.
 | |
| static ImplicitConversionSequence
 | |
| TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                       bool SuppressUserConversions,
 | |
|                       bool AllowExplicit,
 | |
|                       bool InOverloadResolution,
 | |
|                       bool CStyle,
 | |
|                       bool AllowObjCWritebackConversion,
 | |
|                       bool AllowObjCConversionOnExplicit) {
 | |
|   ImplicitConversionSequence ICS;
 | |
|   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
 | |
|                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
 | |
|     ICS.setStandard();
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   if (!S.getLangOpts().CPlusPlus) {
 | |
|     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   // C++ [over.ics.user]p4:
 | |
|   //   A conversion of an expression of class type to the same class
 | |
|   //   type is given Exact Match rank, and a conversion of an
 | |
|   //   expression of class type to a base class of that type is
 | |
|   //   given Conversion rank, in spite of the fact that a copy/move
 | |
|   //   constructor (i.e., a user-defined conversion function) is
 | |
|   //   called for those cases.
 | |
|   QualType FromType = From->getType();
 | |
|   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
 | |
|       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
 | |
|        S.IsDerivedFrom(FromType, ToType))) {
 | |
|     ICS.setStandard();
 | |
|     ICS.Standard.setAsIdentityConversion();
 | |
|     ICS.Standard.setFromType(FromType);
 | |
|     ICS.Standard.setAllToTypes(ToType);
 | |
| 
 | |
|     // We don't actually check at this point whether there is a valid
 | |
|     // copy/move constructor, since overloading just assumes that it
 | |
|     // exists. When we actually perform initialization, we'll find the
 | |
|     // appropriate constructor to copy the returned object, if needed.
 | |
|     ICS.Standard.CopyConstructor = nullptr;
 | |
| 
 | |
|     // Determine whether this is considered a derived-to-base conversion.
 | |
|     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
 | |
|       ICS.Standard.Second = ICK_Derived_To_Base;
 | |
| 
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
 | |
|                                   AllowExplicit, InOverloadResolution, CStyle,
 | |
|                                   AllowObjCWritebackConversion,
 | |
|                                   AllowObjCConversionOnExplicit);
 | |
| }
 | |
| 
 | |
| ImplicitConversionSequence
 | |
| Sema::TryImplicitConversion(Expr *From, QualType ToType,
 | |
|                             bool SuppressUserConversions,
 | |
|                             bool AllowExplicit,
 | |
|                             bool InOverloadResolution,
 | |
|                             bool CStyle,
 | |
|                             bool AllowObjCWritebackConversion) {
 | |
|   return clang::TryImplicitConversion(*this, From, ToType, 
 | |
|                                       SuppressUserConversions, AllowExplicit,
 | |
|                                       InOverloadResolution, CStyle, 
 | |
|                                       AllowObjCWritebackConversion,
 | |
|                                       /*AllowObjCConversionOnExplicit=*/false);
 | |
| }
 | |
| 
 | |
| /// PerformImplicitConversion - Perform an implicit conversion of the
 | |
| /// expression From to the type ToType. Returns the
 | |
| /// converted expression. Flavor is the kind of conversion we're
 | |
| /// performing, used in the error message. If @p AllowExplicit,
 | |
| /// explicit user-defined conversions are permitted.
 | |
| ExprResult
 | |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | |
|                                 AssignmentAction Action, bool AllowExplicit) {
 | |
|   ImplicitConversionSequence ICS;
 | |
|   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | |
|                                 AssignmentAction Action, bool AllowExplicit,
 | |
|                                 ImplicitConversionSequence& ICS) {
 | |
|   if (checkPlaceholderForOverload(*this, From))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Objective-C ARC: Determine whether we will allow the writeback conversion.
 | |
|   bool AllowObjCWritebackConversion
 | |
|     = getLangOpts().ObjCAutoRefCount && 
 | |
|       (Action == AA_Passing || Action == AA_Sending);
 | |
|   if (getLangOpts().ObjC1)
 | |
|     CheckObjCBridgeRelatedConversions(From->getLocStart(),
 | |
|                                       ToType, From->getType(), From);
 | |
|   ICS = clang::TryImplicitConversion(*this, From, ToType,
 | |
|                                      /*SuppressUserConversions=*/false,
 | |
|                                      AllowExplicit,
 | |
|                                      /*InOverloadResolution=*/false,
 | |
|                                      /*CStyle=*/false,
 | |
|                                      AllowObjCWritebackConversion,
 | |
|                                      /*AllowObjCConversionOnExplicit=*/false);
 | |
|   return PerformImplicitConversion(From, ToType, ICS, Action);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the conversion from FromType to ToType is a valid
 | |
| /// conversion that strips "noreturn" off the nested function type.
 | |
| bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
 | |
|                                 QualType &ResultTy) {
 | |
|   if (Context.hasSameUnqualifiedType(FromType, ToType))
 | |
|     return false;
 | |
| 
 | |
|   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
 | |
|   // where F adds one of the following at most once:
 | |
|   //   - a pointer
 | |
|   //   - a member pointer
 | |
|   //   - a block pointer
 | |
|   CanQualType CanTo = Context.getCanonicalType(ToType);
 | |
|   CanQualType CanFrom = Context.getCanonicalType(FromType);
 | |
|   Type::TypeClass TyClass = CanTo->getTypeClass();
 | |
|   if (TyClass != CanFrom->getTypeClass()) return false;
 | |
|   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
 | |
|     if (TyClass == Type::Pointer) {
 | |
|       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
 | |
|       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
 | |
|     } else if (TyClass == Type::BlockPointer) {
 | |
|       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
 | |
|       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
 | |
|     } else if (TyClass == Type::MemberPointer) {
 | |
|       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
 | |
|       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     TyClass = CanTo->getTypeClass();
 | |
|     if (TyClass != CanFrom->getTypeClass()) return false;
 | |
|     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
 | |
|   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
 | |
|   if (!EInfo.getNoReturn()) return false;
 | |
| 
 | |
|   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
 | |
|   assert(QualType(FromFn, 0).isCanonical());
 | |
|   if (QualType(FromFn, 0) != CanTo) return false;
 | |
| 
 | |
|   ResultTy = ToType;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the conversion from FromType to ToType is a valid
 | |
| /// vector conversion.
 | |
| ///
 | |
| /// \param ICK Will be set to the vector conversion kind, if this is a vector
 | |
| /// conversion.
 | |
| static bool IsVectorConversion(Sema &S, QualType FromType,
 | |
|                                QualType ToType, ImplicitConversionKind &ICK) {
 | |
|   // We need at least one of these types to be a vector type to have a vector
 | |
|   // conversion.
 | |
|   if (!ToType->isVectorType() && !FromType->isVectorType())
 | |
|     return false;
 | |
| 
 | |
|   // Identical types require no conversions.
 | |
|   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
 | |
|     return false;
 | |
| 
 | |
|   // There are no conversions between extended vector types, only identity.
 | |
|   if (ToType->isExtVectorType()) {
 | |
|     // There are no conversions between extended vector types other than the
 | |
|     // identity conversion.
 | |
|     if (FromType->isExtVectorType())
 | |
|       return false;
 | |
| 
 | |
|     // Vector splat from any arithmetic type to a vector.
 | |
|     if (FromType->isArithmeticType()) {
 | |
|       ICK = ICK_Vector_Splat;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can perform the conversion between vector types in the following cases:
 | |
|   // 1)vector types are equivalent AltiVec and GCC vector types
 | |
|   // 2)lax vector conversions are permitted and the vector types are of the
 | |
|   //   same size
 | |
|   if (ToType->isVectorType() && FromType->isVectorType()) {
 | |
|     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
 | |
|         S.isLaxVectorConversion(FromType, ToType)) {
 | |
|       ICK = ICK_Vector_Conversion;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                                 bool InOverloadResolution,
 | |
|                                 StandardConversionSequence &SCS,
 | |
|                                 bool CStyle);
 | |
|   
 | |
| /// IsStandardConversion - Determines whether there is a standard
 | |
| /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
 | |
| /// expression From to the type ToType. Standard conversion sequences
 | |
| /// only consider non-class types; for conversions that involve class
 | |
| /// types, use TryImplicitConversion. If a conversion exists, SCS will
 | |
| /// contain the standard conversion sequence required to perform this
 | |
| /// conversion and this routine will return true. Otherwise, this
 | |
| /// routine will return false and the value of SCS is unspecified.
 | |
| static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
 | |
|                                  bool InOverloadResolution,
 | |
|                                  StandardConversionSequence &SCS,
 | |
|                                  bool CStyle,
 | |
|                                  bool AllowObjCWritebackConversion) {
 | |
|   QualType FromType = From->getType();
 | |
| 
 | |
|   // Standard conversions (C++ [conv])
 | |
|   SCS.setAsIdentityConversion();
 | |
|   SCS.IncompatibleObjC = false;
 | |
|   SCS.setFromType(FromType);
 | |
|   SCS.CopyConstructor = nullptr;
 | |
| 
 | |
|   // There are no standard conversions for class types in C++, so
 | |
|   // abort early. When overloading in C, however, we do permit
 | |
|   if (FromType->isRecordType() || ToType->isRecordType()) {
 | |
|     if (S.getLangOpts().CPlusPlus)
 | |
|       return false;
 | |
| 
 | |
|     // When we're overloading in C, we allow, as standard conversions,
 | |
|   }
 | |
| 
 | |
|   // The first conversion can be an lvalue-to-rvalue conversion,
 | |
|   // array-to-pointer conversion, or function-to-pointer conversion
 | |
|   // (C++ 4p1).
 | |
| 
 | |
|   if (FromType == S.Context.OverloadTy) {
 | |
|     DeclAccessPair AccessPair;
 | |
|     if (FunctionDecl *Fn
 | |
|           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
 | |
|                                                  AccessPair)) {
 | |
|       // We were able to resolve the address of the overloaded function,
 | |
|       // so we can convert to the type of that function.
 | |
|       FromType = Fn->getType();
 | |
| 
 | |
|       // we can sometimes resolve &foo<int> regardless of ToType, so check
 | |
|       // if the type matches (identity) or we are converting to bool
 | |
|       if (!S.Context.hasSameUnqualifiedType(
 | |
|                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
 | |
|         QualType resultTy;
 | |
|         // if the function type matches except for [[noreturn]], it's ok
 | |
|         if (!S.IsNoReturnConversion(FromType,
 | |
|               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
 | |
|           // otherwise, only a boolean conversion is standard   
 | |
|           if (!ToType->isBooleanType()) 
 | |
|             return false; 
 | |
|       }
 | |
| 
 | |
|       // Check if the "from" expression is taking the address of an overloaded
 | |
|       // function and recompute the FromType accordingly. Take advantage of the
 | |
|       // fact that non-static member functions *must* have such an address-of
 | |
|       // expression. 
 | |
|       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
 | |
|       if (Method && !Method->isStatic()) {
 | |
|         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
 | |
|                "Non-unary operator on non-static member address");
 | |
|         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
 | |
|                == UO_AddrOf &&
 | |
|                "Non-address-of operator on non-static member address");
 | |
|         const Type *ClassType
 | |
|           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
 | |
|         FromType = S.Context.getMemberPointerType(FromType, ClassType);
 | |
|       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
 | |
|         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
 | |
|                UO_AddrOf &&
 | |
|                "Non-address-of operator for overloaded function expression");
 | |
|         FromType = S.Context.getPointerType(FromType);
 | |
|       }
 | |
| 
 | |
|       // Check that we've computed the proper type after overload resolution.
 | |
|       assert(S.Context.hasSameType(
 | |
|         FromType,
 | |
|         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   // Lvalue-to-rvalue conversion (C++11 4.1):
 | |
|   //   A glvalue (3.10) of a non-function, non-array type T can
 | |
|   //   be converted to a prvalue.
 | |
|   bool argIsLValue = From->isGLValue();
 | |
|   if (argIsLValue &&
 | |
|       !FromType->isFunctionType() && !FromType->isArrayType() &&
 | |
|       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
 | |
|     SCS.First = ICK_Lvalue_To_Rvalue;
 | |
| 
 | |
|     // C11 6.3.2.1p2:
 | |
|     //   ... if the lvalue has atomic type, the value has the non-atomic version 
 | |
|     //   of the type of the lvalue ...
 | |
|     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
 | |
|       FromType = Atomic->getValueType();
 | |
| 
 | |
|     // If T is a non-class type, the type of the rvalue is the
 | |
|     // cv-unqualified version of T. Otherwise, the type of the rvalue
 | |
|     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
 | |
|     // just strip the qualifiers because they don't matter.
 | |
|     FromType = FromType.getUnqualifiedType();
 | |
|   } else if (FromType->isArrayType()) {
 | |
|     // Array-to-pointer conversion (C++ 4.2)
 | |
|     SCS.First = ICK_Array_To_Pointer;
 | |
| 
 | |
|     // An lvalue or rvalue of type "array of N T" or "array of unknown
 | |
|     // bound of T" can be converted to an rvalue of type "pointer to
 | |
|     // T" (C++ 4.2p1).
 | |
|     FromType = S.Context.getArrayDecayedType(FromType);
 | |
| 
 | |
|     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
 | |
|       // This conversion is deprecated in C++03 (D.4)
 | |
|       SCS.DeprecatedStringLiteralToCharPtr = true;
 | |
| 
 | |
|       // For the purpose of ranking in overload resolution
 | |
|       // (13.3.3.1.1), this conversion is considered an
 | |
|       // array-to-pointer conversion followed by a qualification
 | |
|       // conversion (4.4). (C++ 4.2p2)
 | |
|       SCS.Second = ICK_Identity;
 | |
|       SCS.Third = ICK_Qualification;
 | |
|       SCS.QualificationIncludesObjCLifetime = false;
 | |
|       SCS.setAllToTypes(FromType);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (FromType->isFunctionType() && argIsLValue) {
 | |
|     // Function-to-pointer conversion (C++ 4.3).
 | |
|     SCS.First = ICK_Function_To_Pointer;
 | |
| 
 | |
|     // An lvalue of function type T can be converted to an rvalue of
 | |
|     // type "pointer to T." The result is a pointer to the
 | |
|     // function. (C++ 4.3p1).
 | |
|     FromType = S.Context.getPointerType(FromType);
 | |
|   } else {
 | |
|     // We don't require any conversions for the first step.
 | |
|     SCS.First = ICK_Identity;
 | |
|   }
 | |
|   SCS.setToType(0, FromType);
 | |
| 
 | |
|   // The second conversion can be an integral promotion, floating
 | |
|   // point promotion, integral conversion, floating point conversion,
 | |
|   // floating-integral conversion, pointer conversion,
 | |
|   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
 | |
|   // For overloading in C, this can also be a "compatible-type"
 | |
|   // conversion.
 | |
|   bool IncompatibleObjC = false;
 | |
|   ImplicitConversionKind SecondICK = ICK_Identity;
 | |
|   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
 | |
|     // The unqualified versions of the types are the same: there's no
 | |
|     // conversion to do.
 | |
|     SCS.Second = ICK_Identity;
 | |
|   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
 | |
|     // Integral promotion (C++ 4.5).
 | |
|     SCS.Second = ICK_Integral_Promotion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
 | |
|     // Floating point promotion (C++ 4.6).
 | |
|     SCS.Second = ICK_Floating_Promotion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (S.IsComplexPromotion(FromType, ToType)) {
 | |
|     // Complex promotion (Clang extension)
 | |
|     SCS.Second = ICK_Complex_Promotion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (ToType->isBooleanType() &&
 | |
|              (FromType->isArithmeticType() ||
 | |
|               FromType->isAnyPointerType() ||
 | |
|               FromType->isBlockPointerType() ||
 | |
|               FromType->isMemberPointerType() ||
 | |
|               FromType->isNullPtrType())) {
 | |
|     // Boolean conversions (C++ 4.12).
 | |
|     SCS.Second = ICK_Boolean_Conversion;
 | |
|     FromType = S.Context.BoolTy;
 | |
|   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
 | |
|              ToType->isIntegralType(S.Context)) {
 | |
|     // Integral conversions (C++ 4.7).
 | |
|     SCS.Second = ICK_Integral_Conversion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
 | |
|     // Complex conversions (C99 6.3.1.6)
 | |
|     SCS.Second = ICK_Complex_Conversion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
 | |
|              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
 | |
|     // Complex-real conversions (C99 6.3.1.7)
 | |
|     SCS.Second = ICK_Complex_Real;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
 | |
|     // Floating point conversions (C++ 4.8).
 | |
|     SCS.Second = ICK_Floating_Conversion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if ((FromType->isRealFloatingType() &&
 | |
|               ToType->isIntegralType(S.Context)) ||
 | |
|              (FromType->isIntegralOrUnscopedEnumerationType() &&
 | |
|               ToType->isRealFloatingType())) {
 | |
|     // Floating-integral conversions (C++ 4.9).
 | |
|     SCS.Second = ICK_Floating_Integral;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
 | |
|     SCS.Second = ICK_Block_Pointer_Conversion;
 | |
|   } else if (AllowObjCWritebackConversion &&
 | |
|              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
 | |
|     SCS.Second = ICK_Writeback_Conversion;
 | |
|   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
 | |
|                                    FromType, IncompatibleObjC)) {
 | |
|     // Pointer conversions (C++ 4.10).
 | |
|     SCS.Second = ICK_Pointer_Conversion;
 | |
|     SCS.IncompatibleObjC = IncompatibleObjC;
 | |
|     FromType = FromType.getUnqualifiedType();
 | |
|   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
 | |
|                                          InOverloadResolution, FromType)) {
 | |
|     // Pointer to member conversions (4.11).
 | |
|     SCS.Second = ICK_Pointer_Member;
 | |
|   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
 | |
|     SCS.Second = SecondICK;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (!S.getLangOpts().CPlusPlus &&
 | |
|              S.Context.typesAreCompatible(ToType, FromType)) {
 | |
|     // Compatible conversions (Clang extension for C function overloading)
 | |
|     SCS.Second = ICK_Compatible_Conversion;
 | |
|     FromType = ToType.getUnqualifiedType();
 | |
|   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
 | |
|     // Treat a conversion that strips "noreturn" as an identity conversion.
 | |
|     SCS.Second = ICK_NoReturn_Adjustment;
 | |
|   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
 | |
|                                              InOverloadResolution,
 | |
|                                              SCS, CStyle)) {
 | |
|     SCS.Second = ICK_TransparentUnionConversion;
 | |
|     FromType = ToType;
 | |
|   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
 | |
|                                  CStyle)) {
 | |
|     // tryAtomicConversion has updated the standard conversion sequence
 | |
|     // appropriately.
 | |
|     return true;
 | |
|   } else if (ToType->isEventT() && 
 | |
|              From->isIntegerConstantExpr(S.getASTContext()) &&
 | |
|              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
 | |
|     SCS.Second = ICK_Zero_Event_Conversion;
 | |
|     FromType = ToType;
 | |
|   } else {
 | |
|     // No second conversion required.
 | |
|     SCS.Second = ICK_Identity;
 | |
|   }
 | |
|   SCS.setToType(1, FromType);
 | |
| 
 | |
|   QualType CanonFrom;
 | |
|   QualType CanonTo;
 | |
|   // The third conversion can be a qualification conversion (C++ 4p1).
 | |
|   bool ObjCLifetimeConversion;
 | |
|   if (S.IsQualificationConversion(FromType, ToType, CStyle, 
 | |
|                                   ObjCLifetimeConversion)) {
 | |
|     SCS.Third = ICK_Qualification;
 | |
|     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
 | |
|     FromType = ToType;
 | |
|     CanonFrom = S.Context.getCanonicalType(FromType);
 | |
|     CanonTo = S.Context.getCanonicalType(ToType);
 | |
|   } else {
 | |
|     // No conversion required
 | |
|     SCS.Third = ICK_Identity;
 | |
| 
 | |
|     // C++ [over.best.ics]p6:
 | |
|     //   [...] Any difference in top-level cv-qualification is
 | |
|     //   subsumed by the initialization itself and does not constitute
 | |
|     //   a conversion. [...]
 | |
|     CanonFrom = S.Context.getCanonicalType(FromType);
 | |
|     CanonTo = S.Context.getCanonicalType(ToType);
 | |
|     if (CanonFrom.getLocalUnqualifiedType()
 | |
|                                        == CanonTo.getLocalUnqualifiedType() &&
 | |
|         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
 | |
|       FromType = ToType;
 | |
|       CanonFrom = CanonTo;
 | |
|     }
 | |
|   }
 | |
|   SCS.setToType(2, FromType);
 | |
| 
 | |
|   // If we have not converted the argument type to the parameter type,
 | |
|   // this is a bad conversion sequence.
 | |
|   if (CanonFrom != CanonTo)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| static bool
 | |
| IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
 | |
|                                      QualType &ToType,
 | |
|                                      bool InOverloadResolution,
 | |
|                                      StandardConversionSequence &SCS,
 | |
|                                      bool CStyle) {
 | |
|     
 | |
|   const RecordType *UT = ToType->getAsUnionType();
 | |
|   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | |
|     return false;
 | |
|   // The field to initialize within the transparent union.
 | |
|   RecordDecl *UD = UT->getDecl();
 | |
|   // It's compatible if the expression matches any of the fields.
 | |
|   for (const auto *it : UD->fields()) {
 | |
|     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
 | |
|                              CStyle, /*ObjCWritebackConversion=*/false)) {
 | |
|       ToType = it->getType();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsIntegralPromotion - Determines whether the conversion from the
 | |
| /// expression From (whose potentially-adjusted type is FromType) to
 | |
| /// ToType is an integral promotion (C++ 4.5). If so, returns true and
 | |
| /// sets PromotedType to the promoted type.
 | |
| bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
 | |
|   const BuiltinType *To = ToType->getAs<BuiltinType>();
 | |
|   // All integers are built-in.
 | |
|   if (!To) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // An rvalue of type char, signed char, unsigned char, short int, or
 | |
|   // unsigned short int can be converted to an rvalue of type int if
 | |
|   // int can represent all the values of the source type; otherwise,
 | |
|   // the source rvalue can be converted to an rvalue of type unsigned
 | |
|   // int (C++ 4.5p1).
 | |
|   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
 | |
|       !FromType->isEnumeralType()) {
 | |
|     if (// We can promote any signed, promotable integer type to an int
 | |
|         (FromType->isSignedIntegerType() ||
 | |
|          // We can promote any unsigned integer type whose size is
 | |
|          // less than int to an int.
 | |
|          (!FromType->isSignedIntegerType() &&
 | |
|           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
 | |
|       return To->getKind() == BuiltinType::Int;
 | |
|     }
 | |
| 
 | |
|     return To->getKind() == BuiltinType::UInt;
 | |
|   }
 | |
| 
 | |
|   // C++11 [conv.prom]p3:
 | |
|   //   A prvalue of an unscoped enumeration type whose underlying type is not
 | |
|   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
 | |
|   //   following types that can represent all the values of the enumeration
 | |
|   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
 | |
|   //   unsigned int, long int, unsigned long int, long long int, or unsigned
 | |
|   //   long long int. If none of the types in that list can represent all the
 | |
|   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
 | |
|   //   type can be converted to an rvalue a prvalue of the extended integer type
 | |
|   //   with lowest integer conversion rank (4.13) greater than the rank of long
 | |
|   //   long in which all the values of the enumeration can be represented. If
 | |
|   //   there are two such extended types, the signed one is chosen.
 | |
|   // C++11 [conv.prom]p4:
 | |
|   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
 | |
|   //   can be converted to a prvalue of its underlying type. Moreover, if
 | |
|   //   integral promotion can be applied to its underlying type, a prvalue of an
 | |
|   //   unscoped enumeration type whose underlying type is fixed can also be
 | |
|   //   converted to a prvalue of the promoted underlying type.
 | |
|   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
 | |
|     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
 | |
|     // provided for a scoped enumeration.
 | |
|     if (FromEnumType->getDecl()->isScoped())
 | |
|       return false;
 | |
| 
 | |
|     // We can perform an integral promotion to the underlying type of the enum,
 | |
|     // even if that's not the promoted type.
 | |
|     if (FromEnumType->getDecl()->isFixed()) {
 | |
|       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
 | |
|       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
 | |
|              IsIntegralPromotion(From, Underlying, ToType);
 | |
|     }
 | |
| 
 | |
|     // We have already pre-calculated the promotion type, so this is trivial.
 | |
|     if (ToType->isIntegerType() &&
 | |
|         !RequireCompleteType(From->getLocStart(), FromType, 0))
 | |
|       return Context.hasSameUnqualifiedType(ToType,
 | |
|                                 FromEnumType->getDecl()->getPromotionType());
 | |
|   }
 | |
| 
 | |
|   // C++0x [conv.prom]p2:
 | |
|   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
 | |
|   //   to an rvalue a prvalue of the first of the following types that can
 | |
|   //   represent all the values of its underlying type: int, unsigned int,
 | |
|   //   long int, unsigned long int, long long int, or unsigned long long int.
 | |
|   //   If none of the types in that list can represent all the values of its
 | |
|   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
 | |
|   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
 | |
|   //   type.
 | |
|   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
 | |
|       ToType->isIntegerType()) {
 | |
|     // Determine whether the type we're converting from is signed or
 | |
|     // unsigned.
 | |
|     bool FromIsSigned = FromType->isSignedIntegerType();
 | |
|     uint64_t FromSize = Context.getTypeSize(FromType);
 | |
| 
 | |
|     // The types we'll try to promote to, in the appropriate
 | |
|     // order. Try each of these types.
 | |
|     QualType PromoteTypes[6] = {
 | |
|       Context.IntTy, Context.UnsignedIntTy,
 | |
|       Context.LongTy, Context.UnsignedLongTy ,
 | |
|       Context.LongLongTy, Context.UnsignedLongLongTy
 | |
|     };
 | |
|     for (int Idx = 0; Idx < 6; ++Idx) {
 | |
|       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
 | |
|       if (FromSize < ToSize ||
 | |
|           (FromSize == ToSize &&
 | |
|            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
 | |
|         // We found the type that we can promote to. If this is the
 | |
|         // type we wanted, we have a promotion. Otherwise, no
 | |
|         // promotion.
 | |
|         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // An rvalue for an integral bit-field (9.6) can be converted to an
 | |
|   // rvalue of type int if int can represent all the values of the
 | |
|   // bit-field; otherwise, it can be converted to unsigned int if
 | |
|   // unsigned int can represent all the values of the bit-field. If
 | |
|   // the bit-field is larger yet, no integral promotion applies to
 | |
|   // it. If the bit-field has an enumerated type, it is treated as any
 | |
|   // other value of that type for promotion purposes (C++ 4.5p3).
 | |
|   // FIXME: We should delay checking of bit-fields until we actually perform the
 | |
|   // conversion.
 | |
|   using llvm::APSInt;
 | |
|   if (From)
 | |
|     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
 | |
|       APSInt BitWidth;
 | |
|       if (FromType->isIntegralType(Context) &&
 | |
|           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
 | |
|         APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
 | |
|         ToSize = Context.getTypeSize(ToType);
 | |
| 
 | |
|         // Are we promoting to an int from a bitfield that fits in an int?
 | |
|         if (BitWidth < ToSize ||
 | |
|             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
 | |
|           return To->getKind() == BuiltinType::Int;
 | |
|         }
 | |
| 
 | |
|         // Are we promoting to an unsigned int from an unsigned bitfield
 | |
|         // that fits into an unsigned int?
 | |
|         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
 | |
|           return To->getKind() == BuiltinType::UInt;
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // An rvalue of type bool can be converted to an rvalue of type int,
 | |
|   // with false becoming zero and true becoming one (C++ 4.5p4).
 | |
|   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsFloatingPointPromotion - Determines whether the conversion from
 | |
| /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
 | |
| /// returns true and sets PromotedType to the promoted type.
 | |
| bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
 | |
|   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
 | |
|     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
 | |
|       /// An rvalue of type float can be converted to an rvalue of type
 | |
|       /// double. (C++ 4.6p1).
 | |
|       if (FromBuiltin->getKind() == BuiltinType::Float &&
 | |
|           ToBuiltin->getKind() == BuiltinType::Double)
 | |
|         return true;
 | |
| 
 | |
|       // C99 6.3.1.5p1:
 | |
|       //   When a float is promoted to double or long double, or a
 | |
|       //   double is promoted to long double [...].
 | |
|       if (!getLangOpts().CPlusPlus &&
 | |
|           (FromBuiltin->getKind() == BuiltinType::Float ||
 | |
|            FromBuiltin->getKind() == BuiltinType::Double) &&
 | |
|           (ToBuiltin->getKind() == BuiltinType::LongDouble))
 | |
|         return true;
 | |
| 
 | |
|       // Half can be promoted to float.
 | |
|       if (!getLangOpts().NativeHalfType &&
 | |
|            FromBuiltin->getKind() == BuiltinType::Half &&
 | |
|           ToBuiltin->getKind() == BuiltinType::Float)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine if a conversion is a complex promotion.
 | |
| ///
 | |
| /// A complex promotion is defined as a complex -> complex conversion
 | |
| /// where the conversion between the underlying real types is a
 | |
| /// floating-point or integral promotion.
 | |
| bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
 | |
|   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
 | |
|   if (!FromComplex)
 | |
|     return false;
 | |
| 
 | |
|   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
 | |
|   if (!ToComplex)
 | |
|     return false;
 | |
| 
 | |
|   return IsFloatingPointPromotion(FromComplex->getElementType(),
 | |
|                                   ToComplex->getElementType()) ||
 | |
|     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
 | |
|                         ToComplex->getElementType());
 | |
| }
 | |
| 
 | |
| /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
 | |
| /// the pointer type FromPtr to a pointer to type ToPointee, with the
 | |
| /// same type qualifiers as FromPtr has on its pointee type. ToType,
 | |
| /// if non-empty, will be a pointer to ToType that may or may not have
 | |
| /// the right set of qualifiers on its pointee.
 | |
| ///
 | |
| static QualType
 | |
| BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
 | |
|                                    QualType ToPointee, QualType ToType,
 | |
|                                    ASTContext &Context,
 | |
|                                    bool StripObjCLifetime = false) {
 | |
|   assert((FromPtr->getTypeClass() == Type::Pointer ||
 | |
|           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
 | |
|          "Invalid similarly-qualified pointer type");
 | |
| 
 | |
|   /// Conversions to 'id' subsume cv-qualifier conversions.
 | |
|   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 
 | |
|     return ToType.getUnqualifiedType();
 | |
| 
 | |
|   QualType CanonFromPointee
 | |
|     = Context.getCanonicalType(FromPtr->getPointeeType());
 | |
|   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
 | |
|   Qualifiers Quals = CanonFromPointee.getQualifiers();
 | |
| 
 | |
|   if (StripObjCLifetime)
 | |
|     Quals.removeObjCLifetime();
 | |
|   
 | |
|   // Exact qualifier match -> return the pointer type we're converting to.
 | |
|   if (CanonToPointee.getLocalQualifiers() == Quals) {
 | |
|     // ToType is exactly what we need. Return it.
 | |
|     if (!ToType.isNull())
 | |
|       return ToType.getUnqualifiedType();
 | |
| 
 | |
|     // Build a pointer to ToPointee. It has the right qualifiers
 | |
|     // already.
 | |
|     if (isa<ObjCObjectPointerType>(ToType))
 | |
|       return Context.getObjCObjectPointerType(ToPointee);
 | |
|     return Context.getPointerType(ToPointee);
 | |
|   }
 | |
| 
 | |
|   // Just build a canonical type that has the right qualifiers.
 | |
|   QualType QualifiedCanonToPointee
 | |
|     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
 | |
| 
 | |
|   if (isa<ObjCObjectPointerType>(ToType))
 | |
|     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
 | |
|   return Context.getPointerType(QualifiedCanonToPointee);
 | |
| }
 | |
| 
 | |
| static bool isNullPointerConstantForConversion(Expr *Expr,
 | |
|                                                bool InOverloadResolution,
 | |
|                                                ASTContext &Context) {
 | |
|   // Handle value-dependent integral null pointer constants correctly.
 | |
|   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
 | |
|   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
 | |
|       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
 | |
|     return !InOverloadResolution;
 | |
| 
 | |
|   return Expr->isNullPointerConstant(Context,
 | |
|                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
 | |
|                                         : Expr::NPC_ValueDependentIsNull);
 | |
| }
 | |
| 
 | |
| /// IsPointerConversion - Determines whether the conversion of the
 | |
| /// expression From, which has the (possibly adjusted) type FromType,
 | |
| /// can be converted to the type ToType via a pointer conversion (C++
 | |
| /// 4.10). If so, returns true and places the converted type (that
 | |
| /// might differ from ToType in its cv-qualifiers at some level) into
 | |
| /// ConvertedType.
 | |
| ///
 | |
| /// This routine also supports conversions to and from block pointers
 | |
| /// and conversions with Objective-C's 'id', 'id<protocols...>', and
 | |
| /// pointers to interfaces. FIXME: Once we've determined the
 | |
| /// appropriate overloading rules for Objective-C, we may want to
 | |
| /// split the Objective-C checks into a different routine; however,
 | |
| /// GCC seems to consider all of these conversions to be pointer
 | |
| /// conversions, so for now they live here. IncompatibleObjC will be
 | |
| /// set if the conversion is an allowed Objective-C conversion that
 | |
| /// should result in a warning.
 | |
| bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
 | |
|                                bool InOverloadResolution,
 | |
|                                QualType& ConvertedType,
 | |
|                                bool &IncompatibleObjC) {
 | |
|   IncompatibleObjC = false;
 | |
|   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
 | |
|                               IncompatibleObjC))
 | |
|     return true;
 | |
| 
 | |
|   // Conversion from a null pointer constant to any Objective-C pointer type.
 | |
|   if (ToType->isObjCObjectPointerType() &&
 | |
|       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | |
|     ConvertedType = ToType;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Blocks: Block pointers can be converted to void*.
 | |
|   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
 | |
|       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
 | |
|     ConvertedType = ToType;
 | |
|     return true;
 | |
|   }
 | |
|   // Blocks: A null pointer constant can be converted to a block
 | |
|   // pointer type.
 | |
|   if (ToType->isBlockPointerType() &&
 | |
|       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | |
|     ConvertedType = ToType;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the left-hand-side is nullptr_t, the right side can be a null
 | |
|   // pointer constant.
 | |
|   if (ToType->isNullPtrType() &&
 | |
|       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | |
|     ConvertedType = ToType;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
 | |
|   if (!ToTypePtr)
 | |
|     return false;
 | |
| 
 | |
|   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
 | |
|   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | |
|     ConvertedType = ToType;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Beyond this point, both types need to be pointers
 | |
|   // , including objective-c pointers.
 | |
|   QualType ToPointeeType = ToTypePtr->getPointeeType();
 | |
|   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
 | |
|       !getLangOpts().ObjCAutoRefCount) {
 | |
|     ConvertedType = BuildSimilarlyQualifiedPointerType(
 | |
|                                       FromType->getAs<ObjCObjectPointerType>(),
 | |
|                                                        ToPointeeType,
 | |
|                                                        ToType, Context);
 | |
|     return true;
 | |
|   }
 | |
|   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
 | |
|   if (!FromTypePtr)
 | |
|     return false;
 | |
| 
 | |
|   QualType FromPointeeType = FromTypePtr->getPointeeType();
 | |
| 
 | |
|   // If the unqualified pointee types are the same, this can't be a
 | |
|   // pointer conversion, so don't do all of the work below.
 | |
|   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
 | |
|     return false;
 | |
| 
 | |
|   // An rvalue of type "pointer to cv T," where T is an object type,
 | |
|   // can be converted to an rvalue of type "pointer to cv void" (C++
 | |
|   // 4.10p2).
 | |
|   if (FromPointeeType->isIncompleteOrObjectType() &&
 | |
|       ToPointeeType->isVoidType()) {
 | |
|     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | |
|                                                        ToPointeeType,
 | |
|                                                        ToType, Context,
 | |
|                                                    /*StripObjCLifetime=*/true);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // MSVC allows implicit function to void* type conversion.
 | |
|   if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
 | |
|       ToPointeeType->isVoidType()) {
 | |
|     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | |
|                                                        ToPointeeType,
 | |
|                                                        ToType, Context);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // When we're overloading in C, we allow a special kind of pointer
 | |
|   // conversion for compatible-but-not-identical pointee types.
 | |
|   if (!getLangOpts().CPlusPlus &&
 | |
|       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
 | |
|     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | |
|                                                        ToPointeeType,
 | |
|                                                        ToType, Context);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [conv.ptr]p3:
 | |
|   //
 | |
|   //   An rvalue of type "pointer to cv D," where D is a class type,
 | |
|   //   can be converted to an rvalue of type "pointer to cv B," where
 | |
|   //   B is a base class (clause 10) of D. If B is an inaccessible
 | |
|   //   (clause 11) or ambiguous (10.2) base class of D, a program that
 | |
|   //   necessitates this conversion is ill-formed. The result of the
 | |
|   //   conversion is a pointer to the base class sub-object of the
 | |
|   //   derived class object. The null pointer value is converted to
 | |
|   //   the null pointer value of the destination type.
 | |
|   //
 | |
|   // Note that we do not check for ambiguity or inaccessibility
 | |
|   // here. That is handled by CheckPointerConversion.
 | |
|   if (getLangOpts().CPlusPlus &&
 | |
|       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
 | |
|       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
 | |
|       !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
 | |
|       IsDerivedFrom(FromPointeeType, ToPointeeType)) {
 | |
|     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | |
|                                                        ToPointeeType,
 | |
|                                                        ToType, Context);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
 | |
|       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
 | |
|     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | |
|                                                        ToPointeeType,
 | |
|                                                        ToType, Context);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
|  
 | |
| /// \brief Adopt the given qualifiers for the given type.
 | |
| static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
 | |
|   Qualifiers TQs = T.getQualifiers();
 | |
|   
 | |
|   // Check whether qualifiers already match.
 | |
|   if (TQs == Qs)
 | |
|     return T;
 | |
|   
 | |
|   if (Qs.compatiblyIncludes(TQs))
 | |
|     return Context.getQualifiedType(T, Qs);
 | |
|   
 | |
|   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
 | |
| }
 | |
| 
 | |
| /// isObjCPointerConversion - Determines whether this is an
 | |
| /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
 | |
| /// with the same arguments and return values.
 | |
| bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
 | |
|                                    QualType& ConvertedType,
 | |
|                                    bool &IncompatibleObjC) {
 | |
|   if (!getLangOpts().ObjC1)
 | |
|     return false;
 | |
| 
 | |
|   // The set of qualifiers on the type we're converting from.
 | |
|   Qualifiers FromQualifiers = FromType.getQualifiers();
 | |
|   
 | |
|   // First, we handle all conversions on ObjC object pointer types.
 | |
|   const ObjCObjectPointerType* ToObjCPtr =
 | |
|     ToType->getAs<ObjCObjectPointerType>();
 | |
|   const ObjCObjectPointerType *FromObjCPtr =
 | |
|     FromType->getAs<ObjCObjectPointerType>();
 | |
| 
 | |
|   if (ToObjCPtr && FromObjCPtr) {
 | |
|     // If the pointee types are the same (ignoring qualifications),
 | |
|     // then this is not a pointer conversion.
 | |
|     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
 | |
|                                        FromObjCPtr->getPointeeType()))
 | |
|       return false;
 | |
| 
 | |
|     // Check for compatible 
 | |
|     // Objective C++: We're able to convert between "id" or "Class" and a
 | |
|     // pointer to any interface (in both directions).
 | |
|     if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
 | |
|       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | |
|       return true;
 | |
|     }
 | |
|     // Conversions with Objective-C's id<...>.
 | |
|     if ((FromObjCPtr->isObjCQualifiedIdType() ||
 | |
|          ToObjCPtr->isObjCQualifiedIdType()) &&
 | |
|         Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
 | |
|                                                   /*compare=*/false)) {
 | |
|       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | |
|       return true;
 | |
|     }
 | |
|     // Objective C++: We're able to convert from a pointer to an
 | |
|     // interface to a pointer to a different interface.
 | |
|     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
 | |
|       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
 | |
|       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
 | |
|       if (getLangOpts().CPlusPlus && LHS && RHS &&
 | |
|           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
 | |
|                                                 FromObjCPtr->getPointeeType()))
 | |
|         return false;
 | |
|       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
 | |
|                                                    ToObjCPtr->getPointeeType(),
 | |
|                                                          ToType, Context);
 | |
|       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
 | |
|       // Okay: this is some kind of implicit downcast of Objective-C
 | |
|       // interfaces, which is permitted. However, we're going to
 | |
|       // complain about it.
 | |
|       IncompatibleObjC = true;
 | |
|       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
 | |
|                                                    ToObjCPtr->getPointeeType(),
 | |
|                                                          ToType, Context);
 | |
|       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // Beyond this point, both types need to be C pointers or block pointers.
 | |
|   QualType ToPointeeType;
 | |
|   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
 | |
|     ToPointeeType = ToCPtr->getPointeeType();
 | |
|   else if (const BlockPointerType *ToBlockPtr =
 | |
|             ToType->getAs<BlockPointerType>()) {
 | |
|     // Objective C++: We're able to convert from a pointer to any object
 | |
|     // to a block pointer type.
 | |
|     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
 | |
|       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | |
|       return true;
 | |
|     }
 | |
|     ToPointeeType = ToBlockPtr->getPointeeType();
 | |
|   }
 | |
|   else if (FromType->getAs<BlockPointerType>() &&
 | |
|            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
 | |
|     // Objective C++: We're able to convert from a block pointer type to a
 | |
|     // pointer to any object.
 | |
|     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | |
|     return true;
 | |
|   }
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   QualType FromPointeeType;
 | |
|   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
 | |
|     FromPointeeType = FromCPtr->getPointeeType();
 | |
|   else if (const BlockPointerType *FromBlockPtr =
 | |
|            FromType->getAs<BlockPointerType>())
 | |
|     FromPointeeType = FromBlockPtr->getPointeeType();
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // If we have pointers to pointers, recursively check whether this
 | |
|   // is an Objective-C conversion.
 | |
|   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
 | |
|       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
 | |
|                               IncompatibleObjC)) {
 | |
|     // We always complain about this conversion.
 | |
|     IncompatibleObjC = true;
 | |
|     ConvertedType = Context.getPointerType(ConvertedType);
 | |
|     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | |
|     return true;
 | |
|   }
 | |
|   // Allow conversion of pointee being objective-c pointer to another one;
 | |
|   // as in I* to id.
 | |
|   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
 | |
|       ToPointeeType->getAs<ObjCObjectPointerType>() &&
 | |
|       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
 | |
|                               IncompatibleObjC)) {
 | |
|         
 | |
|     ConvertedType = Context.getPointerType(ConvertedType);
 | |
|     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we have pointers to functions or blocks, check whether the only
 | |
|   // differences in the argument and result types are in Objective-C
 | |
|   // pointer conversions. If so, we permit the conversion (but
 | |
|   // complain about it).
 | |
|   const FunctionProtoType *FromFunctionType
 | |
|     = FromPointeeType->getAs<FunctionProtoType>();
 | |
|   const FunctionProtoType *ToFunctionType
 | |
|     = ToPointeeType->getAs<FunctionProtoType>();
 | |
|   if (FromFunctionType && ToFunctionType) {
 | |
|     // If the function types are exactly the same, this isn't an
 | |
|     // Objective-C pointer conversion.
 | |
|     if (Context.getCanonicalType(FromPointeeType)
 | |
|           == Context.getCanonicalType(ToPointeeType))
 | |
|       return false;
 | |
| 
 | |
|     // Perform the quick checks that will tell us whether these
 | |
|     // function types are obviously different.
 | |
|     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
 | |
|         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
 | |
|         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
 | |
|       return false;
 | |
| 
 | |
|     bool HasObjCConversion = false;
 | |
|     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
 | |
|         Context.getCanonicalType(ToFunctionType->getReturnType())) {
 | |
|       // Okay, the types match exactly. Nothing to do.
 | |
|     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
 | |
|                                        ToFunctionType->getReturnType(),
 | |
|                                        ConvertedType, IncompatibleObjC)) {
 | |
|       // Okay, we have an Objective-C pointer conversion.
 | |
|       HasObjCConversion = true;
 | |
|     } else {
 | |
|       // Function types are too different. Abort.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Check argument types.
 | |
|     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
 | |
|          ArgIdx != NumArgs; ++ArgIdx) {
 | |
|       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
 | |
|       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
 | |
|       if (Context.getCanonicalType(FromArgType)
 | |
|             == Context.getCanonicalType(ToArgType)) {
 | |
|         // Okay, the types match exactly. Nothing to do.
 | |
|       } else if (isObjCPointerConversion(FromArgType, ToArgType,
 | |
|                                          ConvertedType, IncompatibleObjC)) {
 | |
|         // Okay, we have an Objective-C pointer conversion.
 | |
|         HasObjCConversion = true;
 | |
|       } else {
 | |
|         // Argument types are too different. Abort.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (HasObjCConversion) {
 | |
|       // We had an Objective-C conversion. Allow this pointer
 | |
|       // conversion, but complain about it.
 | |
|       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | |
|       IncompatibleObjC = true;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether this is an Objective-C writeback conversion,
 | |
| /// used for parameter passing when performing automatic reference counting.
 | |
| ///
 | |
| /// \param FromType The type we're converting form.
 | |
| ///
 | |
| /// \param ToType The type we're converting to.
 | |
| ///
 | |
| /// \param ConvertedType The type that will be produced after applying
 | |
| /// this conversion.
 | |
| bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
 | |
|                                      QualType &ConvertedType) {
 | |
|   if (!getLangOpts().ObjCAutoRefCount || 
 | |
|       Context.hasSameUnqualifiedType(FromType, ToType))
 | |
|     return false;
 | |
|   
 | |
|   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
 | |
|   QualType ToPointee;
 | |
|   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
 | |
|     ToPointee = ToPointer->getPointeeType();
 | |
|   else
 | |
|     return false;
 | |
|   
 | |
|   Qualifiers ToQuals = ToPointee.getQualifiers();
 | |
|   if (!ToPointee->isObjCLifetimeType() || 
 | |
|       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
 | |
|       !ToQuals.withoutObjCLifetime().empty())
 | |
|     return false;
 | |
|   
 | |
|   // Argument must be a pointer to __strong to __weak.
 | |
|   QualType FromPointee;
 | |
|   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
 | |
|     FromPointee = FromPointer->getPointeeType();
 | |
|   else
 | |
|     return false;
 | |
|   
 | |
|   Qualifiers FromQuals = FromPointee.getQualifiers();
 | |
|   if (!FromPointee->isObjCLifetimeType() ||
 | |
|       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
 | |
|        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
 | |
|     return false;
 | |
|   
 | |
|   // Make sure that we have compatible qualifiers.
 | |
|   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
 | |
|   if (!ToQuals.compatiblyIncludes(FromQuals))
 | |
|     return false;
 | |
|   
 | |
|   // Remove qualifiers from the pointee type we're converting from; they
 | |
|   // aren't used in the compatibility check belong, and we'll be adding back
 | |
|   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
 | |
|   FromPointee = FromPointee.getUnqualifiedType();
 | |
|   
 | |
|   // The unqualified form of the pointee types must be compatible.
 | |
|   ToPointee = ToPointee.getUnqualifiedType();
 | |
|   bool IncompatibleObjC;
 | |
|   if (Context.typesAreCompatible(FromPointee, ToPointee))
 | |
|     FromPointee = ToPointee;
 | |
|   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
 | |
|                                     IncompatibleObjC))
 | |
|     return false;
 | |
|   
 | |
|   /// \brief Construct the type we're converting to, which is a pointer to
 | |
|   /// __autoreleasing pointee.
 | |
|   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
 | |
|   ConvertedType = Context.getPointerType(FromPointee);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
 | |
|                                     QualType& ConvertedType) {
 | |
|   QualType ToPointeeType;
 | |
|   if (const BlockPointerType *ToBlockPtr =
 | |
|         ToType->getAs<BlockPointerType>())
 | |
|     ToPointeeType = ToBlockPtr->getPointeeType();
 | |
|   else
 | |
|     return false;
 | |
|   
 | |
|   QualType FromPointeeType;
 | |
|   if (const BlockPointerType *FromBlockPtr =
 | |
|       FromType->getAs<BlockPointerType>())
 | |
|     FromPointeeType = FromBlockPtr->getPointeeType();
 | |
|   else
 | |
|     return false;
 | |
|   // We have pointer to blocks, check whether the only
 | |
|   // differences in the argument and result types are in Objective-C
 | |
|   // pointer conversions. If so, we permit the conversion.
 | |
|   
 | |
|   const FunctionProtoType *FromFunctionType
 | |
|     = FromPointeeType->getAs<FunctionProtoType>();
 | |
|   const FunctionProtoType *ToFunctionType
 | |
|     = ToPointeeType->getAs<FunctionProtoType>();
 | |
|   
 | |
|   if (!FromFunctionType || !ToFunctionType)
 | |
|     return false;
 | |
| 
 | |
|   if (Context.hasSameType(FromPointeeType, ToPointeeType))
 | |
|     return true;
 | |
|     
 | |
|   // Perform the quick checks that will tell us whether these
 | |
|   // function types are obviously different.
 | |
|   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
 | |
|       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
 | |
|     return false;
 | |
|     
 | |
|   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
 | |
|   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
 | |
|   if (FromEInfo != ToEInfo)
 | |
|     return false;
 | |
| 
 | |
|   bool IncompatibleObjC = false;
 | |
|   if (Context.hasSameType(FromFunctionType->getReturnType(),
 | |
|                           ToFunctionType->getReturnType())) {
 | |
|     // Okay, the types match exactly. Nothing to do.
 | |
|   } else {
 | |
|     QualType RHS = FromFunctionType->getReturnType();
 | |
|     QualType LHS = ToFunctionType->getReturnType();
 | |
|     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
 | |
|         !RHS.hasQualifiers() && LHS.hasQualifiers())
 | |
|        LHS = LHS.getUnqualifiedType();
 | |
| 
 | |
|      if (Context.hasSameType(RHS,LHS)) {
 | |
|        // OK exact match.
 | |
|      } else if (isObjCPointerConversion(RHS, LHS,
 | |
|                                         ConvertedType, IncompatibleObjC)) {
 | |
|      if (IncompatibleObjC)
 | |
|        return false;
 | |
|      // Okay, we have an Objective-C pointer conversion.
 | |
|      }
 | |
|      else
 | |
|        return false;
 | |
|    }
 | |
|     
 | |
|    // Check argument types.
 | |
|    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
 | |
|         ArgIdx != NumArgs; ++ArgIdx) {
 | |
|      IncompatibleObjC = false;
 | |
|      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
 | |
|      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
 | |
|      if (Context.hasSameType(FromArgType, ToArgType)) {
 | |
|        // Okay, the types match exactly. Nothing to do.
 | |
|      } else if (isObjCPointerConversion(ToArgType, FromArgType,
 | |
|                                         ConvertedType, IncompatibleObjC)) {
 | |
|        if (IncompatibleObjC)
 | |
|          return false;
 | |
|        // Okay, we have an Objective-C pointer conversion.
 | |
|      } else
 | |
|        // Argument types are too different. Abort.
 | |
|        return false;
 | |
|    }
 | |
|    if (LangOpts.ObjCAutoRefCount && 
 | |
|        !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 
 | |
|                                                     ToFunctionType))
 | |
|      return false;
 | |
|    
 | |
|    ConvertedType = ToType;
 | |
|    return true;
 | |
| }
 | |
| 
 | |
| enum {
 | |
|   ft_default,
 | |
|   ft_different_class,
 | |
|   ft_parameter_arity,
 | |
|   ft_parameter_mismatch,
 | |
|   ft_return_type,
 | |
|   ft_qualifer_mismatch
 | |
| };
 | |
| 
 | |
| /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
 | |
| /// function types.  Catches different number of parameter, mismatch in
 | |
| /// parameter types, and different return types.
 | |
| void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
 | |
|                                       QualType FromType, QualType ToType) {
 | |
|   // If either type is not valid, include no extra info.
 | |
|   if (FromType.isNull() || ToType.isNull()) {
 | |
|     PDiag << ft_default;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Get the function type from the pointers.
 | |
|   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
 | |
|     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
 | |
|                             *ToMember = ToType->getAs<MemberPointerType>();
 | |
|     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
 | |
|       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
 | |
|             << QualType(FromMember->getClass(), 0);
 | |
|       return;
 | |
|     }
 | |
|     FromType = FromMember->getPointeeType();
 | |
|     ToType = ToMember->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   if (FromType->isPointerType())
 | |
|     FromType = FromType->getPointeeType();
 | |
|   if (ToType->isPointerType())
 | |
|     ToType = ToType->getPointeeType();
 | |
| 
 | |
|   // Remove references.
 | |
|   FromType = FromType.getNonReferenceType();
 | |
|   ToType = ToType.getNonReferenceType();
 | |
| 
 | |
|   // Don't print extra info for non-specialized template functions.
 | |
|   if (FromType->isInstantiationDependentType() &&
 | |
|       !FromType->getAs<TemplateSpecializationType>()) {
 | |
|     PDiag << ft_default;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // No extra info for same types.
 | |
|   if (Context.hasSameType(FromType, ToType)) {
 | |
|     PDiag << ft_default;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
 | |
|                           *ToFunction = ToType->getAs<FunctionProtoType>();
 | |
| 
 | |
|   // Both types need to be function types.
 | |
|   if (!FromFunction || !ToFunction) {
 | |
|     PDiag << ft_default;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
 | |
|     PDiag << ft_parameter_arity << ToFunction->getNumParams()
 | |
|           << FromFunction->getNumParams();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle different parameter types.
 | |
|   unsigned ArgPos;
 | |
|   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
 | |
|     PDiag << ft_parameter_mismatch << ArgPos + 1
 | |
|           << ToFunction->getParamType(ArgPos)
 | |
|           << FromFunction->getParamType(ArgPos);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle different return type.
 | |
|   if (!Context.hasSameType(FromFunction->getReturnType(),
 | |
|                            ToFunction->getReturnType())) {
 | |
|     PDiag << ft_return_type << ToFunction->getReturnType()
 | |
|           << FromFunction->getReturnType();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned FromQuals = FromFunction->getTypeQuals(),
 | |
|            ToQuals = ToFunction->getTypeQuals();
 | |
|   if (FromQuals != ToQuals) {
 | |
|     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Unable to find a difference, so add no extra info.
 | |
|   PDiag << ft_default;
 | |
| }
 | |
| 
 | |
| /// FunctionParamTypesAreEqual - This routine checks two function proto types
 | |
| /// for equality of their argument types. Caller has already checked that
 | |
| /// they have same number of arguments.  If the parameters are different,
 | |
| /// ArgPos will have the parameter index of the first different parameter.
 | |
| bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
 | |
|                                       const FunctionProtoType *NewType,
 | |
|                                       unsigned *ArgPos) {
 | |
|   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
 | |
|                                               N = NewType->param_type_begin(),
 | |
|                                               E = OldType->param_type_end();
 | |
|        O && (O != E); ++O, ++N) {
 | |
|     if (!Context.hasSameType(O->getUnqualifiedType(),
 | |
|                              N->getUnqualifiedType())) {
 | |
|       if (ArgPos)
 | |
|         *ArgPos = O - OldType->param_type_begin();
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CheckPointerConversion - Check the pointer conversion from the
 | |
| /// expression From to the type ToType. This routine checks for
 | |
| /// ambiguous or inaccessible derived-to-base pointer
 | |
| /// conversions for which IsPointerConversion has already returned
 | |
| /// true. It returns true and produces a diagnostic if there was an
 | |
| /// error, or returns false otherwise.
 | |
| bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
 | |
|                                   CastKind &Kind,
 | |
|                                   CXXCastPath& BasePath,
 | |
|                                   bool IgnoreBaseAccess) {
 | |
|   QualType FromType = From->getType();
 | |
|   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
 | |
| 
 | |
|   Kind = CK_BitCast;
 | |
| 
 | |
|   if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
 | |
|       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
 | |
|       Expr::NPCK_ZeroExpression) {
 | |
|     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
 | |
|       DiagRuntimeBehavior(From->getExprLoc(), From,
 | |
|                           PDiag(diag::warn_impcast_bool_to_null_pointer)
 | |
|                             << ToType << From->getSourceRange());
 | |
|     else if (!isUnevaluatedContext())
 | |
|       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
 | |
|         << ToType << From->getSourceRange();
 | |
|   }
 | |
|   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
 | |
|     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
 | |
|       QualType FromPointeeType = FromPtrType->getPointeeType(),
 | |
|                ToPointeeType   = ToPtrType->getPointeeType();
 | |
| 
 | |
|       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
 | |
|           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
 | |
|         // We must have a derived-to-base conversion. Check an
 | |
|         // ambiguous or inaccessible conversion.
 | |
|         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
 | |
|                                          From->getExprLoc(),
 | |
|                                          From->getSourceRange(), &BasePath,
 | |
|                                          IgnoreBaseAccess))
 | |
|           return true;
 | |
| 
 | |
|         // The conversion was successful.
 | |
|         Kind = CK_DerivedToBase;
 | |
|       }
 | |
|     }
 | |
|   } else if (const ObjCObjectPointerType *ToPtrType =
 | |
|                ToType->getAs<ObjCObjectPointerType>()) {
 | |
|     if (const ObjCObjectPointerType *FromPtrType =
 | |
|           FromType->getAs<ObjCObjectPointerType>()) {
 | |
|       // Objective-C++ conversions are always okay.
 | |
|       // FIXME: We should have a different class of conversions for the
 | |
|       // Objective-C++ implicit conversions.
 | |
|       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
 | |
|         return false;
 | |
|     } else if (FromType->isBlockPointerType()) {
 | |
|       Kind = CK_BlockPointerToObjCPointerCast;
 | |
|     } else {
 | |
|       Kind = CK_CPointerToObjCPointerCast;
 | |
|     }
 | |
|   } else if (ToType->isBlockPointerType()) {
 | |
|     if (!FromType->isBlockPointerType())
 | |
|       Kind = CK_AnyPointerToBlockPointerCast;
 | |
|   }
 | |
| 
 | |
|   // We shouldn't fall into this case unless it's valid for other
 | |
|   // reasons.
 | |
|   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
 | |
|     Kind = CK_NullToPointer;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsMemberPointerConversion - Determines whether the conversion of the
 | |
| /// expression From, which has the (possibly adjusted) type FromType, can be
 | |
| /// converted to the type ToType via a member pointer conversion (C++ 4.11).
 | |
| /// If so, returns true and places the converted type (that might differ from
 | |
| /// ToType in its cv-qualifiers at some level) into ConvertedType.
 | |
| bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
 | |
|                                      QualType ToType,
 | |
|                                      bool InOverloadResolution,
 | |
|                                      QualType &ConvertedType) {
 | |
|   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
 | |
|   if (!ToTypePtr)
 | |
|     return false;
 | |
| 
 | |
|   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
 | |
|   if (From->isNullPointerConstant(Context,
 | |
|                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
 | |
|                                         : Expr::NPC_ValueDependentIsNull)) {
 | |
|     ConvertedType = ToType;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, both types have to be member pointers.
 | |
|   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
 | |
|   if (!FromTypePtr)
 | |
|     return false;
 | |
| 
 | |
|   // A pointer to member of B can be converted to a pointer to member of D,
 | |
|   // where D is derived from B (C++ 4.11p2).
 | |
|   QualType FromClass(FromTypePtr->getClass(), 0);
 | |
|   QualType ToClass(ToTypePtr->getClass(), 0);
 | |
| 
 | |
|   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
 | |
|       !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
 | |
|       IsDerivedFrom(ToClass, FromClass)) {
 | |
|     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
 | |
|                                                  ToClass.getTypePtr());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckMemberPointerConversion - Check the member pointer conversion from the
 | |
| /// expression From to the type ToType. This routine checks for ambiguous or
 | |
| /// virtual or inaccessible base-to-derived member pointer conversions
 | |
| /// for which IsMemberPointerConversion has already returned true. It returns
 | |
| /// true and produces a diagnostic if there was an error, or returns false
 | |
| /// otherwise.
 | |
| bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
 | |
|                                         CastKind &Kind,
 | |
|                                         CXXCastPath &BasePath,
 | |
|                                         bool IgnoreBaseAccess) {
 | |
|   QualType FromType = From->getType();
 | |
|   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
 | |
|   if (!FromPtrType) {
 | |
|     // This must be a null pointer to member pointer conversion
 | |
|     assert(From->isNullPointerConstant(Context,
 | |
|                                        Expr::NPC_ValueDependentIsNull) &&
 | |
|            "Expr must be null pointer constant!");
 | |
|     Kind = CK_NullToMemberPointer;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
 | |
|   assert(ToPtrType && "No member pointer cast has a target type "
 | |
|                       "that is not a member pointer.");
 | |
| 
 | |
|   QualType FromClass = QualType(FromPtrType->getClass(), 0);
 | |
|   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
 | |
| 
 | |
|   // FIXME: What about dependent types?
 | |
|   assert(FromClass->isRecordType() && "Pointer into non-class.");
 | |
|   assert(ToClass->isRecordType() && "Pointer into non-class.");
 | |
| 
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                      /*DetectVirtual=*/true);
 | |
|   bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
 | |
|   assert(DerivationOkay &&
 | |
|          "Should not have been called if derivation isn't OK.");
 | |
|   (void)DerivationOkay;
 | |
| 
 | |
|   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
 | |
|                                   getUnqualifiedType())) {
 | |
|     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
 | |
|     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
 | |
|       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
 | |
|     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
 | |
|       << FromClass << ToClass << QualType(VBase, 0)
 | |
|       << From->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!IgnoreBaseAccess)
 | |
|     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
 | |
|                          Paths.front(),
 | |
|                          diag::err_downcast_from_inaccessible_base);
 | |
| 
 | |
|   // Must be a base to derived member conversion.
 | |
|   BuildBasePathArray(Paths, BasePath);
 | |
|   Kind = CK_BaseToDerivedMemberPointer;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether the lifetime conversion between the two given
 | |
| /// qualifiers sets is nontrivial.
 | |
| static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
 | |
|                                                Qualifiers ToQuals) {
 | |
|   // Converting anything to const __unsafe_unretained is trivial.
 | |
|   if (ToQuals.hasConst() && 
 | |
|       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IsQualificationConversion - Determines whether the conversion from
 | |
| /// an rvalue of type FromType to ToType is a qualification conversion
 | |
| /// (C++ 4.4).
 | |
| ///
 | |
| /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
 | |
| /// when the qualification conversion involves a change in the Objective-C
 | |
| /// object lifetime.
 | |
| bool
 | |
| Sema::IsQualificationConversion(QualType FromType, QualType ToType,
 | |
|                                 bool CStyle, bool &ObjCLifetimeConversion) {
 | |
|   FromType = Context.getCanonicalType(FromType);
 | |
|   ToType = Context.getCanonicalType(ToType);
 | |
|   ObjCLifetimeConversion = false;
 | |
|   
 | |
|   // If FromType and ToType are the same type, this is not a
 | |
|   // qualification conversion.
 | |
|   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
 | |
|     return false;
 | |
| 
 | |
|   // (C++ 4.4p4):
 | |
|   //   A conversion can add cv-qualifiers at levels other than the first
 | |
|   //   in multi-level pointers, subject to the following rules: [...]
 | |
|   bool PreviousToQualsIncludeConst = true;
 | |
|   bool UnwrappedAnyPointer = false;
 | |
|   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
 | |
|     // Within each iteration of the loop, we check the qualifiers to
 | |
|     // determine if this still looks like a qualification
 | |
|     // conversion. Then, if all is well, we unwrap one more level of
 | |
|     // pointers or pointers-to-members and do it all again
 | |
|     // until there are no more pointers or pointers-to-members left to
 | |
|     // unwrap.
 | |
|     UnwrappedAnyPointer = true;
 | |
| 
 | |
|     Qualifiers FromQuals = FromType.getQualifiers();
 | |
|     Qualifiers ToQuals = ToType.getQualifiers();
 | |
|     
 | |
|     // Objective-C ARC:
 | |
|     //   Check Objective-C lifetime conversions.
 | |
|     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
 | |
|         UnwrappedAnyPointer) {
 | |
|       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
 | |
|         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
 | |
|           ObjCLifetimeConversion = true;
 | |
|         FromQuals.removeObjCLifetime();
 | |
|         ToQuals.removeObjCLifetime();
 | |
|       } else {
 | |
|         // Qualification conversions cannot cast between different
 | |
|         // Objective-C lifetime qualifiers.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Allow addition/removal of GC attributes but not changing GC attributes.
 | |
|     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
 | |
|         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
 | |
|       FromQuals.removeObjCGCAttr();
 | |
|       ToQuals.removeObjCGCAttr();
 | |
|     }
 | |
|     
 | |
|     //   -- for every j > 0, if const is in cv 1,j then const is in cv
 | |
|     //      2,j, and similarly for volatile.
 | |
|     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
 | |
|       return false;
 | |
| 
 | |
|     //   -- if the cv 1,j and cv 2,j are different, then const is in
 | |
|     //      every cv for 0 < k < j.
 | |
|     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
 | |
|         && !PreviousToQualsIncludeConst)
 | |
|       return false;
 | |
| 
 | |
|     // Keep track of whether all prior cv-qualifiers in the "to" type
 | |
|     // include const.
 | |
|     PreviousToQualsIncludeConst
 | |
|       = PreviousToQualsIncludeConst && ToQuals.hasConst();
 | |
|   }
 | |
| 
 | |
|   // We are left with FromType and ToType being the pointee types
 | |
|   // after unwrapping the original FromType and ToType the same number
 | |
|   // of types. If we unwrapped any pointers, and if FromType and
 | |
|   // ToType have the same unqualified type (since we checked
 | |
|   // qualifiers above), then this is a qualification conversion.
 | |
|   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
 | |
| }
 | |
| 
 | |
| /// \brief - Determine whether this is a conversion from a scalar type to an
 | |
| /// atomic type.
 | |
| ///
 | |
| /// If successful, updates \c SCS's second and third steps in the conversion
 | |
| /// sequence to finish the conversion.
 | |
| static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                                 bool InOverloadResolution,
 | |
|                                 StandardConversionSequence &SCS,
 | |
|                                 bool CStyle) {
 | |
|   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
 | |
|   if (!ToAtomic)
 | |
|     return false;
 | |
|   
 | |
|   StandardConversionSequence InnerSCS;
 | |
|   if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 
 | |
|                             InOverloadResolution, InnerSCS,
 | |
|                             CStyle, /*AllowObjCWritebackConversion=*/false))
 | |
|     return false;
 | |
|   
 | |
|   SCS.Second = InnerSCS.Second;
 | |
|   SCS.setToType(1, InnerSCS.getToType(1));
 | |
|   SCS.Third = InnerSCS.Third;
 | |
|   SCS.QualificationIncludesObjCLifetime
 | |
|     = InnerSCS.QualificationIncludesObjCLifetime;
 | |
|   SCS.setToType(2, InnerSCS.getToType(2));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
 | |
|                                               CXXConstructorDecl *Constructor,
 | |
|                                               QualType Type) {
 | |
|   const FunctionProtoType *CtorType =
 | |
|       Constructor->getType()->getAs<FunctionProtoType>();
 | |
|   if (CtorType->getNumParams() > 0) {
 | |
|     QualType FirstArg = CtorType->getParamType(0);
 | |
|     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static OverloadingResult
 | |
| IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                                        CXXRecordDecl *To,
 | |
|                                        UserDefinedConversionSequence &User,
 | |
|                                        OverloadCandidateSet &CandidateSet,
 | |
|                                        bool AllowExplicit) {
 | |
|   DeclContext::lookup_result R = S.LookupConstructors(To);
 | |
|   for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
 | |
|        Con != ConEnd; ++Con) {
 | |
|     NamedDecl *D = *Con;
 | |
|     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | |
| 
 | |
|     // Find the constructor (which may be a template).
 | |
|     CXXConstructorDecl *Constructor = nullptr;
 | |
|     FunctionTemplateDecl *ConstructorTmpl
 | |
|       = dyn_cast<FunctionTemplateDecl>(D);
 | |
|     if (ConstructorTmpl)
 | |
|       Constructor
 | |
|         = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
 | |
|     else
 | |
|       Constructor = cast<CXXConstructorDecl>(D);
 | |
| 
 | |
|     bool Usable = !Constructor->isInvalidDecl() &&
 | |
|                   S.isInitListConstructor(Constructor) &&
 | |
|                   (AllowExplicit || !Constructor->isExplicit());
 | |
|     if (Usable) {
 | |
|       // If the first argument is (a reference to) the target type,
 | |
|       // suppress conversions.
 | |
|       bool SuppressUserConversions =
 | |
|           isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
 | |
|       if (ConstructorTmpl)
 | |
|         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | |
|                                        /*ExplicitArgs*/ nullptr,
 | |
|                                        From, CandidateSet,
 | |
|                                        SuppressUserConversions);
 | |
|       else
 | |
|         S.AddOverloadCandidate(Constructor, FoundDecl,
 | |
|                                From, CandidateSet,
 | |
|                                SuppressUserConversions);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
 | |
|   case OR_Success: {
 | |
|     // Record the standard conversion we used and the conversion function.
 | |
|     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
 | |
|     QualType ThisType = Constructor->getThisType(S.Context);
 | |
|     // Initializer lists don't have conversions as such.
 | |
|     User.Before.setAsIdentityConversion();
 | |
|     User.HadMultipleCandidates = HadMultipleCandidates;
 | |
|     User.ConversionFunction = Constructor;
 | |
|     User.FoundConversionFunction = Best->FoundDecl;
 | |
|     User.After.setAsIdentityConversion();
 | |
|     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
 | |
|     User.After.setAllToTypes(ToType);
 | |
|     return OR_Success;
 | |
|   }
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     return OR_No_Viable_Function;
 | |
|   case OR_Deleted:
 | |
|     return OR_Deleted;
 | |
|   case OR_Ambiguous:
 | |
|     return OR_Ambiguous;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid OverloadResult!");
 | |
| }
 | |
| 
 | |
| /// Determines whether there is a user-defined conversion sequence
 | |
| /// (C++ [over.ics.user]) that converts expression From to the type
 | |
| /// ToType. If such a conversion exists, User will contain the
 | |
| /// user-defined conversion sequence that performs such a conversion
 | |
| /// and this routine will return true. Otherwise, this routine returns
 | |
| /// false and User is unspecified.
 | |
| ///
 | |
| /// \param AllowExplicit  true if the conversion should consider C++0x
 | |
| /// "explicit" conversion functions as well as non-explicit conversion
 | |
| /// functions (C++0x [class.conv.fct]p2).
 | |
| ///
 | |
| /// \param AllowObjCConversionOnExplicit true if the conversion should
 | |
| /// allow an extra Objective-C pointer conversion on uses of explicit
 | |
| /// constructors. Requires \c AllowExplicit to also be set.
 | |
| static OverloadingResult
 | |
| IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
 | |
|                         UserDefinedConversionSequence &User,
 | |
|                         OverloadCandidateSet &CandidateSet,
 | |
|                         bool AllowExplicit,
 | |
|                         bool AllowObjCConversionOnExplicit) {
 | |
|   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
 | |
| 
 | |
|   // Whether we will only visit constructors.
 | |
|   bool ConstructorsOnly = false;
 | |
| 
 | |
|   // If the type we are conversion to is a class type, enumerate its
 | |
|   // constructors.
 | |
|   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
 | |
|     // C++ [over.match.ctor]p1:
 | |
|     //   When objects of class type are direct-initialized (8.5), or
 | |
|     //   copy-initialized from an expression of the same or a
 | |
|     //   derived class type (8.5), overload resolution selects the
 | |
|     //   constructor. [...] For copy-initialization, the candidate
 | |
|     //   functions are all the converting constructors (12.3.1) of
 | |
|     //   that class. The argument list is the expression-list within
 | |
|     //   the parentheses of the initializer.
 | |
|     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
 | |
|         (From->getType()->getAs<RecordType>() &&
 | |
|          S.IsDerivedFrom(From->getType(), ToType)))
 | |
|       ConstructorsOnly = true;
 | |
| 
 | |
|     S.RequireCompleteType(From->getExprLoc(), ToType, 0);
 | |
|     // RequireCompleteType may have returned true due to some invalid decl
 | |
|     // during template instantiation, but ToType may be complete enough now
 | |
|     // to try to recover.
 | |
|     if (ToType->isIncompleteType()) {
 | |
|       // We're not going to find any constructors.
 | |
|     } else if (CXXRecordDecl *ToRecordDecl
 | |
|                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
 | |
| 
 | |
|       Expr **Args = &From;
 | |
|       unsigned NumArgs = 1;
 | |
|       bool ListInitializing = false;
 | |
|       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
 | |
|         // But first, see if there is an init-list-constructor that will work.
 | |
|         OverloadingResult Result = IsInitializerListConstructorConversion(
 | |
|             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
 | |
|         if (Result != OR_No_Viable_Function)
 | |
|           return Result;
 | |
|         // Never mind.
 | |
|         CandidateSet.clear();
 | |
| 
 | |
|         // If we're list-initializing, we pass the individual elements as
 | |
|         // arguments, not the entire list.
 | |
|         Args = InitList->getInits();
 | |
|         NumArgs = InitList->getNumInits();
 | |
|         ListInitializing = true;
 | |
|       }
 | |
| 
 | |
|       DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
 | |
|       for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
 | |
|            Con != ConEnd; ++Con) {
 | |
|         NamedDecl *D = *Con;
 | |
|         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | |
| 
 | |
|         // Find the constructor (which may be a template).
 | |
|         CXXConstructorDecl *Constructor = nullptr;
 | |
|         FunctionTemplateDecl *ConstructorTmpl
 | |
|           = dyn_cast<FunctionTemplateDecl>(D);
 | |
|         if (ConstructorTmpl)
 | |
|           Constructor
 | |
|             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
 | |
|         else
 | |
|           Constructor = cast<CXXConstructorDecl>(D);
 | |
| 
 | |
|         bool Usable = !Constructor->isInvalidDecl();
 | |
|         if (ListInitializing)
 | |
|           Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
 | |
|         else
 | |
|           Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
 | |
|         if (Usable) {
 | |
|           bool SuppressUserConversions = !ConstructorsOnly;
 | |
|           if (SuppressUserConversions && ListInitializing) {
 | |
|             SuppressUserConversions = false;
 | |
|             if (NumArgs == 1) {
 | |
|               // If the first argument is (a reference to) the target type,
 | |
|               // suppress conversions.
 | |
|               SuppressUserConversions = isFirstArgumentCompatibleWithType(
 | |
|                                                 S.Context, Constructor, ToType);
 | |
|             }
 | |
|           }
 | |
|           if (ConstructorTmpl)
 | |
|             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | |
|                                            /*ExplicitArgs*/ nullptr,
 | |
|                                            llvm::makeArrayRef(Args, NumArgs),
 | |
|                                            CandidateSet, SuppressUserConversions);
 | |
|           else
 | |
|             // Allow one user-defined conversion when user specifies a
 | |
|             // From->ToType conversion via an static cast (c-style, etc).
 | |
|             S.AddOverloadCandidate(Constructor, FoundDecl,
 | |
|                                    llvm::makeArrayRef(Args, NumArgs),
 | |
|                                    CandidateSet, SuppressUserConversions);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Enumerate conversion functions, if we're allowed to.
 | |
|   if (ConstructorsOnly || isa<InitListExpr>(From)) {
 | |
|   } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
 | |
|     // No conversion functions from incomplete types.
 | |
|   } else if (const RecordType *FromRecordType
 | |
|                                    = From->getType()->getAs<RecordType>()) {
 | |
|     if (CXXRecordDecl *FromRecordDecl
 | |
|          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
 | |
|       // Add all of the conversion functions as candidates.
 | |
|       std::pair<CXXRecordDecl::conversion_iterator,
 | |
|                 CXXRecordDecl::conversion_iterator>
 | |
|         Conversions = FromRecordDecl->getVisibleConversionFunctions();
 | |
|       for (CXXRecordDecl::conversion_iterator
 | |
|              I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|         DeclAccessPair FoundDecl = I.getPair();
 | |
|         NamedDecl *D = FoundDecl.getDecl();
 | |
|         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|         if (isa<UsingShadowDecl>(D))
 | |
|           D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|         CXXConversionDecl *Conv;
 | |
|         FunctionTemplateDecl *ConvTemplate;
 | |
|         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
 | |
|           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | |
|         else
 | |
|           Conv = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|         if (AllowExplicit || !Conv->isExplicit()) {
 | |
|           if (ConvTemplate)
 | |
|             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
 | |
|                                              ActingContext, From, ToType,
 | |
|                                              CandidateSet,
 | |
|                                              AllowObjCConversionOnExplicit);
 | |
|           else
 | |
|             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
 | |
|                                      From, ToType, CandidateSet,
 | |
|                                      AllowObjCConversionOnExplicit);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
 | |
|   case OR_Success:
 | |
|     // Record the standard conversion we used and the conversion function.
 | |
|     if (CXXConstructorDecl *Constructor
 | |
|           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
 | |
|       // C++ [over.ics.user]p1:
 | |
|       //   If the user-defined conversion is specified by a
 | |
|       //   constructor (12.3.1), the initial standard conversion
 | |
|       //   sequence converts the source type to the type required by
 | |
|       //   the argument of the constructor.
 | |
|       //
 | |
|       QualType ThisType = Constructor->getThisType(S.Context);
 | |
|       if (isa<InitListExpr>(From)) {
 | |
|         // Initializer lists don't have conversions as such.
 | |
|         User.Before.setAsIdentityConversion();
 | |
|       } else {
 | |
|         if (Best->Conversions[0].isEllipsis())
 | |
|           User.EllipsisConversion = true;
 | |
|         else {
 | |
|           User.Before = Best->Conversions[0].Standard;
 | |
|           User.EllipsisConversion = false;
 | |
|         }
 | |
|       }
 | |
|       User.HadMultipleCandidates = HadMultipleCandidates;
 | |
|       User.ConversionFunction = Constructor;
 | |
|       User.FoundConversionFunction = Best->FoundDecl;
 | |
|       User.After.setAsIdentityConversion();
 | |
|       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
 | |
|       User.After.setAllToTypes(ToType);
 | |
|       return OR_Success;
 | |
|     }
 | |
|     if (CXXConversionDecl *Conversion
 | |
|                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
 | |
|       // C++ [over.ics.user]p1:
 | |
|       //
 | |
|       //   [...] If the user-defined conversion is specified by a
 | |
|       //   conversion function (12.3.2), the initial standard
 | |
|       //   conversion sequence converts the source type to the
 | |
|       //   implicit object parameter of the conversion function.
 | |
|       User.Before = Best->Conversions[0].Standard;
 | |
|       User.HadMultipleCandidates = HadMultipleCandidates;
 | |
|       User.ConversionFunction = Conversion;
 | |
|       User.FoundConversionFunction = Best->FoundDecl;
 | |
|       User.EllipsisConversion = false;
 | |
| 
 | |
|       // C++ [over.ics.user]p2:
 | |
|       //   The second standard conversion sequence converts the
 | |
|       //   result of the user-defined conversion to the target type
 | |
|       //   for the sequence. Since an implicit conversion sequence
 | |
|       //   is an initialization, the special rules for
 | |
|       //   initialization by user-defined conversion apply when
 | |
|       //   selecting the best user-defined conversion for a
 | |
|       //   user-defined conversion sequence (see 13.3.3 and
 | |
|       //   13.3.3.1).
 | |
|       User.After = Best->FinalConversion;
 | |
|       return OR_Success;
 | |
|     }
 | |
|     llvm_unreachable("Not a constructor or conversion function?");
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     return OR_No_Viable_Function;
 | |
|   case OR_Deleted:
 | |
|     // No conversion here! We're done.
 | |
|     return OR_Deleted;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     return OR_Ambiguous;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid OverloadResult!");
 | |
| }
 | |
| 
 | |
| bool
 | |
| Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
 | |
|   ImplicitConversionSequence ICS;
 | |
|   OverloadCandidateSet CandidateSet(From->getExprLoc(),
 | |
|                                     OverloadCandidateSet::CSK_Normal);
 | |
|   OverloadingResult OvResult =
 | |
|     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
 | |
|                             CandidateSet, false, false);
 | |
|   if (OvResult == OR_Ambiguous)
 | |
|     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
 | |
|         << From->getType() << ToType << From->getSourceRange();
 | |
|   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
 | |
|     if (!RequireCompleteType(From->getLocStart(), ToType,
 | |
|                              diag::err_typecheck_nonviable_condition_incomplete,
 | |
|                              From->getType(), From->getSourceRange()))
 | |
|       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
 | |
|           << From->getType() << From->getSourceRange() << ToType;
 | |
|   } else
 | |
|     return false;
 | |
|   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Compare the user-defined conversion functions or constructors
 | |
| /// of two user-defined conversion sequences to determine whether any ordering
 | |
| /// is possible.
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| compareConversionFunctions(Sema &S, FunctionDecl *Function1,
 | |
|                            FunctionDecl *Function2) {
 | |
|   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   // Objective-C++:
 | |
|   //   If both conversion functions are implicitly-declared conversions from
 | |
|   //   a lambda closure type to a function pointer and a block pointer,
 | |
|   //   respectively, always prefer the conversion to a function pointer,
 | |
|   //   because the function pointer is more lightweight and is more likely
 | |
|   //   to keep code working.
 | |
|   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
 | |
|   if (!Conv1)
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
 | |
|   if (!Conv2)
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
 | |
|     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
 | |
|     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
 | |
|     if (Block1 != Block2)
 | |
|       return Block1 ? ImplicitConversionSequence::Worse
 | |
|                     : ImplicitConversionSequence::Better;
 | |
|   }
 | |
| 
 | |
|   return ImplicitConversionSequence::Indistinguishable;
 | |
| }
 | |
| 
 | |
| static bool hasDeprecatedStringLiteralToCharPtrConversion(
 | |
|     const ImplicitConversionSequence &ICS) {
 | |
|   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
 | |
|          (ICS.isUserDefined() &&
 | |
|           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
 | |
| }
 | |
| 
 | |
| /// CompareImplicitConversionSequences - Compare two implicit
 | |
| /// conversion sequences to determine whether one is better than the
 | |
| /// other or if they are indistinguishable (C++ 13.3.3.2).
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| CompareImplicitConversionSequences(Sema &S,
 | |
|                                    const ImplicitConversionSequence& ICS1,
 | |
|                                    const ImplicitConversionSequence& ICS2)
 | |
| {
 | |
|   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
 | |
|   // conversion sequences (as defined in 13.3.3.1)
 | |
|   //   -- a standard conversion sequence (13.3.3.1.1) is a better
 | |
|   //      conversion sequence than a user-defined conversion sequence or
 | |
|   //      an ellipsis conversion sequence, and
 | |
|   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
 | |
|   //      conversion sequence than an ellipsis conversion sequence
 | |
|   //      (13.3.3.1.3).
 | |
|   //
 | |
|   // C++0x [over.best.ics]p10:
 | |
|   //   For the purpose of ranking implicit conversion sequences as
 | |
|   //   described in 13.3.3.2, the ambiguous conversion sequence is
 | |
|   //   treated as a user-defined sequence that is indistinguishable
 | |
|   //   from any other user-defined conversion sequence.
 | |
| 
 | |
|   // String literal to 'char *' conversion has been deprecated in C++03. It has
 | |
|   // been removed from C++11. We still accept this conversion, if it happens at
 | |
|   // the best viable function. Otherwise, this conversion is considered worse
 | |
|   // than ellipsis conversion. Consider this as an extension; this is not in the
 | |
|   // standard. For example:
 | |
|   //
 | |
|   // int &f(...);    // #1
 | |
|   // void f(char*);  // #2
 | |
|   // void g() { int &r = f("foo"); }
 | |
|   //
 | |
|   // In C++03, we pick #2 as the best viable function.
 | |
|   // In C++11, we pick #1 as the best viable function, because ellipsis
 | |
|   // conversion is better than string-literal to char* conversion (since there
 | |
|   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
 | |
|   // convert arguments, #2 would be the best viable function in C++11.
 | |
|   // If the best viable function has this conversion, a warning will be issued
 | |
|   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
 | |
| 
 | |
|   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
 | |
|       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
 | |
|       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
 | |
|     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
 | |
|                ? ImplicitConversionSequence::Worse
 | |
|                : ImplicitConversionSequence::Better;
 | |
| 
 | |
|   if (ICS1.getKindRank() < ICS2.getKindRank())
 | |
|     return ImplicitConversionSequence::Better;
 | |
|   if (ICS2.getKindRank() < ICS1.getKindRank())
 | |
|     return ImplicitConversionSequence::Worse;
 | |
| 
 | |
|   // The following checks require both conversion sequences to be of
 | |
|   // the same kind.
 | |
|   if (ICS1.getKind() != ICS2.getKind())
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   ImplicitConversionSequence::CompareKind Result =
 | |
|       ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   // Two implicit conversion sequences of the same form are
 | |
|   // indistinguishable conversion sequences unless one of the
 | |
|   // following rules apply: (C++ 13.3.3.2p3):
 | |
|   if (ICS1.isStandard())
 | |
|     Result = CompareStandardConversionSequences(S,
 | |
|                                                 ICS1.Standard, ICS2.Standard);
 | |
|   else if (ICS1.isUserDefined()) {
 | |
|     // User-defined conversion sequence U1 is a better conversion
 | |
|     // sequence than another user-defined conversion sequence U2 if
 | |
|     // they contain the same user-defined conversion function or
 | |
|     // constructor and if the second standard conversion sequence of
 | |
|     // U1 is better than the second standard conversion sequence of
 | |
|     // U2 (C++ 13.3.3.2p3).
 | |
|     if (ICS1.UserDefined.ConversionFunction ==
 | |
|           ICS2.UserDefined.ConversionFunction)
 | |
|       Result = CompareStandardConversionSequences(S,
 | |
|                                                   ICS1.UserDefined.After,
 | |
|                                                   ICS2.UserDefined.After);
 | |
|     else
 | |
|       Result = compareConversionFunctions(S, 
 | |
|                                           ICS1.UserDefined.ConversionFunction,
 | |
|                                           ICS2.UserDefined.ConversionFunction);
 | |
|   }
 | |
| 
 | |
|   // List-initialization sequence L1 is a better conversion sequence than
 | |
|   // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
 | |
|   // for some X and L2 does not.
 | |
|   if (Result == ImplicitConversionSequence::Indistinguishable &&
 | |
|       !ICS1.isBad()) {
 | |
|     if (ICS1.isStdInitializerListElement() &&
 | |
|         !ICS2.isStdInitializerListElement())
 | |
|       return ImplicitConversionSequence::Better;
 | |
|     if (!ICS1.isStdInitializerListElement() &&
 | |
|         ICS2.isStdInitializerListElement())
 | |
|       return ImplicitConversionSequence::Worse;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
 | |
|   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
 | |
|     Qualifiers Quals;
 | |
|     T1 = Context.getUnqualifiedArrayType(T1, Quals);
 | |
|     T2 = Context.getUnqualifiedArrayType(T2, Quals);
 | |
|   }
 | |
| 
 | |
|   return Context.hasSameUnqualifiedType(T1, T2);
 | |
| }
 | |
| 
 | |
| // Per 13.3.3.2p3, compare the given standard conversion sequences to
 | |
| // determine if one is a proper subset of the other.
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| compareStandardConversionSubsets(ASTContext &Context,
 | |
|                                  const StandardConversionSequence& SCS1,
 | |
|                                  const StandardConversionSequence& SCS2) {
 | |
|   ImplicitConversionSequence::CompareKind Result
 | |
|     = ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   // the identity conversion sequence is considered to be a subsequence of
 | |
|   // any non-identity conversion sequence
 | |
|   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
 | |
|     return ImplicitConversionSequence::Better;
 | |
|   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
 | |
|     return ImplicitConversionSequence::Worse;
 | |
| 
 | |
|   if (SCS1.Second != SCS2.Second) {
 | |
|     if (SCS1.Second == ICK_Identity)
 | |
|       Result = ImplicitConversionSequence::Better;
 | |
|     else if (SCS2.Second == ICK_Identity)
 | |
|       Result = ImplicitConversionSequence::Worse;
 | |
|     else
 | |
|       return ImplicitConversionSequence::Indistinguishable;
 | |
|   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   if (SCS1.Third == SCS2.Third) {
 | |
|     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
 | |
|                              : ImplicitConversionSequence::Indistinguishable;
 | |
|   }
 | |
| 
 | |
|   if (SCS1.Third == ICK_Identity)
 | |
|     return Result == ImplicitConversionSequence::Worse
 | |
|              ? ImplicitConversionSequence::Indistinguishable
 | |
|              : ImplicitConversionSequence::Better;
 | |
| 
 | |
|   if (SCS2.Third == ICK_Identity)
 | |
|     return Result == ImplicitConversionSequence::Better
 | |
|              ? ImplicitConversionSequence::Indistinguishable
 | |
|              : ImplicitConversionSequence::Worse;
 | |
| 
 | |
|   return ImplicitConversionSequence::Indistinguishable;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether one of the given reference bindings is better
 | |
| /// than the other based on what kind of bindings they are.
 | |
| static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
 | |
|                                        const StandardConversionSequence &SCS2) {
 | |
|   // C++0x [over.ics.rank]p3b4:
 | |
|   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
 | |
|   //      implicit object parameter of a non-static member function declared
 | |
|   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
 | |
|   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
 | |
|   //      lvalue reference to a function lvalue and S2 binds an rvalue
 | |
|   //      reference*.
 | |
|   //
 | |
|   // FIXME: Rvalue references. We're going rogue with the above edits,
 | |
|   // because the semantics in the current C++0x working paper (N3225 at the
 | |
|   // time of this writing) break the standard definition of std::forward
 | |
|   // and std::reference_wrapper when dealing with references to functions.
 | |
|   // Proposed wording changes submitted to CWG for consideration.
 | |
|   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
 | |
|       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
 | |
|     return false;
 | |
| 
 | |
|   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
 | |
|           SCS2.IsLvalueReference) ||
 | |
|          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
 | |
|           !SCS2.IsLvalueReference);
 | |
| }
 | |
| 
 | |
| /// CompareStandardConversionSequences - Compare two standard
 | |
| /// conversion sequences to determine whether one is better than the
 | |
| /// other or if they are indistinguishable (C++ 13.3.3.2p3).
 | |
| static ImplicitConversionSequence::CompareKind
 | |
| CompareStandardConversionSequences(Sema &S,
 | |
|                                    const StandardConversionSequence& SCS1,
 | |
|                                    const StandardConversionSequence& SCS2)
 | |
| {
 | |
|   // Standard conversion sequence S1 is a better conversion sequence
 | |
|   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
 | |
| 
 | |
|   //  -- S1 is a proper subsequence of S2 (comparing the conversion
 | |
|   //     sequences in the canonical form defined by 13.3.3.1.1,
 | |
|   //     excluding any Lvalue Transformation; the identity conversion
 | |
|   //     sequence is considered to be a subsequence of any
 | |
|   //     non-identity conversion sequence) or, if not that,
 | |
|   if (ImplicitConversionSequence::CompareKind CK
 | |
|         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
 | |
|     return CK;
 | |
| 
 | |
|   //  -- the rank of S1 is better than the rank of S2 (by the rules
 | |
|   //     defined below), or, if not that,
 | |
|   ImplicitConversionRank Rank1 = SCS1.getRank();
 | |
|   ImplicitConversionRank Rank2 = SCS2.getRank();
 | |
|   if (Rank1 < Rank2)
 | |
|     return ImplicitConversionSequence::Better;
 | |
|   else if (Rank2 < Rank1)
 | |
|     return ImplicitConversionSequence::Worse;
 | |
| 
 | |
|   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
 | |
|   // are indistinguishable unless one of the following rules
 | |
|   // applies:
 | |
| 
 | |
|   //   A conversion that is not a conversion of a pointer, or
 | |
|   //   pointer to member, to bool is better than another conversion
 | |
|   //   that is such a conversion.
 | |
|   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
 | |
|     return SCS2.isPointerConversionToBool()
 | |
|              ? ImplicitConversionSequence::Better
 | |
|              : ImplicitConversionSequence::Worse;
 | |
| 
 | |
|   // C++ [over.ics.rank]p4b2:
 | |
|   //
 | |
|   //   If class B is derived directly or indirectly from class A,
 | |
|   //   conversion of B* to A* is better than conversion of B* to
 | |
|   //   void*, and conversion of A* to void* is better than conversion
 | |
|   //   of B* to void*.
 | |
|   bool SCS1ConvertsToVoid
 | |
|     = SCS1.isPointerConversionToVoidPointer(S.Context);
 | |
|   bool SCS2ConvertsToVoid
 | |
|     = SCS2.isPointerConversionToVoidPointer(S.Context);
 | |
|   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
 | |
|     // Exactly one of the conversion sequences is a conversion to
 | |
|     // a void pointer; it's the worse conversion.
 | |
|     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
 | |
|                               : ImplicitConversionSequence::Worse;
 | |
|   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
 | |
|     // Neither conversion sequence converts to a void pointer; compare
 | |
|     // their derived-to-base conversions.
 | |
|     if (ImplicitConversionSequence::CompareKind DerivedCK
 | |
|           = CompareDerivedToBaseConversions(S, SCS1, SCS2))
 | |
|       return DerivedCK;
 | |
|   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
 | |
|              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
 | |
|     // Both conversion sequences are conversions to void
 | |
|     // pointers. Compare the source types to determine if there's an
 | |
|     // inheritance relationship in their sources.
 | |
|     QualType FromType1 = SCS1.getFromType();
 | |
|     QualType FromType2 = SCS2.getFromType();
 | |
| 
 | |
|     // Adjust the types we're converting from via the array-to-pointer
 | |
|     // conversion, if we need to.
 | |
|     if (SCS1.First == ICK_Array_To_Pointer)
 | |
|       FromType1 = S.Context.getArrayDecayedType(FromType1);
 | |
|     if (SCS2.First == ICK_Array_To_Pointer)
 | |
|       FromType2 = S.Context.getArrayDecayedType(FromType2);
 | |
| 
 | |
|     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
 | |
|     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
 | |
| 
 | |
|     if (S.IsDerivedFrom(FromPointee2, FromPointee1))
 | |
|       return ImplicitConversionSequence::Better;
 | |
|     else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
 | |
|       return ImplicitConversionSequence::Worse;
 | |
| 
 | |
|     // Objective-C++: If one interface is more specific than the
 | |
|     // other, it is the better one.
 | |
|     const ObjCObjectPointerType* FromObjCPtr1
 | |
|       = FromType1->getAs<ObjCObjectPointerType>();
 | |
|     const ObjCObjectPointerType* FromObjCPtr2
 | |
|       = FromType2->getAs<ObjCObjectPointerType>();
 | |
|     if (FromObjCPtr1 && FromObjCPtr2) {
 | |
|       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 
 | |
|                                                           FromObjCPtr2);
 | |
|       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 
 | |
|                                                            FromObjCPtr1);
 | |
|       if (AssignLeft != AssignRight) {
 | |
|         return AssignLeft? ImplicitConversionSequence::Better
 | |
|                          : ImplicitConversionSequence::Worse;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compare based on qualification conversions (C++ 13.3.3.2p3,
 | |
|   // bullet 3).
 | |
|   if (ImplicitConversionSequence::CompareKind QualCK
 | |
|         = CompareQualificationConversions(S, SCS1, SCS2))
 | |
|     return QualCK;
 | |
| 
 | |
|   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
 | |
|     // Check for a better reference binding based on the kind of bindings.
 | |
|     if (isBetterReferenceBindingKind(SCS1, SCS2))
 | |
|       return ImplicitConversionSequence::Better;
 | |
|     else if (isBetterReferenceBindingKind(SCS2, SCS1))
 | |
|       return ImplicitConversionSequence::Worse;
 | |
| 
 | |
|     // C++ [over.ics.rank]p3b4:
 | |
|     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
 | |
|     //      which the references refer are the same type except for
 | |
|     //      top-level cv-qualifiers, and the type to which the reference
 | |
|     //      initialized by S2 refers is more cv-qualified than the type
 | |
|     //      to which the reference initialized by S1 refers.
 | |
|     QualType T1 = SCS1.getToType(2);
 | |
|     QualType T2 = SCS2.getToType(2);
 | |
|     T1 = S.Context.getCanonicalType(T1);
 | |
|     T2 = S.Context.getCanonicalType(T2);
 | |
|     Qualifiers T1Quals, T2Quals;
 | |
|     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
 | |
|     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
 | |
|     if (UnqualT1 == UnqualT2) {
 | |
|       // Objective-C++ ARC: If the references refer to objects with different
 | |
|       // lifetimes, prefer bindings that don't change lifetime.
 | |
|       if (SCS1.ObjCLifetimeConversionBinding != 
 | |
|                                           SCS2.ObjCLifetimeConversionBinding) {
 | |
|         return SCS1.ObjCLifetimeConversionBinding
 | |
|                                            ? ImplicitConversionSequence::Worse
 | |
|                                            : ImplicitConversionSequence::Better;
 | |
|       }
 | |
|       
 | |
|       // If the type is an array type, promote the element qualifiers to the
 | |
|       // type for comparison.
 | |
|       if (isa<ArrayType>(T1) && T1Quals)
 | |
|         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
 | |
|       if (isa<ArrayType>(T2) && T2Quals)
 | |
|         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
 | |
|       if (T2.isMoreQualifiedThan(T1))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       else if (T1.isMoreQualifiedThan(T2))
 | |
|         return ImplicitConversionSequence::Worse;      
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In Microsoft mode, prefer an integral conversion to a
 | |
|   // floating-to-integral conversion if the integral conversion
 | |
|   // is between types of the same size.
 | |
|   // For example:
 | |
|   // void f(float);
 | |
|   // void f(int);
 | |
|   // int main {
 | |
|   //    long a;
 | |
|   //    f(a);
 | |
|   // }
 | |
|   // Here, MSVC will call f(int) instead of generating a compile error
 | |
|   // as clang will do in standard mode.
 | |
|   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
 | |
|       SCS2.Second == ICK_Floating_Integral &&
 | |
|       S.Context.getTypeSize(SCS1.getFromType()) ==
 | |
|           S.Context.getTypeSize(SCS1.getToType(2)))
 | |
|     return ImplicitConversionSequence::Better;
 | |
| 
 | |
|   return ImplicitConversionSequence::Indistinguishable;
 | |
| }
 | |
| 
 | |
| /// CompareQualificationConversions - Compares two standard conversion
 | |
| /// sequences to determine whether they can be ranked based on their
 | |
| /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
 | |
| ImplicitConversionSequence::CompareKind
 | |
| CompareQualificationConversions(Sema &S,
 | |
|                                 const StandardConversionSequence& SCS1,
 | |
|                                 const StandardConversionSequence& SCS2) {
 | |
|   // C++ 13.3.3.2p3:
 | |
|   //  -- S1 and S2 differ only in their qualification conversion and
 | |
|   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
 | |
|   //     cv-qualification signature of type T1 is a proper subset of
 | |
|   //     the cv-qualification signature of type T2, and S1 is not the
 | |
|   //     deprecated string literal array-to-pointer conversion (4.2).
 | |
|   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
 | |
|       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   // FIXME: the example in the standard doesn't use a qualification
 | |
|   // conversion (!)
 | |
|   QualType T1 = SCS1.getToType(2);
 | |
|   QualType T2 = SCS2.getToType(2);
 | |
|   T1 = S.Context.getCanonicalType(T1);
 | |
|   T2 = S.Context.getCanonicalType(T2);
 | |
|   Qualifiers T1Quals, T2Quals;
 | |
|   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
 | |
|   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
 | |
| 
 | |
|   // If the types are the same, we won't learn anything by unwrapped
 | |
|   // them.
 | |
|   if (UnqualT1 == UnqualT2)
 | |
|     return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|   // If the type is an array type, promote the element qualifiers to the type
 | |
|   // for comparison.
 | |
|   if (isa<ArrayType>(T1) && T1Quals)
 | |
|     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
 | |
|   if (isa<ArrayType>(T2) && T2Quals)
 | |
|     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
 | |
| 
 | |
|   ImplicitConversionSequence::CompareKind Result
 | |
|     = ImplicitConversionSequence::Indistinguishable;
 | |
|   
 | |
|   // Objective-C++ ARC:
 | |
|   //   Prefer qualification conversions not involving a change in lifetime
 | |
|   //   to qualification conversions that do not change lifetime.
 | |
|   if (SCS1.QualificationIncludesObjCLifetime != 
 | |
|                                       SCS2.QualificationIncludesObjCLifetime) {
 | |
|     Result = SCS1.QualificationIncludesObjCLifetime
 | |
|                ? ImplicitConversionSequence::Worse
 | |
|                : ImplicitConversionSequence::Better;
 | |
|   }
 | |
|   
 | |
|   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
 | |
|     // Within each iteration of the loop, we check the qualifiers to
 | |
|     // determine if this still looks like a qualification
 | |
|     // conversion. Then, if all is well, we unwrap one more level of
 | |
|     // pointers or pointers-to-members and do it all again
 | |
|     // until there are no more pointers or pointers-to-members left
 | |
|     // to unwrap. This essentially mimics what
 | |
|     // IsQualificationConversion does, but here we're checking for a
 | |
|     // strict subset of qualifiers.
 | |
|     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
 | |
|       // The qualifiers are the same, so this doesn't tell us anything
 | |
|       // about how the sequences rank.
 | |
|       ;
 | |
|     else if (T2.isMoreQualifiedThan(T1)) {
 | |
|       // T1 has fewer qualifiers, so it could be the better sequence.
 | |
|       if (Result == ImplicitConversionSequence::Worse)
 | |
|         // Neither has qualifiers that are a subset of the other's
 | |
|         // qualifiers.
 | |
|         return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|       Result = ImplicitConversionSequence::Better;
 | |
|     } else if (T1.isMoreQualifiedThan(T2)) {
 | |
|       // T2 has fewer qualifiers, so it could be the better sequence.
 | |
|       if (Result == ImplicitConversionSequence::Better)
 | |
|         // Neither has qualifiers that are a subset of the other's
 | |
|         // qualifiers.
 | |
|         return ImplicitConversionSequence::Indistinguishable;
 | |
| 
 | |
|       Result = ImplicitConversionSequence::Worse;
 | |
|     } else {
 | |
|       // Qualifiers are disjoint.
 | |
|       return ImplicitConversionSequence::Indistinguishable;
 | |
|     }
 | |
| 
 | |
|     // If the types after this point are equivalent, we're done.
 | |
|     if (S.Context.hasSameUnqualifiedType(T1, T2))
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Check that the winning standard conversion sequence isn't using
 | |
|   // the deprecated string literal array to pointer conversion.
 | |
|   switch (Result) {
 | |
|   case ImplicitConversionSequence::Better:
 | |
|     if (SCS1.DeprecatedStringLiteralToCharPtr)
 | |
|       Result = ImplicitConversionSequence::Indistinguishable;
 | |
|     break;
 | |
| 
 | |
|   case ImplicitConversionSequence::Indistinguishable:
 | |
|     break;
 | |
| 
 | |
|   case ImplicitConversionSequence::Worse:
 | |
|     if (SCS2.DeprecatedStringLiteralToCharPtr)
 | |
|       Result = ImplicitConversionSequence::Indistinguishable;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// CompareDerivedToBaseConversions - Compares two standard conversion
 | |
| /// sequences to determine whether they can be ranked based on their
 | |
| /// various kinds of derived-to-base conversions (C++
 | |
| /// [over.ics.rank]p4b3).  As part of these checks, we also look at
 | |
| /// conversions between Objective-C interface types.
 | |
| ImplicitConversionSequence::CompareKind
 | |
| CompareDerivedToBaseConversions(Sema &S,
 | |
|                                 const StandardConversionSequence& SCS1,
 | |
|                                 const StandardConversionSequence& SCS2) {
 | |
|   QualType FromType1 = SCS1.getFromType();
 | |
|   QualType ToType1 = SCS1.getToType(1);
 | |
|   QualType FromType2 = SCS2.getFromType();
 | |
|   QualType ToType2 = SCS2.getToType(1);
 | |
| 
 | |
|   // Adjust the types we're converting from via the array-to-pointer
 | |
|   // conversion, if we need to.
 | |
|   if (SCS1.First == ICK_Array_To_Pointer)
 | |
|     FromType1 = S.Context.getArrayDecayedType(FromType1);
 | |
|   if (SCS2.First == ICK_Array_To_Pointer)
 | |
|     FromType2 = S.Context.getArrayDecayedType(FromType2);
 | |
| 
 | |
|   // Canonicalize all of the types.
 | |
|   FromType1 = S.Context.getCanonicalType(FromType1);
 | |
|   ToType1 = S.Context.getCanonicalType(ToType1);
 | |
|   FromType2 = S.Context.getCanonicalType(FromType2);
 | |
|   ToType2 = S.Context.getCanonicalType(ToType2);
 | |
| 
 | |
|   // C++ [over.ics.rank]p4b3:
 | |
|   //
 | |
|   //   If class B is derived directly or indirectly from class A and
 | |
|   //   class C is derived directly or indirectly from B,
 | |
|   //
 | |
|   // Compare based on pointer conversions.
 | |
|   if (SCS1.Second == ICK_Pointer_Conversion &&
 | |
|       SCS2.Second == ICK_Pointer_Conversion &&
 | |
|       /*FIXME: Remove if Objective-C id conversions get their own rank*/
 | |
|       FromType1->isPointerType() && FromType2->isPointerType() &&
 | |
|       ToType1->isPointerType() && ToType2->isPointerType()) {
 | |
|     QualType FromPointee1
 | |
|       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | |
|     QualType ToPointee1
 | |
|       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | |
|     QualType FromPointee2
 | |
|       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | |
|     QualType ToPointee2
 | |
|       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | |
| 
 | |
|     //   -- conversion of C* to B* is better than conversion of C* to A*,
 | |
|     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
 | |
|       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|     }
 | |
| 
 | |
|     //   -- conversion of B* to A* is better than conversion of C* to A*,
 | |
|     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
 | |
|       if (S.IsDerivedFrom(FromPointee2, FromPointee1))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|     }
 | |
|   } else if (SCS1.Second == ICK_Pointer_Conversion &&
 | |
|              SCS2.Second == ICK_Pointer_Conversion) {
 | |
|     const ObjCObjectPointerType *FromPtr1
 | |
|       = FromType1->getAs<ObjCObjectPointerType>();
 | |
|     const ObjCObjectPointerType *FromPtr2
 | |
|       = FromType2->getAs<ObjCObjectPointerType>();
 | |
|     const ObjCObjectPointerType *ToPtr1
 | |
|       = ToType1->getAs<ObjCObjectPointerType>();
 | |
|     const ObjCObjectPointerType *ToPtr2
 | |
|       = ToType2->getAs<ObjCObjectPointerType>();
 | |
|     
 | |
|     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
 | |
|       // Apply the same conversion ranking rules for Objective-C pointer types
 | |
|       // that we do for C++ pointers to class types. However, we employ the
 | |
|       // Objective-C pseudo-subtyping relationship used for assignment of
 | |
|       // Objective-C pointer types.
 | |
|       bool FromAssignLeft
 | |
|         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
 | |
|       bool FromAssignRight
 | |
|         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
 | |
|       bool ToAssignLeft
 | |
|         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
 | |
|       bool ToAssignRight
 | |
|         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
 | |
|       
 | |
|       // A conversion to an a non-id object pointer type or qualified 'id' 
 | |
|       // type is better than a conversion to 'id'.
 | |
|       if (ToPtr1->isObjCIdType() &&
 | |
|           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|       if (ToPtr2->isObjCIdType() &&
 | |
|           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       
 | |
|       // A conversion to a non-id object pointer type is better than a 
 | |
|       // conversion to a qualified 'id' type 
 | |
|       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
 | |
|         return ImplicitConversionSequence::Better;
 | |
|   
 | |
|       // A conversion to an a non-Class object pointer type or qualified 'Class' 
 | |
|       // type is better than a conversion to 'Class'.
 | |
|       if (ToPtr1->isObjCClassType() &&
 | |
|           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|       if (ToPtr2->isObjCClassType() &&
 | |
|           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       
 | |
|       // A conversion to a non-Class object pointer type is better than a 
 | |
|       // conversion to a qualified 'Class' type.
 | |
|       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
 | |
|         return ImplicitConversionSequence::Better;
 | |
| 
 | |
|       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
 | |
|       if (S.Context.hasSameType(FromType1, FromType2) && 
 | |
|           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
 | |
|           (ToAssignLeft != ToAssignRight))
 | |
|         return ToAssignLeft? ImplicitConversionSequence::Worse
 | |
|                            : ImplicitConversionSequence::Better;
 | |
| 
 | |
|       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
 | |
|       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
 | |
|           (FromAssignLeft != FromAssignRight))
 | |
|         return FromAssignLeft? ImplicitConversionSequence::Better
 | |
|         : ImplicitConversionSequence::Worse;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Ranking of member-pointer types.
 | |
|   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
 | |
|       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
 | |
|       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
 | |
|     const MemberPointerType * FromMemPointer1 =
 | |
|                                         FromType1->getAs<MemberPointerType>();
 | |
|     const MemberPointerType * ToMemPointer1 =
 | |
|                                           ToType1->getAs<MemberPointerType>();
 | |
|     const MemberPointerType * FromMemPointer2 =
 | |
|                                           FromType2->getAs<MemberPointerType>();
 | |
|     const MemberPointerType * ToMemPointer2 =
 | |
|                                           ToType2->getAs<MemberPointerType>();
 | |
|     const Type *FromPointeeType1 = FromMemPointer1->getClass();
 | |
|     const Type *ToPointeeType1 = ToMemPointer1->getClass();
 | |
|     const Type *FromPointeeType2 = FromMemPointer2->getClass();
 | |
|     const Type *ToPointeeType2 = ToMemPointer2->getClass();
 | |
|     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
 | |
|     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
 | |
|     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
 | |
|     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
 | |
|     // conversion of A::* to B::* is better than conversion of A::* to C::*,
 | |
|     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
 | |
|       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|     }
 | |
|     // conversion of B::* to C::* is better than conversion of A::* to C::*
 | |
|     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
 | |
|       if (S.IsDerivedFrom(FromPointee1, FromPointee2))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SCS1.Second == ICK_Derived_To_Base) {
 | |
|     //   -- conversion of C to B is better than conversion of C to A,
 | |
|     //   -- binding of an expression of type C to a reference of type
 | |
|     //      B& is better than binding an expression of type C to a
 | |
|     //      reference of type A&,
 | |
|     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
 | |
|         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
 | |
|       if (S.IsDerivedFrom(ToType1, ToType2))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       else if (S.IsDerivedFrom(ToType2, ToType1))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|     }
 | |
| 
 | |
|     //   -- conversion of B to A is better than conversion of C to A.
 | |
|     //   -- binding of an expression of type B to a reference of type
 | |
|     //      A& is better than binding an expression of type C to a
 | |
|     //      reference of type A&,
 | |
|     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
 | |
|         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
 | |
|       if (S.IsDerivedFrom(FromType2, FromType1))
 | |
|         return ImplicitConversionSequence::Better;
 | |
|       else if (S.IsDerivedFrom(FromType1, FromType2))
 | |
|         return ImplicitConversionSequence::Worse;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ImplicitConversionSequence::Indistinguishable;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given type is valid, e.g., it is not an invalid
 | |
| /// C++ class.
 | |
| static bool isTypeValid(QualType T) {
 | |
|   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
 | |
|     return !Record->isInvalidDecl();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CompareReferenceRelationship - Compare the two types T1 and T2 to
 | |
| /// determine whether they are reference-related,
 | |
| /// reference-compatible, reference-compatible with added
 | |
| /// qualification, or incompatible, for use in C++ initialization by
 | |
| /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
 | |
| /// type, and the first type (T1) is the pointee type of the reference
 | |
| /// type being initialized.
 | |
| Sema::ReferenceCompareResult
 | |
| Sema::CompareReferenceRelationship(SourceLocation Loc,
 | |
|                                    QualType OrigT1, QualType OrigT2,
 | |
|                                    bool &DerivedToBase,
 | |
|                                    bool &ObjCConversion,
 | |
|                                    bool &ObjCLifetimeConversion) {
 | |
|   assert(!OrigT1->isReferenceType() &&
 | |
|     "T1 must be the pointee type of the reference type");
 | |
|   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
 | |
| 
 | |
|   QualType T1 = Context.getCanonicalType(OrigT1);
 | |
|   QualType T2 = Context.getCanonicalType(OrigT2);
 | |
|   Qualifiers T1Quals, T2Quals;
 | |
|   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
 | |
|   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
 | |
| 
 | |
|   // C++ [dcl.init.ref]p4:
 | |
|   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
 | |
|   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
 | |
|   //   T1 is a base class of T2.
 | |
|   DerivedToBase = false;
 | |
|   ObjCConversion = false;
 | |
|   ObjCLifetimeConversion = false;
 | |
|   if (UnqualT1 == UnqualT2) {
 | |
|     // Nothing to do.
 | |
|   } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
 | |
|              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
 | |
|              IsDerivedFrom(UnqualT2, UnqualT1))
 | |
|     DerivedToBase = true;
 | |
|   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
 | |
|            UnqualT2->isObjCObjectOrInterfaceType() &&
 | |
|            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
 | |
|     ObjCConversion = true;
 | |
|   else
 | |
|     return Ref_Incompatible;
 | |
| 
 | |
|   // At this point, we know that T1 and T2 are reference-related (at
 | |
|   // least).
 | |
| 
 | |
|   // If the type is an array type, promote the element qualifiers to the type
 | |
|   // for comparison.
 | |
|   if (isa<ArrayType>(T1) && T1Quals)
 | |
|     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
 | |
|   if (isa<ArrayType>(T2) && T2Quals)
 | |
|     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
 | |
| 
 | |
|   // C++ [dcl.init.ref]p4:
 | |
|   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
 | |
|   //   reference-related to T2 and cv1 is the same cv-qualification
 | |
|   //   as, or greater cv-qualification than, cv2. For purposes of
 | |
|   //   overload resolution, cases for which cv1 is greater
 | |
|   //   cv-qualification than cv2 are identified as
 | |
|   //   reference-compatible with added qualification (see 13.3.3.2).
 | |
|   //
 | |
|   // Note that we also require equivalence of Objective-C GC and address-space
 | |
|   // qualifiers when performing these computations, so that e.g., an int in
 | |
|   // address space 1 is not reference-compatible with an int in address
 | |
|   // space 2.
 | |
|   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
 | |
|       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
 | |
|     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
 | |
|       ObjCLifetimeConversion = true;
 | |
| 
 | |
|     T1Quals.removeObjCLifetime();
 | |
|     T2Quals.removeObjCLifetime();    
 | |
|   }
 | |
|     
 | |
|   if (T1Quals == T2Quals)
 | |
|     return Ref_Compatible;
 | |
|   else if (T1Quals.compatiblyIncludes(T2Quals))
 | |
|     return Ref_Compatible_With_Added_Qualification;
 | |
|   else
 | |
|     return Ref_Related;
 | |
| }
 | |
| 
 | |
| /// \brief Look for a user-defined conversion to an value reference-compatible
 | |
| ///        with DeclType. Return true if something definite is found.
 | |
| static bool
 | |
| FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
 | |
|                          QualType DeclType, SourceLocation DeclLoc,
 | |
|                          Expr *Init, QualType T2, bool AllowRvalues,
 | |
|                          bool AllowExplicit) {
 | |
|   assert(T2->isRecordType() && "Can only find conversions of record types.");
 | |
|   CXXRecordDecl *T2RecordDecl
 | |
|     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
 | |
|   std::pair<CXXRecordDecl::conversion_iterator,
 | |
|             CXXRecordDecl::conversion_iterator>
 | |
|     Conversions = T2RecordDecl->getVisibleConversionFunctions();
 | |
|   for (CXXRecordDecl::conversion_iterator
 | |
|          I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
|     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|     if (isa<UsingShadowDecl>(D))
 | |
|       D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|     FunctionTemplateDecl *ConvTemplate
 | |
|       = dyn_cast<FunctionTemplateDecl>(D);
 | |
|     CXXConversionDecl *Conv;
 | |
|     if (ConvTemplate)
 | |
|       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | |
|     else
 | |
|       Conv = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|     // If this is an explicit conversion, and we're not allowed to consider
 | |
|     // explicit conversions, skip it.
 | |
|     if (!AllowExplicit && Conv->isExplicit())
 | |
|       continue;
 | |
| 
 | |
|     if (AllowRvalues) {
 | |
|       bool DerivedToBase = false;
 | |
|       bool ObjCConversion = false;
 | |
|       bool ObjCLifetimeConversion = false;
 | |
|       
 | |
|       // If we are initializing an rvalue reference, don't permit conversion
 | |
|       // functions that return lvalues.
 | |
|       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
 | |
|         const ReferenceType *RefType
 | |
|           = Conv->getConversionType()->getAs<LValueReferenceType>();
 | |
|         if (RefType && !RefType->getPointeeType()->isFunctionType())
 | |
|           continue;
 | |
|       }
 | |
|       
 | |
|       if (!ConvTemplate &&
 | |
|           S.CompareReferenceRelationship(
 | |
|             DeclLoc,
 | |
|             Conv->getConversionType().getNonReferenceType()
 | |
|               .getUnqualifiedType(),
 | |
|             DeclType.getNonReferenceType().getUnqualifiedType(),
 | |
|             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
 | |
|           Sema::Ref_Incompatible)
 | |
|         continue;
 | |
|     } else {
 | |
|       // If the conversion function doesn't return a reference type,
 | |
|       // it can't be considered for this conversion. An rvalue reference
 | |
|       // is only acceptable if its referencee is a function type.
 | |
| 
 | |
|       const ReferenceType *RefType =
 | |
|         Conv->getConversionType()->getAs<ReferenceType>();
 | |
|       if (!RefType ||
 | |
|           (!RefType->isLValueReferenceType() &&
 | |
|            !RefType->getPointeeType()->isFunctionType()))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     if (ConvTemplate)
 | |
|       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
 | |
|                                        Init, DeclType, CandidateSet,
 | |
|                                        /*AllowObjCConversionOnExplicit=*/false);
 | |
|     else
 | |
|       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
 | |
|                                DeclType, CandidateSet,
 | |
|                                /*AllowObjCConversionOnExplicit=*/false);
 | |
|   }
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
 | |
|   case OR_Success:
 | |
|     // C++ [over.ics.ref]p1:
 | |
|     //
 | |
|     //   [...] If the parameter binds directly to the result of
 | |
|     //   applying a conversion function to the argument
 | |
|     //   expression, the implicit conversion sequence is a
 | |
|     //   user-defined conversion sequence (13.3.3.1.2), with the
 | |
|     //   second standard conversion sequence either an identity
 | |
|     //   conversion or, if the conversion function returns an
 | |
|     //   entity of a type that is a derived class of the parameter
 | |
|     //   type, a derived-to-base Conversion.
 | |
|     if (!Best->FinalConversion.DirectBinding)
 | |
|       return false;
 | |
| 
 | |
|     ICS.setUserDefined();
 | |
|     ICS.UserDefined.Before = Best->Conversions[0].Standard;
 | |
|     ICS.UserDefined.After = Best->FinalConversion;
 | |
|     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
 | |
|     ICS.UserDefined.ConversionFunction = Best->Function;
 | |
|     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
 | |
|     ICS.UserDefined.EllipsisConversion = false;
 | |
|     assert(ICS.UserDefined.After.ReferenceBinding &&
 | |
|            ICS.UserDefined.After.DirectBinding &&
 | |
|            "Expected a direct reference binding!");
 | |
|     return true;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     ICS.setAmbiguous();
 | |
|     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
 | |
|          Cand != CandidateSet.end(); ++Cand)
 | |
|       if (Cand->Viable)
 | |
|         ICS.Ambiguous.addConversion(Cand->Function);
 | |
|     return true;
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|   case OR_Deleted:
 | |
|     // There was no suitable conversion, or we found a deleted
 | |
|     // conversion; continue with other checks.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid OverloadResult!");
 | |
| }
 | |
| 
 | |
| /// \brief Compute an implicit conversion sequence for reference
 | |
| /// initialization.
 | |
| static ImplicitConversionSequence
 | |
| TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
 | |
|                  SourceLocation DeclLoc,
 | |
|                  bool SuppressUserConversions,
 | |
|                  bool AllowExplicit) {
 | |
|   assert(DeclType->isReferenceType() && "Reference init needs a reference");
 | |
| 
 | |
|   // Most paths end in a failed conversion.
 | |
|   ImplicitConversionSequence ICS;
 | |
|   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
 | |
| 
 | |
|   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
 | |
|   QualType T2 = Init->getType();
 | |
| 
 | |
|   // If the initializer is the address of an overloaded function, try
 | |
|   // to resolve the overloaded function. If all goes well, T2 is the
 | |
|   // type of the resulting function.
 | |
|   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
 | |
|     DeclAccessPair Found;
 | |
|     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
 | |
|                                                                 false, Found))
 | |
|       T2 = Fn->getType();
 | |
|   }
 | |
| 
 | |
|   // Compute some basic properties of the types and the initializer.
 | |
|   bool isRValRef = DeclType->isRValueReferenceType();
 | |
|   bool DerivedToBase = false;
 | |
|   bool ObjCConversion = false;
 | |
|   bool ObjCLifetimeConversion = false;
 | |
|   Expr::Classification InitCategory = Init->Classify(S.Context);
 | |
|   Sema::ReferenceCompareResult RefRelationship
 | |
|     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
 | |
|                                      ObjCConversion, ObjCLifetimeConversion);
 | |
| 
 | |
| 
 | |
|   // C++0x [dcl.init.ref]p5:
 | |
|   //   A reference to type "cv1 T1" is initialized by an expression
 | |
|   //   of type "cv2 T2" as follows:
 | |
| 
 | |
|   //     -- If reference is an lvalue reference and the initializer expression
 | |
|   if (!isRValRef) {
 | |
|     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
 | |
|     //        reference-compatible with "cv2 T2," or
 | |
|     //
 | |
|     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
 | |
|     if (InitCategory.isLValue() &&
 | |
|         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
 | |
|       // C++ [over.ics.ref]p1:
 | |
|       //   When a parameter of reference type binds directly (8.5.3)
 | |
|       //   to an argument expression, the implicit conversion sequence
 | |
|       //   is the identity conversion, unless the argument expression
 | |
|       //   has a type that is a derived class of the parameter type,
 | |
|       //   in which case the implicit conversion sequence is a
 | |
|       //   derived-to-base Conversion (13.3.3.1).
 | |
|       ICS.setStandard();
 | |
|       ICS.Standard.First = ICK_Identity;
 | |
|       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
 | |
|                          : ObjCConversion? ICK_Compatible_Conversion
 | |
|                          : ICK_Identity;
 | |
|       ICS.Standard.Third = ICK_Identity;
 | |
|       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
 | |
|       ICS.Standard.setToType(0, T2);
 | |
|       ICS.Standard.setToType(1, T1);
 | |
|       ICS.Standard.setToType(2, T1);
 | |
|       ICS.Standard.ReferenceBinding = true;
 | |
|       ICS.Standard.DirectBinding = true;
 | |
|       ICS.Standard.IsLvalueReference = !isRValRef;
 | |
|       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
 | |
|       ICS.Standard.BindsToRvalue = false;
 | |
|       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | |
|       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
 | |
|       ICS.Standard.CopyConstructor = nullptr;
 | |
|       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
 | |
| 
 | |
|       // Nothing more to do: the inaccessibility/ambiguity check for
 | |
|       // derived-to-base conversions is suppressed when we're
 | |
|       // computing the implicit conversion sequence (C++
 | |
|       // [over.best.ics]p2).
 | |
|       return ICS;
 | |
|     }
 | |
| 
 | |
|     //       -- has a class type (i.e., T2 is a class type), where T1 is
 | |
|     //          not reference-related to T2, and can be implicitly
 | |
|     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
 | |
|     //          is reference-compatible with "cv3 T3" 92) (this
 | |
|     //          conversion is selected by enumerating the applicable
 | |
|     //          conversion functions (13.3.1.6) and choosing the best
 | |
|     //          one through overload resolution (13.3)),
 | |
|     if (!SuppressUserConversions && T2->isRecordType() &&
 | |
|         !S.RequireCompleteType(DeclLoc, T2, 0) &&
 | |
|         RefRelationship == Sema::Ref_Incompatible) {
 | |
|       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
 | |
|                                    Init, T2, /*AllowRvalues=*/false,
 | |
|                                    AllowExplicit))
 | |
|         return ICS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //     -- Otherwise, the reference shall be an lvalue reference to a
 | |
|   //        non-volatile const type (i.e., cv1 shall be const), or the reference
 | |
|   //        shall be an rvalue reference.
 | |
|   //
 | |
|   // We actually handle one oddity of C++ [over.ics.ref] at this
 | |
|   // point, which is that, due to p2 (which short-circuits reference
 | |
|   // binding by only attempting a simple conversion for non-direct
 | |
|   // bindings) and p3's strange wording, we allow a const volatile
 | |
|   // reference to bind to an rvalue. Hence the check for the presence
 | |
|   // of "const" rather than checking for "const" being the only
 | |
|   // qualifier.
 | |
|   // This is also the point where rvalue references and lvalue inits no longer
 | |
|   // go together.
 | |
|   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
 | |
|     return ICS;
 | |
| 
 | |
|   //       -- If the initializer expression
 | |
|   //
 | |
|   //            -- is an xvalue, class prvalue, array prvalue or function
 | |
|   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
 | |
|   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
 | |
|       (InitCategory.isXValue() ||
 | |
|       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
 | |
|       (InitCategory.isLValue() && T2->isFunctionType()))) {
 | |
|     ICS.setStandard();
 | |
|     ICS.Standard.First = ICK_Identity;
 | |
|     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
 | |
|                       : ObjCConversion? ICK_Compatible_Conversion
 | |
|                       : ICK_Identity;
 | |
|     ICS.Standard.Third = ICK_Identity;
 | |
|     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
 | |
|     ICS.Standard.setToType(0, T2);
 | |
|     ICS.Standard.setToType(1, T1);
 | |
|     ICS.Standard.setToType(2, T1);
 | |
|     ICS.Standard.ReferenceBinding = true;
 | |
|     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
 | |
|     // binding unless we're binding to a class prvalue.
 | |
|     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
 | |
|     // allow the use of rvalue references in C++98/03 for the benefit of
 | |
|     // standard library implementors; therefore, we need the xvalue check here.
 | |
|     ICS.Standard.DirectBinding =
 | |
|       S.getLangOpts().CPlusPlus11 ||
 | |
|       (InitCategory.isPRValue() && !T2->isRecordType());
 | |
|     ICS.Standard.IsLvalueReference = !isRValRef;
 | |
|     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
 | |
|     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
 | |
|     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | |
|     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
 | |
|     ICS.Standard.CopyConstructor = nullptr;
 | |
|     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   //            -- has a class type (i.e., T2 is a class type), where T1 is not
 | |
|   //               reference-related to T2, and can be implicitly converted to
 | |
|   //               an xvalue, class prvalue, or function lvalue of type
 | |
|   //               "cv3 T3", where "cv1 T1" is reference-compatible with
 | |
|   //               "cv3 T3",
 | |
|   //
 | |
|   //          then the reference is bound to the value of the initializer
 | |
|   //          expression in the first case and to the result of the conversion
 | |
|   //          in the second case (or, in either case, to an appropriate base
 | |
|   //          class subobject).
 | |
|   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
 | |
|       T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
 | |
|       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
 | |
|                                Init, T2, /*AllowRvalues=*/true,
 | |
|                                AllowExplicit)) {
 | |
|     // In the second case, if the reference is an rvalue reference
 | |
|     // and the second standard conversion sequence of the
 | |
|     // user-defined conversion sequence includes an lvalue-to-rvalue
 | |
|     // conversion, the program is ill-formed.
 | |
|     if (ICS.isUserDefined() && isRValRef &&
 | |
|         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
 | |
|       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
 | |
| 
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   //       -- Otherwise, a temporary of type "cv1 T1" is created and
 | |
|   //          initialized from the initializer expression using the
 | |
|   //          rules for a non-reference copy initialization (8.5). The
 | |
|   //          reference is then bound to the temporary. If T1 is
 | |
|   //          reference-related to T2, cv1 must be the same
 | |
|   //          cv-qualification as, or greater cv-qualification than,
 | |
|   //          cv2; otherwise, the program is ill-formed.
 | |
|   if (RefRelationship == Sema::Ref_Related) {
 | |
|     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
 | |
|     // we would be reference-compatible or reference-compatible with
 | |
|     // added qualification. But that wasn't the case, so the reference
 | |
|     // initialization fails.
 | |
|     //
 | |
|     // Note that we only want to check address spaces and cvr-qualifiers here.
 | |
|     // ObjC GC and lifetime qualifiers aren't important.
 | |
|     Qualifiers T1Quals = T1.getQualifiers();
 | |
|     Qualifiers T2Quals = T2.getQualifiers();
 | |
|     T1Quals.removeObjCGCAttr();
 | |
|     T1Quals.removeObjCLifetime();
 | |
|     T2Quals.removeObjCGCAttr();
 | |
|     T2Quals.removeObjCLifetime();
 | |
|     if (!T1Quals.compatiblyIncludes(T2Quals))
 | |
|       return ICS;
 | |
|   }
 | |
| 
 | |
|   // If at least one of the types is a class type, the types are not
 | |
|   // related, and we aren't allowed any user conversions, the
 | |
|   // reference binding fails. This case is important for breaking
 | |
|   // recursion, since TryImplicitConversion below will attempt to
 | |
|   // create a temporary through the use of a copy constructor.
 | |
|   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
 | |
|       (T1->isRecordType() || T2->isRecordType()))
 | |
|     return ICS;
 | |
| 
 | |
|   // If T1 is reference-related to T2 and the reference is an rvalue
 | |
|   // reference, the initializer expression shall not be an lvalue.
 | |
|   if (RefRelationship >= Sema::Ref_Related &&
 | |
|       isRValRef && Init->Classify(S.Context).isLValue())
 | |
|     return ICS;
 | |
| 
 | |
|   // C++ [over.ics.ref]p2:
 | |
|   //   When a parameter of reference type is not bound directly to
 | |
|   //   an argument expression, the conversion sequence is the one
 | |
|   //   required to convert the argument expression to the
 | |
|   //   underlying type of the reference according to
 | |
|   //   13.3.3.1. Conceptually, this conversion sequence corresponds
 | |
|   //   to copy-initializing a temporary of the underlying type with
 | |
|   //   the argument expression. Any difference in top-level
 | |
|   //   cv-qualification is subsumed by the initialization itself
 | |
|   //   and does not constitute a conversion.
 | |
|   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
 | |
|                               /*AllowExplicit=*/false,
 | |
|                               /*InOverloadResolution=*/false,
 | |
|                               /*CStyle=*/false,
 | |
|                               /*AllowObjCWritebackConversion=*/false,
 | |
|                               /*AllowObjCConversionOnExplicit=*/false);
 | |
| 
 | |
|   // Of course, that's still a reference binding.
 | |
|   if (ICS.isStandard()) {
 | |
|     ICS.Standard.ReferenceBinding = true;
 | |
|     ICS.Standard.IsLvalueReference = !isRValRef;
 | |
|     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
 | |
|     ICS.Standard.BindsToRvalue = true;
 | |
|     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | |
|     ICS.Standard.ObjCLifetimeConversionBinding = false;
 | |
|   } else if (ICS.isUserDefined()) {
 | |
|     // Don't allow rvalue references to bind to lvalues.
 | |
|     if (DeclType->isRValueReferenceType()) {
 | |
|       if (const ReferenceType *RefType =
 | |
|               ICS.UserDefined.ConversionFunction->getReturnType()
 | |
|                   ->getAs<LValueReferenceType>()) {
 | |
|         if (!RefType->getPointeeType()->isFunctionType()) {
 | |
|           ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, 
 | |
|                      DeclType);
 | |
|           return ICS;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     ICS.UserDefined.Before.setAsIdentityConversion();
 | |
|     ICS.UserDefined.After.ReferenceBinding = true;
 | |
|     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
 | |
|     ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
 | |
|     ICS.UserDefined.After.BindsToRvalue = true;
 | |
|     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | |
|     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
 | |
|   }
 | |
| 
 | |
|   return ICS;
 | |
| }
 | |
| 
 | |
| static ImplicitConversionSequence
 | |
| TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
 | |
|                       bool SuppressUserConversions,
 | |
|                       bool InOverloadResolution,
 | |
|                       bool AllowObjCWritebackConversion,
 | |
|                       bool AllowExplicit = false);
 | |
| 
 | |
| /// TryListConversion - Try to copy-initialize a value of type ToType from the
 | |
| /// initializer list From.
 | |
| static ImplicitConversionSequence
 | |
| TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
 | |
|                   bool SuppressUserConversions,
 | |
|                   bool InOverloadResolution,
 | |
|                   bool AllowObjCWritebackConversion) {
 | |
|   // C++11 [over.ics.list]p1:
 | |
|   //   When an argument is an initializer list, it is not an expression and
 | |
|   //   special rules apply for converting it to a parameter type.
 | |
| 
 | |
|   ImplicitConversionSequence Result;
 | |
|   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
 | |
| 
 | |
|   // We need a complete type for what follows. Incomplete types can never be
 | |
|   // initialized from init lists.
 | |
|   if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
 | |
|     return Result;
 | |
| 
 | |
|   // C++11 [over.ics.list]p2:
 | |
|   //   If the parameter type is std::initializer_list<X> or "array of X" and
 | |
|   //   all the elements can be implicitly converted to X, the implicit
 | |
|   //   conversion sequence is the worst conversion necessary to convert an
 | |
|   //   element of the list to X.
 | |
|   bool toStdInitializerList = false;
 | |
|   QualType X;
 | |
|   if (ToType->isArrayType())
 | |
|     X = S.Context.getAsArrayType(ToType)->getElementType();
 | |
|   else
 | |
|     toStdInitializerList = S.isStdInitializerList(ToType, &X);
 | |
|   if (!X.isNull()) {
 | |
|     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
 | |
|       Expr *Init = From->getInit(i);
 | |
|       ImplicitConversionSequence ICS =
 | |
|           TryCopyInitialization(S, Init, X, SuppressUserConversions,
 | |
|                                 InOverloadResolution,
 | |
|                                 AllowObjCWritebackConversion);
 | |
|       // If a single element isn't convertible, fail.
 | |
|       if (ICS.isBad()) {
 | |
|         Result = ICS;
 | |
|         break;
 | |
|       }
 | |
|       // Otherwise, look for the worst conversion.
 | |
|       if (Result.isBad() ||
 | |
|           CompareImplicitConversionSequences(S, ICS, Result) ==
 | |
|               ImplicitConversionSequence::Worse)
 | |
|         Result = ICS;
 | |
|     }
 | |
| 
 | |
|     // For an empty list, we won't have computed any conversion sequence.
 | |
|     // Introduce the identity conversion sequence.
 | |
|     if (From->getNumInits() == 0) {
 | |
|       Result.setStandard();
 | |
|       Result.Standard.setAsIdentityConversion();
 | |
|       Result.Standard.setFromType(ToType);
 | |
|       Result.Standard.setAllToTypes(ToType);
 | |
|     }
 | |
| 
 | |
|     Result.setStdInitializerListElement(toStdInitializerList);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.ics.list]p3:
 | |
|   //   Otherwise, if the parameter is a non-aggregate class X and overload
 | |
|   //   resolution chooses a single best constructor [...] the implicit
 | |
|   //   conversion sequence is a user-defined conversion sequence. If multiple
 | |
|   //   constructors are viable but none is better than the others, the
 | |
|   //   implicit conversion sequence is a user-defined conversion sequence.
 | |
|   if (ToType->isRecordType() && !ToType->isAggregateType()) {
 | |
|     // This function can deal with initializer lists.
 | |
|     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
 | |
|                                     /*AllowExplicit=*/false,
 | |
|                                     InOverloadResolution, /*CStyle=*/false,
 | |
|                                     AllowObjCWritebackConversion,
 | |
|                                     /*AllowObjCConversionOnExplicit=*/false);
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.ics.list]p4:
 | |
|   //   Otherwise, if the parameter has an aggregate type which can be
 | |
|   //   initialized from the initializer list [...] the implicit conversion
 | |
|   //   sequence is a user-defined conversion sequence.
 | |
|   if (ToType->isAggregateType()) {
 | |
|     // Type is an aggregate, argument is an init list. At this point it comes
 | |
|     // down to checking whether the initialization works.
 | |
|     // FIXME: Find out whether this parameter is consumed or not.
 | |
|     InitializedEntity Entity =
 | |
|         InitializedEntity::InitializeParameter(S.Context, ToType,
 | |
|                                                /*Consumed=*/false);
 | |
|     if (S.CanPerformCopyInitialization(Entity, From)) {
 | |
|       Result.setUserDefined();
 | |
|       Result.UserDefined.Before.setAsIdentityConversion();
 | |
|       // Initializer lists don't have a type.
 | |
|       Result.UserDefined.Before.setFromType(QualType());
 | |
|       Result.UserDefined.Before.setAllToTypes(QualType());
 | |
| 
 | |
|       Result.UserDefined.After.setAsIdentityConversion();
 | |
|       Result.UserDefined.After.setFromType(ToType);
 | |
|       Result.UserDefined.After.setAllToTypes(ToType);
 | |
|       Result.UserDefined.ConversionFunction = nullptr;
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.ics.list]p5:
 | |
|   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
 | |
|   if (ToType->isReferenceType()) {
 | |
|     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
 | |
|     // mention initializer lists in any way. So we go by what list-
 | |
|     // initialization would do and try to extrapolate from that.
 | |
| 
 | |
|     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
 | |
| 
 | |
|     // If the initializer list has a single element that is reference-related
 | |
|     // to the parameter type, we initialize the reference from that.
 | |
|     if (From->getNumInits() == 1) {
 | |
|       Expr *Init = From->getInit(0);
 | |
| 
 | |
|       QualType T2 = Init->getType();
 | |
| 
 | |
|       // If the initializer is the address of an overloaded function, try
 | |
|       // to resolve the overloaded function. If all goes well, T2 is the
 | |
|       // type of the resulting function.
 | |
|       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
 | |
|         DeclAccessPair Found;
 | |
|         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
 | |
|                                    Init, ToType, false, Found))
 | |
|           T2 = Fn->getType();
 | |
|       }
 | |
| 
 | |
|       // Compute some basic properties of the types and the initializer.
 | |
|       bool dummy1 = false;
 | |
|       bool dummy2 = false;
 | |
|       bool dummy3 = false;
 | |
|       Sema::ReferenceCompareResult RefRelationship
 | |
|         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
 | |
|                                          dummy2, dummy3);
 | |
| 
 | |
|       if (RefRelationship >= Sema::Ref_Related) {
 | |
|         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
 | |
|                                 SuppressUserConversions,
 | |
|                                 /*AllowExplicit=*/false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we bind the reference to a temporary created from the
 | |
|     // initializer list.
 | |
|     Result = TryListConversion(S, From, T1, SuppressUserConversions,
 | |
|                                InOverloadResolution,
 | |
|                                AllowObjCWritebackConversion);
 | |
|     if (Result.isFailure())
 | |
|       return Result;
 | |
|     assert(!Result.isEllipsis() &&
 | |
|            "Sub-initialization cannot result in ellipsis conversion.");
 | |
| 
 | |
|     // Can we even bind to a temporary?
 | |
|     if (ToType->isRValueReferenceType() ||
 | |
|         (T1.isConstQualified() && !T1.isVolatileQualified())) {
 | |
|       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
 | |
|                                             Result.UserDefined.After;
 | |
|       SCS.ReferenceBinding = true;
 | |
|       SCS.IsLvalueReference = ToType->isLValueReferenceType();
 | |
|       SCS.BindsToRvalue = true;
 | |
|       SCS.BindsToFunctionLvalue = false;
 | |
|       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | |
|       SCS.ObjCLifetimeConversionBinding = false;
 | |
|     } else
 | |
|       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
 | |
|                     From, ToType);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.ics.list]p6:
 | |
|   //   Otherwise, if the parameter type is not a class:
 | |
|   if (!ToType->isRecordType()) {
 | |
|     //    - if the initializer list has one element, the implicit conversion
 | |
|     //      sequence is the one required to convert the element to the
 | |
|     //      parameter type.
 | |
|     unsigned NumInits = From->getNumInits();
 | |
|     if (NumInits == 1)
 | |
|       Result = TryCopyInitialization(S, From->getInit(0), ToType,
 | |
|                                      SuppressUserConversions,
 | |
|                                      InOverloadResolution,
 | |
|                                      AllowObjCWritebackConversion);
 | |
|     //    - if the initializer list has no elements, the implicit conversion
 | |
|     //      sequence is the identity conversion.
 | |
|     else if (NumInits == 0) {
 | |
|       Result.setStandard();
 | |
|       Result.Standard.setAsIdentityConversion();
 | |
|       Result.Standard.setFromType(ToType);
 | |
|       Result.Standard.setAllToTypes(ToType);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.ics.list]p7:
 | |
|   //   In all cases other than those enumerated above, no conversion is possible
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// TryCopyInitialization - Try to copy-initialize a value of type
 | |
| /// ToType from the expression From. Return the implicit conversion
 | |
| /// sequence required to pass this argument, which may be a bad
 | |
| /// conversion sequence (meaning that the argument cannot be passed to
 | |
| /// a parameter of this type). If @p SuppressUserConversions, then we
 | |
| /// do not permit any user-defined conversion sequences.
 | |
| static ImplicitConversionSequence
 | |
| TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
 | |
|                       bool SuppressUserConversions,
 | |
|                       bool InOverloadResolution,
 | |
|                       bool AllowObjCWritebackConversion,
 | |
|                       bool AllowExplicit) {
 | |
|   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
 | |
|     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
 | |
|                              InOverloadResolution,AllowObjCWritebackConversion);
 | |
| 
 | |
|   if (ToType->isReferenceType())
 | |
|     return TryReferenceInit(S, From, ToType,
 | |
|                             /*FIXME:*/From->getLocStart(),
 | |
|                             SuppressUserConversions,
 | |
|                             AllowExplicit);
 | |
| 
 | |
|   return TryImplicitConversion(S, From, ToType,
 | |
|                                SuppressUserConversions,
 | |
|                                /*AllowExplicit=*/false,
 | |
|                                InOverloadResolution,
 | |
|                                /*CStyle=*/false,
 | |
|                                AllowObjCWritebackConversion,
 | |
|                                /*AllowObjCConversionOnExplicit=*/false);
 | |
| }
 | |
| 
 | |
| static bool TryCopyInitialization(const CanQualType FromQTy,
 | |
|                                   const CanQualType ToQTy,
 | |
|                                   Sema &S,
 | |
|                                   SourceLocation Loc,
 | |
|                                   ExprValueKind FromVK) {
 | |
|   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
 | |
|   ImplicitConversionSequence ICS =
 | |
|     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
 | |
| 
 | |
|   return !ICS.isBad();
 | |
| }
 | |
| 
 | |
| /// TryObjectArgumentInitialization - Try to initialize the object
 | |
| /// parameter of the given member function (@c Method) from the
 | |
| /// expression @p From.
 | |
| static ImplicitConversionSequence
 | |
| TryObjectArgumentInitialization(Sema &S, QualType FromType,
 | |
|                                 Expr::Classification FromClassification,
 | |
|                                 CXXMethodDecl *Method,
 | |
|                                 CXXRecordDecl *ActingContext) {
 | |
|   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
 | |
|   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
 | |
|   //                 const volatile object.
 | |
|   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
 | |
|     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
 | |
|   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
 | |
| 
 | |
|   // Set up the conversion sequence as a "bad" conversion, to allow us
 | |
|   // to exit early.
 | |
|   ImplicitConversionSequence ICS;
 | |
| 
 | |
|   // We need to have an object of class type.
 | |
|   if (const PointerType *PT = FromType->getAs<PointerType>()) {
 | |
|     FromType = PT->getPointeeType();
 | |
| 
 | |
|     // When we had a pointer, it's implicitly dereferenced, so we
 | |
|     // better have an lvalue.
 | |
|     assert(FromClassification.isLValue());
 | |
|   }
 | |
| 
 | |
|   assert(FromType->isRecordType());
 | |
| 
 | |
|   // C++0x [over.match.funcs]p4:
 | |
|   //   For non-static member functions, the type of the implicit object
 | |
|   //   parameter is
 | |
|   //
 | |
|   //     - "lvalue reference to cv X" for functions declared without a
 | |
|   //        ref-qualifier or with the & ref-qualifier
 | |
|   //     - "rvalue reference to cv X" for functions declared with the &&
 | |
|   //        ref-qualifier
 | |
|   //
 | |
|   // where X is the class of which the function is a member and cv is the
 | |
|   // cv-qualification on the member function declaration.
 | |
|   //
 | |
|   // However, when finding an implicit conversion sequence for the argument, we
 | |
|   // are not allowed to create temporaries or perform user-defined conversions
 | |
|   // (C++ [over.match.funcs]p5). We perform a simplified version of
 | |
|   // reference binding here, that allows class rvalues to bind to
 | |
|   // non-constant references.
 | |
| 
 | |
|   // First check the qualifiers.
 | |
|   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
 | |
|   if (ImplicitParamType.getCVRQualifiers()
 | |
|                                     != FromTypeCanon.getLocalCVRQualifiers() &&
 | |
|       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
 | |
|     ICS.setBad(BadConversionSequence::bad_qualifiers,
 | |
|                FromType, ImplicitParamType);
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   // Check that we have either the same type or a derived type. It
 | |
|   // affects the conversion rank.
 | |
|   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
 | |
|   ImplicitConversionKind SecondKind;
 | |
|   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
 | |
|     SecondKind = ICK_Identity;
 | |
|   } else if (S.IsDerivedFrom(FromType, ClassType))
 | |
|     SecondKind = ICK_Derived_To_Base;
 | |
|   else {
 | |
|     ICS.setBad(BadConversionSequence::unrelated_class,
 | |
|                FromType, ImplicitParamType);
 | |
|     return ICS;
 | |
|   }
 | |
| 
 | |
|   // Check the ref-qualifier.
 | |
|   switch (Method->getRefQualifier()) {
 | |
|   case RQ_None:
 | |
|     // Do nothing; we don't care about lvalueness or rvalueness.
 | |
|     break;
 | |
| 
 | |
|   case RQ_LValue:
 | |
|     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
 | |
|       // non-const lvalue reference cannot bind to an rvalue
 | |
|       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
 | |
|                  ImplicitParamType);
 | |
|       return ICS;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case RQ_RValue:
 | |
|     if (!FromClassification.isRValue()) {
 | |
|       // rvalue reference cannot bind to an lvalue
 | |
|       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
 | |
|                  ImplicitParamType);
 | |
|       return ICS;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Success. Mark this as a reference binding.
 | |
|   ICS.setStandard();
 | |
|   ICS.Standard.setAsIdentityConversion();
 | |
|   ICS.Standard.Second = SecondKind;
 | |
|   ICS.Standard.setFromType(FromType);
 | |
|   ICS.Standard.setAllToTypes(ImplicitParamType);
 | |
|   ICS.Standard.ReferenceBinding = true;
 | |
|   ICS.Standard.DirectBinding = true;
 | |
|   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
 | |
|   ICS.Standard.BindsToFunctionLvalue = false;
 | |
|   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
 | |
|   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
 | |
|     = (Method->getRefQualifier() == RQ_None);
 | |
|   return ICS;
 | |
| }
 | |
| 
 | |
| /// PerformObjectArgumentInitialization - Perform initialization of
 | |
| /// the implicit object parameter for the given Method with the given
 | |
| /// expression.
 | |
| ExprResult
 | |
| Sema::PerformObjectArgumentInitialization(Expr *From,
 | |
|                                           NestedNameSpecifier *Qualifier,
 | |
|                                           NamedDecl *FoundDecl,
 | |
|                                           CXXMethodDecl *Method) {
 | |
|   QualType FromRecordType, DestType;
 | |
|   QualType ImplicitParamRecordType  =
 | |
|     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|   Expr::Classification FromClassification;
 | |
|   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
 | |
|     FromRecordType = PT->getPointeeType();
 | |
|     DestType = Method->getThisType(Context);
 | |
|     FromClassification = Expr::Classification::makeSimpleLValue();
 | |
|   } else {
 | |
|     FromRecordType = From->getType();
 | |
|     DestType = ImplicitParamRecordType;
 | |
|     FromClassification = From->Classify(Context);
 | |
|   }
 | |
| 
 | |
|   // Note that we always use the true parent context when performing
 | |
|   // the actual argument initialization.
 | |
|   ImplicitConversionSequence ICS
 | |
|     = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
 | |
|                                       Method, Method->getParent());
 | |
|   if (ICS.isBad()) {
 | |
|     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
 | |
|       Qualifiers FromQs = FromRecordType.getQualifiers();
 | |
|       Qualifiers ToQs = DestType.getQualifiers();
 | |
|       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
 | |
|       if (CVR) {
 | |
|         Diag(From->getLocStart(),
 | |
|              diag::err_member_function_call_bad_cvr)
 | |
|           << Method->getDeclName() << FromRecordType << (CVR - 1)
 | |
|           << From->getSourceRange();
 | |
|         Diag(Method->getLocation(), diag::note_previous_decl)
 | |
|           << Method->getDeclName();
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Diag(From->getLocStart(),
 | |
|                 diag::err_implicit_object_parameter_init)
 | |
|        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (ICS.Standard.Second == ICK_Derived_To_Base) {
 | |
|     ExprResult FromRes =
 | |
|       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
 | |
|     if (FromRes.isInvalid())
 | |
|       return ExprError();
 | |
|     From = FromRes.get();
 | |
|   }
 | |
| 
 | |
|   if (!Context.hasSameType(From->getType(), DestType))
 | |
|     From = ImpCastExprToType(From, DestType, CK_NoOp,
 | |
|                              From->getValueKind()).get();
 | |
|   return From;
 | |
| }
 | |
| 
 | |
| /// TryContextuallyConvertToBool - Attempt to contextually convert the
 | |
| /// expression From to bool (C++0x [conv]p3).
 | |
| static ImplicitConversionSequence
 | |
| TryContextuallyConvertToBool(Sema &S, Expr *From) {
 | |
|   return TryImplicitConversion(S, From, S.Context.BoolTy,
 | |
|                                /*SuppressUserConversions=*/false,
 | |
|                                /*AllowExplicit=*/true,
 | |
|                                /*InOverloadResolution=*/false,
 | |
|                                /*CStyle=*/false,
 | |
|                                /*AllowObjCWritebackConversion=*/false,
 | |
|                                /*AllowObjCConversionOnExplicit=*/false);
 | |
| }
 | |
| 
 | |
| /// PerformContextuallyConvertToBool - Perform a contextual conversion
 | |
| /// of the expression From to bool (C++0x [conv]p3).
 | |
| ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
 | |
|   if (checkPlaceholderForOverload(*this, From))
 | |
|     return ExprError();
 | |
| 
 | |
|   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
 | |
|   if (!ICS.isBad())
 | |
|     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
 | |
| 
 | |
|   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
 | |
|     return Diag(From->getLocStart(),
 | |
|                 diag::err_typecheck_bool_condition)
 | |
|                   << From->getType() << From->getSourceRange();
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// Check that the specified conversion is permitted in a converted constant
 | |
| /// expression, according to C++11 [expr.const]p3. Return true if the conversion
 | |
| /// is acceptable.
 | |
| static bool CheckConvertedConstantConversions(Sema &S,
 | |
|                                               StandardConversionSequence &SCS) {
 | |
|   // Since we know that the target type is an integral or unscoped enumeration
 | |
|   // type, most conversion kinds are impossible. All possible First and Third
 | |
|   // conversions are fine.
 | |
|   switch (SCS.Second) {
 | |
|   case ICK_Identity:
 | |
|   case ICK_Integral_Promotion:
 | |
|   case ICK_Integral_Conversion:
 | |
|   case ICK_Zero_Event_Conversion:
 | |
|     return true;
 | |
| 
 | |
|   case ICK_Boolean_Conversion:
 | |
|     // Conversion from an integral or unscoped enumeration type to bool is
 | |
|     // classified as ICK_Boolean_Conversion, but it's also an integral
 | |
|     // conversion, so it's permitted in a converted constant expression.
 | |
|     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
 | |
|            SCS.getToType(2)->isBooleanType();
 | |
| 
 | |
|   case ICK_Floating_Integral:
 | |
|   case ICK_Complex_Real:
 | |
|     return false;
 | |
| 
 | |
|   case ICK_Lvalue_To_Rvalue:
 | |
|   case ICK_Array_To_Pointer:
 | |
|   case ICK_Function_To_Pointer:
 | |
|   case ICK_NoReturn_Adjustment:
 | |
|   case ICK_Qualification:
 | |
|   case ICK_Compatible_Conversion:
 | |
|   case ICK_Vector_Conversion:
 | |
|   case ICK_Vector_Splat:
 | |
|   case ICK_Derived_To_Base:
 | |
|   case ICK_Pointer_Conversion:
 | |
|   case ICK_Pointer_Member:
 | |
|   case ICK_Block_Pointer_Conversion:
 | |
|   case ICK_Writeback_Conversion:
 | |
|   case ICK_Floating_Promotion:
 | |
|   case ICK_Complex_Promotion:
 | |
|   case ICK_Complex_Conversion:
 | |
|   case ICK_Floating_Conversion:
 | |
|   case ICK_TransparentUnionConversion:
 | |
|     llvm_unreachable("unexpected second conversion kind");
 | |
| 
 | |
|   case ICK_Num_Conversion_Kinds:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown conversion kind");
 | |
| }
 | |
| 
 | |
| /// CheckConvertedConstantExpression - Check that the expression From is a
 | |
| /// converted constant expression of type T, perform the conversion and produce
 | |
| /// the converted expression, per C++11 [expr.const]p3.
 | |
| ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
 | |
|                                                   llvm::APSInt &Value,
 | |
|                                                   CCEKind CCE) {
 | |
|   assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
 | |
|   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
 | |
| 
 | |
|   if (checkPlaceholderForOverload(*this, From))
 | |
|     return ExprError();
 | |
| 
 | |
|   // C++11 [expr.const]p3 with proposed wording fixes:
 | |
|   //  A converted constant expression of type T is a core constant expression,
 | |
|   //  implicitly converted to a prvalue of type T, where the converted
 | |
|   //  expression is a literal constant expression and the implicit conversion
 | |
|   //  sequence contains only user-defined conversions, lvalue-to-rvalue
 | |
|   //  conversions, integral promotions, and integral conversions other than
 | |
|   //  narrowing conversions.
 | |
|   ImplicitConversionSequence ICS =
 | |
|     TryImplicitConversion(From, T,
 | |
|                           /*SuppressUserConversions=*/false,
 | |
|                           /*AllowExplicit=*/false,
 | |
|                           /*InOverloadResolution=*/false,
 | |
|                           /*CStyle=*/false,
 | |
|                           /*AllowObjcWritebackConversion=*/false);
 | |
|   StandardConversionSequence *SCS = nullptr;
 | |
|   switch (ICS.getKind()) {
 | |
|   case ImplicitConversionSequence::StandardConversion:
 | |
|     if (!CheckConvertedConstantConversions(*this, ICS.Standard))
 | |
|       return Diag(From->getLocStart(),
 | |
|                   diag::err_typecheck_converted_constant_expression_disallowed)
 | |
|                << From->getType() << From->getSourceRange() << T;
 | |
|     SCS = &ICS.Standard;
 | |
|     break;
 | |
|   case ImplicitConversionSequence::UserDefinedConversion:
 | |
|     // We are converting from class type to an integral or enumeration type, so
 | |
|     // the Before sequence must be trivial.
 | |
|     if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
 | |
|       return Diag(From->getLocStart(),
 | |
|                   diag::err_typecheck_converted_constant_expression_disallowed)
 | |
|                << From->getType() << From->getSourceRange() << T;
 | |
|     SCS = &ICS.UserDefined.After;
 | |
|     break;
 | |
|   case ImplicitConversionSequence::AmbiguousConversion:
 | |
|   case ImplicitConversionSequence::BadConversion:
 | |
|     if (!DiagnoseMultipleUserDefinedConversion(From, T))
 | |
|       return Diag(From->getLocStart(),
 | |
|                   diag::err_typecheck_converted_constant_expression)
 | |
|                     << From->getType() << From->getSourceRange() << T;
 | |
|     return ExprError();
 | |
| 
 | |
|   case ImplicitConversionSequence::EllipsisConversion:
 | |
|     llvm_unreachable("ellipsis conversion in converted constant expression");
 | |
|   }
 | |
| 
 | |
|   ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
 | |
|   if (Result.isInvalid())
 | |
|     return Result;
 | |
| 
 | |
|   // Check for a narrowing implicit conversion.
 | |
|   APValue PreNarrowingValue;
 | |
|   QualType PreNarrowingType;
 | |
|   switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
 | |
|                                 PreNarrowingType)) {
 | |
|   case NK_Variable_Narrowing:
 | |
|     // Implicit conversion to a narrower type, and the value is not a constant
 | |
|     // expression. We'll diagnose this in a moment.
 | |
|   case NK_Not_Narrowing:
 | |
|     break;
 | |
| 
 | |
|   case NK_Constant_Narrowing:
 | |
|     Diag(From->getLocStart(), diag::ext_cce_narrowing)
 | |
|       << CCE << /*Constant*/1
 | |
|       << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
 | |
|     break;
 | |
| 
 | |
|   case NK_Type_Narrowing:
 | |
|     Diag(From->getLocStart(), diag::ext_cce_narrowing)
 | |
|       << CCE << /*Constant*/0 << From->getType() << T;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check the expression is a constant expression.
 | |
|   SmallVector<PartialDiagnosticAt, 8> Notes;
 | |
|   Expr::EvalResult Eval;
 | |
|   Eval.Diag = &Notes;
 | |
| 
 | |
|   if (!Result.get()->EvaluateAsRValue(Eval, Context) || !Eval.Val.isInt()) {
 | |
|     // The expression can't be folded, so we can't keep it at this position in
 | |
|     // the AST.
 | |
|     Result = ExprError();
 | |
|   } else {
 | |
|     Value = Eval.Val.getInt();
 | |
| 
 | |
|     if (Notes.empty()) {
 | |
|       // It's a constant expression.
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // It's not a constant expression. Produce an appropriate diagnostic.
 | |
|   if (Notes.size() == 1 &&
 | |
|       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
 | |
|     Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
 | |
|   else {
 | |
|     Diag(From->getLocStart(), diag::err_expr_not_cce)
 | |
|       << CCE << From->getSourceRange();
 | |
|     for (unsigned I = 0; I < Notes.size(); ++I)
 | |
|       Diag(Notes[I].first, Notes[I].second);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// dropPointerConversions - If the given standard conversion sequence
 | |
| /// involves any pointer conversions, remove them.  This may change
 | |
| /// the result type of the conversion sequence.
 | |
| static void dropPointerConversion(StandardConversionSequence &SCS) {
 | |
|   if (SCS.Second == ICK_Pointer_Conversion) {
 | |
|     SCS.Second = ICK_Identity;
 | |
|     SCS.Third = ICK_Identity;
 | |
|     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// TryContextuallyConvertToObjCPointer - Attempt to contextually
 | |
| /// convert the expression From to an Objective-C pointer type.
 | |
| static ImplicitConversionSequence
 | |
| TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
 | |
|   // Do an implicit conversion to 'id'.
 | |
|   QualType Ty = S.Context.getObjCIdType();
 | |
|   ImplicitConversionSequence ICS
 | |
|     = TryImplicitConversion(S, From, Ty,
 | |
|                             // FIXME: Are these flags correct?
 | |
|                             /*SuppressUserConversions=*/false,
 | |
|                             /*AllowExplicit=*/true,
 | |
|                             /*InOverloadResolution=*/false,
 | |
|                             /*CStyle=*/false,
 | |
|                             /*AllowObjCWritebackConversion=*/false,
 | |
|                             /*AllowObjCConversionOnExplicit=*/true);
 | |
| 
 | |
|   // Strip off any final conversions to 'id'.
 | |
|   switch (ICS.getKind()) {
 | |
|   case ImplicitConversionSequence::BadConversion:
 | |
|   case ImplicitConversionSequence::AmbiguousConversion:
 | |
|   case ImplicitConversionSequence::EllipsisConversion:
 | |
|     break;
 | |
| 
 | |
|   case ImplicitConversionSequence::UserDefinedConversion:
 | |
|     dropPointerConversion(ICS.UserDefined.After);
 | |
|     break;
 | |
| 
 | |
|   case ImplicitConversionSequence::StandardConversion:
 | |
|     dropPointerConversion(ICS.Standard);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ICS;
 | |
| }
 | |
| 
 | |
| /// PerformContextuallyConvertToObjCPointer - Perform a contextual
 | |
| /// conversion of the expression From to an Objective-C pointer type.
 | |
| ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
 | |
|   if (checkPlaceholderForOverload(*this, From))
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType Ty = Context.getObjCIdType();
 | |
|   ImplicitConversionSequence ICS =
 | |
|     TryContextuallyConvertToObjCPointer(*this, From);
 | |
|   if (!ICS.isBad())
 | |
|     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// Determine whether the provided type is an integral type, or an enumeration
 | |
| /// type of a permitted flavor.
 | |
| bool Sema::ICEConvertDiagnoser::match(QualType T) {
 | |
|   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
 | |
|                                  : T->isIntegralOrUnscopedEnumerationType();
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
 | |
|                             Sema::ContextualImplicitConverter &Converter,
 | |
|                             QualType T, UnresolvedSetImpl &ViableConversions) {
 | |
| 
 | |
|   if (Converter.Suppress)
 | |
|     return ExprError();
 | |
| 
 | |
|   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
 | |
|   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
 | |
|     CXXConversionDecl *Conv =
 | |
|         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
 | |
|     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
 | |
|     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
 | |
|   }
 | |
|   return From;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
 | |
|                            Sema::ContextualImplicitConverter &Converter,
 | |
|                            QualType T, bool HadMultipleCandidates,
 | |
|                            UnresolvedSetImpl &ExplicitConversions) {
 | |
|   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
 | |
|     DeclAccessPair Found = ExplicitConversions[0];
 | |
|     CXXConversionDecl *Conversion =
 | |
|         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
 | |
| 
 | |
|     // The user probably meant to invoke the given explicit
 | |
|     // conversion; use it.
 | |
|     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
 | |
|     std::string TypeStr;
 | |
|     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
 | |
| 
 | |
|     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
 | |
|         << FixItHint::CreateInsertion(From->getLocStart(),
 | |
|                                       "static_cast<" + TypeStr + ">(")
 | |
|         << FixItHint::CreateInsertion(
 | |
|                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
 | |
|     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
 | |
| 
 | |
|     // If we aren't in a SFINAE context, build a call to the
 | |
|     // explicit conversion function.
 | |
|     if (SemaRef.isSFINAEContext())
 | |
|       return true;
 | |
| 
 | |
|     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
 | |
|     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
 | |
|                                                        HadMultipleCandidates);
 | |
|     if (Result.isInvalid())
 | |
|       return true;
 | |
|     // Record usage of conversion in an implicit cast.
 | |
|     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
 | |
|                                     CK_UserDefinedConversion, Result.get(),
 | |
|                                     nullptr, Result.get()->getValueKind());
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
 | |
|                              Sema::ContextualImplicitConverter &Converter,
 | |
|                              QualType T, bool HadMultipleCandidates,
 | |
|                              DeclAccessPair &Found) {
 | |
|   CXXConversionDecl *Conversion =
 | |
|       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
 | |
|   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
 | |
| 
 | |
|   QualType ToType = Conversion->getConversionType().getNonReferenceType();
 | |
|   if (!Converter.SuppressConversion) {
 | |
|     if (SemaRef.isSFINAEContext())
 | |
|       return true;
 | |
| 
 | |
|     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
 | |
|         << From->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
 | |
|                                                      HadMultipleCandidates);
 | |
|   if (Result.isInvalid())
 | |
|     return true;
 | |
|   // Record usage of conversion in an implicit cast.
 | |
|   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
 | |
|                                   CK_UserDefinedConversion, Result.get(),
 | |
|                                   nullptr, Result.get()->getValueKind());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ExprResult finishContextualImplicitConversion(
 | |
|     Sema &SemaRef, SourceLocation Loc, Expr *From,
 | |
|     Sema::ContextualImplicitConverter &Converter) {
 | |
|   if (!Converter.match(From->getType()) && !Converter.Suppress)
 | |
|     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
 | |
|         << From->getSourceRange();
 | |
| 
 | |
|   return SemaRef.DefaultLvalueConversion(From);
 | |
| }
 | |
| 
 | |
| static void
 | |
| collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
 | |
|                                   UnresolvedSetImpl &ViableConversions,
 | |
|                                   OverloadCandidateSet &CandidateSet) {
 | |
|   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
 | |
|     DeclAccessPair FoundDecl = ViableConversions[I];
 | |
|     NamedDecl *D = FoundDecl.getDecl();
 | |
|     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|     if (isa<UsingShadowDecl>(D))
 | |
|       D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|     CXXConversionDecl *Conv;
 | |
|     FunctionTemplateDecl *ConvTemplate;
 | |
|     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
 | |
|       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | |
|     else
 | |
|       Conv = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|     if (ConvTemplate)
 | |
|       SemaRef.AddTemplateConversionCandidate(
 | |
|         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
 | |
|         /*AllowObjCConversionOnExplicit=*/false);
 | |
|     else
 | |
|       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
 | |
|                                      ToType, CandidateSet,
 | |
|                                      /*AllowObjCConversionOnExplicit=*/false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Attempt to convert the given expression to a type which is accepted
 | |
| /// by the given converter.
 | |
| ///
 | |
| /// This routine will attempt to convert an expression of class type to a
 | |
| /// type accepted by the specified converter. In C++11 and before, the class
 | |
| /// must have a single non-explicit conversion function converting to a matching
 | |
| /// type. In C++1y, there can be multiple such conversion functions, but only
 | |
| /// one target type.
 | |
| ///
 | |
| /// \param Loc The source location of the construct that requires the
 | |
| /// conversion.
 | |
| ///
 | |
| /// \param From The expression we're converting from.
 | |
| ///
 | |
| /// \param Converter Used to control and diagnose the conversion process.
 | |
| ///
 | |
| /// \returns The expression, converted to an integral or enumeration type if
 | |
| /// successful.
 | |
| ExprResult Sema::PerformContextualImplicitConversion(
 | |
|     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
 | |
|   // We can't perform any more checking for type-dependent expressions.
 | |
|   if (From->isTypeDependent())
 | |
|     return From;
 | |
| 
 | |
|   // Process placeholders immediately.
 | |
|   if (From->hasPlaceholderType()) {
 | |
|     ExprResult result = CheckPlaceholderExpr(From);
 | |
|     if (result.isInvalid())
 | |
|       return result;
 | |
|     From = result.get();
 | |
|   }
 | |
| 
 | |
|   // If the expression already has a matching type, we're golden.
 | |
|   QualType T = From->getType();
 | |
|   if (Converter.match(T))
 | |
|     return DefaultLvalueConversion(From);
 | |
| 
 | |
|   // FIXME: Check for missing '()' if T is a function type?
 | |
| 
 | |
|   // We can only perform contextual implicit conversions on objects of class
 | |
|   // type.
 | |
|   const RecordType *RecordTy = T->getAs<RecordType>();
 | |
|   if (!RecordTy || !getLangOpts().CPlusPlus) {
 | |
|     if (!Converter.Suppress)
 | |
|       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
 | |
|     return From;
 | |
|   }
 | |
| 
 | |
|   // We must have a complete class type.
 | |
|   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
 | |
|     ContextualImplicitConverter &Converter;
 | |
|     Expr *From;
 | |
| 
 | |
|     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
 | |
|         : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
 | |
| 
 | |
|     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
 | |
|       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
 | |
|     }
 | |
|   } IncompleteDiagnoser(Converter, From);
 | |
| 
 | |
|   if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
 | |
|     return From;
 | |
| 
 | |
|   // Look for a conversion to an integral or enumeration type.
 | |
|   UnresolvedSet<4>
 | |
|       ViableConversions; // These are *potentially* viable in C++1y.
 | |
|   UnresolvedSet<4> ExplicitConversions;
 | |
|   std::pair<CXXRecordDecl::conversion_iterator,
 | |
|             CXXRecordDecl::conversion_iterator> Conversions =
 | |
|       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
 | |
| 
 | |
|   bool HadMultipleCandidates =
 | |
|       (std::distance(Conversions.first, Conversions.second) > 1);
 | |
| 
 | |
|   // To check that there is only one target type, in C++1y:
 | |
|   QualType ToType;
 | |
|   bool HasUniqueTargetType = true;
 | |
| 
 | |
|   // Collect explicit or viable (potentially in C++1y) conversions.
 | |
|   for (CXXRecordDecl::conversion_iterator I = Conversions.first,
 | |
|                                           E = Conversions.second;
 | |
|        I != E; ++I) {
 | |
|     NamedDecl *D = (*I)->getUnderlyingDecl();
 | |
|     CXXConversionDecl *Conversion;
 | |
|     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | |
|     if (ConvTemplate) {
 | |
|       if (getLangOpts().CPlusPlus1y)
 | |
|         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | |
|       else
 | |
|         continue; // C++11 does not consider conversion operator templates(?).
 | |
|     } else
 | |
|       Conversion = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|     assert((!ConvTemplate || getLangOpts().CPlusPlus1y) &&
 | |
|            "Conversion operator templates are considered potentially "
 | |
|            "viable in C++1y");
 | |
| 
 | |
|     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
 | |
|     if (Converter.match(CurToType) || ConvTemplate) {
 | |
| 
 | |
|       if (Conversion->isExplicit()) {
 | |
|         // FIXME: For C++1y, do we need this restriction?
 | |
|         // cf. diagnoseNoViableConversion()
 | |
|         if (!ConvTemplate)
 | |
|           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
 | |
|       } else {
 | |
|         if (!ConvTemplate && getLangOpts().CPlusPlus1y) {
 | |
|           if (ToType.isNull())
 | |
|             ToType = CurToType.getUnqualifiedType();
 | |
|           else if (HasUniqueTargetType &&
 | |
|                    (CurToType.getUnqualifiedType() != ToType))
 | |
|             HasUniqueTargetType = false;
 | |
|         }
 | |
|         ViableConversions.addDecl(I.getDecl(), I.getAccess());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus1y) {
 | |
|     // C++1y [conv]p6:
 | |
|     // ... An expression e of class type E appearing in such a context
 | |
|     // is said to be contextually implicitly converted to a specified
 | |
|     // type T and is well-formed if and only if e can be implicitly
 | |
|     // converted to a type T that is determined as follows: E is searched
 | |
|     // for conversion functions whose return type is cv T or reference to
 | |
|     // cv T such that T is allowed by the context. There shall be
 | |
|     // exactly one such T.
 | |
| 
 | |
|     // If no unique T is found:
 | |
|     if (ToType.isNull()) {
 | |
|       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
 | |
|                                      HadMultipleCandidates,
 | |
|                                      ExplicitConversions))
 | |
|         return ExprError();
 | |
|       return finishContextualImplicitConversion(*this, Loc, From, Converter);
 | |
|     }
 | |
| 
 | |
|     // If more than one unique Ts are found:
 | |
|     if (!HasUniqueTargetType)
 | |
|       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
 | |
|                                          ViableConversions);
 | |
| 
 | |
|     // If one unique T is found:
 | |
|     // First, build a candidate set from the previously recorded
 | |
|     // potentially viable conversions.
 | |
|     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
 | |
|     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
 | |
|                                       CandidateSet);
 | |
| 
 | |
|     // Then, perform overload resolution over the candidate set.
 | |
|     OverloadCandidateSet::iterator Best;
 | |
|     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
 | |
|     case OR_Success: {
 | |
|       // Apply this conversion.
 | |
|       DeclAccessPair Found =
 | |
|           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
 | |
|       if (recordConversion(*this, Loc, From, Converter, T,
 | |
|                            HadMultipleCandidates, Found))
 | |
|         return ExprError();
 | |
|       break;
 | |
|     }
 | |
|     case OR_Ambiguous:
 | |
|       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
 | |
|                                          ViableConversions);
 | |
|     case OR_No_Viable_Function:
 | |
|       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
 | |
|                                      HadMultipleCandidates,
 | |
|                                      ExplicitConversions))
 | |
|         return ExprError();
 | |
|     // fall through 'OR_Deleted' case.
 | |
|     case OR_Deleted:
 | |
|       // We'll complain below about a non-integral condition type.
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     switch (ViableConversions.size()) {
 | |
|     case 0: {
 | |
|       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
 | |
|                                      HadMultipleCandidates,
 | |
|                                      ExplicitConversions))
 | |
|         return ExprError();
 | |
| 
 | |
|       // We'll complain below about a non-integral condition type.
 | |
|       break;
 | |
|     }
 | |
|     case 1: {
 | |
|       // Apply this conversion.
 | |
|       DeclAccessPair Found = ViableConversions[0];
 | |
|       if (recordConversion(*this, Loc, From, Converter, T,
 | |
|                            HadMultipleCandidates, Found))
 | |
|         return ExprError();
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
 | |
|                                          ViableConversions);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return finishContextualImplicitConversion(*this, Loc, From, Converter);
 | |
| }
 | |
| 
 | |
| /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
 | |
| /// an acceptable non-member overloaded operator for a call whose
 | |
| /// arguments have types T1 (and, if non-empty, T2). This routine
 | |
| /// implements the check in C++ [over.match.oper]p3b2 concerning
 | |
| /// enumeration types.
 | |
| static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
 | |
|                                                    FunctionDecl *Fn,
 | |
|                                                    ArrayRef<Expr *> Args) {
 | |
|   QualType T1 = Args[0]->getType();
 | |
|   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
 | |
| 
 | |
|   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
 | |
|     return true;
 | |
| 
 | |
|   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
 | |
|     return true;
 | |
| 
 | |
|   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
 | |
|   if (Proto->getNumParams() < 1)
 | |
|     return false;
 | |
| 
 | |
|   if (T1->isEnumeralType()) {
 | |
|     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
 | |
|     if (Context.hasSameUnqualifiedType(T1, ArgType))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (Proto->getNumParams() < 2)
 | |
|     return false;
 | |
| 
 | |
|   if (!T2.isNull() && T2->isEnumeralType()) {
 | |
|     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
 | |
|     if (Context.hasSameUnqualifiedType(T2, ArgType))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// AddOverloadCandidate - Adds the given function to the set of
 | |
| /// candidate functions, using the given function call arguments.  If
 | |
| /// @p SuppressUserConversions, then don't allow user-defined
 | |
| /// conversions via constructors or conversion operators.
 | |
| ///
 | |
| /// \param PartialOverloading true if we are performing "partial" overloading
 | |
| /// based on an incomplete set of function arguments. This feature is used by
 | |
| /// code completion.
 | |
| void
 | |
| Sema::AddOverloadCandidate(FunctionDecl *Function,
 | |
|                            DeclAccessPair FoundDecl,
 | |
|                            ArrayRef<Expr *> Args,
 | |
|                            OverloadCandidateSet &CandidateSet,
 | |
|                            bool SuppressUserConversions,
 | |
|                            bool PartialOverloading,
 | |
|                            bool AllowExplicit) {
 | |
|   const FunctionProtoType *Proto
 | |
|     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
 | |
|   assert(Proto && "Functions without a prototype cannot be overloaded");
 | |
|   assert(!Function->getDescribedFunctionTemplate() &&
 | |
|          "Use AddTemplateOverloadCandidate for function templates");
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
 | |
|     if (!isa<CXXConstructorDecl>(Method)) {
 | |
|       // If we get here, it's because we're calling a member function
 | |
|       // that is named without a member access expression (e.g.,
 | |
|       // "this->f") that was either written explicitly or created
 | |
|       // implicitly. This can happen with a qualified call to a member
 | |
|       // function, e.g., X::f(). We use an empty type for the implied
 | |
|       // object argument (C++ [over.call.func]p3), and the acting context
 | |
|       // is irrelevant.
 | |
|       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
 | |
|                          QualType(), Expr::Classification::makeSimpleLValue(),
 | |
|                          Args, CandidateSet, SuppressUserConversions);
 | |
|       return;
 | |
|     }
 | |
|     // We treat a constructor like a non-member function, since its object
 | |
|     // argument doesn't participate in overload resolution.
 | |
|   }
 | |
| 
 | |
|   if (!CandidateSet.isNewCandidate(Function))
 | |
|     return;
 | |
| 
 | |
|   // C++ [over.match.oper]p3:
 | |
|   //   if no operand has a class type, only those non-member functions in the
 | |
|   //   lookup set that have a first parameter of type T1 or "reference to
 | |
|   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
 | |
|   //   is a right operand) a second parameter of type T2 or "reference to
 | |
|   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
 | |
|   //   candidate functions.
 | |
|   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
 | |
|       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
 | |
|     return;
 | |
| 
 | |
|   // C++11 [class.copy]p11: [DR1402]
 | |
|   //   A defaulted move constructor that is defined as deleted is ignored by
 | |
|   //   overload resolution.
 | |
|   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
 | |
|   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
 | |
|       Constructor->isMoveConstructor())
 | |
|     return;
 | |
| 
 | |
|   // Overload resolution is always an unevaluated context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
| 
 | |
|   if (Constructor) {
 | |
|     // C++ [class.copy]p3:
 | |
|     //   A member function template is never instantiated to perform the copy
 | |
|     //   of a class object to an object of its class type.
 | |
|     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
 | |
|     if (Args.size() == 1 &&
 | |
|         Constructor->isSpecializationCopyingObject() &&
 | |
|         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
 | |
|          IsDerivedFrom(Args[0]->getType(), ClassType)))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Add this candidate
 | |
|   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
 | |
|   Candidate.FoundDecl = FoundDecl;
 | |
|   Candidate.Function = Function;
 | |
|   Candidate.Viable = true;
 | |
|   Candidate.IsSurrogate = false;
 | |
|   Candidate.IgnoreObjectArgument = false;
 | |
|   Candidate.ExplicitCallArguments = Args.size();
 | |
| 
 | |
|   unsigned NumParams = Proto->getNumParams();
 | |
| 
 | |
|   // (C++ 13.3.2p2): A candidate function having fewer than m
 | |
|   // parameters is viable only if it has an ellipsis in its parameter
 | |
|   // list (8.3.5).
 | |
|   if ((Args.size() + (PartialOverloading && Args.size())) > NumParams &&
 | |
|       !Proto->isVariadic()) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_too_many_arguments;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // (C++ 13.3.2p2): A candidate function having more than m parameters
 | |
|   // is viable only if the (m+1)st parameter has a default argument
 | |
|   // (8.3.6). For the purposes of overload resolution, the
 | |
|   // parameter list is truncated on the right, so that there are
 | |
|   // exactly m parameters.
 | |
|   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
 | |
|   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
 | |
|     // Not enough arguments.
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_too_few_arguments;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // (CUDA B.1): Check for invalid calls between targets.
 | |
|   if (getLangOpts().CUDA)
 | |
|     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
 | |
|       if (CheckCUDATarget(Caller, Function)) {
 | |
|         Candidate.Viable = false;
 | |
|         Candidate.FailureKind = ovl_fail_bad_target;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|   // Determine the implicit conversion sequences for each of the
 | |
|   // arguments.
 | |
|   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
 | |
|     if (ArgIdx < NumParams) {
 | |
|       // (C++ 13.3.2p3): for F to be a viable function, there shall
 | |
|       // exist for each argument an implicit conversion sequence
 | |
|       // (13.3.3.1) that converts that argument to the corresponding
 | |
|       // parameter of F.
 | |
|       QualType ParamType = Proto->getParamType(ArgIdx);
 | |
|       Candidate.Conversions[ArgIdx]
 | |
|         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
 | |
|                                 SuppressUserConversions,
 | |
|                                 /*InOverloadResolution=*/true,
 | |
|                                 /*AllowObjCWritebackConversion=*/
 | |
|                                   getLangOpts().ObjCAutoRefCount,
 | |
|                                 AllowExplicit);
 | |
|       if (Candidate.Conversions[ArgIdx].isBad()) {
 | |
|         Candidate.Viable = false;
 | |
|         Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|         return;
 | |
|       }
 | |
|     } else {
 | |
|       // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | |
|       // argument for which there is no corresponding parameter is
 | |
|       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | |
|       Candidate.Conversions[ArgIdx].setEllipsis();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_enable_if;
 | |
|     Candidate.DeductionFailure.Data = FailedAttr;
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
 | |
| 
 | |
| EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
 | |
|                                   bool MissingImplicitThis) {
 | |
|   // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
 | |
|   // we need to find the first failing one.
 | |
|   if (!Function->hasAttrs())
 | |
|     return nullptr;
 | |
|   AttrVec Attrs = Function->getAttrs();
 | |
|   AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
 | |
|                                        IsNotEnableIfAttr);
 | |
|   if (Attrs.begin() == E)
 | |
|     return nullptr;
 | |
|   std::reverse(Attrs.begin(), E);
 | |
| 
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   // Convert the arguments.
 | |
|   SmallVector<Expr *, 16> ConvertedArgs;
 | |
|   bool InitializationFailed = false;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
 | |
|         !cast<CXXMethodDecl>(Function)->isStatic() &&
 | |
|         !isa<CXXConstructorDecl>(Function)) {
 | |
|       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
 | |
|       ExprResult R =
 | |
|         PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
 | |
|                                             Method, Method);
 | |
|       if (R.isInvalid()) {
 | |
|         InitializationFailed = true;
 | |
|         break;
 | |
|       }
 | |
|       ConvertedArgs.push_back(R.get());
 | |
|     } else {
 | |
|       ExprResult R =
 | |
|         PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | |
|                                                 Context,
 | |
|                                                 Function->getParamDecl(i)),
 | |
|                                   SourceLocation(),
 | |
|                                   Args[i]);
 | |
|       if (R.isInvalid()) {
 | |
|         InitializationFailed = true;
 | |
|         break;
 | |
|       }
 | |
|       ConvertedArgs.push_back(R.get());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (InitializationFailed || Trap.hasErrorOccurred())
 | |
|     return cast<EnableIfAttr>(Attrs[0]);
 | |
| 
 | |
|   for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
 | |
|     APValue Result;
 | |
|     EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
 | |
|     if (!EIA->getCond()->EvaluateWithSubstitution(
 | |
|             Result, Context, Function,
 | |
|             ArrayRef<const Expr*>(ConvertedArgs.data(),
 | |
|                                   ConvertedArgs.size())) ||
 | |
|         !Result.isInt() || !Result.getInt().getBoolValue()) {
 | |
|       return EIA;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Add all of the function declarations in the given function set to
 | |
| /// the overload candidate set.
 | |
| void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
 | |
|                                  ArrayRef<Expr *> Args,
 | |
|                                  OverloadCandidateSet& CandidateSet,
 | |
|                                  bool SuppressUserConversions,
 | |
|                                TemplateArgumentListInfo *ExplicitTemplateArgs) {
 | |
|   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
 | |
|     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
 | |
|         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
 | |
|                            cast<CXXMethodDecl>(FD)->getParent(),
 | |
|                            Args[0]->getType(), Args[0]->Classify(Context),
 | |
|                            Args.slice(1), CandidateSet,
 | |
|                            SuppressUserConversions);
 | |
|       else
 | |
|         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
 | |
|                              SuppressUserConversions);
 | |
|     } else {
 | |
|       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
 | |
|       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
 | |
|           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
 | |
|         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
 | |
|                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
 | |
|                                    ExplicitTemplateArgs,
 | |
|                                    Args[0]->getType(),
 | |
|                                    Args[0]->Classify(Context), Args.slice(1),
 | |
|                                    CandidateSet, SuppressUserConversions);
 | |
|       else
 | |
|         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
 | |
|                                      ExplicitTemplateArgs, Args,
 | |
|                                      CandidateSet, SuppressUserConversions);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddMethodCandidate - Adds a named decl (which is some kind of
 | |
| /// method) as a method candidate to the given overload set.
 | |
| void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
 | |
|                               QualType ObjectType,
 | |
|                               Expr::Classification ObjectClassification,
 | |
|                               ArrayRef<Expr *> Args,
 | |
|                               OverloadCandidateSet& CandidateSet,
 | |
|                               bool SuppressUserConversions) {
 | |
|   NamedDecl *Decl = FoundDecl.getDecl();
 | |
|   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
 | |
| 
 | |
|   if (isa<UsingShadowDecl>(Decl))
 | |
|     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
 | |
| 
 | |
|   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
 | |
|     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
 | |
|            "Expected a member function template");
 | |
|     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
 | |
|                                /*ExplicitArgs*/ nullptr,
 | |
|                                ObjectType, ObjectClassification,
 | |
|                                Args, CandidateSet,
 | |
|                                SuppressUserConversions);
 | |
|   } else {
 | |
|     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
 | |
|                        ObjectType, ObjectClassification,
 | |
|                        Args,
 | |
|                        CandidateSet, SuppressUserConversions);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddMethodCandidate - Adds the given C++ member function to the set
 | |
| /// of candidate functions, using the given function call arguments
 | |
| /// and the object argument (@c Object). For example, in a call
 | |
| /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
 | |
| /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
 | |
| /// allow user-defined conversions via constructors or conversion
 | |
| /// operators.
 | |
| void
 | |
| Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
 | |
|                          CXXRecordDecl *ActingContext, QualType ObjectType,
 | |
|                          Expr::Classification ObjectClassification,
 | |
|                          ArrayRef<Expr *> Args,
 | |
|                          OverloadCandidateSet &CandidateSet,
 | |
|                          bool SuppressUserConversions) {
 | |
|   const FunctionProtoType *Proto
 | |
|     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
 | |
|   assert(Proto && "Methods without a prototype cannot be overloaded");
 | |
|   assert(!isa<CXXConstructorDecl>(Method) &&
 | |
|          "Use AddOverloadCandidate for constructors");
 | |
| 
 | |
|   if (!CandidateSet.isNewCandidate(Method))
 | |
|     return;
 | |
| 
 | |
|   // C++11 [class.copy]p23: [DR1402]
 | |
|   //   A defaulted move assignment operator that is defined as deleted is
 | |
|   //   ignored by overload resolution.
 | |
|   if (Method->isDefaulted() && Method->isDeleted() &&
 | |
|       Method->isMoveAssignmentOperator())
 | |
|     return;
 | |
| 
 | |
|   // Overload resolution is always an unevaluated context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
| 
 | |
|   // Add this candidate
 | |
|   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
 | |
|   Candidate.FoundDecl = FoundDecl;
 | |
|   Candidate.Function = Method;
 | |
|   Candidate.IsSurrogate = false;
 | |
|   Candidate.IgnoreObjectArgument = false;
 | |
|   Candidate.ExplicitCallArguments = Args.size();
 | |
| 
 | |
|   unsigned NumParams = Proto->getNumParams();
 | |
| 
 | |
|   // (C++ 13.3.2p2): A candidate function having fewer than m
 | |
|   // parameters is viable only if it has an ellipsis in its parameter
 | |
|   // list (8.3.5).
 | |
|   if (Args.size() > NumParams && !Proto->isVariadic()) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_too_many_arguments;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // (C++ 13.3.2p2): A candidate function having more than m parameters
 | |
|   // is viable only if the (m+1)st parameter has a default argument
 | |
|   // (8.3.6). For the purposes of overload resolution, the
 | |
|   // parameter list is truncated on the right, so that there are
 | |
|   // exactly m parameters.
 | |
|   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
 | |
|   if (Args.size() < MinRequiredArgs) {
 | |
|     // Not enough arguments.
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_too_few_arguments;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Candidate.Viable = true;
 | |
| 
 | |
|   if (Method->isStatic() || ObjectType.isNull())
 | |
|     // The implicit object argument is ignored.
 | |
|     Candidate.IgnoreObjectArgument = true;
 | |
|   else {
 | |
|     // Determine the implicit conversion sequence for the object
 | |
|     // parameter.
 | |
|     Candidate.Conversions[0]
 | |
|       = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
 | |
|                                         Method, ActingContext);
 | |
|     if (Candidate.Conversions[0].isBad()) {
 | |
|       Candidate.Viable = false;
 | |
|       Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine the implicit conversion sequences for each of the
 | |
|   // arguments.
 | |
|   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
 | |
|     if (ArgIdx < NumParams) {
 | |
|       // (C++ 13.3.2p3): for F to be a viable function, there shall
 | |
|       // exist for each argument an implicit conversion sequence
 | |
|       // (13.3.3.1) that converts that argument to the corresponding
 | |
|       // parameter of F.
 | |
|       QualType ParamType = Proto->getParamType(ArgIdx);
 | |
|       Candidate.Conversions[ArgIdx + 1]
 | |
|         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
 | |
|                                 SuppressUserConversions,
 | |
|                                 /*InOverloadResolution=*/true,
 | |
|                                 /*AllowObjCWritebackConversion=*/
 | |
|                                   getLangOpts().ObjCAutoRefCount);
 | |
|       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
 | |
|         Candidate.Viable = false;
 | |
|         Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|         return;
 | |
|       }
 | |
|     } else {
 | |
|       // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | |
|       // argument for which there is no corresponding parameter is
 | |
|       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
 | |
|       Candidate.Conversions[ArgIdx + 1].setEllipsis();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_enable_if;
 | |
|     Candidate.DeductionFailure.Data = FailedAttr;
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Add a C++ member function template as a candidate to the candidate
 | |
| /// set, using template argument deduction to produce an appropriate member
 | |
| /// function template specialization.
 | |
| void
 | |
| Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
 | |
|                                  DeclAccessPair FoundDecl,
 | |
|                                  CXXRecordDecl *ActingContext,
 | |
|                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                                  QualType ObjectType,
 | |
|                                  Expr::Classification ObjectClassification,
 | |
|                                  ArrayRef<Expr *> Args,
 | |
|                                  OverloadCandidateSet& CandidateSet,
 | |
|                                  bool SuppressUserConversions) {
 | |
|   if (!CandidateSet.isNewCandidate(MethodTmpl))
 | |
|     return;
 | |
| 
 | |
|   // C++ [over.match.funcs]p7:
 | |
|   //   In each case where a candidate is a function template, candidate
 | |
|   //   function template specializations are generated using template argument
 | |
|   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
 | |
|   //   candidate functions in the usual way.113) A given name can refer to one
 | |
|   //   or more function templates and also to a set of overloaded non-template
 | |
|   //   functions. In such a case, the candidate functions generated from each
 | |
|   //   function template are combined with the set of non-template candidate
 | |
|   //   functions.
 | |
|   TemplateDeductionInfo Info(CandidateSet.getLocation());
 | |
|   FunctionDecl *Specialization = nullptr;
 | |
|   if (TemplateDeductionResult Result
 | |
|       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
 | |
|                                 Specialization, Info)) {
 | |
|     OverloadCandidate &Candidate = CandidateSet.addCandidate();
 | |
|     Candidate.FoundDecl = FoundDecl;
 | |
|     Candidate.Function = MethodTmpl->getTemplatedDecl();
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_deduction;
 | |
|     Candidate.IsSurrogate = false;
 | |
|     Candidate.IgnoreObjectArgument = false;
 | |
|     Candidate.ExplicitCallArguments = Args.size();
 | |
|     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
 | |
|                                                           Info);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the function template specialization produced by template argument
 | |
|   // deduction as a candidate.
 | |
|   assert(Specialization && "Missing member function template specialization?");
 | |
|   assert(isa<CXXMethodDecl>(Specialization) &&
 | |
|          "Specialization is not a member function?");
 | |
|   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
 | |
|                      ActingContext, ObjectType, ObjectClassification, Args,
 | |
|                      CandidateSet, SuppressUserConversions);
 | |
| }
 | |
| 
 | |
| /// \brief Add a C++ function template specialization as a candidate
 | |
| /// in the candidate set, using template argument deduction to produce
 | |
| /// an appropriate function template specialization.
 | |
| void
 | |
| Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
 | |
|                                    DeclAccessPair FoundDecl,
 | |
|                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                                    ArrayRef<Expr *> Args,
 | |
|                                    OverloadCandidateSet& CandidateSet,
 | |
|                                    bool SuppressUserConversions) {
 | |
|   if (!CandidateSet.isNewCandidate(FunctionTemplate))
 | |
|     return;
 | |
| 
 | |
|   // C++ [over.match.funcs]p7:
 | |
|   //   In each case where a candidate is a function template, candidate
 | |
|   //   function template specializations are generated using template argument
 | |
|   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
 | |
|   //   candidate functions in the usual way.113) A given name can refer to one
 | |
|   //   or more function templates and also to a set of overloaded non-template
 | |
|   //   functions. In such a case, the candidate functions generated from each
 | |
|   //   function template are combined with the set of non-template candidate
 | |
|   //   functions.
 | |
|   TemplateDeductionInfo Info(CandidateSet.getLocation());
 | |
|   FunctionDecl *Specialization = nullptr;
 | |
|   if (TemplateDeductionResult Result
 | |
|         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
 | |
|                                   Specialization, Info)) {
 | |
|     OverloadCandidate &Candidate = CandidateSet.addCandidate();
 | |
|     Candidate.FoundDecl = FoundDecl;
 | |
|     Candidate.Function = FunctionTemplate->getTemplatedDecl();
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_deduction;
 | |
|     Candidate.IsSurrogate = false;
 | |
|     Candidate.IgnoreObjectArgument = false;
 | |
|     Candidate.ExplicitCallArguments = Args.size();
 | |
|     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
 | |
|                                                           Info);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the function template specialization produced by template argument
 | |
|   // deduction as a candidate.
 | |
|   assert(Specialization && "Missing function template specialization?");
 | |
|   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
 | |
|                        SuppressUserConversions);
 | |
| }
 | |
| 
 | |
| /// Determine whether this is an allowable conversion from the result
 | |
| /// of an explicit conversion operator to the expected type, per C++
 | |
| /// [over.match.conv]p1 and [over.match.ref]p1.
 | |
| ///
 | |
| /// \param ConvType The return type of the conversion function.
 | |
| ///
 | |
| /// \param ToType The type we are converting to.
 | |
| ///
 | |
| /// \param AllowObjCPointerConversion Allow a conversion from one
 | |
| /// Objective-C pointer to another.
 | |
| ///
 | |
| /// \returns true if the conversion is allowable, false otherwise.
 | |
| static bool isAllowableExplicitConversion(Sema &S,
 | |
|                                           QualType ConvType, QualType ToType,
 | |
|                                           bool AllowObjCPointerConversion) {
 | |
|   QualType ToNonRefType = ToType.getNonReferenceType();
 | |
| 
 | |
|   // Easy case: the types are the same.
 | |
|   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
 | |
|     return true;
 | |
| 
 | |
|   // Allow qualification conversions.
 | |
|   bool ObjCLifetimeConversion;
 | |
|   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
 | |
|                                   ObjCLifetimeConversion))
 | |
|     return true;
 | |
| 
 | |
|   // If we're not allowed to consider Objective-C pointer conversions,
 | |
|   // we're done.
 | |
|   if (!AllowObjCPointerConversion)
 | |
|     return false;
 | |
| 
 | |
|   // Is this an Objective-C pointer conversion?
 | |
|   bool IncompatibleObjC = false;
 | |
|   QualType ConvertedType;
 | |
|   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
 | |
|                                    IncompatibleObjC);
 | |
| }
 | |
|                                           
 | |
| /// AddConversionCandidate - Add a C++ conversion function as a
 | |
| /// candidate in the candidate set (C++ [over.match.conv],
 | |
| /// C++ [over.match.copy]). From is the expression we're converting from,
 | |
| /// and ToType is the type that we're eventually trying to convert to
 | |
| /// (which may or may not be the same type as the type that the
 | |
| /// conversion function produces).
 | |
| void
 | |
| Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
 | |
|                              DeclAccessPair FoundDecl,
 | |
|                              CXXRecordDecl *ActingContext,
 | |
|                              Expr *From, QualType ToType,
 | |
|                              OverloadCandidateSet& CandidateSet,
 | |
|                              bool AllowObjCConversionOnExplicit) {
 | |
|   assert(!Conversion->getDescribedFunctionTemplate() &&
 | |
|          "Conversion function templates use AddTemplateConversionCandidate");
 | |
|   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
 | |
|   if (!CandidateSet.isNewCandidate(Conversion))
 | |
|     return;
 | |
| 
 | |
|   // If the conversion function has an undeduced return type, trigger its
 | |
|   // deduction now.
 | |
|   if (getLangOpts().CPlusPlus1y && ConvType->isUndeducedType()) {
 | |
|     if (DeduceReturnType(Conversion, From->getExprLoc()))
 | |
|       return;
 | |
|     ConvType = Conversion->getConversionType().getNonReferenceType();
 | |
|   }
 | |
| 
 | |
|   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
 | |
|   // operator is only a candidate if its return type is the target type or
 | |
|   // can be converted to the target type with a qualification conversion.
 | |
|   if (Conversion->isExplicit() && 
 | |
|       !isAllowableExplicitConversion(*this, ConvType, ToType, 
 | |
|                                      AllowObjCConversionOnExplicit))
 | |
|     return;
 | |
| 
 | |
|   // Overload resolution is always an unevaluated context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
| 
 | |
|   // Add this candidate
 | |
|   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
 | |
|   Candidate.FoundDecl = FoundDecl;
 | |
|   Candidate.Function = Conversion;
 | |
|   Candidate.IsSurrogate = false;
 | |
|   Candidate.IgnoreObjectArgument = false;
 | |
|   Candidate.FinalConversion.setAsIdentityConversion();
 | |
|   Candidate.FinalConversion.setFromType(ConvType);
 | |
|   Candidate.FinalConversion.setAllToTypes(ToType);
 | |
|   Candidate.Viable = true;
 | |
|   Candidate.ExplicitCallArguments = 1;
 | |
| 
 | |
|   // C++ [over.match.funcs]p4:
 | |
|   //   For conversion functions, the function is considered to be a member of
 | |
|   //   the class of the implicit implied object argument for the purpose of
 | |
|   //   defining the type of the implicit object parameter.
 | |
|   //
 | |
|   // Determine the implicit conversion sequence for the implicit
 | |
|   // object parameter.
 | |
|   QualType ImplicitParamType = From->getType();
 | |
|   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
 | |
|     ImplicitParamType = FromPtrType->getPointeeType();
 | |
|   CXXRecordDecl *ConversionContext
 | |
|     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|   Candidate.Conversions[0]
 | |
|     = TryObjectArgumentInitialization(*this, From->getType(),
 | |
|                                       From->Classify(Context),
 | |
|                                       Conversion, ConversionContext);
 | |
| 
 | |
|   if (Candidate.Conversions[0].isBad()) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We won't go through a user-defined type conversion function to convert a
 | |
|   // derived to base as such conversions are given Conversion Rank. They only
 | |
|   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
 | |
|   QualType FromCanon
 | |
|     = Context.getCanonicalType(From->getType().getUnqualifiedType());
 | |
|   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
 | |
|   if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_trivial_conversion;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // To determine what the conversion from the result of calling the
 | |
|   // conversion function to the type we're eventually trying to
 | |
|   // convert to (ToType), we need to synthesize a call to the
 | |
|   // conversion function and attempt copy initialization from it. This
 | |
|   // makes sure that we get the right semantics with respect to
 | |
|   // lvalues/rvalues and the type. Fortunately, we can allocate this
 | |
|   // call on the stack and we don't need its arguments to be
 | |
|   // well-formed.
 | |
|   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
 | |
|                             VK_LValue, From->getLocStart());
 | |
|   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
 | |
|                                 Context.getPointerType(Conversion->getType()),
 | |
|                                 CK_FunctionToPointerDecay,
 | |
|                                 &ConversionRef, VK_RValue);
 | |
| 
 | |
|   QualType ConversionType = Conversion->getConversionType();
 | |
|   if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_final_conversion;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
 | |
| 
 | |
|   // Note that it is safe to allocate CallExpr on the stack here because
 | |
|   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
 | |
|   // allocator).
 | |
|   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
 | |
|   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
 | |
|                 From->getLocStart());
 | |
|   ImplicitConversionSequence ICS =
 | |
|     TryCopyInitialization(*this, &Call, ToType,
 | |
|                           /*SuppressUserConversions=*/true,
 | |
|                           /*InOverloadResolution=*/false,
 | |
|                           /*AllowObjCWritebackConversion=*/false);
 | |
| 
 | |
|   switch (ICS.getKind()) {
 | |
|   case ImplicitConversionSequence::StandardConversion:
 | |
|     Candidate.FinalConversion = ICS.Standard;
 | |
| 
 | |
|     // C++ [over.ics.user]p3:
 | |
|     //   If the user-defined conversion is specified by a specialization of a
 | |
|     //   conversion function template, the second standard conversion sequence
 | |
|     //   shall have exact match rank.
 | |
|     if (Conversion->getPrimaryTemplate() &&
 | |
|         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
 | |
|       Candidate.Viable = false;
 | |
|       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // C++0x [dcl.init.ref]p5:
 | |
|     //    In the second case, if the reference is an rvalue reference and
 | |
|     //    the second standard conversion sequence of the user-defined
 | |
|     //    conversion sequence includes an lvalue-to-rvalue conversion, the
 | |
|     //    program is ill-formed.
 | |
|     if (ToType->isRValueReferenceType() &&
 | |
|         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
 | |
|       Candidate.Viable = false;
 | |
|       Candidate.FailureKind = ovl_fail_bad_final_conversion;
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ImplicitConversionSequence::BadConversion:
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_final_conversion;
 | |
|     return;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable(
 | |
|            "Can only end up with a standard conversion sequence or failure");
 | |
|   }
 | |
| 
 | |
|   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, ArrayRef<Expr*>())) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_enable_if;
 | |
|     Candidate.DeductionFailure.Data = FailedAttr;
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Adds a conversion function template specialization
 | |
| /// candidate to the overload set, using template argument deduction
 | |
| /// to deduce the template arguments of the conversion function
 | |
| /// template from the type that we are converting to (C++
 | |
| /// [temp.deduct.conv]).
 | |
| void
 | |
| Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
 | |
|                                      DeclAccessPair FoundDecl,
 | |
|                                      CXXRecordDecl *ActingDC,
 | |
|                                      Expr *From, QualType ToType,
 | |
|                                      OverloadCandidateSet &CandidateSet,
 | |
|                                      bool AllowObjCConversionOnExplicit) {
 | |
|   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
 | |
|          "Only conversion function templates permitted here");
 | |
| 
 | |
|   if (!CandidateSet.isNewCandidate(FunctionTemplate))
 | |
|     return;
 | |
| 
 | |
|   TemplateDeductionInfo Info(CandidateSet.getLocation());
 | |
|   CXXConversionDecl *Specialization = nullptr;
 | |
|   if (TemplateDeductionResult Result
 | |
|         = DeduceTemplateArguments(FunctionTemplate, ToType,
 | |
|                                   Specialization, Info)) {
 | |
|     OverloadCandidate &Candidate = CandidateSet.addCandidate();
 | |
|     Candidate.FoundDecl = FoundDecl;
 | |
|     Candidate.Function = FunctionTemplate->getTemplatedDecl();
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_deduction;
 | |
|     Candidate.IsSurrogate = false;
 | |
|     Candidate.IgnoreObjectArgument = false;
 | |
|     Candidate.ExplicitCallArguments = 1;
 | |
|     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
 | |
|                                                           Info);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the conversion function template specialization produced by
 | |
|   // template argument deduction as a candidate.
 | |
|   assert(Specialization && "Missing function template specialization?");
 | |
|   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
 | |
|                          CandidateSet, AllowObjCConversionOnExplicit);
 | |
| }
 | |
| 
 | |
| /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
 | |
| /// converts the given @c Object to a function pointer via the
 | |
| /// conversion function @c Conversion, and then attempts to call it
 | |
| /// with the given arguments (C++ [over.call.object]p2-4). Proto is
 | |
| /// the type of function that we'll eventually be calling.
 | |
| void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
 | |
|                                  DeclAccessPair FoundDecl,
 | |
|                                  CXXRecordDecl *ActingContext,
 | |
|                                  const FunctionProtoType *Proto,
 | |
|                                  Expr *Object,
 | |
|                                  ArrayRef<Expr *> Args,
 | |
|                                  OverloadCandidateSet& CandidateSet) {
 | |
|   if (!CandidateSet.isNewCandidate(Conversion))
 | |
|     return;
 | |
| 
 | |
|   // Overload resolution is always an unevaluated context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
| 
 | |
|   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
 | |
|   Candidate.FoundDecl = FoundDecl;
 | |
|   Candidate.Function = nullptr;
 | |
|   Candidate.Surrogate = Conversion;
 | |
|   Candidate.Viable = true;
 | |
|   Candidate.IsSurrogate = true;
 | |
|   Candidate.IgnoreObjectArgument = false;
 | |
|   Candidate.ExplicitCallArguments = Args.size();
 | |
| 
 | |
|   // Determine the implicit conversion sequence for the implicit
 | |
|   // object parameter.
 | |
|   ImplicitConversionSequence ObjectInit
 | |
|     = TryObjectArgumentInitialization(*this, Object->getType(),
 | |
|                                       Object->Classify(Context),
 | |
|                                       Conversion, ActingContext);
 | |
|   if (ObjectInit.isBad()) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|     Candidate.Conversions[0] = ObjectInit;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The first conversion is actually a user-defined conversion whose
 | |
|   // first conversion is ObjectInit's standard conversion (which is
 | |
|   // effectively a reference binding). Record it as such.
 | |
|   Candidate.Conversions[0].setUserDefined();
 | |
|   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
 | |
|   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
 | |
|   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
 | |
|   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
 | |
|   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
 | |
|   Candidate.Conversions[0].UserDefined.After
 | |
|     = Candidate.Conversions[0].UserDefined.Before;
 | |
|   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
 | |
| 
 | |
|   // Find the
 | |
|   unsigned NumParams = Proto->getNumParams();
 | |
| 
 | |
|   // (C++ 13.3.2p2): A candidate function having fewer than m
 | |
|   // parameters is viable only if it has an ellipsis in its parameter
 | |
|   // list (8.3.5).
 | |
|   if (Args.size() > NumParams && !Proto->isVariadic()) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_too_many_arguments;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Function types don't have any default arguments, so just check if
 | |
|   // we have enough arguments.
 | |
|   if (Args.size() < NumParams) {
 | |
|     // Not enough arguments.
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_too_few_arguments;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Determine the implicit conversion sequences for each of the
 | |
|   // arguments.
 | |
|   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|     if (ArgIdx < NumParams) {
 | |
|       // (C++ 13.3.2p3): for F to be a viable function, there shall
 | |
|       // exist for each argument an implicit conversion sequence
 | |
|       // (13.3.3.1) that converts that argument to the corresponding
 | |
|       // parameter of F.
 | |
|       QualType ParamType = Proto->getParamType(ArgIdx);
 | |
|       Candidate.Conversions[ArgIdx + 1]
 | |
|         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
 | |
|                                 /*SuppressUserConversions=*/false,
 | |
|                                 /*InOverloadResolution=*/false,
 | |
|                                 /*AllowObjCWritebackConversion=*/
 | |
|                                   getLangOpts().ObjCAutoRefCount);
 | |
|       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
 | |
|         Candidate.Viable = false;
 | |
|         Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|         return;
 | |
|       }
 | |
|     } else {
 | |
|       // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | |
|       // argument for which there is no corresponding parameter is
 | |
|       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | |
|       Candidate.Conversions[ArgIdx + 1].setEllipsis();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, ArrayRef<Expr*>())) {
 | |
|     Candidate.Viable = false;
 | |
|     Candidate.FailureKind = ovl_fail_enable_if;
 | |
|     Candidate.DeductionFailure.Data = FailedAttr;
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Add overload candidates for overloaded operators that are
 | |
| /// member functions.
 | |
| ///
 | |
| /// Add the overloaded operator candidates that are member functions
 | |
| /// for the operator Op that was used in an operator expression such
 | |
| /// as "x Op y". , Args/NumArgs provides the operator arguments, and
 | |
| /// CandidateSet will store the added overload candidates. (C++
 | |
| /// [over.match.oper]).
 | |
| void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
 | |
|                                        SourceLocation OpLoc,
 | |
|                                        ArrayRef<Expr *> Args,
 | |
|                                        OverloadCandidateSet& CandidateSet,
 | |
|                                        SourceRange OpRange) {
 | |
|   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | |
| 
 | |
|   // C++ [over.match.oper]p3:
 | |
|   //   For a unary operator @ with an operand of a type whose
 | |
|   //   cv-unqualified version is T1, and for a binary operator @ with
 | |
|   //   a left operand of a type whose cv-unqualified version is T1 and
 | |
|   //   a right operand of a type whose cv-unqualified version is T2,
 | |
|   //   three sets of candidate functions, designated member
 | |
|   //   candidates, non-member candidates and built-in candidates, are
 | |
|   //   constructed as follows:
 | |
|   QualType T1 = Args[0]->getType();
 | |
| 
 | |
|   //     -- If T1 is a complete class type or a class currently being
 | |
|   //        defined, the set of member candidates is the result of the
 | |
|   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
 | |
|   //        the set of member candidates is empty.
 | |
|   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
 | |
|     // Complete the type if it can be completed.
 | |
|     RequireCompleteType(OpLoc, T1, 0);
 | |
|     // If the type is neither complete nor being defined, bail out now.
 | |
|     if (!T1Rec->getDecl()->getDefinition())
 | |
|       return;
 | |
| 
 | |
|     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
 | |
|     LookupQualifiedName(Operators, T1Rec->getDecl());
 | |
|     Operators.suppressDiagnostics();
 | |
| 
 | |
|     for (LookupResult::iterator Oper = Operators.begin(),
 | |
|                              OperEnd = Operators.end();
 | |
|          Oper != OperEnd;
 | |
|          ++Oper)
 | |
|       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
 | |
|                          Args[0]->Classify(Context), 
 | |
|                          Args.slice(1),
 | |
|                          CandidateSet,
 | |
|                          /* SuppressUserConversions = */ false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddBuiltinCandidate - Add a candidate for a built-in
 | |
| /// operator. ResultTy and ParamTys are the result and parameter types
 | |
| /// of the built-in candidate, respectively. Args and NumArgs are the
 | |
| /// arguments being passed to the candidate. IsAssignmentOperator
 | |
| /// should be true when this built-in candidate is an assignment
 | |
| /// operator. NumContextualBoolArguments is the number of arguments
 | |
| /// (at the beginning of the argument list) that will be contextually
 | |
| /// converted to bool.
 | |
| void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
 | |
|                                ArrayRef<Expr *> Args,
 | |
|                                OverloadCandidateSet& CandidateSet,
 | |
|                                bool IsAssignmentOperator,
 | |
|                                unsigned NumContextualBoolArguments) {
 | |
|   // Overload resolution is always an unevaluated context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
| 
 | |
|   // Add this candidate
 | |
|   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
 | |
|   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
 | |
|   Candidate.Function = nullptr;
 | |
|   Candidate.IsSurrogate = false;
 | |
|   Candidate.IgnoreObjectArgument = false;
 | |
|   Candidate.BuiltinTypes.ResultTy = ResultTy;
 | |
|   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
 | |
|     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
 | |
| 
 | |
|   // Determine the implicit conversion sequences for each of the
 | |
|   // arguments.
 | |
|   Candidate.Viable = true;
 | |
|   Candidate.ExplicitCallArguments = Args.size();
 | |
|   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|     // C++ [over.match.oper]p4:
 | |
|     //   For the built-in assignment operators, conversions of the
 | |
|     //   left operand are restricted as follows:
 | |
|     //     -- no temporaries are introduced to hold the left operand, and
 | |
|     //     -- no user-defined conversions are applied to the left
 | |
|     //        operand to achieve a type match with the left-most
 | |
|     //        parameter of a built-in candidate.
 | |
|     //
 | |
|     // We block these conversions by turning off user-defined
 | |
|     // conversions, since that is the only way that initialization of
 | |
|     // a reference to a non-class type can occur from something that
 | |
|     // is not of the same type.
 | |
|     if (ArgIdx < NumContextualBoolArguments) {
 | |
|       assert(ParamTys[ArgIdx] == Context.BoolTy &&
 | |
|              "Contextual conversion to bool requires bool type");
 | |
|       Candidate.Conversions[ArgIdx]
 | |
|         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
 | |
|     } else {
 | |
|       Candidate.Conversions[ArgIdx]
 | |
|         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
 | |
|                                 ArgIdx == 0 && IsAssignmentOperator,
 | |
|                                 /*InOverloadResolution=*/false,
 | |
|                                 /*AllowObjCWritebackConversion=*/
 | |
|                                   getLangOpts().ObjCAutoRefCount);
 | |
|     }
 | |
|     if (Candidate.Conversions[ArgIdx].isBad()) {
 | |
|       Candidate.Viable = false;
 | |
|       Candidate.FailureKind = ovl_fail_bad_conversion;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// BuiltinCandidateTypeSet - A set of types that will be used for the
 | |
| /// candidate operator functions for built-in operators (C++
 | |
| /// [over.built]). The types are separated into pointer types and
 | |
| /// enumeration types.
 | |
| class BuiltinCandidateTypeSet  {
 | |
|   /// TypeSet - A set of types.
 | |
|   typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
 | |
| 
 | |
|   /// PointerTypes - The set of pointer types that will be used in the
 | |
|   /// built-in candidates.
 | |
|   TypeSet PointerTypes;
 | |
| 
 | |
|   /// MemberPointerTypes - The set of member pointer types that will be
 | |
|   /// used in the built-in candidates.
 | |
|   TypeSet MemberPointerTypes;
 | |
| 
 | |
|   /// EnumerationTypes - The set of enumeration types that will be
 | |
|   /// used in the built-in candidates.
 | |
|   TypeSet EnumerationTypes;
 | |
| 
 | |
|   /// \brief The set of vector types that will be used in the built-in
 | |
|   /// candidates.
 | |
|   TypeSet VectorTypes;
 | |
| 
 | |
|   /// \brief A flag indicating non-record types are viable candidates
 | |
|   bool HasNonRecordTypes;
 | |
| 
 | |
|   /// \brief A flag indicating whether either arithmetic or enumeration types
 | |
|   /// were present in the candidate set.
 | |
|   bool HasArithmeticOrEnumeralTypes;
 | |
| 
 | |
|   /// \brief A flag indicating whether the nullptr type was present in the
 | |
|   /// candidate set.
 | |
|   bool HasNullPtrType;
 | |
|   
 | |
|   /// Sema - The semantic analysis instance where we are building the
 | |
|   /// candidate type set.
 | |
|   Sema &SemaRef;
 | |
| 
 | |
|   /// Context - The AST context in which we will build the type sets.
 | |
|   ASTContext &Context;
 | |
| 
 | |
|   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
 | |
|                                                const Qualifiers &VisibleQuals);
 | |
|   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
 | |
| 
 | |
| public:
 | |
|   /// iterator - Iterates through the types that are part of the set.
 | |
|   typedef TypeSet::iterator iterator;
 | |
| 
 | |
|   BuiltinCandidateTypeSet(Sema &SemaRef)
 | |
|     : HasNonRecordTypes(false),
 | |
|       HasArithmeticOrEnumeralTypes(false),
 | |
|       HasNullPtrType(false),
 | |
|       SemaRef(SemaRef),
 | |
|       Context(SemaRef.Context) { }
 | |
| 
 | |
|   void AddTypesConvertedFrom(QualType Ty,
 | |
|                              SourceLocation Loc,
 | |
|                              bool AllowUserConversions,
 | |
|                              bool AllowExplicitConversions,
 | |
|                              const Qualifiers &VisibleTypeConversionsQuals);
 | |
| 
 | |
|   /// pointer_begin - First pointer type found;
 | |
|   iterator pointer_begin() { return PointerTypes.begin(); }
 | |
| 
 | |
|   /// pointer_end - Past the last pointer type found;
 | |
|   iterator pointer_end() { return PointerTypes.end(); }
 | |
| 
 | |
|   /// member_pointer_begin - First member pointer type found;
 | |
|   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
 | |
| 
 | |
|   /// member_pointer_end - Past the last member pointer type found;
 | |
|   iterator member_pointer_end() { return MemberPointerTypes.end(); }
 | |
| 
 | |
|   /// enumeration_begin - First enumeration type found;
 | |
|   iterator enumeration_begin() { return EnumerationTypes.begin(); }
 | |
| 
 | |
|   /// enumeration_end - Past the last enumeration type found;
 | |
|   iterator enumeration_end() { return EnumerationTypes.end(); }
 | |
| 
 | |
|   iterator vector_begin() { return VectorTypes.begin(); }
 | |
|   iterator vector_end() { return VectorTypes.end(); }
 | |
| 
 | |
|   bool hasNonRecordTypes() { return HasNonRecordTypes; }
 | |
|   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
 | |
|   bool hasNullPtrType() const { return HasNullPtrType; }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
 | |
| /// the set of pointer types along with any more-qualified variants of
 | |
| /// that type. For example, if @p Ty is "int const *", this routine
 | |
| /// will add "int const *", "int const volatile *", "int const
 | |
| /// restrict *", and "int const volatile restrict *" to the set of
 | |
| /// pointer types. Returns true if the add of @p Ty itself succeeded,
 | |
| /// false otherwise.
 | |
| ///
 | |
| /// FIXME: what to do about extended qualifiers?
 | |
| bool
 | |
| BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
 | |
|                                              const Qualifiers &VisibleQuals) {
 | |
| 
 | |
|   // Insert this type.
 | |
|   if (!PointerTypes.insert(Ty))
 | |
|     return false;
 | |
| 
 | |
|   QualType PointeeTy;
 | |
|   const PointerType *PointerTy = Ty->getAs<PointerType>();
 | |
|   bool buildObjCPtr = false;
 | |
|   if (!PointerTy) {
 | |
|     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
 | |
|     PointeeTy = PTy->getPointeeType();
 | |
|     buildObjCPtr = true;
 | |
|   } else {
 | |
|     PointeeTy = PointerTy->getPointeeType();
 | |
|   }
 | |
|   
 | |
|   // Don't add qualified variants of arrays. For one, they're not allowed
 | |
|   // (the qualifier would sink to the element type), and for another, the
 | |
|   // only overload situation where it matters is subscript or pointer +- int,
 | |
|   // and those shouldn't have qualifier variants anyway.
 | |
|   if (PointeeTy->isArrayType())
 | |
|     return true;
 | |
|   
 | |
|   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
 | |
|   bool hasVolatile = VisibleQuals.hasVolatile();
 | |
|   bool hasRestrict = VisibleQuals.hasRestrict();
 | |
| 
 | |
|   // Iterate through all strict supersets of BaseCVR.
 | |
|   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
 | |
|     if ((CVR | BaseCVR) != CVR) continue;
 | |
|     // Skip over volatile if no volatile found anywhere in the types.
 | |
|     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
 | |
|     
 | |
|     // Skip over restrict if no restrict found anywhere in the types, or if
 | |
|     // the type cannot be restrict-qualified.
 | |
|     if ((CVR & Qualifiers::Restrict) &&
 | |
|         (!hasRestrict ||
 | |
|          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
 | |
|       continue;
 | |
|   
 | |
|     // Build qualified pointee type.
 | |
|     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
 | |
|     
 | |
|     // Build qualified pointer type.
 | |
|     QualType QPointerTy;
 | |
|     if (!buildObjCPtr)
 | |
|       QPointerTy = Context.getPointerType(QPointeeTy);
 | |
|     else
 | |
|       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
 | |
|     
 | |
|     // Insert qualified pointer type.
 | |
|     PointerTypes.insert(QPointerTy);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
 | |
| /// to the set of pointer types along with any more-qualified variants of
 | |
| /// that type. For example, if @p Ty is "int const *", this routine
 | |
| /// will add "int const *", "int const volatile *", "int const
 | |
| /// restrict *", and "int const volatile restrict *" to the set of
 | |
| /// pointer types. Returns true if the add of @p Ty itself succeeded,
 | |
| /// false otherwise.
 | |
| ///
 | |
| /// FIXME: what to do about extended qualifiers?
 | |
| bool
 | |
| BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
 | |
|     QualType Ty) {
 | |
|   // Insert this type.
 | |
|   if (!MemberPointerTypes.insert(Ty))
 | |
|     return false;
 | |
| 
 | |
|   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
 | |
|   assert(PointerTy && "type was not a member pointer type!");
 | |
| 
 | |
|   QualType PointeeTy = PointerTy->getPointeeType();
 | |
|   // Don't add qualified variants of arrays. For one, they're not allowed
 | |
|   // (the qualifier would sink to the element type), and for another, the
 | |
|   // only overload situation where it matters is subscript or pointer +- int,
 | |
|   // and those shouldn't have qualifier variants anyway.
 | |
|   if (PointeeTy->isArrayType())
 | |
|     return true;
 | |
|   const Type *ClassTy = PointerTy->getClass();
 | |
| 
 | |
|   // Iterate through all strict supersets of the pointee type's CVR
 | |
|   // qualifiers.
 | |
|   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
 | |
|   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
 | |
|     if ((CVR | BaseCVR) != CVR) continue;
 | |
| 
 | |
|     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
 | |
|     MemberPointerTypes.insert(
 | |
|       Context.getMemberPointerType(QPointeeTy, ClassTy));
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AddTypesConvertedFrom - Add each of the types to which the type @p
 | |
| /// Ty can be implicit converted to the given set of @p Types. We're
 | |
| /// primarily interested in pointer types and enumeration types. We also
 | |
| /// take member pointer types, for the conditional operator.
 | |
| /// AllowUserConversions is true if we should look at the conversion
 | |
| /// functions of a class type, and AllowExplicitConversions if we
 | |
| /// should also include the explicit conversion functions of a class
 | |
| /// type.
 | |
| void
 | |
| BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
 | |
|                                                SourceLocation Loc,
 | |
|                                                bool AllowUserConversions,
 | |
|                                                bool AllowExplicitConversions,
 | |
|                                                const Qualifiers &VisibleQuals) {
 | |
|   // Only deal with canonical types.
 | |
|   Ty = Context.getCanonicalType(Ty);
 | |
| 
 | |
|   // Look through reference types; they aren't part of the type of an
 | |
|   // expression for the purposes of conversions.
 | |
|   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
 | |
|     Ty = RefTy->getPointeeType();
 | |
| 
 | |
|   // If we're dealing with an array type, decay to the pointer.
 | |
|   if (Ty->isArrayType())
 | |
|     Ty = SemaRef.Context.getArrayDecayedType(Ty);
 | |
| 
 | |
|   // Otherwise, we don't care about qualifiers on the type.
 | |
|   Ty = Ty.getLocalUnqualifiedType();
 | |
| 
 | |
|   // Flag if we ever add a non-record type.
 | |
|   const RecordType *TyRec = Ty->getAs<RecordType>();
 | |
|   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
 | |
| 
 | |
|   // Flag if we encounter an arithmetic type.
 | |
|   HasArithmeticOrEnumeralTypes =
 | |
|     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
 | |
| 
 | |
|   if (Ty->isObjCIdType() || Ty->isObjCClassType())
 | |
|     PointerTypes.insert(Ty);
 | |
|   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
 | |
|     // Insert our type, and its more-qualified variants, into the set
 | |
|     // of types.
 | |
|     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
 | |
|       return;
 | |
|   } else if (Ty->isMemberPointerType()) {
 | |
|     // Member pointers are far easier, since the pointee can't be converted.
 | |
|     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
 | |
|       return;
 | |
|   } else if (Ty->isEnumeralType()) {
 | |
|     HasArithmeticOrEnumeralTypes = true;
 | |
|     EnumerationTypes.insert(Ty);
 | |
|   } else if (Ty->isVectorType()) {
 | |
|     // We treat vector types as arithmetic types in many contexts as an
 | |
|     // extension.
 | |
|     HasArithmeticOrEnumeralTypes = true;
 | |
|     VectorTypes.insert(Ty);
 | |
|   } else if (Ty->isNullPtrType()) {
 | |
|     HasNullPtrType = true;
 | |
|   } else if (AllowUserConversions && TyRec) {
 | |
|     // No conversion functions in incomplete types.
 | |
|     if (SemaRef.RequireCompleteType(Loc, Ty, 0))
 | |
|       return;
 | |
| 
 | |
|     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
 | |
|     std::pair<CXXRecordDecl::conversion_iterator,
 | |
|               CXXRecordDecl::conversion_iterator>
 | |
|       Conversions = ClassDecl->getVisibleConversionFunctions();
 | |
|     for (CXXRecordDecl::conversion_iterator
 | |
|            I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|       NamedDecl *D = I.getDecl();
 | |
|       if (isa<UsingShadowDecl>(D))
 | |
|         D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|       // Skip conversion function templates; they don't tell us anything
 | |
|       // about which builtin types we can convert to.
 | |
|       if (isa<FunctionTemplateDecl>(D))
 | |
|         continue;
 | |
| 
 | |
|       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
 | |
|       if (AllowExplicitConversions || !Conv->isExplicit()) {
 | |
|         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
 | |
|                               VisibleQuals);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
 | |
| /// the volatile- and non-volatile-qualified assignment operators for the
 | |
| /// given type to the candidate set.
 | |
| static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
 | |
|                                                    QualType T,
 | |
|                                                    ArrayRef<Expr *> Args,
 | |
|                                     OverloadCandidateSet &CandidateSet) {
 | |
|   QualType ParamTypes[2];
 | |
| 
 | |
|   // T& operator=(T&, T)
 | |
|   ParamTypes[0] = S.Context.getLValueReferenceType(T);
 | |
|   ParamTypes[1] = T;
 | |
|   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                         /*IsAssignmentOperator=*/true);
 | |
| 
 | |
|   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
 | |
|     // volatile T& operator=(volatile T&, T)
 | |
|     ParamTypes[0]
 | |
|       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
 | |
|     ParamTypes[1] = T;
 | |
|     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                           /*IsAssignmentOperator=*/true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
 | |
| /// if any, found in visible type conversion functions found in ArgExpr's type.
 | |
| static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
 | |
|     Qualifiers VRQuals;
 | |
|     const RecordType *TyRec;
 | |
|     if (const MemberPointerType *RHSMPType =
 | |
|         ArgExpr->getType()->getAs<MemberPointerType>())
 | |
|       TyRec = RHSMPType->getClass()->getAs<RecordType>();
 | |
|     else
 | |
|       TyRec = ArgExpr->getType()->getAs<RecordType>();
 | |
|     if (!TyRec) {
 | |
|       // Just to be safe, assume the worst case.
 | |
|       VRQuals.addVolatile();
 | |
|       VRQuals.addRestrict();
 | |
|       return VRQuals;
 | |
|     }
 | |
| 
 | |
|     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
 | |
|     if (!ClassDecl->hasDefinition())
 | |
|       return VRQuals;
 | |
| 
 | |
|     std::pair<CXXRecordDecl::conversion_iterator,
 | |
|               CXXRecordDecl::conversion_iterator>
 | |
|       Conversions = ClassDecl->getVisibleConversionFunctions();
 | |
| 
 | |
|     for (CXXRecordDecl::conversion_iterator
 | |
|            I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|       NamedDecl *D = I.getDecl();
 | |
|       if (isa<UsingShadowDecl>(D))
 | |
|         D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
|       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
 | |
|         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
 | |
|         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
 | |
|           CanTy = ResTypeRef->getPointeeType();
 | |
|         // Need to go down the pointer/mempointer chain and add qualifiers
 | |
|         // as see them.
 | |
|         bool done = false;
 | |
|         while (!done) {
 | |
|           if (CanTy.isRestrictQualified())
 | |
|             VRQuals.addRestrict();
 | |
|           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
 | |
|             CanTy = ResTypePtr->getPointeeType();
 | |
|           else if (const MemberPointerType *ResTypeMPtr =
 | |
|                 CanTy->getAs<MemberPointerType>())
 | |
|             CanTy = ResTypeMPtr->getPointeeType();
 | |
|           else
 | |
|             done = true;
 | |
|           if (CanTy.isVolatileQualified())
 | |
|             VRQuals.addVolatile();
 | |
|           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
 | |
|             return VRQuals;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return VRQuals;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief Helper class to manage the addition of builtin operator overload
 | |
| /// candidates. It provides shared state and utility methods used throughout
 | |
| /// the process, as well as a helper method to add each group of builtin
 | |
| /// operator overloads from the standard to a candidate set.
 | |
| class BuiltinOperatorOverloadBuilder {
 | |
|   // Common instance state available to all overload candidate addition methods.
 | |
|   Sema &S;
 | |
|   ArrayRef<Expr *> Args;
 | |
|   Qualifiers VisibleTypeConversionsQuals;
 | |
|   bool HasArithmeticOrEnumeralCandidateType;
 | |
|   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
 | |
|   OverloadCandidateSet &CandidateSet;
 | |
| 
 | |
|   // Define some constants used to index and iterate over the arithemetic types
 | |
|   // provided via the getArithmeticType() method below.
 | |
|   // The "promoted arithmetic types" are the arithmetic
 | |
|   // types are that preserved by promotion (C++ [over.built]p2).
 | |
|   static const unsigned FirstIntegralType = 3;
 | |
|   static const unsigned LastIntegralType = 20;
 | |
|   static const unsigned FirstPromotedIntegralType = 3,
 | |
|                         LastPromotedIntegralType = 11;
 | |
|   static const unsigned FirstPromotedArithmeticType = 0,
 | |
|                         LastPromotedArithmeticType = 11;
 | |
|   static const unsigned NumArithmeticTypes = 20;
 | |
| 
 | |
|   /// \brief Get the canonical type for a given arithmetic type index.
 | |
|   CanQualType getArithmeticType(unsigned index) {
 | |
|     assert(index < NumArithmeticTypes);
 | |
|     static CanQualType ASTContext::* const
 | |
|       ArithmeticTypes[NumArithmeticTypes] = {
 | |
|       // Start of promoted types.
 | |
|       &ASTContext::FloatTy,
 | |
|       &ASTContext::DoubleTy,
 | |
|       &ASTContext::LongDoubleTy,
 | |
| 
 | |
|       // Start of integral types.
 | |
|       &ASTContext::IntTy,
 | |
|       &ASTContext::LongTy,
 | |
|       &ASTContext::LongLongTy,
 | |
|       &ASTContext::Int128Ty,
 | |
|       &ASTContext::UnsignedIntTy,
 | |
|       &ASTContext::UnsignedLongTy,
 | |
|       &ASTContext::UnsignedLongLongTy,
 | |
|       &ASTContext::UnsignedInt128Ty,
 | |
|       // End of promoted types.
 | |
| 
 | |
|       &ASTContext::BoolTy,
 | |
|       &ASTContext::CharTy,
 | |
|       &ASTContext::WCharTy,
 | |
|       &ASTContext::Char16Ty,
 | |
|       &ASTContext::Char32Ty,
 | |
|       &ASTContext::SignedCharTy,
 | |
|       &ASTContext::ShortTy,
 | |
|       &ASTContext::UnsignedCharTy,
 | |
|       &ASTContext::UnsignedShortTy,
 | |
|       // End of integral types.
 | |
|       // FIXME: What about complex? What about half?
 | |
|     };
 | |
|     return S.Context.*ArithmeticTypes[index];
 | |
|   }
 | |
| 
 | |
|   /// \brief Gets the canonical type resulting from the usual arithemetic
 | |
|   /// converions for the given arithmetic types.
 | |
|   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
 | |
|     // Accelerator table for performing the usual arithmetic conversions.
 | |
|     // The rules are basically:
 | |
|     //   - if either is floating-point, use the wider floating-point
 | |
|     //   - if same signedness, use the higher rank
 | |
|     //   - if same size, use unsigned of the higher rank
 | |
|     //   - use the larger type
 | |
|     // These rules, together with the axiom that higher ranks are
 | |
|     // never smaller, are sufficient to precompute all of these results
 | |
|     // *except* when dealing with signed types of higher rank.
 | |
|     // (we could precompute SLL x UI for all known platforms, but it's
 | |
|     // better not to make any assumptions).
 | |
|     // We assume that int128 has a higher rank than long long on all platforms.
 | |
|     enum PromotedType {
 | |
|             Dep=-1,
 | |
|             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
 | |
|     };
 | |
|     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
 | |
|                                         [LastPromotedArithmeticType] = {
 | |
| /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
 | |
| /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
 | |
| /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
 | |
| /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
 | |
| /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
 | |
| /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
 | |
| /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
 | |
| /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
 | |
| /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
 | |
| /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
 | |
| /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
 | |
|     };
 | |
| 
 | |
|     assert(L < LastPromotedArithmeticType);
 | |
|     assert(R < LastPromotedArithmeticType);
 | |
|     int Idx = ConversionsTable[L][R];
 | |
| 
 | |
|     // Fast path: the table gives us a concrete answer.
 | |
|     if (Idx != Dep) return getArithmeticType(Idx);
 | |
| 
 | |
|     // Slow path: we need to compare widths.
 | |
|     // An invariant is that the signed type has higher rank.
 | |
|     CanQualType LT = getArithmeticType(L),
 | |
|                 RT = getArithmeticType(R);
 | |
|     unsigned LW = S.Context.getIntWidth(LT),
 | |
|              RW = S.Context.getIntWidth(RT);
 | |
| 
 | |
|     // If they're different widths, use the signed type.
 | |
|     if (LW > RW) return LT;
 | |
|     else if (LW < RW) return RT;
 | |
| 
 | |
|     // Otherwise, use the unsigned type of the signed type's rank.
 | |
|     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
 | |
|     assert(L == SLL || R == SLL);
 | |
|     return S.Context.UnsignedLongLongTy;
 | |
|   }
 | |
| 
 | |
|   /// \brief Helper method to factor out the common pattern of adding overloads
 | |
|   /// for '++' and '--' builtin operators.
 | |
|   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
 | |
|                                            bool HasVolatile,
 | |
|                                            bool HasRestrict) {
 | |
|     QualType ParamTypes[2] = {
 | |
|       S.Context.getLValueReferenceType(CandidateTy),
 | |
|       S.Context.IntTy
 | |
|     };
 | |
| 
 | |
|     // Non-volatile version.
 | |
|     if (Args.size() == 1)
 | |
|       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
 | |
|     else
 | |
|       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
 | |
| 
 | |
|     // Use a heuristic to reduce number of builtin candidates in the set:
 | |
|     // add volatile version only if there are conversions to a volatile type.
 | |
|     if (HasVolatile) {
 | |
|       ParamTypes[0] =
 | |
|         S.Context.getLValueReferenceType(
 | |
|           S.Context.getVolatileType(CandidateTy));
 | |
|       if (Args.size() == 1)
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
 | |
|       else
 | |
|         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
 | |
|     }
 | |
|     
 | |
|     // Add restrict version only if there are conversions to a restrict type
 | |
|     // and our candidate type is a non-restrict-qualified pointer.
 | |
|     if (HasRestrict && CandidateTy->isAnyPointerType() &&
 | |
|         !CandidateTy.isRestrictQualified()) {
 | |
|       ParamTypes[0]
 | |
|         = S.Context.getLValueReferenceType(
 | |
|             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
 | |
|       if (Args.size() == 1)
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
 | |
|       else
 | |
|         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
 | |
|       
 | |
|       if (HasVolatile) {
 | |
|         ParamTypes[0]
 | |
|           = S.Context.getLValueReferenceType(
 | |
|               S.Context.getCVRQualifiedType(CandidateTy,
 | |
|                                             (Qualifiers::Volatile |
 | |
|                                              Qualifiers::Restrict)));
 | |
|         if (Args.size() == 1)
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
 | |
|         else
 | |
|           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   BuiltinOperatorOverloadBuilder(
 | |
|     Sema &S, ArrayRef<Expr *> Args,
 | |
|     Qualifiers VisibleTypeConversionsQuals,
 | |
|     bool HasArithmeticOrEnumeralCandidateType,
 | |
|     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
 | |
|     OverloadCandidateSet &CandidateSet)
 | |
|     : S(S), Args(Args),
 | |
|       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
 | |
|       HasArithmeticOrEnumeralCandidateType(
 | |
|         HasArithmeticOrEnumeralCandidateType),
 | |
|       CandidateTypes(CandidateTypes),
 | |
|       CandidateSet(CandidateSet) {
 | |
|     // Validate some of our static helper constants in debug builds.
 | |
|     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
 | |
|            "Invalid first promoted integral type");
 | |
|     assert(getArithmeticType(LastPromotedIntegralType - 1)
 | |
|              == S.Context.UnsignedInt128Ty &&
 | |
|            "Invalid last promoted integral type");
 | |
|     assert(getArithmeticType(FirstPromotedArithmeticType)
 | |
|              == S.Context.FloatTy &&
 | |
|            "Invalid first promoted arithmetic type");
 | |
|     assert(getArithmeticType(LastPromotedArithmeticType - 1)
 | |
|              == S.Context.UnsignedInt128Ty &&
 | |
|            "Invalid last promoted arithmetic type");
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p3:
 | |
|   //
 | |
|   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
 | |
|   //   is either volatile or empty, there exist candidate operator
 | |
|   //   functions of the form
 | |
|   //
 | |
|   //       VQ T&      operator++(VQ T&);
 | |
|   //       T          operator++(VQ T&, int);
 | |
|   //
 | |
|   // C++ [over.built]p4:
 | |
|   //
 | |
|   //   For every pair (T, VQ), where T is an arithmetic type other
 | |
|   //   than bool, and VQ is either volatile or empty, there exist
 | |
|   //   candidate operator functions of the form
 | |
|   //
 | |
|   //       VQ T&      operator--(VQ T&);
 | |
|   //       T          operator--(VQ T&, int);
 | |
|   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
 | |
|          Arith < NumArithmeticTypes; ++Arith) {
 | |
|       addPlusPlusMinusMinusStyleOverloads(
 | |
|         getArithmeticType(Arith),
 | |
|         VisibleTypeConversionsQuals.hasVolatile(),
 | |
|         VisibleTypeConversionsQuals.hasRestrict());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p5:
 | |
|   //
 | |
|   //   For every pair (T, VQ), where T is a cv-qualified or
 | |
|   //   cv-unqualified object type, and VQ is either volatile or
 | |
|   //   empty, there exist candidate operator functions of the form
 | |
|   //
 | |
|   //       T*VQ&      operator++(T*VQ&);
 | |
|   //       T*VQ&      operator--(T*VQ&);
 | |
|   //       T*         operator++(T*VQ&, int);
 | |
|   //       T*         operator--(T*VQ&, int);
 | |
|   void addPlusPlusMinusMinusPointerOverloads() {
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Ptr = CandidateTypes[0].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[0].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       // Skip pointer types that aren't pointers to object types.
 | |
|       if (!(*Ptr)->getPointeeType()->isObjectType())
 | |
|         continue;
 | |
| 
 | |
|       addPlusPlusMinusMinusStyleOverloads(*Ptr,
 | |
|         (!(*Ptr).isVolatileQualified() &&
 | |
|          VisibleTypeConversionsQuals.hasVolatile()),
 | |
|         (!(*Ptr).isRestrictQualified() &&
 | |
|          VisibleTypeConversionsQuals.hasRestrict()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p6:
 | |
|   //   For every cv-qualified or cv-unqualified object type T, there
 | |
|   //   exist candidate operator functions of the form
 | |
|   //
 | |
|   //       T&         operator*(T*);
 | |
|   //
 | |
|   // C++ [over.built]p7:
 | |
|   //   For every function type T that does not have cv-qualifiers or a
 | |
|   //   ref-qualifier, there exist candidate operator functions of the form
 | |
|   //       T&         operator*(T*);
 | |
|   void addUnaryStarPointerOverloads() {
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Ptr = CandidateTypes[0].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[0].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       QualType ParamTy = *Ptr;
 | |
|       QualType PointeeTy = ParamTy->getPointeeType();
 | |
|       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
 | |
|         continue;
 | |
| 
 | |
|       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
 | |
|         if (Proto->getTypeQuals() || Proto->getRefQualifier())
 | |
|           continue;
 | |
| 
 | |
|       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
 | |
|                             &ParamTy, Args, CandidateSet);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p9:
 | |
|   //  For every promoted arithmetic type T, there exist candidate
 | |
|   //  operator functions of the form
 | |
|   //
 | |
|   //       T         operator+(T);
 | |
|   //       T         operator-(T);
 | |
|   void addUnaryPlusOrMinusArithmeticOverloads() {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Arith = FirstPromotedArithmeticType;
 | |
|          Arith < LastPromotedArithmeticType; ++Arith) {
 | |
|       QualType ArithTy = getArithmeticType(Arith);
 | |
|       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
 | |
|     }
 | |
| 
 | |
|     // Extension: We also add these operators for vector types.
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Vec = CandidateTypes[0].vector_begin(),
 | |
|            VecEnd = CandidateTypes[0].vector_end();
 | |
|          Vec != VecEnd; ++Vec) {
 | |
|       QualType VecTy = *Vec;
 | |
|       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p8:
 | |
|   //   For every type T, there exist candidate operator functions of
 | |
|   //   the form
 | |
|   //
 | |
|   //       T*         operator+(T*);
 | |
|   void addUnaryPlusPointerOverloads() {
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Ptr = CandidateTypes[0].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[0].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       QualType ParamTy = *Ptr;
 | |
|       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p10:
 | |
|   //   For every promoted integral type T, there exist candidate
 | |
|   //   operator functions of the form
 | |
|   //
 | |
|   //        T         operator~(T);
 | |
|   void addUnaryTildePromotedIntegralOverloads() {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Int = FirstPromotedIntegralType;
 | |
|          Int < LastPromotedIntegralType; ++Int) {
 | |
|       QualType IntTy = getArithmeticType(Int);
 | |
|       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
 | |
|     }
 | |
| 
 | |
|     // Extension: We also add this operator for vector types.
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Vec = CandidateTypes[0].vector_begin(),
 | |
|            VecEnd = CandidateTypes[0].vector_end();
 | |
|          Vec != VecEnd; ++Vec) {
 | |
|       QualType VecTy = *Vec;
 | |
|       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.match.oper]p16:
 | |
|   //   For every pointer to member type T, there exist candidate operator
 | |
|   //   functions of the form
 | |
|   //
 | |
|   //        bool operator==(T,T);
 | |
|   //        bool operator!=(T,T);
 | |
|   void addEqualEqualOrNotEqualMemberPointerOverloads() {
 | |
|     /// Set of (canonical) types that we've already handled.
 | |
|     llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | |
| 
 | |
|     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
 | |
|              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
 | |
|            MemPtr != MemPtrEnd;
 | |
|            ++MemPtr) {
 | |
|         // Don't add the same builtin candidate twice.
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
 | |
|           continue;
 | |
| 
 | |
|         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
 | |
|         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p15:
 | |
|   //
 | |
|   //   For every T, where T is an enumeration type, a pointer type, or 
 | |
|   //   std::nullptr_t, there exist candidate operator functions of the form
 | |
|   //
 | |
|   //        bool       operator<(T, T);
 | |
|   //        bool       operator>(T, T);
 | |
|   //        bool       operator<=(T, T);
 | |
|   //        bool       operator>=(T, T);
 | |
|   //        bool       operator==(T, T);
 | |
|   //        bool       operator!=(T, T);
 | |
|   void addRelationalPointerOrEnumeralOverloads() {
 | |
|     // C++ [over.match.oper]p3:
 | |
|     //   [...]the built-in candidates include all of the candidate operator
 | |
|     //   functions defined in 13.6 that, compared to the given operator, [...]
 | |
|     //   do not have the same parameter-type-list as any non-template non-member
 | |
|     //   candidate.
 | |
|     //
 | |
|     // Note that in practice, this only affects enumeration types because there
 | |
|     // aren't any built-in candidates of record type, and a user-defined operator
 | |
|     // must have an operand of record or enumeration type. Also, the only other
 | |
|     // overloaded operator with enumeration arguments, operator=,
 | |
|     // cannot be overloaded for enumeration types, so this is the only place
 | |
|     // where we must suppress candidates like this.
 | |
|     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
 | |
|       UserDefinedBinaryOperators;
 | |
| 
 | |
|     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|       if (CandidateTypes[ArgIdx].enumeration_begin() !=
 | |
|           CandidateTypes[ArgIdx].enumeration_end()) {
 | |
|         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
 | |
|                                          CEnd = CandidateSet.end();
 | |
|              C != CEnd; ++C) {
 | |
|           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
 | |
|             continue;
 | |
| 
 | |
|           if (C->Function->isFunctionTemplateSpecialization())
 | |
|             continue;
 | |
| 
 | |
|           QualType FirstParamType =
 | |
|             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
 | |
|           QualType SecondParamType =
 | |
|             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
 | |
| 
 | |
|           // Skip if either parameter isn't of enumeral type.
 | |
|           if (!FirstParamType->isEnumeralType() ||
 | |
|               !SecondParamType->isEnumeralType())
 | |
|             continue;
 | |
| 
 | |
|           // Add this operator to the set of known user-defined operators.
 | |
|           UserDefinedBinaryOperators.insert(
 | |
|             std::make_pair(S.Context.getCanonicalType(FirstParamType),
 | |
|                            S.Context.getCanonicalType(SecondParamType)));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Set of (canonical) types that we've already handled.
 | |
|     llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | |
| 
 | |
|     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
 | |
|              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
 | |
|            Ptr != PtrEnd; ++Ptr) {
 | |
|         // Don't add the same builtin candidate twice.
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | |
|           continue;
 | |
| 
 | |
|         QualType ParamTypes[2] = { *Ptr, *Ptr };
 | |
|         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
 | |
|              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
 | |
|            Enum != EnumEnd; ++Enum) {
 | |
|         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
 | |
| 
 | |
|         // Don't add the same builtin candidate twice, or if a user defined
 | |
|         // candidate exists.
 | |
|         if (!AddedTypes.insert(CanonType) ||
 | |
|             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
 | |
|                                                             CanonType)))
 | |
|           continue;
 | |
| 
 | |
|         QualType ParamTypes[2] = { *Enum, *Enum };
 | |
|         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
|       
 | |
|       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
 | |
|         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
 | |
|         if (AddedTypes.insert(NullPtrTy) &&
 | |
|             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
 | |
|                                                              NullPtrTy))) {
 | |
|           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
 | |
|           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
 | |
|                                 CandidateSet);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p13:
 | |
|   //
 | |
|   //   For every cv-qualified or cv-unqualified object type T
 | |
|   //   there exist candidate operator functions of the form
 | |
|   //
 | |
|   //      T*         operator+(T*, ptrdiff_t);
 | |
|   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
 | |
|   //      T*         operator-(T*, ptrdiff_t);
 | |
|   //      T*         operator+(ptrdiff_t, T*);
 | |
|   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
 | |
|   //
 | |
|   // C++ [over.built]p14:
 | |
|   //
 | |
|   //   For every T, where T is a pointer to object type, there
 | |
|   //   exist candidate operator functions of the form
 | |
|   //
 | |
|   //      ptrdiff_t  operator-(T, T);
 | |
|   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
 | |
|     /// Set of (canonical) types that we've already handled.
 | |
|     llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | |
| 
 | |
|     for (int Arg = 0; Arg < 2; ++Arg) {
 | |
|       QualType AsymetricParamTypes[2] = {
 | |
|         S.Context.getPointerDiffType(),
 | |
|         S.Context.getPointerDiffType(),
 | |
|       };
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Ptr = CandidateTypes[Arg].pointer_begin(),
 | |
|              PtrEnd = CandidateTypes[Arg].pointer_end();
 | |
|            Ptr != PtrEnd; ++Ptr) {
 | |
|         QualType PointeeTy = (*Ptr)->getPointeeType();
 | |
|         if (!PointeeTy->isObjectType())
 | |
|           continue;
 | |
| 
 | |
|         AsymetricParamTypes[Arg] = *Ptr;
 | |
|         if (Arg == 0 || Op == OO_Plus) {
 | |
|           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
 | |
|           // T* operator+(ptrdiff_t, T*);
 | |
|           S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
 | |
|         }
 | |
|         if (Op == OO_Minus) {
 | |
|           // ptrdiff_t operator-(T, T);
 | |
|           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | |
|             continue;
 | |
| 
 | |
|           QualType ParamTypes[2] = { *Ptr, *Ptr };
 | |
|           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
 | |
|                                 Args, CandidateSet);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p12:
 | |
|   //
 | |
|   //   For every pair of promoted arithmetic types L and R, there
 | |
|   //   exist candidate operator functions of the form
 | |
|   //
 | |
|   //        LR         operator*(L, R);
 | |
|   //        LR         operator/(L, R);
 | |
|   //        LR         operator+(L, R);
 | |
|   //        LR         operator-(L, R);
 | |
|   //        bool       operator<(L, R);
 | |
|   //        bool       operator>(L, R);
 | |
|   //        bool       operator<=(L, R);
 | |
|   //        bool       operator>=(L, R);
 | |
|   //        bool       operator==(L, R);
 | |
|   //        bool       operator!=(L, R);
 | |
|   //
 | |
|   //   where LR is the result of the usual arithmetic conversions
 | |
|   //   between types L and R.
 | |
|   //
 | |
|   // C++ [over.built]p24:
 | |
|   //
 | |
|   //   For every pair of promoted arithmetic types L and R, there exist
 | |
|   //   candidate operator functions of the form
 | |
|   //
 | |
|   //        LR       operator?(bool, L, R);
 | |
|   //
 | |
|   //   where LR is the result of the usual arithmetic conversions
 | |
|   //   between types L and R.
 | |
|   // Our candidates ignore the first parameter.
 | |
|   void addGenericBinaryArithmeticOverloads(bool isComparison) {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Left = FirstPromotedArithmeticType;
 | |
|          Left < LastPromotedArithmeticType; ++Left) {
 | |
|       for (unsigned Right = FirstPromotedArithmeticType;
 | |
|            Right < LastPromotedArithmeticType; ++Right) {
 | |
|         QualType LandR[2] = { getArithmeticType(Left),
 | |
|                               getArithmeticType(Right) };
 | |
|         QualType Result =
 | |
|           isComparison ? S.Context.BoolTy
 | |
|                        : getUsualArithmeticConversions(Left, Right);
 | |
|         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
 | |
|     // conditional operator for vector types.
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Vec1 = CandidateTypes[0].vector_begin(),
 | |
|            Vec1End = CandidateTypes[0].vector_end();
 | |
|          Vec1 != Vec1End; ++Vec1) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Vec2 = CandidateTypes[1].vector_begin(),
 | |
|              Vec2End = CandidateTypes[1].vector_end();
 | |
|            Vec2 != Vec2End; ++Vec2) {
 | |
|         QualType LandR[2] = { *Vec1, *Vec2 };
 | |
|         QualType Result = S.Context.BoolTy;
 | |
|         if (!isComparison) {
 | |
|           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
 | |
|             Result = *Vec1;
 | |
|           else
 | |
|             Result = *Vec2;
 | |
|         }
 | |
| 
 | |
|         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p17:
 | |
|   //
 | |
|   //   For every pair of promoted integral types L and R, there
 | |
|   //   exist candidate operator functions of the form
 | |
|   //
 | |
|   //      LR         operator%(L, R);
 | |
|   //      LR         operator&(L, R);
 | |
|   //      LR         operator^(L, R);
 | |
|   //      LR         operator|(L, R);
 | |
|   //      L          operator<<(L, R);
 | |
|   //      L          operator>>(L, R);
 | |
|   //
 | |
|   //   where LR is the result of the usual arithmetic conversions
 | |
|   //   between types L and R.
 | |
|   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Left = FirstPromotedIntegralType;
 | |
|          Left < LastPromotedIntegralType; ++Left) {
 | |
|       for (unsigned Right = FirstPromotedIntegralType;
 | |
|            Right < LastPromotedIntegralType; ++Right) {
 | |
|         QualType LandR[2] = { getArithmeticType(Left),
 | |
|                               getArithmeticType(Right) };
 | |
|         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
 | |
|             ? LandR[0]
 | |
|             : getUsualArithmeticConversions(Left, Right);
 | |
|         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p20:
 | |
|   //
 | |
|   //   For every pair (T, VQ), where T is an enumeration or
 | |
|   //   pointer to member type and VQ is either volatile or
 | |
|   //   empty, there exist candidate operator functions of the form
 | |
|   //
 | |
|   //        VQ T&      operator=(VQ T&, T);
 | |
|   void addAssignmentMemberPointerOrEnumeralOverloads() {
 | |
|     /// Set of (canonical) types that we've already handled.
 | |
|     llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | |
| 
 | |
|     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
 | |
|              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
 | |
|            Enum != EnumEnd; ++Enum) {
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
 | |
|           continue;
 | |
| 
 | |
|         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
 | |
|       }
 | |
| 
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
 | |
|              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
 | |
|            MemPtr != MemPtrEnd; ++MemPtr) {
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
 | |
|           continue;
 | |
| 
 | |
|         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p19:
 | |
|   //
 | |
|   //   For every pair (T, VQ), where T is any type and VQ is either
 | |
|   //   volatile or empty, there exist candidate operator functions
 | |
|   //   of the form
 | |
|   //
 | |
|   //        T*VQ&      operator=(T*VQ&, T*);
 | |
|   //
 | |
|   // C++ [over.built]p21:
 | |
|   //
 | |
|   //   For every pair (T, VQ), where T is a cv-qualified or
 | |
|   //   cv-unqualified object type and VQ is either volatile or
 | |
|   //   empty, there exist candidate operator functions of the form
 | |
|   //
 | |
|   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
 | |
|   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
 | |
|   void addAssignmentPointerOverloads(bool isEqualOp) {
 | |
|     /// Set of (canonical) types that we've already handled.
 | |
|     llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | |
| 
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Ptr = CandidateTypes[0].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[0].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       // If this is operator=, keep track of the builtin candidates we added.
 | |
|       if (isEqualOp)
 | |
|         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
 | |
|       else if (!(*Ptr)->getPointeeType()->isObjectType())
 | |
|         continue;
 | |
| 
 | |
|       // non-volatile version
 | |
|       QualType ParamTypes[2] = {
 | |
|         S.Context.getLValueReferenceType(*Ptr),
 | |
|         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
 | |
|       };
 | |
|       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                             /*IsAssigmentOperator=*/ isEqualOp);
 | |
| 
 | |
|       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
 | |
|                           VisibleTypeConversionsQuals.hasVolatile();
 | |
|       if (NeedVolatile) {
 | |
|         // volatile version
 | |
|         ParamTypes[0] =
 | |
|           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                               /*IsAssigmentOperator=*/isEqualOp);
 | |
|       }
 | |
|       
 | |
|       if (!(*Ptr).isRestrictQualified() &&
 | |
|           VisibleTypeConversionsQuals.hasRestrict()) {
 | |
|         // restrict version
 | |
|         ParamTypes[0]
 | |
|           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                               /*IsAssigmentOperator=*/isEqualOp);
 | |
|         
 | |
|         if (NeedVolatile) {
 | |
|           // volatile restrict version
 | |
|           ParamTypes[0]
 | |
|             = S.Context.getLValueReferenceType(
 | |
|                 S.Context.getCVRQualifiedType(*Ptr,
 | |
|                                               (Qualifiers::Volatile |
 | |
|                                                Qualifiers::Restrict)));
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                                 /*IsAssigmentOperator=*/isEqualOp);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isEqualOp) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Ptr = CandidateTypes[1].pointer_begin(),
 | |
|              PtrEnd = CandidateTypes[1].pointer_end();
 | |
|            Ptr != PtrEnd; ++Ptr) {
 | |
|         // Make sure we don't add the same candidate twice.
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | |
|           continue;
 | |
| 
 | |
|         QualType ParamTypes[2] = {
 | |
|           S.Context.getLValueReferenceType(*Ptr),
 | |
|           *Ptr,
 | |
|         };
 | |
| 
 | |
|         // non-volatile version
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                               /*IsAssigmentOperator=*/true);
 | |
| 
 | |
|         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
 | |
|                            VisibleTypeConversionsQuals.hasVolatile();
 | |
|         if (NeedVolatile) {
 | |
|           // volatile version
 | |
|           ParamTypes[0] =
 | |
|             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                                 /*IsAssigmentOperator=*/true);
 | |
|         }
 | |
|       
 | |
|         if (!(*Ptr).isRestrictQualified() &&
 | |
|             VisibleTypeConversionsQuals.hasRestrict()) {
 | |
|           // restrict version
 | |
|           ParamTypes[0]
 | |
|             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                                 /*IsAssigmentOperator=*/true);
 | |
|           
 | |
|           if (NeedVolatile) {
 | |
|             // volatile restrict version
 | |
|             ParamTypes[0]
 | |
|               = S.Context.getLValueReferenceType(
 | |
|                   S.Context.getCVRQualifiedType(*Ptr,
 | |
|                                                 (Qualifiers::Volatile |
 | |
|                                                  Qualifiers::Restrict)));
 | |
|             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                                   /*IsAssigmentOperator=*/true);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p18:
 | |
|   //
 | |
|   //   For every triple (L, VQ, R), where L is an arithmetic type,
 | |
|   //   VQ is either volatile or empty, and R is a promoted
 | |
|   //   arithmetic type, there exist candidate operator functions of
 | |
|   //   the form
 | |
|   //
 | |
|   //        VQ L&      operator=(VQ L&, R);
 | |
|   //        VQ L&      operator*=(VQ L&, R);
 | |
|   //        VQ L&      operator/=(VQ L&, R);
 | |
|   //        VQ L&      operator+=(VQ L&, R);
 | |
|   //        VQ L&      operator-=(VQ L&, R);
 | |
|   void addAssignmentArithmeticOverloads(bool isEqualOp) {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
 | |
|       for (unsigned Right = FirstPromotedArithmeticType;
 | |
|            Right < LastPromotedArithmeticType; ++Right) {
 | |
|         QualType ParamTypes[2];
 | |
|         ParamTypes[1] = getArithmeticType(Right);
 | |
| 
 | |
|         // Add this built-in operator as a candidate (VQ is empty).
 | |
|         ParamTypes[0] =
 | |
|           S.Context.getLValueReferenceType(getArithmeticType(Left));
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                               /*IsAssigmentOperator=*/isEqualOp);
 | |
| 
 | |
|         // Add this built-in operator as a candidate (VQ is 'volatile').
 | |
|         if (VisibleTypeConversionsQuals.hasVolatile()) {
 | |
|           ParamTypes[0] =
 | |
|             S.Context.getVolatileType(getArithmeticType(Left));
 | |
|           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                                 /*IsAssigmentOperator=*/isEqualOp);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Vec1 = CandidateTypes[0].vector_begin(),
 | |
|            Vec1End = CandidateTypes[0].vector_end();
 | |
|          Vec1 != Vec1End; ++Vec1) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Vec2 = CandidateTypes[1].vector_begin(),
 | |
|              Vec2End = CandidateTypes[1].vector_end();
 | |
|            Vec2 != Vec2End; ++Vec2) {
 | |
|         QualType ParamTypes[2];
 | |
|         ParamTypes[1] = *Vec2;
 | |
|         // Add this built-in operator as a candidate (VQ is empty).
 | |
|         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                               /*IsAssigmentOperator=*/isEqualOp);
 | |
| 
 | |
|         // Add this built-in operator as a candidate (VQ is 'volatile').
 | |
|         if (VisibleTypeConversionsQuals.hasVolatile()) {
 | |
|           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
 | |
|           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
 | |
|                                 /*IsAssigmentOperator=*/isEqualOp);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p22:
 | |
|   //
 | |
|   //   For every triple (L, VQ, R), where L is an integral type, VQ
 | |
|   //   is either volatile or empty, and R is a promoted integral
 | |
|   //   type, there exist candidate operator functions of the form
 | |
|   //
 | |
|   //        VQ L&       operator%=(VQ L&, R);
 | |
|   //        VQ L&       operator<<=(VQ L&, R);
 | |
|   //        VQ L&       operator>>=(VQ L&, R);
 | |
|   //        VQ L&       operator&=(VQ L&, R);
 | |
|   //        VQ L&       operator^=(VQ L&, R);
 | |
|   //        VQ L&       operator|=(VQ L&, R);
 | |
|   void addAssignmentIntegralOverloads() {
 | |
|     if (!HasArithmeticOrEnumeralCandidateType)
 | |
|       return;
 | |
| 
 | |
|     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
 | |
|       for (unsigned Right = FirstPromotedIntegralType;
 | |
|            Right < LastPromotedIntegralType; ++Right) {
 | |
|         QualType ParamTypes[2];
 | |
|         ParamTypes[1] = getArithmeticType(Right);
 | |
| 
 | |
|         // Add this built-in operator as a candidate (VQ is empty).
 | |
|         ParamTypes[0] =
 | |
|           S.Context.getLValueReferenceType(getArithmeticType(Left));
 | |
|         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
 | |
|         if (VisibleTypeConversionsQuals.hasVolatile()) {
 | |
|           // Add this built-in operator as a candidate (VQ is 'volatile').
 | |
|           ParamTypes[0] = getArithmeticType(Left);
 | |
|           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
 | |
|           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
 | |
|           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.operator]p23:
 | |
|   //
 | |
|   //   There also exist candidate operator functions of the form
 | |
|   //
 | |
|   //        bool        operator!(bool);
 | |
|   //        bool        operator&&(bool, bool);
 | |
|   //        bool        operator||(bool, bool);
 | |
|   void addExclaimOverload() {
 | |
|     QualType ParamTy = S.Context.BoolTy;
 | |
|     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
 | |
|                           /*IsAssignmentOperator=*/false,
 | |
|                           /*NumContextualBoolArguments=*/1);
 | |
|   }
 | |
|   void addAmpAmpOrPipePipeOverload() {
 | |
|     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
 | |
|     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
 | |
|                           /*IsAssignmentOperator=*/false,
 | |
|                           /*NumContextualBoolArguments=*/2);
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p13:
 | |
|   //
 | |
|   //   For every cv-qualified or cv-unqualified object type T there
 | |
|   //   exist candidate operator functions of the form
 | |
|   //
 | |
|   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
 | |
|   //        T&         operator[](T*, ptrdiff_t);
 | |
|   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
 | |
|   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
 | |
|   //        T&         operator[](ptrdiff_t, T*);
 | |
|   void addSubscriptOverloads() {
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Ptr = CandidateTypes[0].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[0].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
 | |
|       QualType PointeeType = (*Ptr)->getPointeeType();
 | |
|       if (!PointeeType->isObjectType())
 | |
|         continue;
 | |
| 
 | |
|       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
 | |
| 
 | |
|       // T& operator[](T*, ptrdiff_t)
 | |
|       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
 | |
|     }
 | |
| 
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|               Ptr = CandidateTypes[1].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[1].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
 | |
|       QualType PointeeType = (*Ptr)->getPointeeType();
 | |
|       if (!PointeeType->isObjectType())
 | |
|         continue;
 | |
| 
 | |
|       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
 | |
| 
 | |
|       // T& operator[](ptrdiff_t, T*)
 | |
|       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [over.built]p11:
 | |
|   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
 | |
|   //    C1 is the same type as C2 or is a derived class of C2, T is an object
 | |
|   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
 | |
|   //    there exist candidate operator functions of the form
 | |
|   //
 | |
|   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
 | |
|   //
 | |
|   //    where CV12 is the union of CV1 and CV2.
 | |
|   void addArrowStarOverloads() {
 | |
|     for (BuiltinCandidateTypeSet::iterator
 | |
|              Ptr = CandidateTypes[0].pointer_begin(),
 | |
|            PtrEnd = CandidateTypes[0].pointer_end();
 | |
|          Ptr != PtrEnd; ++Ptr) {
 | |
|       QualType C1Ty = (*Ptr);
 | |
|       QualType C1;
 | |
|       QualifierCollector Q1;
 | |
|       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
 | |
|       if (!isa<RecordType>(C1))
 | |
|         continue;
 | |
|       // heuristic to reduce number of builtin candidates in the set.
 | |
|       // Add volatile/restrict version only if there are conversions to a
 | |
|       // volatile/restrict type.
 | |
|       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
 | |
|         continue;
 | |
|       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
 | |
|         continue;
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 MemPtr = CandidateTypes[1].member_pointer_begin(),
 | |
|              MemPtrEnd = CandidateTypes[1].member_pointer_end();
 | |
|            MemPtr != MemPtrEnd; ++MemPtr) {
 | |
|         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
 | |
|         QualType C2 = QualType(mptr->getClass(), 0);
 | |
|         C2 = C2.getUnqualifiedType();
 | |
|         if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
 | |
|           break;
 | |
|         QualType ParamTypes[2] = { *Ptr, *MemPtr };
 | |
|         // build CV12 T&
 | |
|         QualType T = mptr->getPointeeType();
 | |
|         if (!VisibleTypeConversionsQuals.hasVolatile() &&
 | |
|             T.isVolatileQualified())
 | |
|           continue;
 | |
|         if (!VisibleTypeConversionsQuals.hasRestrict() &&
 | |
|             T.isRestrictQualified())
 | |
|           continue;
 | |
|         T = Q1.apply(S.Context, T);
 | |
|         QualType ResultTy = S.Context.getLValueReferenceType(T);
 | |
|         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Note that we don't consider the first argument, since it has been
 | |
|   // contextually converted to bool long ago. The candidates below are
 | |
|   // therefore added as binary.
 | |
|   //
 | |
|   // C++ [over.built]p25:
 | |
|   //   For every type T, where T is a pointer, pointer-to-member, or scoped
 | |
|   //   enumeration type, there exist candidate operator functions of the form
 | |
|   //
 | |
|   //        T        operator?(bool, T, T);
 | |
|   //
 | |
|   void addConditionalOperatorOverloads() {
 | |
|     /// Set of (canonical) types that we've already handled.
 | |
|     llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | |
| 
 | |
|     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
 | |
|              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
 | |
|            Ptr != PtrEnd; ++Ptr) {
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | |
|           continue;
 | |
| 
 | |
|         QualType ParamTypes[2] = { *Ptr, *Ptr };
 | |
|         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
| 
 | |
|       for (BuiltinCandidateTypeSet::iterator
 | |
|                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
 | |
|              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
 | |
|            MemPtr != MemPtrEnd; ++MemPtr) {
 | |
|         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
 | |
|           continue;
 | |
| 
 | |
|         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
 | |
|         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
 | |
|       }
 | |
| 
 | |
|       if (S.getLangOpts().CPlusPlus11) {
 | |
|         for (BuiltinCandidateTypeSet::iterator
 | |
|                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
 | |
|                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
 | |
|              Enum != EnumEnd; ++Enum) {
 | |
|           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
 | |
|             continue;
 | |
| 
 | |
|           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
 | |
|             continue;
 | |
| 
 | |
|           QualType ParamTypes[2] = { *Enum, *Enum };
 | |
|           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// AddBuiltinOperatorCandidates - Add the appropriate built-in
 | |
| /// operator overloads to the candidate set (C++ [over.built]), based
 | |
| /// on the operator @p Op and the arguments given. For example, if the
 | |
| /// operator is a binary '+', this routine might add "int
 | |
| /// operator+(int, int)" to cover integer addition.
 | |
| void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
 | |
|                                         SourceLocation OpLoc,
 | |
|                                         ArrayRef<Expr *> Args,
 | |
|                                         OverloadCandidateSet &CandidateSet) {
 | |
|   // Find all of the types that the arguments can convert to, but only
 | |
|   // if the operator we're looking at has built-in operator candidates
 | |
|   // that make use of these types. Also record whether we encounter non-record
 | |
|   // candidate types or either arithmetic or enumeral candidate types.
 | |
|   Qualifiers VisibleTypeConversionsQuals;
 | |
|   VisibleTypeConversionsQuals.addConst();
 | |
|   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
 | |
|     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
 | |
| 
 | |
|   bool HasNonRecordCandidateType = false;
 | |
|   bool HasArithmeticOrEnumeralCandidateType = false;
 | |
|   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
 | |
|   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|     CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
 | |
|     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
 | |
|                                                  OpLoc,
 | |
|                                                  true,
 | |
|                                                  (Op == OO_Exclaim ||
 | |
|                                                   Op == OO_AmpAmp ||
 | |
|                                                   Op == OO_PipePipe),
 | |
|                                                  VisibleTypeConversionsQuals);
 | |
|     HasNonRecordCandidateType = HasNonRecordCandidateType ||
 | |
|         CandidateTypes[ArgIdx].hasNonRecordTypes();
 | |
|     HasArithmeticOrEnumeralCandidateType =
 | |
|         HasArithmeticOrEnumeralCandidateType ||
 | |
|         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
 | |
|   }
 | |
| 
 | |
|   // Exit early when no non-record types have been added to the candidate set
 | |
|   // for any of the arguments to the operator.
 | |
|   //
 | |
|   // We can't exit early for !, ||, or &&, since there we have always have
 | |
|   // 'bool' overloads.
 | |
|   if (!HasNonRecordCandidateType &&
 | |
|       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
 | |
|     return;
 | |
| 
 | |
|   // Setup an object to manage the common state for building overloads.
 | |
|   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
 | |
|                                            VisibleTypeConversionsQuals,
 | |
|                                            HasArithmeticOrEnumeralCandidateType,
 | |
|                                            CandidateTypes, CandidateSet);
 | |
| 
 | |
|   // Dispatch over the operation to add in only those overloads which apply.
 | |
|   switch (Op) {
 | |
|   case OO_None:
 | |
|   case NUM_OVERLOADED_OPERATORS:
 | |
|     llvm_unreachable("Expected an overloaded operator");
 | |
| 
 | |
|   case OO_New:
 | |
|   case OO_Delete:
 | |
|   case OO_Array_New:
 | |
|   case OO_Array_Delete:
 | |
|   case OO_Call:
 | |
|     llvm_unreachable(
 | |
|                     "Special operators don't use AddBuiltinOperatorCandidates");
 | |
| 
 | |
|   case OO_Comma:
 | |
|   case OO_Arrow:
 | |
|     // C++ [over.match.oper]p3:
 | |
|     //   -- For the operator ',', the unary operator '&', or the
 | |
|     //      operator '->', the built-in candidates set is empty.
 | |
|     break;
 | |
| 
 | |
|   case OO_Plus: // '+' is either unary or binary
 | |
|     if (Args.size() == 1)
 | |
|       OpBuilder.addUnaryPlusPointerOverloads();
 | |
|     // Fall through.
 | |
| 
 | |
|   case OO_Minus: // '-' is either unary or binary
 | |
|     if (Args.size() == 1) {
 | |
|       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
 | |
|     } else {
 | |
|       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
 | |
|       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case OO_Star: // '*' is either unary or binary
 | |
|     if (Args.size() == 1)
 | |
|       OpBuilder.addUnaryStarPointerOverloads();
 | |
|     else
 | |
|       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | |
|     break;
 | |
| 
 | |
|   case OO_Slash:
 | |
|     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | |
|     break;
 | |
| 
 | |
|   case OO_PlusPlus:
 | |
|   case OO_MinusMinus:
 | |
|     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
 | |
|     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
 | |
|     break;
 | |
| 
 | |
|   case OO_EqualEqual:
 | |
|   case OO_ExclaimEqual:
 | |
|     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
 | |
|     // Fall through.
 | |
| 
 | |
|   case OO_Less:
 | |
|   case OO_Greater:
 | |
|   case OO_LessEqual:
 | |
|   case OO_GreaterEqual:
 | |
|     OpBuilder.addRelationalPointerOrEnumeralOverloads();
 | |
|     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
 | |
|     break;
 | |
| 
 | |
|   case OO_Percent:
 | |
|   case OO_Caret:
 | |
|   case OO_Pipe:
 | |
|   case OO_LessLess:
 | |
|   case OO_GreaterGreater:
 | |
|     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
 | |
|     break;
 | |
| 
 | |
|   case OO_Amp: // '&' is either unary or binary
 | |
|     if (Args.size() == 1)
 | |
|       // C++ [over.match.oper]p3:
 | |
|       //   -- For the operator ',', the unary operator '&', or the
 | |
|       //      operator '->', the built-in candidates set is empty.
 | |
|       break;
 | |
| 
 | |
|     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
 | |
|     break;
 | |
| 
 | |
|   case OO_Tilde:
 | |
|     OpBuilder.addUnaryTildePromotedIntegralOverloads();
 | |
|     break;
 | |
| 
 | |
|   case OO_Equal:
 | |
|     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
 | |
|     // Fall through.
 | |
| 
 | |
|   case OO_PlusEqual:
 | |
|   case OO_MinusEqual:
 | |
|     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
 | |
|     // Fall through.
 | |
| 
 | |
|   case OO_StarEqual:
 | |
|   case OO_SlashEqual:
 | |
|     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
 | |
|     break;
 | |
| 
 | |
|   case OO_PercentEqual:
 | |
|   case OO_LessLessEqual:
 | |
|   case OO_GreaterGreaterEqual:
 | |
|   case OO_AmpEqual:
 | |
|   case OO_CaretEqual:
 | |
|   case OO_PipeEqual:
 | |
|     OpBuilder.addAssignmentIntegralOverloads();
 | |
|     break;
 | |
| 
 | |
|   case OO_Exclaim:
 | |
|     OpBuilder.addExclaimOverload();
 | |
|     break;
 | |
| 
 | |
|   case OO_AmpAmp:
 | |
|   case OO_PipePipe:
 | |
|     OpBuilder.addAmpAmpOrPipePipeOverload();
 | |
|     break;
 | |
| 
 | |
|   case OO_Subscript:
 | |
|     OpBuilder.addSubscriptOverloads();
 | |
|     break;
 | |
| 
 | |
|   case OO_ArrowStar:
 | |
|     OpBuilder.addArrowStarOverloads();
 | |
|     break;
 | |
| 
 | |
|   case OO_Conditional:
 | |
|     OpBuilder.addConditionalOperatorOverloads();
 | |
|     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Add function candidates found via argument-dependent lookup
 | |
| /// to the set of overloading candidates.
 | |
| ///
 | |
| /// This routine performs argument-dependent name lookup based on the
 | |
| /// given function name (which may also be an operator name) and adds
 | |
| /// all of the overload candidates found by ADL to the overload
 | |
| /// candidate set (C++ [basic.lookup.argdep]).
 | |
| void
 | |
| Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
 | |
|                                            SourceLocation Loc,
 | |
|                                            ArrayRef<Expr *> Args,
 | |
|                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                                            OverloadCandidateSet& CandidateSet,
 | |
|                                            bool PartialOverloading) {
 | |
|   ADLResult Fns;
 | |
| 
 | |
|   // FIXME: This approach for uniquing ADL results (and removing
 | |
|   // redundant candidates from the set) relies on pointer-equality,
 | |
|   // which means we need to key off the canonical decl.  However,
 | |
|   // always going back to the canonical decl might not get us the
 | |
|   // right set of default arguments.  What default arguments are
 | |
|   // we supposed to consider on ADL candidates, anyway?
 | |
| 
 | |
|   // FIXME: Pass in the explicit template arguments?
 | |
|   ArgumentDependentLookup(Name, Loc, Args, Fns);
 | |
| 
 | |
|   // Erase all of the candidates we already knew about.
 | |
|   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
 | |
|                                    CandEnd = CandidateSet.end();
 | |
|        Cand != CandEnd; ++Cand)
 | |
|     if (Cand->Function) {
 | |
|       Fns.erase(Cand->Function);
 | |
|       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
 | |
|         Fns.erase(FunTmpl);
 | |
|     }
 | |
| 
 | |
|   // For each of the ADL candidates we found, add it to the overload
 | |
|   // set.
 | |
|   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
 | |
|     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
 | |
|       if (ExplicitTemplateArgs)
 | |
|         continue;
 | |
| 
 | |
|       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
 | |
|                            PartialOverloading);
 | |
|     } else
 | |
|       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
 | |
|                                    FoundDecl, ExplicitTemplateArgs,
 | |
|                                    Args, CandidateSet);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isBetterOverloadCandidate - Determines whether the first overload
 | |
| /// candidate is a better candidate than the second (C++ 13.3.3p1).
 | |
| bool
 | |
| isBetterOverloadCandidate(Sema &S,
 | |
|                           const OverloadCandidate &Cand1,
 | |
|                           const OverloadCandidate &Cand2,
 | |
|                           SourceLocation Loc,
 | |
|                           bool UserDefinedConversion) {
 | |
|   // Define viable functions to be better candidates than non-viable
 | |
|   // functions.
 | |
|   if (!Cand2.Viable)
 | |
|     return Cand1.Viable;
 | |
|   else if (!Cand1.Viable)
 | |
|     return false;
 | |
| 
 | |
|   // C++ [over.match.best]p1:
 | |
|   //
 | |
|   //   -- if F is a static member function, ICS1(F) is defined such
 | |
|   //      that ICS1(F) is neither better nor worse than ICS1(G) for
 | |
|   //      any function G, and, symmetrically, ICS1(G) is neither
 | |
|   //      better nor worse than ICS1(F).
 | |
|   unsigned StartArg = 0;
 | |
|   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
 | |
|     StartArg = 1;
 | |
| 
 | |
|   // C++ [over.match.best]p1:
 | |
|   //   A viable function F1 is defined to be a better function than another
 | |
|   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
 | |
|   //   conversion sequence than ICSi(F2), and then...
 | |
|   unsigned NumArgs = Cand1.NumConversions;
 | |
|   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
 | |
|   bool HasBetterConversion = false;
 | |
|   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
 | |
|     switch (CompareImplicitConversionSequences(S,
 | |
|                                                Cand1.Conversions[ArgIdx],
 | |
|                                                Cand2.Conversions[ArgIdx])) {
 | |
|     case ImplicitConversionSequence::Better:
 | |
|       // Cand1 has a better conversion sequence.
 | |
|       HasBetterConversion = true;
 | |
|       break;
 | |
| 
 | |
|     case ImplicitConversionSequence::Worse:
 | |
|       // Cand1 can't be better than Cand2.
 | |
|       return false;
 | |
| 
 | |
|     case ImplicitConversionSequence::Indistinguishable:
 | |
|       // Do nothing.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
 | |
|   //       ICSj(F2), or, if not that,
 | |
|   if (HasBetterConversion)
 | |
|     return true;
 | |
| 
 | |
|   //   -- the context is an initialization by user-defined conversion
 | |
|   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
 | |
|   //      from the return type of F1 to the destination type (i.e.,
 | |
|   //      the type of the entity being initialized) is a better
 | |
|   //      conversion sequence than the standard conversion sequence
 | |
|   //      from the return type of F2 to the destination type.
 | |
|   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
 | |
|       isa<CXXConversionDecl>(Cand1.Function) &&
 | |
|       isa<CXXConversionDecl>(Cand2.Function)) {
 | |
|     // First check whether we prefer one of the conversion functions over the
 | |
|     // other. This only distinguishes the results in non-standard, extension
 | |
|     // cases such as the conversion from a lambda closure type to a function
 | |
|     // pointer or block.
 | |
|     ImplicitConversionSequence::CompareKind Result =
 | |
|         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
 | |
|     if (Result == ImplicitConversionSequence::Indistinguishable)
 | |
|       Result = CompareStandardConversionSequences(S,
 | |
|                                                   Cand1.FinalConversion,
 | |
|                                                   Cand2.FinalConversion);
 | |
| 
 | |
|     if (Result != ImplicitConversionSequence::Indistinguishable)
 | |
|       return Result == ImplicitConversionSequence::Better;
 | |
| 
 | |
|     // FIXME: Compare kind of reference binding if conversion functions
 | |
|     // convert to a reference type used in direct reference binding, per
 | |
|     // C++14 [over.match.best]p1 section 2 bullet 3.
 | |
|   }
 | |
| 
 | |
|   //    -- F1 is a non-template function and F2 is a function template
 | |
|   //       specialization, or, if not that,
 | |
|   bool Cand1IsSpecialization = Cand1.Function &&
 | |
|                                Cand1.Function->getPrimaryTemplate();
 | |
|   bool Cand2IsSpecialization = Cand2.Function &&
 | |
|                                Cand2.Function->getPrimaryTemplate();
 | |
|   if (Cand1IsSpecialization != Cand2IsSpecialization)
 | |
|     return Cand2IsSpecialization;
 | |
| 
 | |
|   //   -- F1 and F2 are function template specializations, and the function
 | |
|   //      template for F1 is more specialized than the template for F2
 | |
|   //      according to the partial ordering rules described in 14.5.5.2, or,
 | |
|   //      if not that,
 | |
|   if (Cand1IsSpecialization && Cand2IsSpecialization) {
 | |
|     if (FunctionTemplateDecl *BetterTemplate
 | |
|           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
 | |
|                                          Cand2.Function->getPrimaryTemplate(),
 | |
|                                          Loc,
 | |
|                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
 | |
|                                                              : TPOC_Call,
 | |
|                                          Cand1.ExplicitCallArguments,
 | |
|                                          Cand2.ExplicitCallArguments))
 | |
|       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
 | |
|   }
 | |
| 
 | |
|   // Check for enable_if value-based overload resolution.
 | |
|   if (Cand1.Function && Cand2.Function &&
 | |
|       (Cand1.Function->hasAttr<EnableIfAttr>() ||
 | |
|        Cand2.Function->hasAttr<EnableIfAttr>())) {
 | |
|     // FIXME: The next several lines are just
 | |
|     // specific_attr_iterator<EnableIfAttr> but going in declaration order,
 | |
|     // instead of reverse order which is how they're stored in the AST.
 | |
|     AttrVec Cand1Attrs;
 | |
|     if (Cand1.Function->hasAttrs()) {
 | |
|       Cand1Attrs = Cand1.Function->getAttrs();
 | |
|       Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
 | |
|                                       IsNotEnableIfAttr),
 | |
|                        Cand1Attrs.end());
 | |
|       std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
 | |
|     }
 | |
| 
 | |
|     AttrVec Cand2Attrs;
 | |
|     if (Cand2.Function->hasAttrs()) {
 | |
|       Cand2Attrs = Cand2.Function->getAttrs();
 | |
|       Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
 | |
|                                       IsNotEnableIfAttr),
 | |
|                        Cand2Attrs.end());
 | |
|       std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
 | |
|     }
 | |
| 
 | |
|     // Candidate 1 is better if it has strictly more attributes and
 | |
|     // the common sequence is identical.
 | |
|     if (Cand1Attrs.size() <= Cand2Attrs.size())
 | |
|       return false;
 | |
| 
 | |
|     auto Cand1I = Cand1Attrs.begin();
 | |
|     for (auto &Cand2A : Cand2Attrs) {
 | |
|       auto &Cand1A = *Cand1I++;
 | |
|       llvm::FoldingSetNodeID Cand1ID, Cand2ID;
 | |
|       cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
 | |
|                                                      S.getASTContext(), true);
 | |
|       cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
 | |
|                                                      S.getASTContext(), true);
 | |
|       if (Cand1ID != Cand2ID)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Computes the best viable function (C++ 13.3.3)
 | |
| /// within an overload candidate set.
 | |
| ///
 | |
| /// \param Loc The location of the function name (or operator symbol) for
 | |
| /// which overload resolution occurs.
 | |
| ///
 | |
| /// \param Best If overload resolution was successful or found a deleted
 | |
| /// function, \p Best points to the candidate function found.
 | |
| ///
 | |
| /// \returns The result of overload resolution.
 | |
| OverloadingResult
 | |
| OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
 | |
|                                          iterator &Best,
 | |
|                                          bool UserDefinedConversion) {
 | |
|   // Find the best viable function.
 | |
|   Best = end();
 | |
|   for (iterator Cand = begin(); Cand != end(); ++Cand) {
 | |
|     if (Cand->Viable)
 | |
|       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
 | |
|                                                      UserDefinedConversion))
 | |
|         Best = Cand;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find any viable functions, abort.
 | |
|   if (Best == end())
 | |
|     return OR_No_Viable_Function;
 | |
| 
 | |
|   // Make sure that this function is better than every other viable
 | |
|   // function. If not, we have an ambiguity.
 | |
|   for (iterator Cand = begin(); Cand != end(); ++Cand) {
 | |
|     if (Cand->Viable &&
 | |
|         Cand != Best &&
 | |
|         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
 | |
|                                    UserDefinedConversion)) {
 | |
|       Best = end();
 | |
|       return OR_Ambiguous;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Best is the best viable function.
 | |
|   if (Best->Function &&
 | |
|       (Best->Function->isDeleted() ||
 | |
|        S.isFunctionConsideredUnavailable(Best->Function)))
 | |
|     return OR_Deleted;
 | |
| 
 | |
|   return OR_Success;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| enum OverloadCandidateKind {
 | |
|   oc_function,
 | |
|   oc_method,
 | |
|   oc_constructor,
 | |
|   oc_function_template,
 | |
|   oc_method_template,
 | |
|   oc_constructor_template,
 | |
|   oc_implicit_default_constructor,
 | |
|   oc_implicit_copy_constructor,
 | |
|   oc_implicit_move_constructor,
 | |
|   oc_implicit_copy_assignment,
 | |
|   oc_implicit_move_assignment,
 | |
|   oc_implicit_inherited_constructor
 | |
| };
 | |
| 
 | |
| OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
 | |
|                                                 FunctionDecl *Fn,
 | |
|                                                 std::string &Description) {
 | |
|   bool isTemplate = false;
 | |
| 
 | |
|   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
 | |
|     isTemplate = true;
 | |
|     Description = S.getTemplateArgumentBindingsText(
 | |
|       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
 | |
|   }
 | |
| 
 | |
|   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
 | |
|     if (!Ctor->isImplicit())
 | |
|       return isTemplate ? oc_constructor_template : oc_constructor;
 | |
| 
 | |
|     if (Ctor->getInheritedConstructor())
 | |
|       return oc_implicit_inherited_constructor;
 | |
| 
 | |
|     if (Ctor->isDefaultConstructor())
 | |
|       return oc_implicit_default_constructor;
 | |
| 
 | |
|     if (Ctor->isMoveConstructor())
 | |
|       return oc_implicit_move_constructor;
 | |
| 
 | |
|     assert(Ctor->isCopyConstructor() &&
 | |
|            "unexpected sort of implicit constructor");
 | |
|     return oc_implicit_copy_constructor;
 | |
|   }
 | |
| 
 | |
|   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
 | |
|     // This actually gets spelled 'candidate function' for now, but
 | |
|     // it doesn't hurt to split it out.
 | |
|     if (!Meth->isImplicit())
 | |
|       return isTemplate ? oc_method_template : oc_method;
 | |
| 
 | |
|     if (Meth->isMoveAssignmentOperator())
 | |
|       return oc_implicit_move_assignment;
 | |
| 
 | |
|     if (Meth->isCopyAssignmentOperator())
 | |
|       return oc_implicit_copy_assignment;
 | |
| 
 | |
|     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
 | |
|     return oc_method;
 | |
|   }
 | |
| 
 | |
|   return isTemplate ? oc_function_template : oc_function;
 | |
| }
 | |
| 
 | |
| void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
 | |
|   const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
 | |
|   if (!Ctor) return;
 | |
| 
 | |
|   Ctor = Ctor->getInheritedConstructor();
 | |
|   if (!Ctor) return;
 | |
| 
 | |
|   S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Notes the location of an overload candidate.
 | |
| void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
 | |
|   std::string FnDesc;
 | |
|   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
 | |
|   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
 | |
|                              << (unsigned) K << FnDesc;
 | |
|   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
 | |
|   Diag(Fn->getLocation(), PD);
 | |
|   MaybeEmitInheritedConstructorNote(*this, Fn);
 | |
| }
 | |
| 
 | |
| // Notes the location of all overload candidates designated through
 | |
| // OverloadedExpr
 | |
| void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
 | |
|   assert(OverloadedExpr->getType() == Context.OverloadTy);
 | |
| 
 | |
|   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
 | |
|   OverloadExpr *OvlExpr = Ovl.Expression;
 | |
| 
 | |
|   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
 | |
|                             IEnd = OvlExpr->decls_end(); 
 | |
|        I != IEnd; ++I) {
 | |
|     if (FunctionTemplateDecl *FunTmpl = 
 | |
|                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
 | |
|       NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
 | |
|     } else if (FunctionDecl *Fun 
 | |
|                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
 | |
|       NoteOverloadCandidate(Fun, DestType);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
 | |
| /// "lead" diagnostic; it will be given two arguments, the source and
 | |
| /// target types of the conversion.
 | |
| void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
 | |
|                                  Sema &S,
 | |
|                                  SourceLocation CaretLoc,
 | |
|                                  const PartialDiagnostic &PDiag) const {
 | |
|   S.Diag(CaretLoc, PDiag)
 | |
|     << Ambiguous.getFromType() << Ambiguous.getToType();
 | |
|   // FIXME: The note limiting machinery is borrowed from
 | |
|   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
 | |
|   // refactoring here.
 | |
|   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
 | |
|   unsigned CandsShown = 0;
 | |
|   AmbiguousConversionSequence::const_iterator I, E;
 | |
|   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
 | |
|     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
 | |
|       break;
 | |
|     ++CandsShown;
 | |
|     S.NoteOverloadCandidate(*I);
 | |
|   }
 | |
|   if (I != E)
 | |
|     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
 | |
|   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
 | |
|   assert(Conv.isBad());
 | |
|   assert(Cand->Function && "for now, candidate must be a function");
 | |
|   FunctionDecl *Fn = Cand->Function;
 | |
| 
 | |
|   // There's a conversion slot for the object argument if this is a
 | |
|   // non-constructor method.  Note that 'I' corresponds the
 | |
|   // conversion-slot index.
 | |
|   bool isObjectArgument = false;
 | |
|   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
 | |
|     if (I == 0)
 | |
|       isObjectArgument = true;
 | |
|     else
 | |
|       I--;
 | |
|   }
 | |
| 
 | |
|   std::string FnDesc;
 | |
|   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
 | |
| 
 | |
|   Expr *FromExpr = Conv.Bad.FromExpr;
 | |
|   QualType FromTy = Conv.Bad.getFromType();
 | |
|   QualType ToTy = Conv.Bad.getToType();
 | |
| 
 | |
|   if (FromTy == S.Context.OverloadTy) {
 | |
|     assert(FromExpr && "overload set argument came from implicit argument?");
 | |
|     Expr *E = FromExpr->IgnoreParens();
 | |
|     if (isa<UnaryOperator>(E))
 | |
|       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
 | |
|     DeclarationName Name = cast<OverloadExpr>(E)->getName();
 | |
| 
 | |
|     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
 | |
|       << (unsigned) FnKind << FnDesc
 | |
|       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|       << ToTy << Name << I+1;
 | |
|     MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Do some hand-waving analysis to see if the non-viability is due
 | |
|   // to a qualifier mismatch.
 | |
|   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
 | |
|   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
 | |
|   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
 | |
|     CToTy = RT->getPointeeType();
 | |
|   else {
 | |
|     // TODO: detect and diagnose the full richness of const mismatches.
 | |
|     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
 | |
|       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
 | |
|         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
 | |
|       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
 | |
|     Qualifiers FromQs = CFromTy.getQualifiers();
 | |
|     Qualifiers ToQs = CToTy.getQualifiers();
 | |
| 
 | |
|     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
 | |
|       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
 | |
|         << (unsigned) FnKind << FnDesc
 | |
|         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|         << FromTy
 | |
|         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
 | |
|         << (unsigned) isObjectArgument << I+1;
 | |
|       MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
 | |
|       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
 | |
|         << (unsigned) FnKind << FnDesc
 | |
|         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|         << FromTy
 | |
|         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
 | |
|         << (unsigned) isObjectArgument << I+1;
 | |
|       MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
 | |
|       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
 | |
|       << (unsigned) FnKind << FnDesc
 | |
|       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|       << FromTy
 | |
|       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
 | |
|       << (unsigned) isObjectArgument << I+1;
 | |
|       MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
 | |
|     assert(CVR && "unexpected qualifiers mismatch");
 | |
| 
 | |
|     if (isObjectArgument) {
 | |
|       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
 | |
|         << (unsigned) FnKind << FnDesc
 | |
|         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|         << FromTy << (CVR - 1);
 | |
|     } else {
 | |
|       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
 | |
|         << (unsigned) FnKind << FnDesc
 | |
|         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|         << FromTy << (CVR - 1) << I+1;
 | |
|     }
 | |
|     MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Special diagnostic for failure to convert an initializer list, since
 | |
|   // telling the user that it has type void is not useful.
 | |
|   if (FromExpr && isa<InitListExpr>(FromExpr)) {
 | |
|     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
 | |
|       << (unsigned) FnKind << FnDesc
 | |
|       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
 | |
|     MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Diagnose references or pointers to incomplete types differently,
 | |
|   // since it's far from impossible that the incompleteness triggered
 | |
|   // the failure.
 | |
|   QualType TempFromTy = FromTy.getNonReferenceType();
 | |
|   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
 | |
|     TempFromTy = PTy->getPointeeType();
 | |
|   if (TempFromTy->isIncompleteType()) {
 | |
|     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
 | |
|       << (unsigned) FnKind << FnDesc
 | |
|       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
 | |
|     MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Diagnose base -> derived pointer conversions.
 | |
|   unsigned BaseToDerivedConversion = 0;
 | |
|   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
 | |
|     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
 | |
|       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
 | |
|                                                FromPtrTy->getPointeeType()) &&
 | |
|           !FromPtrTy->getPointeeType()->isIncompleteType() &&
 | |
|           !ToPtrTy->getPointeeType()->isIncompleteType() &&
 | |
|           S.IsDerivedFrom(ToPtrTy->getPointeeType(),
 | |
|                           FromPtrTy->getPointeeType()))
 | |
|         BaseToDerivedConversion = 1;
 | |
|     }
 | |
|   } else if (const ObjCObjectPointerType *FromPtrTy
 | |
|                                     = FromTy->getAs<ObjCObjectPointerType>()) {
 | |
|     if (const ObjCObjectPointerType *ToPtrTy
 | |
|                                         = ToTy->getAs<ObjCObjectPointerType>())
 | |
|       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
 | |
|         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
 | |
|           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
 | |
|                                                 FromPtrTy->getPointeeType()) &&
 | |
|               FromIface->isSuperClassOf(ToIface))
 | |
|             BaseToDerivedConversion = 2;
 | |
|   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
 | |
|     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
 | |
|         !FromTy->isIncompleteType() &&
 | |
|         !ToRefTy->getPointeeType()->isIncompleteType() &&
 | |
|         S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
 | |
|       BaseToDerivedConversion = 3;
 | |
|     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
 | |
|                ToTy.getNonReferenceType().getCanonicalType() ==
 | |
|                FromTy.getNonReferenceType().getCanonicalType()) {
 | |
|       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
 | |
|         << (unsigned) FnKind << FnDesc
 | |
|         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|         << (unsigned) isObjectArgument << I + 1;
 | |
|       MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BaseToDerivedConversion) {
 | |
|     S.Diag(Fn->getLocation(),
 | |
|            diag::note_ovl_candidate_bad_base_to_derived_conv)
 | |
|       << (unsigned) FnKind << FnDesc
 | |
|       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|       << (BaseToDerivedConversion - 1)
 | |
|       << FromTy << ToTy << I+1;
 | |
|     MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isa<ObjCObjectPointerType>(CFromTy) &&
 | |
|       isa<PointerType>(CToTy)) {
 | |
|       Qualifiers FromQs = CFromTy.getQualifiers();
 | |
|       Qualifiers ToQs = CToTy.getQualifiers();
 | |
|       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
 | |
|         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
 | |
|         << (unsigned) FnKind << FnDesc
 | |
|         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
 | |
|         MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   // Emit the generic diagnostic and, optionally, add the hints to it.
 | |
|   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
 | |
|   FDiag << (unsigned) FnKind << FnDesc
 | |
|     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | |
|     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
 | |
|     << (unsigned) (Cand->Fix.Kind);
 | |
| 
 | |
|   // If we can fix the conversion, suggest the FixIts.
 | |
|   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
 | |
|        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
 | |
|     FDiag << *HI;
 | |
|   S.Diag(Fn->getLocation(), FDiag);
 | |
| 
 | |
|   MaybeEmitInheritedConstructorNote(S, Fn);
 | |
| }
 | |
| 
 | |
| /// Additional arity mismatch diagnosis specific to a function overload
 | |
| /// candidates. This is not covered by the more general DiagnoseArityMismatch()
 | |
| /// over a candidate in any candidate set.
 | |
| bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
 | |
|                         unsigned NumArgs) {
 | |
|   FunctionDecl *Fn = Cand->Function;
 | |
|   unsigned MinParams = Fn->getMinRequiredArguments();
 | |
| 
 | |
|   // With invalid overloaded operators, it's possible that we think we
 | |
|   // have an arity mismatch when in fact it looks like we have the
 | |
|   // right number of arguments, because only overloaded operators have
 | |
|   // the weird behavior of overloading member and non-member functions.
 | |
|   // Just don't report anything.
 | |
|   if (Fn->isInvalidDecl() && 
 | |
|       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
 | |
|     return true;
 | |
| 
 | |
|   if (NumArgs < MinParams) {
 | |
|     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
 | |
|            (Cand->FailureKind == ovl_fail_bad_deduction &&
 | |
|             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
 | |
|   } else {
 | |
|     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
 | |
|            (Cand->FailureKind == ovl_fail_bad_deduction &&
 | |
|             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// General arity mismatch diagnosis over a candidate in a candidate set.
 | |
| void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
 | |
|   assert(isa<FunctionDecl>(D) &&
 | |
|       "The templated declaration should at least be a function"
 | |
|       " when diagnosing bad template argument deduction due to too many"
 | |
|       " or too few arguments");
 | |
|   
 | |
|   FunctionDecl *Fn = cast<FunctionDecl>(D);
 | |
|   
 | |
|   // TODO: treat calls to a missing default constructor as a special case
 | |
|   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
 | |
|   unsigned MinParams = Fn->getMinRequiredArguments();
 | |
| 
 | |
|   // at least / at most / exactly
 | |
|   unsigned mode, modeCount;
 | |
|   if (NumFormalArgs < MinParams) {
 | |
|     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
 | |
|         FnTy->isTemplateVariadic())
 | |
|       mode = 0; // "at least"
 | |
|     else
 | |
|       mode = 2; // "exactly"
 | |
|     modeCount = MinParams;
 | |
|   } else {
 | |
|     if (MinParams != FnTy->getNumParams())
 | |
|       mode = 1; // "at most"
 | |
|     else
 | |
|       mode = 2; // "exactly"
 | |
|     modeCount = FnTy->getNumParams();
 | |
|   }
 | |
| 
 | |
|   std::string Description;
 | |
|   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
 | |
| 
 | |
|   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
 | |
|     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
 | |
|       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
 | |
|       << mode << Fn->getParamDecl(0) << NumFormalArgs;
 | |
|   else
 | |
|     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
 | |
|       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
 | |
|       << mode << modeCount << NumFormalArgs;
 | |
|   MaybeEmitInheritedConstructorNote(S, Fn);
 | |
| }
 | |
| 
 | |
| /// Arity mismatch diagnosis specific to a function overload candidate.
 | |
| void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
 | |
|                            unsigned NumFormalArgs) {
 | |
|   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
 | |
|     DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
 | |
| }
 | |
| 
 | |
| TemplateDecl *getDescribedTemplate(Decl *Templated) {
 | |
|   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
 | |
|     return FD->getDescribedFunctionTemplate();
 | |
|   else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
 | |
|     return RD->getDescribedClassTemplate();
 | |
| 
 | |
|   llvm_unreachable("Unsupported: Getting the described template declaration"
 | |
|                    " for bad deduction diagnosis");
 | |
| }
 | |
| 
 | |
| /// Diagnose a failed template-argument deduction.
 | |
| void DiagnoseBadDeduction(Sema &S, Decl *Templated,
 | |
|                           DeductionFailureInfo &DeductionFailure,
 | |
|                           unsigned NumArgs) {
 | |
|   TemplateParameter Param = DeductionFailure.getTemplateParameter();
 | |
|   NamedDecl *ParamD;
 | |
|   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
 | |
|   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
 | |
|   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
 | |
|   switch (DeductionFailure.Result) {
 | |
|   case Sema::TDK_Success:
 | |
|     llvm_unreachable("TDK_success while diagnosing bad deduction");
 | |
| 
 | |
|   case Sema::TDK_Incomplete: {
 | |
|     assert(ParamD && "no parameter found for incomplete deduction result");
 | |
|     S.Diag(Templated->getLocation(),
 | |
|            diag::note_ovl_candidate_incomplete_deduction)
 | |
|         << ParamD->getDeclName();
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_Underqualified: {
 | |
|     assert(ParamD && "no parameter found for bad qualifiers deduction result");
 | |
|     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
 | |
| 
 | |
|     QualType Param = DeductionFailure.getFirstArg()->getAsType();
 | |
| 
 | |
|     // Param will have been canonicalized, but it should just be a
 | |
|     // qualified version of ParamD, so move the qualifiers to that.
 | |
|     QualifierCollector Qs;
 | |
|     Qs.strip(Param);
 | |
|     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
 | |
|     assert(S.Context.hasSameType(Param, NonCanonParam));
 | |
| 
 | |
|     // Arg has also been canonicalized, but there's nothing we can do
 | |
|     // about that.  It also doesn't matter as much, because it won't
 | |
|     // have any template parameters in it (because deduction isn't
 | |
|     // done on dependent types).
 | |
|     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
 | |
| 
 | |
|     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
 | |
|         << ParamD->getDeclName() << Arg << NonCanonParam;
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_Inconsistent: {
 | |
|     assert(ParamD && "no parameter found for inconsistent deduction result");
 | |
|     int which = 0;
 | |
|     if (isa<TemplateTypeParmDecl>(ParamD))
 | |
|       which = 0;
 | |
|     else if (isa<NonTypeTemplateParmDecl>(ParamD))
 | |
|       which = 1;
 | |
|     else {
 | |
|       which = 2;
 | |
|     }
 | |
| 
 | |
|     S.Diag(Templated->getLocation(),
 | |
|            diag::note_ovl_candidate_inconsistent_deduction)
 | |
|         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
 | |
|         << *DeductionFailure.getSecondArg();
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|     assert(ParamD && "no parameter found for invalid explicit arguments");
 | |
|     if (ParamD->getDeclName())
 | |
|       S.Diag(Templated->getLocation(),
 | |
|              diag::note_ovl_candidate_explicit_arg_mismatch_named)
 | |
|           << ParamD->getDeclName();
 | |
|     else {
 | |
|       int index = 0;
 | |
|       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
 | |
|         index = TTP->getIndex();
 | |
|       else if (NonTypeTemplateParmDecl *NTTP
 | |
|                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
 | |
|         index = NTTP->getIndex();
 | |
|       else
 | |
|         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
 | |
|       S.Diag(Templated->getLocation(),
 | |
|              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
 | |
|           << (index + 1);
 | |
|     }
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
| 
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|     DiagnoseArityMismatch(S, Templated, NumArgs);
 | |
|     return;
 | |
| 
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|     S.Diag(Templated->getLocation(),
 | |
|            diag::note_ovl_candidate_instantiation_depth);
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
| 
 | |
|   case Sema::TDK_SubstitutionFailure: {
 | |
|     // Format the template argument list into the argument string.
 | |
|     SmallString<128> TemplateArgString;
 | |
|     if (TemplateArgumentList *Args =
 | |
|             DeductionFailure.getTemplateArgumentList()) {
 | |
|       TemplateArgString = " ";
 | |
|       TemplateArgString += S.getTemplateArgumentBindingsText(
 | |
|           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
 | |
|     }
 | |
| 
 | |
|     // If this candidate was disabled by enable_if, say so.
 | |
|     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
 | |
|     if (PDiag && PDiag->second.getDiagID() ==
 | |
|           diag::err_typename_nested_not_found_enable_if) {
 | |
|       // FIXME: Use the source range of the condition, and the fully-qualified
 | |
|       //        name of the enable_if template. These are both present in PDiag.
 | |
|       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
 | |
|         << "'enable_if'" << TemplateArgString;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Format the SFINAE diagnostic into the argument string.
 | |
|     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
 | |
|     //        formatted message in another diagnostic.
 | |
|     SmallString<128> SFINAEArgString;
 | |
|     SourceRange R;
 | |
|     if (PDiag) {
 | |
|       SFINAEArgString = ": ";
 | |
|       R = SourceRange(PDiag->first, PDiag->first);
 | |
|       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
 | |
|     }
 | |
| 
 | |
|     S.Diag(Templated->getLocation(),
 | |
|            diag::note_ovl_candidate_substitution_failure)
 | |
|         << TemplateArgString << SFINAEArgString << R;
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_FailedOverloadResolution: {
 | |
|     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
 | |
|     S.Diag(Templated->getLocation(),
 | |
|            diag::note_ovl_candidate_failed_overload_resolution)
 | |
|         << R.Expression->getName();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Sema::TDK_NonDeducedMismatch: {
 | |
|     // FIXME: Provide a source location to indicate what we couldn't match.
 | |
|     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
 | |
|     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
 | |
|     if (FirstTA.getKind() == TemplateArgument::Template &&
 | |
|         SecondTA.getKind() == TemplateArgument::Template) {
 | |
|       TemplateName FirstTN = FirstTA.getAsTemplate();
 | |
|       TemplateName SecondTN = SecondTA.getAsTemplate();
 | |
|       if (FirstTN.getKind() == TemplateName::Template &&
 | |
|           SecondTN.getKind() == TemplateName::Template) {
 | |
|         if (FirstTN.getAsTemplateDecl()->getName() ==
 | |
|             SecondTN.getAsTemplateDecl()->getName()) {
 | |
|           // FIXME: This fixes a bad diagnostic where both templates are named
 | |
|           // the same.  This particular case is a bit difficult since:
 | |
|           // 1) It is passed as a string to the diagnostic printer.
 | |
|           // 2) The diagnostic printer only attempts to find a better
 | |
|           //    name for types, not decls.
 | |
|           // Ideally, this should folded into the diagnostic printer.
 | |
|           S.Diag(Templated->getLocation(),
 | |
|                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
 | |
|               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // FIXME: For generic lambda parameters, check if the function is a lambda
 | |
|     // call operator, and if so, emit a prettier and more informative 
 | |
|     // diagnostic that mentions 'auto' and lambda in addition to 
 | |
|     // (or instead of?) the canonical template type parameters.
 | |
|     S.Diag(Templated->getLocation(),
 | |
|            diag::note_ovl_candidate_non_deduced_mismatch)
 | |
|         << FirstTA << SecondTA;
 | |
|     return;
 | |
|   }
 | |
|   // TODO: diagnose these individually, then kill off
 | |
|   // note_ovl_candidate_bad_deduction, which is uselessly vague.
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
 | |
|     MaybeEmitInheritedConstructorNote(S, Templated);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Diagnose a failed template-argument deduction, for function calls.
 | |
| void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, unsigned NumArgs) {
 | |
|   unsigned TDK = Cand->DeductionFailure.Result;
 | |
|   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
 | |
|     if (CheckArityMismatch(S, Cand, NumArgs))
 | |
|       return;
 | |
|   }
 | |
|   DiagnoseBadDeduction(S, Cand->Function, // pattern
 | |
|                        Cand->DeductionFailure, NumArgs);
 | |
| }
 | |
| 
 | |
| /// CUDA: diagnose an invalid call across targets.
 | |
| void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
 | |
|   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
 | |
|   FunctionDecl *Callee = Cand->Function;
 | |
| 
 | |
|   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
 | |
|                            CalleeTarget = S.IdentifyCUDATarget(Callee);
 | |
| 
 | |
|   std::string FnDesc;
 | |
|   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
 | |
| 
 | |
|   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
 | |
|       << (unsigned) FnKind << CalleeTarget << CallerTarget;
 | |
| }
 | |
| 
 | |
| void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
 | |
|   FunctionDecl *Callee = Cand->Function;
 | |
|   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
 | |
| 
 | |
|   S.Diag(Callee->getLocation(),
 | |
|          diag::note_ovl_candidate_disabled_by_enable_if_attr)
 | |
|       << Attr->getCond()->getSourceRange() << Attr->getMessage();
 | |
| }
 | |
| 
 | |
| /// Generates a 'note' diagnostic for an overload candidate.  We've
 | |
| /// already generated a primary error at the call site.
 | |
| ///
 | |
| /// It really does need to be a single diagnostic with its caret
 | |
| /// pointed at the candidate declaration.  Yes, this creates some
 | |
| /// major challenges of technical writing.  Yes, this makes pointing
 | |
| /// out problems with specific arguments quite awkward.  It's still
 | |
| /// better than generating twenty screens of text for every failed
 | |
| /// overload.
 | |
| ///
 | |
| /// It would be great to be able to express per-candidate problems
 | |
| /// more richly for those diagnostic clients that cared, but we'd
 | |
| /// still have to be just as careful with the default diagnostics.
 | |
| void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
 | |
|                            unsigned NumArgs) {
 | |
|   FunctionDecl *Fn = Cand->Function;
 | |
| 
 | |
|   // Note deleted candidates, but only if they're viable.
 | |
|   if (Cand->Viable && (Fn->isDeleted() ||
 | |
|       S.isFunctionConsideredUnavailable(Fn))) {
 | |
|     std::string FnDesc;
 | |
|     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
 | |
| 
 | |
|     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
 | |
|       << FnKind << FnDesc
 | |
|       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
 | |
|     MaybeEmitInheritedConstructorNote(S, Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We don't really have anything else to say about viable candidates.
 | |
|   if (Cand->Viable) {
 | |
|     S.NoteOverloadCandidate(Fn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   switch (Cand->FailureKind) {
 | |
|   case ovl_fail_too_many_arguments:
 | |
|   case ovl_fail_too_few_arguments:
 | |
|     return DiagnoseArityMismatch(S, Cand, NumArgs);
 | |
| 
 | |
|   case ovl_fail_bad_deduction:
 | |
|     return DiagnoseBadDeduction(S, Cand, NumArgs);
 | |
| 
 | |
|   case ovl_fail_trivial_conversion:
 | |
|   case ovl_fail_bad_final_conversion:
 | |
|   case ovl_fail_final_conversion_not_exact:
 | |
|     return S.NoteOverloadCandidate(Fn);
 | |
| 
 | |
|   case ovl_fail_bad_conversion: {
 | |
|     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
 | |
|     for (unsigned N = Cand->NumConversions; I != N; ++I)
 | |
|       if (Cand->Conversions[I].isBad())
 | |
|         return DiagnoseBadConversion(S, Cand, I);
 | |
| 
 | |
|     // FIXME: this currently happens when we're called from SemaInit
 | |
|     // when user-conversion overload fails.  Figure out how to handle
 | |
|     // those conditions and diagnose them well.
 | |
|     return S.NoteOverloadCandidate(Fn);
 | |
|   }
 | |
| 
 | |
|   case ovl_fail_bad_target:
 | |
|     return DiagnoseBadTarget(S, Cand);
 | |
| 
 | |
|   case ovl_fail_enable_if:
 | |
|     return DiagnoseFailedEnableIfAttr(S, Cand);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
 | |
|   // Desugar the type of the surrogate down to a function type,
 | |
|   // retaining as many typedefs as possible while still showing
 | |
|   // the function type (and, therefore, its parameter types).
 | |
|   QualType FnType = Cand->Surrogate->getConversionType();
 | |
|   bool isLValueReference = false;
 | |
|   bool isRValueReference = false;
 | |
|   bool isPointer = false;
 | |
|   if (const LValueReferenceType *FnTypeRef =
 | |
|         FnType->getAs<LValueReferenceType>()) {
 | |
|     FnType = FnTypeRef->getPointeeType();
 | |
|     isLValueReference = true;
 | |
|   } else if (const RValueReferenceType *FnTypeRef =
 | |
|                FnType->getAs<RValueReferenceType>()) {
 | |
|     FnType = FnTypeRef->getPointeeType();
 | |
|     isRValueReference = true;
 | |
|   }
 | |
|   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
 | |
|     FnType = FnTypePtr->getPointeeType();
 | |
|     isPointer = true;
 | |
|   }
 | |
|   // Desugar down to a function type.
 | |
|   FnType = QualType(FnType->getAs<FunctionType>(), 0);
 | |
|   // Reconstruct the pointer/reference as appropriate.
 | |
|   if (isPointer) FnType = S.Context.getPointerType(FnType);
 | |
|   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
 | |
|   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
 | |
| 
 | |
|   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
 | |
|     << FnType;
 | |
|   MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
 | |
| }
 | |
| 
 | |
| void NoteBuiltinOperatorCandidate(Sema &S,
 | |
|                                   StringRef Opc,
 | |
|                                   SourceLocation OpLoc,
 | |
|                                   OverloadCandidate *Cand) {
 | |
|   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
 | |
|   std::string TypeStr("operator");
 | |
|   TypeStr += Opc;
 | |
|   TypeStr += "(";
 | |
|   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
 | |
|   if (Cand->NumConversions == 1) {
 | |
|     TypeStr += ")";
 | |
|     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
 | |
|   } else {
 | |
|     TypeStr += ", ";
 | |
|     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
 | |
|     TypeStr += ")";
 | |
|     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
 | |
|                                   OverloadCandidate *Cand) {
 | |
|   unsigned NoOperands = Cand->NumConversions;
 | |
|   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
 | |
|     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
 | |
|     if (ICS.isBad()) break; // all meaningless after first invalid
 | |
|     if (!ICS.isAmbiguous()) continue;
 | |
| 
 | |
|     ICS.DiagnoseAmbiguousConversion(S, OpLoc,
 | |
|                               S.PDiag(diag::note_ambiguous_type_conversion));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
 | |
|   if (Cand->Function)
 | |
|     return Cand->Function->getLocation();
 | |
|   if (Cand->IsSurrogate)
 | |
|     return Cand->Surrogate->getLocation();
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
 | |
|   switch ((Sema::TemplateDeductionResult)DFI.Result) {
 | |
|   case Sema::TDK_Success:
 | |
|     llvm_unreachable("TDK_success while diagnosing bad deduction");
 | |
| 
 | |
|   case Sema::TDK_Invalid:
 | |
|   case Sema::TDK_Incomplete:
 | |
|     return 1;
 | |
| 
 | |
|   case Sema::TDK_Underqualified:
 | |
|   case Sema::TDK_Inconsistent:
 | |
|     return 2;
 | |
| 
 | |
|   case Sema::TDK_SubstitutionFailure:
 | |
|   case Sema::TDK_NonDeducedMismatch:
 | |
|   case Sema::TDK_MiscellaneousDeductionFailure:
 | |
|     return 3;
 | |
| 
 | |
|   case Sema::TDK_InstantiationDepth:
 | |
|   case Sema::TDK_FailedOverloadResolution:
 | |
|     return 4;
 | |
| 
 | |
|   case Sema::TDK_InvalidExplicitArguments:
 | |
|     return 5;
 | |
| 
 | |
|   case Sema::TDK_TooManyArguments:
 | |
|   case Sema::TDK_TooFewArguments:
 | |
|     return 6;
 | |
|   }
 | |
|   llvm_unreachable("Unhandled deduction result");
 | |
| }
 | |
| 
 | |
| struct CompareOverloadCandidatesForDisplay {
 | |
|   Sema &S;
 | |
|   size_t NumArgs;
 | |
| 
 | |
|   CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs)
 | |
|       : S(S), NumArgs(nArgs) {}
 | |
| 
 | |
|   bool operator()(const OverloadCandidate *L,
 | |
|                   const OverloadCandidate *R) {
 | |
|     // Fast-path this check.
 | |
|     if (L == R) return false;
 | |
| 
 | |
|     // Order first by viability.
 | |
|     if (L->Viable) {
 | |
|       if (!R->Viable) return true;
 | |
| 
 | |
|       // TODO: introduce a tri-valued comparison for overload
 | |
|       // candidates.  Would be more worthwhile if we had a sort
 | |
|       // that could exploit it.
 | |
|       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
 | |
|       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
 | |
|     } else if (R->Viable)
 | |
|       return false;
 | |
| 
 | |
|     assert(L->Viable == R->Viable);
 | |
| 
 | |
|     // Criteria by which we can sort non-viable candidates:
 | |
|     if (!L->Viable) {
 | |
|       // 1. Arity mismatches come after other candidates.
 | |
|       if (L->FailureKind == ovl_fail_too_many_arguments ||
 | |
|           L->FailureKind == ovl_fail_too_few_arguments) {
 | |
|         if (R->FailureKind == ovl_fail_too_many_arguments ||
 | |
|             R->FailureKind == ovl_fail_too_few_arguments) {
 | |
|           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
 | |
|           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
 | |
|           if (LDist == RDist) {
 | |
|             if (L->FailureKind == R->FailureKind)
 | |
|               // Sort non-surrogates before surrogates.
 | |
|               return !L->IsSurrogate && R->IsSurrogate;
 | |
|             // Sort candidates requiring fewer parameters than there were
 | |
|             // arguments given after candidates requiring more parameters
 | |
|             // than there were arguments given.
 | |
|             return L->FailureKind == ovl_fail_too_many_arguments;
 | |
|           }
 | |
|           return LDist < RDist;
 | |
|         }
 | |
|         return false;
 | |
|       }
 | |
|       if (R->FailureKind == ovl_fail_too_many_arguments ||
 | |
|           R->FailureKind == ovl_fail_too_few_arguments)
 | |
|         return true;
 | |
| 
 | |
|       // 2. Bad conversions come first and are ordered by the number
 | |
|       // of bad conversions and quality of good conversions.
 | |
|       if (L->FailureKind == ovl_fail_bad_conversion) {
 | |
|         if (R->FailureKind != ovl_fail_bad_conversion)
 | |
|           return true;
 | |
| 
 | |
|         // The conversion that can be fixed with a smaller number of changes,
 | |
|         // comes first.
 | |
|         unsigned numLFixes = L->Fix.NumConversionsFixed;
 | |
|         unsigned numRFixes = R->Fix.NumConversionsFixed;
 | |
|         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
 | |
|         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
 | |
|         if (numLFixes != numRFixes) {
 | |
|           if (numLFixes < numRFixes)
 | |
|             return true;
 | |
|           else
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // If there's any ordering between the defined conversions...
 | |
|         // FIXME: this might not be transitive.
 | |
|         assert(L->NumConversions == R->NumConversions);
 | |
| 
 | |
|         int leftBetter = 0;
 | |
|         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
 | |
|         for (unsigned E = L->NumConversions; I != E; ++I) {
 | |
|           switch (CompareImplicitConversionSequences(S,
 | |
|                                                      L->Conversions[I],
 | |
|                                                      R->Conversions[I])) {
 | |
|           case ImplicitConversionSequence::Better:
 | |
|             leftBetter++;
 | |
|             break;
 | |
| 
 | |
|           case ImplicitConversionSequence::Worse:
 | |
|             leftBetter--;
 | |
|             break;
 | |
| 
 | |
|           case ImplicitConversionSequence::Indistinguishable:
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (leftBetter > 0) return true;
 | |
|         if (leftBetter < 0) return false;
 | |
| 
 | |
|       } else if (R->FailureKind == ovl_fail_bad_conversion)
 | |
|         return false;
 | |
| 
 | |
|       if (L->FailureKind == ovl_fail_bad_deduction) {
 | |
|         if (R->FailureKind != ovl_fail_bad_deduction)
 | |
|           return true;
 | |
| 
 | |
|         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
 | |
|           return RankDeductionFailure(L->DeductionFailure)
 | |
|                < RankDeductionFailure(R->DeductionFailure);
 | |
|       } else if (R->FailureKind == ovl_fail_bad_deduction)
 | |
|         return false;
 | |
| 
 | |
|       // TODO: others?
 | |
|     }
 | |
| 
 | |
|     // Sort everything else by location.
 | |
|     SourceLocation LLoc = GetLocationForCandidate(L);
 | |
|     SourceLocation RLoc = GetLocationForCandidate(R);
 | |
| 
 | |
|     // Put candidates without locations (e.g. builtins) at the end.
 | |
|     if (LLoc.isInvalid()) return false;
 | |
|     if (RLoc.isInvalid()) return true;
 | |
| 
 | |
|     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// CompleteNonViableCandidate - Normally, overload resolution only
 | |
| /// computes up to the first. Produces the FixIt set if possible.
 | |
| void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
 | |
|                                 ArrayRef<Expr *> Args) {
 | |
|   assert(!Cand->Viable);
 | |
| 
 | |
|   // Don't do anything on failures other than bad conversion.
 | |
|   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
 | |
| 
 | |
|   // We only want the FixIts if all the arguments can be corrected.
 | |
|   bool Unfixable = false;
 | |
|   // Use a implicit copy initialization to check conversion fixes.
 | |
|   Cand->Fix.setConversionChecker(TryCopyInitialization);
 | |
| 
 | |
|   // Skip forward to the first bad conversion.
 | |
|   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
 | |
|   unsigned ConvCount = Cand->NumConversions;
 | |
|   while (true) {
 | |
|     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
 | |
|     ConvIdx++;
 | |
|     if (Cand->Conversions[ConvIdx - 1].isBad()) {
 | |
|       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConvIdx == ConvCount)
 | |
|     return;
 | |
| 
 | |
|   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
 | |
|          "remaining conversion is initialized?");
 | |
| 
 | |
|   // FIXME: this should probably be preserved from the overload
 | |
|   // operation somehow.
 | |
|   bool SuppressUserConversions = false;
 | |
| 
 | |
|   const FunctionProtoType* Proto;
 | |
|   unsigned ArgIdx = ConvIdx;
 | |
| 
 | |
|   if (Cand->IsSurrogate) {
 | |
|     QualType ConvType
 | |
|       = Cand->Surrogate->getConversionType().getNonReferenceType();
 | |
|     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | |
|       ConvType = ConvPtrType->getPointeeType();
 | |
|     Proto = ConvType->getAs<FunctionProtoType>();
 | |
|     ArgIdx--;
 | |
|   } else if (Cand->Function) {
 | |
|     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
 | |
|     if (isa<CXXMethodDecl>(Cand->Function) &&
 | |
|         !isa<CXXConstructorDecl>(Cand->Function))
 | |
|       ArgIdx--;
 | |
|   } else {
 | |
|     // Builtin binary operator with a bad first conversion.
 | |
|     assert(ConvCount <= 3);
 | |
|     for (; ConvIdx != ConvCount; ++ConvIdx)
 | |
|       Cand->Conversions[ConvIdx]
 | |
|         = TryCopyInitialization(S, Args[ConvIdx],
 | |
|                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
 | |
|                                 SuppressUserConversions,
 | |
|                                 /*InOverloadResolution*/ true,
 | |
|                                 /*AllowObjCWritebackConversion=*/
 | |
|                                   S.getLangOpts().ObjCAutoRefCount);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Fill in the rest of the conversions.
 | |
|   unsigned NumParams = Proto->getNumParams();
 | |
|   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
 | |
|     if (ArgIdx < NumParams) {
 | |
|       Cand->Conversions[ConvIdx] = TryCopyInitialization(
 | |
|           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
 | |
|           /*InOverloadResolution=*/true,
 | |
|           /*AllowObjCWritebackConversion=*/
 | |
|           S.getLangOpts().ObjCAutoRefCount);
 | |
|       // Store the FixIt in the candidate if it exists.
 | |
|       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
 | |
|         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
 | |
|     }
 | |
|     else
 | |
|       Cand->Conversions[ConvIdx].setEllipsis();
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// PrintOverloadCandidates - When overload resolution fails, prints
 | |
| /// diagnostic messages containing the candidates in the candidate
 | |
| /// set.
 | |
| void OverloadCandidateSet::NoteCandidates(Sema &S,
 | |
|                                           OverloadCandidateDisplayKind OCD,
 | |
|                                           ArrayRef<Expr *> Args,
 | |
|                                           StringRef Opc,
 | |
|                                           SourceLocation OpLoc) {
 | |
|   // Sort the candidates by viability and position.  Sorting directly would
 | |
|   // be prohibitive, so we make a set of pointers and sort those.
 | |
|   SmallVector<OverloadCandidate*, 32> Cands;
 | |
|   if (OCD == OCD_AllCandidates) Cands.reserve(size());
 | |
|   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
 | |
|     if (Cand->Viable)
 | |
|       Cands.push_back(Cand);
 | |
|     else if (OCD == OCD_AllCandidates) {
 | |
|       CompleteNonViableCandidate(S, Cand, Args);
 | |
|       if (Cand->Function || Cand->IsSurrogate)
 | |
|         Cands.push_back(Cand);
 | |
|       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
 | |
|       // want to list every possible builtin candidate.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::sort(Cands.begin(), Cands.end(),
 | |
|             CompareOverloadCandidatesForDisplay(S, Args.size()));
 | |
| 
 | |
|   bool ReportedAmbiguousConversions = false;
 | |
| 
 | |
|   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
 | |
|   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
 | |
|   unsigned CandsShown = 0;
 | |
|   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
 | |
|     OverloadCandidate *Cand = *I;
 | |
| 
 | |
|     // Set an arbitrary limit on the number of candidate functions we'll spam
 | |
|     // the user with.  FIXME: This limit should depend on details of the
 | |
|     // candidate list.
 | |
|     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
 | |
|       break;
 | |
|     }
 | |
|     ++CandsShown;
 | |
| 
 | |
|     if (Cand->Function)
 | |
|       NoteFunctionCandidate(S, Cand, Args.size());
 | |
|     else if (Cand->IsSurrogate)
 | |
|       NoteSurrogateCandidate(S, Cand);
 | |
|     else {
 | |
|       assert(Cand->Viable &&
 | |
|              "Non-viable built-in candidates are not added to Cands.");
 | |
|       // Generally we only see ambiguities including viable builtin
 | |
|       // operators if overload resolution got screwed up by an
 | |
|       // ambiguous user-defined conversion.
 | |
|       //
 | |
|       // FIXME: It's quite possible for different conversions to see
 | |
|       // different ambiguities, though.
 | |
|       if (!ReportedAmbiguousConversions) {
 | |
|         NoteAmbiguousUserConversions(S, OpLoc, Cand);
 | |
|         ReportedAmbiguousConversions = true;
 | |
|       }
 | |
| 
 | |
|       // If this is a viable builtin, print it.
 | |
|       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (I != E)
 | |
|     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
 | |
| }
 | |
| 
 | |
| static SourceLocation
 | |
| GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
 | |
|   return Cand->Specialization ? Cand->Specialization->getLocation()
 | |
|                               : SourceLocation();
 | |
| }
 | |
| 
 | |
| struct CompareTemplateSpecCandidatesForDisplay {
 | |
|   Sema &S;
 | |
|   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
 | |
| 
 | |
|   bool operator()(const TemplateSpecCandidate *L,
 | |
|                   const TemplateSpecCandidate *R) {
 | |
|     // Fast-path this check.
 | |
|     if (L == R)
 | |
|       return false;
 | |
| 
 | |
|     // Assuming that both candidates are not matches...
 | |
| 
 | |
|     // Sort by the ranking of deduction failures.
 | |
|     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
 | |
|       return RankDeductionFailure(L->DeductionFailure) <
 | |
|              RankDeductionFailure(R->DeductionFailure);
 | |
| 
 | |
|     // Sort everything else by location.
 | |
|     SourceLocation LLoc = GetLocationForCandidate(L);
 | |
|     SourceLocation RLoc = GetLocationForCandidate(R);
 | |
| 
 | |
|     // Put candidates without locations (e.g. builtins) at the end.
 | |
|     if (LLoc.isInvalid())
 | |
|       return false;
 | |
|     if (RLoc.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Diagnose a template argument deduction failure.
 | |
| /// We are treating these failures as overload failures due to bad
 | |
| /// deductions.
 | |
| void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
 | |
|   DiagnoseBadDeduction(S, Specialization, // pattern
 | |
|                        DeductionFailure, /*NumArgs=*/0);
 | |
| }
 | |
| 
 | |
| void TemplateSpecCandidateSet::destroyCandidates() {
 | |
|   for (iterator i = begin(), e = end(); i != e; ++i) {
 | |
|     i->DeductionFailure.Destroy();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TemplateSpecCandidateSet::clear() {
 | |
|   destroyCandidates();
 | |
|   Candidates.clear();
 | |
| }
 | |
| 
 | |
| /// NoteCandidates - When no template specialization match is found, prints
 | |
| /// diagnostic messages containing the non-matching specializations that form
 | |
| /// the candidate set.
 | |
| /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
 | |
| /// OCD == OCD_AllCandidates and Cand->Viable == false.
 | |
| void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
 | |
|   // Sort the candidates by position (assuming no candidate is a match).
 | |
|   // Sorting directly would be prohibitive, so we make a set of pointers
 | |
|   // and sort those.
 | |
|   SmallVector<TemplateSpecCandidate *, 32> Cands;
 | |
|   Cands.reserve(size());
 | |
|   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
 | |
|     if (Cand->Specialization)
 | |
|       Cands.push_back(Cand);
 | |
|     // Otherwise, this is a non-matching builtin candidate.  We do not,
 | |
|     // in general, want to list every possible builtin candidate.
 | |
|   }
 | |
| 
 | |
|   std::sort(Cands.begin(), Cands.end(),
 | |
|             CompareTemplateSpecCandidatesForDisplay(S));
 | |
| 
 | |
|   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
 | |
|   // for generalization purposes (?).
 | |
|   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
 | |
| 
 | |
|   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
 | |
|   unsigned CandsShown = 0;
 | |
|   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
 | |
|     TemplateSpecCandidate *Cand = *I;
 | |
| 
 | |
|     // Set an arbitrary limit on the number of candidates we'll spam
 | |
|     // the user with.  FIXME: This limit should depend on details of the
 | |
|     // candidate list.
 | |
|     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
 | |
|       break;
 | |
|     ++CandsShown;
 | |
| 
 | |
|     assert(Cand->Specialization &&
 | |
|            "Non-matching built-in candidates are not added to Cands.");
 | |
|     Cand->NoteDeductionFailure(S);
 | |
|   }
 | |
| 
 | |
|   if (I != E)
 | |
|     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
 | |
| }
 | |
| 
 | |
| // [PossiblyAFunctionType]  -->   [Return]
 | |
| // NonFunctionType --> NonFunctionType
 | |
| // R (A) --> R(A)
 | |
| // R (*)(A) --> R (A)
 | |
| // R (&)(A) --> R (A)
 | |
| // R (S::*)(A) --> R (A)
 | |
| QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
 | |
|   QualType Ret = PossiblyAFunctionType;
 | |
|   if (const PointerType *ToTypePtr = 
 | |
|     PossiblyAFunctionType->getAs<PointerType>())
 | |
|     Ret = ToTypePtr->getPointeeType();
 | |
|   else if (const ReferenceType *ToTypeRef = 
 | |
|     PossiblyAFunctionType->getAs<ReferenceType>())
 | |
|     Ret = ToTypeRef->getPointeeType();
 | |
|   else if (const MemberPointerType *MemTypePtr =
 | |
|     PossiblyAFunctionType->getAs<MemberPointerType>()) 
 | |
|     Ret = MemTypePtr->getPointeeType();   
 | |
|   Ret = 
 | |
|     Context.getCanonicalType(Ret).getUnqualifiedType();
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| // A helper class to help with address of function resolution
 | |
| // - allows us to avoid passing around all those ugly parameters
 | |
| class AddressOfFunctionResolver 
 | |
| {
 | |
|   Sema& S;
 | |
|   Expr* SourceExpr;
 | |
|   const QualType& TargetType; 
 | |
|   QualType TargetFunctionType; // Extracted function type from target type 
 | |
|    
 | |
|   bool Complain;
 | |
|   //DeclAccessPair& ResultFunctionAccessPair;
 | |
|   ASTContext& Context;
 | |
| 
 | |
|   bool TargetTypeIsNonStaticMemberFunction;
 | |
|   bool FoundNonTemplateFunction;
 | |
|   bool StaticMemberFunctionFromBoundPointer;
 | |
| 
 | |
|   OverloadExpr::FindResult OvlExprInfo; 
 | |
|   OverloadExpr *OvlExpr;
 | |
|   TemplateArgumentListInfo OvlExplicitTemplateArgs;
 | |
|   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
 | |
|   TemplateSpecCandidateSet FailedCandidates;
 | |
| 
 | |
| public:
 | |
|   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
 | |
|                             const QualType &TargetType, bool Complain)
 | |
|       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
 | |
|         Complain(Complain), Context(S.getASTContext()),
 | |
|         TargetTypeIsNonStaticMemberFunction(
 | |
|             !!TargetType->getAs<MemberPointerType>()),
 | |
|         FoundNonTemplateFunction(false),
 | |
|         StaticMemberFunctionFromBoundPointer(false),
 | |
|         OvlExprInfo(OverloadExpr::find(SourceExpr)),
 | |
|         OvlExpr(OvlExprInfo.Expression),
 | |
|         FailedCandidates(OvlExpr->getNameLoc()) {
 | |
|     ExtractUnqualifiedFunctionTypeFromTargetType();
 | |
| 
 | |
|     if (TargetFunctionType->isFunctionType()) {
 | |
|       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
 | |
|         if (!UME->isImplicitAccess() &&
 | |
|             !S.ResolveSingleFunctionTemplateSpecialization(UME))
 | |
|           StaticMemberFunctionFromBoundPointer = true;
 | |
|     } else if (OvlExpr->hasExplicitTemplateArgs()) {
 | |
|       DeclAccessPair dap;
 | |
|       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
 | |
|               OvlExpr, false, &dap)) {
 | |
|         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
 | |
|           if (!Method->isStatic()) {
 | |
|             // If the target type is a non-function type and the function found
 | |
|             // is a non-static member function, pretend as if that was the
 | |
|             // target, it's the only possible type to end up with.
 | |
|             TargetTypeIsNonStaticMemberFunction = true;
 | |
| 
 | |
|             // And skip adding the function if its not in the proper form.
 | |
|             // We'll diagnose this due to an empty set of functions.
 | |
|             if (!OvlExprInfo.HasFormOfMemberPointer)
 | |
|               return;
 | |
|           }
 | |
| 
 | |
|         Matches.push_back(std::make_pair(dap, Fn));
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     if (OvlExpr->hasExplicitTemplateArgs())
 | |
|       OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
 | |
| 
 | |
|     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
 | |
|       // C++ [over.over]p4:
 | |
|       //   If more than one function is selected, [...]
 | |
|       if (Matches.size() > 1) {
 | |
|         if (FoundNonTemplateFunction)
 | |
|           EliminateAllTemplateMatches();
 | |
|         else
 | |
|           EliminateAllExceptMostSpecializedTemplate();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
| private:
 | |
|   bool isTargetTypeAFunction() const {
 | |
|     return TargetFunctionType->isFunctionType();
 | |
|   }
 | |
| 
 | |
|   // [ToType]     [Return]
 | |
| 
 | |
|   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
 | |
|   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
 | |
|   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
 | |
|   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
 | |
|     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
 | |
|   }
 | |
| 
 | |
|   // return true if any matching specializations were found
 | |
|   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 
 | |
|                                    const DeclAccessPair& CurAccessFunPair) {
 | |
|     if (CXXMethodDecl *Method
 | |
|               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
 | |
|       // Skip non-static function templates when converting to pointer, and
 | |
|       // static when converting to member pointer.
 | |
|       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
 | |
|         return false;
 | |
|     } 
 | |
|     else if (TargetTypeIsNonStaticMemberFunction)
 | |
|       return false;
 | |
| 
 | |
|     // C++ [over.over]p2:
 | |
|     //   If the name is a function template, template argument deduction is
 | |
|     //   done (14.8.2.2), and if the argument deduction succeeds, the
 | |
|     //   resulting template argument list is used to generate a single
 | |
|     //   function template specialization, which is added to the set of
 | |
|     //   overloaded functions considered.
 | |
|     FunctionDecl *Specialization = nullptr;
 | |
|     TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | |
|     if (Sema::TemplateDeductionResult Result
 | |
|           = S.DeduceTemplateArguments(FunctionTemplate, 
 | |
|                                       &OvlExplicitTemplateArgs,
 | |
|                                       TargetFunctionType, Specialization, 
 | |
|                                       Info, /*InOverloadResolution=*/true)) {
 | |
|       // Make a note of the failed deduction for diagnostics.
 | |
|       FailedCandidates.addCandidate()
 | |
|           .set(FunctionTemplate->getTemplatedDecl(),
 | |
|                MakeDeductionFailureInfo(Context, Result, Info));
 | |
|       return false;
 | |
|     } 
 | |
|     
 | |
|     // Template argument deduction ensures that we have an exact match or
 | |
|     // compatible pointer-to-function arguments that would be adjusted by ICS.
 | |
|     // This function template specicalization works.
 | |
|     Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
 | |
|     assert(S.isSameOrCompatibleFunctionType(
 | |
|               Context.getCanonicalType(Specialization->getType()),
 | |
|               Context.getCanonicalType(TargetFunctionType)));
 | |
|     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 
 | |
|                                       const DeclAccessPair& CurAccessFunPair) {
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
 | |
|       // Skip non-static functions when converting to pointer, and static
 | |
|       // when converting to member pointer.
 | |
|       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
 | |
|         return false;
 | |
|     } 
 | |
|     else if (TargetTypeIsNonStaticMemberFunction)
 | |
|       return false;
 | |
| 
 | |
|     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
 | |
|       if (S.getLangOpts().CUDA)
 | |
|         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
 | |
|           if (S.CheckCUDATarget(Caller, FunDecl))
 | |
|             return false;
 | |
| 
 | |
|       // If any candidate has a placeholder return type, trigger its deduction
 | |
|       // now.
 | |
|       if (S.getLangOpts().CPlusPlus1y &&
 | |
|           FunDecl->getReturnType()->isUndeducedType() &&
 | |
|           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
 | |
|         return false;
 | |
| 
 | |
|       QualType ResultTy;
 | |
|       if (Context.hasSameUnqualifiedType(TargetFunctionType, 
 | |
|                                          FunDecl->getType()) ||
 | |
|           S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
 | |
|                                  ResultTy)) {
 | |
|         Matches.push_back(std::make_pair(CurAccessFunPair,
 | |
|           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
 | |
|         FoundNonTemplateFunction = true;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   bool FindAllFunctionsThatMatchTargetTypeExactly() {
 | |
|     bool Ret = false;
 | |
|     
 | |
|     // If the overload expression doesn't have the form of a pointer to
 | |
|     // member, don't try to convert it to a pointer-to-member type.
 | |
|     if (IsInvalidFormOfPointerToMemberFunction())
 | |
|       return false;
 | |
| 
 | |
|     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
 | |
|                                E = OvlExpr->decls_end(); 
 | |
|          I != E; ++I) {
 | |
|       // Look through any using declarations to find the underlying function.
 | |
|       NamedDecl *Fn = (*I)->getUnderlyingDecl();
 | |
| 
 | |
|       // C++ [over.over]p3:
 | |
|       //   Non-member functions and static member functions match
 | |
|       //   targets of type "pointer-to-function" or "reference-to-function."
 | |
|       //   Nonstatic member functions match targets of
 | |
|       //   type "pointer-to-member-function."
 | |
|       // Note that according to DR 247, the containing class does not matter.
 | |
|       if (FunctionTemplateDecl *FunctionTemplate
 | |
|                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
 | |
|         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
 | |
|           Ret = true;
 | |
|       }
 | |
|       // If we have explicit template arguments supplied, skip non-templates.
 | |
|       else if (!OvlExpr->hasExplicitTemplateArgs() &&
 | |
|                AddMatchingNonTemplateFunction(Fn, I.getPair()))
 | |
|         Ret = true;
 | |
|     }
 | |
|     assert(Ret || Matches.empty());
 | |
|     return Ret;
 | |
|   }
 | |
| 
 | |
|   void EliminateAllExceptMostSpecializedTemplate() {
 | |
|     //   [...] and any given function template specialization F1 is
 | |
|     //   eliminated if the set contains a second function template
 | |
|     //   specialization whose function template is more specialized
 | |
|     //   than the function template of F1 according to the partial
 | |
|     //   ordering rules of 14.5.5.2.
 | |
| 
 | |
|     // The algorithm specified above is quadratic. We instead use a
 | |
|     // two-pass algorithm (similar to the one used to identify the
 | |
|     // best viable function in an overload set) that identifies the
 | |
|     // best function template (if it exists).
 | |
| 
 | |
|     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
 | |
|     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
 | |
|       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
 | |
| 
 | |
|     // TODO: It looks like FailedCandidates does not serve much purpose
 | |
|     // here, since the no_viable diagnostic has index 0.
 | |
|     UnresolvedSetIterator Result = S.getMostSpecialized(
 | |
|         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
 | |
|         SourceExpr->getLocStart(), S.PDiag(),
 | |
|         S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
 | |
|                                                      .second->getDeclName(),
 | |
|         S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
 | |
|         Complain, TargetFunctionType);
 | |
| 
 | |
|     if (Result != MatchesCopy.end()) {
 | |
|       // Make it the first and only element
 | |
|       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
 | |
|       Matches[0].second = cast<FunctionDecl>(*Result);
 | |
|       Matches.resize(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void EliminateAllTemplateMatches() {
 | |
|     //   [...] any function template specializations in the set are
 | |
|     //   eliminated if the set also contains a non-template function, [...]
 | |
|     for (unsigned I = 0, N = Matches.size(); I != N; ) {
 | |
|       if (Matches[I].second->getPrimaryTemplate() == nullptr)
 | |
|         ++I;
 | |
|       else {
 | |
|         Matches[I] = Matches[--N];
 | |
|         Matches.set_size(N);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   void ComplainNoMatchesFound() const {
 | |
|     assert(Matches.empty());
 | |
|     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
 | |
|         << OvlExpr->getName() << TargetFunctionType
 | |
|         << OvlExpr->getSourceRange();
 | |
|     if (FailedCandidates.empty())
 | |
|       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
 | |
|     else {
 | |
|       // We have some deduction failure messages. Use them to diagnose
 | |
|       // the function templates, and diagnose the non-template candidates
 | |
|       // normally.
 | |
|       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
 | |
|                                  IEnd = OvlExpr->decls_end();
 | |
|            I != IEnd; ++I)
 | |
|         if (FunctionDecl *Fun =
 | |
|                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
 | |
|           S.NoteOverloadCandidate(Fun, TargetFunctionType);
 | |
|       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool IsInvalidFormOfPointerToMemberFunction() const {
 | |
|     return TargetTypeIsNonStaticMemberFunction &&
 | |
|       !OvlExprInfo.HasFormOfMemberPointer;
 | |
|   }
 | |
| 
 | |
|   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
 | |
|       // TODO: Should we condition this on whether any functions might
 | |
|       // have matched, or is it more appropriate to do that in callers?
 | |
|       // TODO: a fixit wouldn't hurt.
 | |
|       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
 | |
|         << TargetType << OvlExpr->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   bool IsStaticMemberFunctionFromBoundPointer() const {
 | |
|     return StaticMemberFunctionFromBoundPointer;
 | |
|   }
 | |
| 
 | |
|   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
 | |
|     S.Diag(OvlExpr->getLocStart(),
 | |
|            diag::err_invalid_form_pointer_member_function)
 | |
|       << OvlExpr->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   void ComplainOfInvalidConversion() const {
 | |
|     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
 | |
|       << OvlExpr->getName() << TargetType;
 | |
|   }
 | |
| 
 | |
|   void ComplainMultipleMatchesFound() const {
 | |
|     assert(Matches.size() > 1);
 | |
|     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
 | |
|       << OvlExpr->getName()
 | |
|       << OvlExpr->getSourceRange();
 | |
|     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
 | |
|   }
 | |
| 
 | |
|   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
 | |
| 
 | |
|   int getNumMatches() const { return Matches.size(); }
 | |
|   
 | |
|   FunctionDecl* getMatchingFunctionDecl() const {
 | |
|     if (Matches.size() != 1) return nullptr;
 | |
|     return Matches[0].second;
 | |
|   }
 | |
|   
 | |
|   const DeclAccessPair* getMatchingFunctionAccessPair() const {
 | |
|     if (Matches.size() != 1) return nullptr;
 | |
|     return &Matches[0].first;
 | |
|   }
 | |
| };
 | |
|   
 | |
| /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
 | |
| /// an overloaded function (C++ [over.over]), where @p From is an
 | |
| /// expression with overloaded function type and @p ToType is the type
 | |
| /// we're trying to resolve to. For example:
 | |
| ///
 | |
| /// @code
 | |
| /// int f(double);
 | |
| /// int f(int);
 | |
| ///
 | |
| /// int (*pfd)(double) = f; // selects f(double)
 | |
| /// @endcode
 | |
| ///
 | |
| /// This routine returns the resulting FunctionDecl if it could be
 | |
| /// resolved, and NULL otherwise. When @p Complain is true, this
 | |
| /// routine will emit diagnostics if there is an error.
 | |
| FunctionDecl *
 | |
| Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
 | |
|                                          QualType TargetType,
 | |
|                                          bool Complain,
 | |
|                                          DeclAccessPair &FoundResult,
 | |
|                                          bool *pHadMultipleCandidates) {
 | |
|   assert(AddressOfExpr->getType() == Context.OverloadTy);
 | |
| 
 | |
|   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
 | |
|                                      Complain);
 | |
|   int NumMatches = Resolver.getNumMatches();
 | |
|   FunctionDecl *Fn = nullptr;
 | |
|   if (NumMatches == 0 && Complain) {
 | |
|     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
 | |
|       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
 | |
|     else
 | |
|       Resolver.ComplainNoMatchesFound();
 | |
|   }
 | |
|   else if (NumMatches > 1 && Complain)
 | |
|     Resolver.ComplainMultipleMatchesFound();
 | |
|   else if (NumMatches == 1) {
 | |
|     Fn = Resolver.getMatchingFunctionDecl();
 | |
|     assert(Fn);
 | |
|     FoundResult = *Resolver.getMatchingFunctionAccessPair();
 | |
|     if (Complain) {
 | |
|       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
 | |
|         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
 | |
|       else
 | |
|         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (pHadMultipleCandidates)
 | |
|     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
 | |
|   return Fn;
 | |
| }
 | |
| 
 | |
| /// \brief Given an expression that refers to an overloaded function, try to
 | |
| /// resolve that overloaded function expression down to a single function.
 | |
| ///
 | |
| /// This routine can only resolve template-ids that refer to a single function
 | |
| /// template, where that template-id refers to a single template whose template
 | |
| /// arguments are either provided by the template-id or have defaults,
 | |
| /// as described in C++0x [temp.arg.explicit]p3.
 | |
| ///
 | |
| /// If no template-ids are found, no diagnostics are emitted and NULL is
 | |
| /// returned.
 | |
| FunctionDecl *
 | |
| Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 
 | |
|                                                   bool Complain,
 | |
|                                                   DeclAccessPair *FoundResult) {
 | |
|   // C++ [over.over]p1:
 | |
|   //   [...] [Note: any redundant set of parentheses surrounding the
 | |
|   //   overloaded function name is ignored (5.1). ]
 | |
|   // C++ [over.over]p1:
 | |
|   //   [...] The overloaded function name can be preceded by the &
 | |
|   //   operator.
 | |
| 
 | |
|   // If we didn't actually find any template-ids, we're done.
 | |
|   if (!ovl->hasExplicitTemplateArgs())
 | |
|     return nullptr;
 | |
| 
 | |
|   TemplateArgumentListInfo ExplicitTemplateArgs;
 | |
|   ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
 | |
|   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
 | |
| 
 | |
|   // Look through all of the overloaded functions, searching for one
 | |
|   // whose type matches exactly.
 | |
|   FunctionDecl *Matched = nullptr;
 | |
|   for (UnresolvedSetIterator I = ovl->decls_begin(),
 | |
|          E = ovl->decls_end(); I != E; ++I) {
 | |
|     // C++0x [temp.arg.explicit]p3:
 | |
|     //   [...] In contexts where deduction is done and fails, or in contexts
 | |
|     //   where deduction is not done, if a template argument list is
 | |
|     //   specified and it, along with any default template arguments,
 | |
|     //   identifies a single function template specialization, then the
 | |
|     //   template-id is an lvalue for the function template specialization.
 | |
|     FunctionTemplateDecl *FunctionTemplate
 | |
|       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
 | |
| 
 | |
|     // C++ [over.over]p2:
 | |
|     //   If the name is a function template, template argument deduction is
 | |
|     //   done (14.8.2.2), and if the argument deduction succeeds, the
 | |
|     //   resulting template argument list is used to generate a single
 | |
|     //   function template specialization, which is added to the set of
 | |
|     //   overloaded functions considered.
 | |
|     FunctionDecl *Specialization = nullptr;
 | |
|     TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | |
|     if (TemplateDeductionResult Result
 | |
|           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
 | |
|                                     Specialization, Info,
 | |
|                                     /*InOverloadResolution=*/true)) {
 | |
|       // Make a note of the failed deduction for diagnostics.
 | |
|       // TODO: Actually use the failed-deduction info?
 | |
|       FailedCandidates.addCandidate()
 | |
|           .set(FunctionTemplate->getTemplatedDecl(),
 | |
|                MakeDeductionFailureInfo(Context, Result, Info));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(Specialization && "no specialization and no error?");
 | |
| 
 | |
|     // Multiple matches; we can't resolve to a single declaration.
 | |
|     if (Matched) {
 | |
|       if (Complain) {
 | |
|         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
 | |
|           << ovl->getName();
 | |
|         NoteAllOverloadCandidates(ovl);
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
|     
 | |
|     Matched = Specialization;
 | |
|     if (FoundResult) *FoundResult = I.getPair();    
 | |
|   }
 | |
| 
 | |
|   if (Matched && getLangOpts().CPlusPlus1y &&
 | |
|       Matched->getReturnType()->isUndeducedType() &&
 | |
|       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
 | |
|     return nullptr;
 | |
| 
 | |
|   return Matched;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| // Resolve and fix an overloaded expression that can be resolved
 | |
| // because it identifies a single function template specialization.
 | |
| //
 | |
| // Last three arguments should only be supplied if Complain = true
 | |
| //
 | |
| // Return true if it was logically possible to so resolve the
 | |
| // expression, regardless of whether or not it succeeded.  Always
 | |
| // returns true if 'complain' is set.
 | |
| bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
 | |
|                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
 | |
|                    bool complain, const SourceRange& OpRangeForComplaining, 
 | |
|                                            QualType DestTypeForComplaining, 
 | |
|                                             unsigned DiagIDForComplaining) {
 | |
|   assert(SrcExpr.get()->getType() == Context.OverloadTy);
 | |
| 
 | |
|   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
 | |
| 
 | |
|   DeclAccessPair found;
 | |
|   ExprResult SingleFunctionExpression;
 | |
|   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
 | |
|                            ovl.Expression, /*complain*/ false, &found)) {
 | |
|     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
 | |
|       SrcExpr = ExprError();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // It is only correct to resolve to an instance method if we're
 | |
|     // resolving a form that's permitted to be a pointer to member.
 | |
|     // Otherwise we'll end up making a bound member expression, which
 | |
|     // is illegal in all the contexts we resolve like this.
 | |
|     if (!ovl.HasFormOfMemberPointer &&
 | |
|         isa<CXXMethodDecl>(fn) &&
 | |
|         cast<CXXMethodDecl>(fn)->isInstance()) {
 | |
|       if (!complain) return false;
 | |
| 
 | |
|       Diag(ovl.Expression->getExprLoc(),
 | |
|            diag::err_bound_member_function)
 | |
|         << 0 << ovl.Expression->getSourceRange();
 | |
| 
 | |
|       // TODO: I believe we only end up here if there's a mix of
 | |
|       // static and non-static candidates (otherwise the expression
 | |
|       // would have 'bound member' type, not 'overload' type).
 | |
|       // Ideally we would note which candidate was chosen and why
 | |
|       // the static candidates were rejected.
 | |
|       SrcExpr = ExprError();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Fix the expression to refer to 'fn'.
 | |
|     SingleFunctionExpression =
 | |
|         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
 | |
| 
 | |
|     // If desired, do function-to-pointer decay.
 | |
|     if (doFunctionPointerConverion) {
 | |
|       SingleFunctionExpression =
 | |
|         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
 | |
|       if (SingleFunctionExpression.isInvalid()) {
 | |
|         SrcExpr = ExprError();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SingleFunctionExpression.isUsable()) {
 | |
|     if (complain) {
 | |
|       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
 | |
|         << ovl.Expression->getName()
 | |
|         << DestTypeForComplaining
 | |
|         << OpRangeForComplaining 
 | |
|         << ovl.Expression->getQualifierLoc().getSourceRange();
 | |
|       NoteAllOverloadCandidates(SrcExpr.get());
 | |
| 
 | |
|       SrcExpr = ExprError();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   SrcExpr = SingleFunctionExpression;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Add a single candidate to the overload set.
 | |
| static void AddOverloadedCallCandidate(Sema &S,
 | |
|                                        DeclAccessPair FoundDecl,
 | |
|                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                                        ArrayRef<Expr *> Args,
 | |
|                                        OverloadCandidateSet &CandidateSet,
 | |
|                                        bool PartialOverloading,
 | |
|                                        bool KnownValid) {
 | |
|   NamedDecl *Callee = FoundDecl.getDecl();
 | |
|   if (isa<UsingShadowDecl>(Callee))
 | |
|     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
 | |
| 
 | |
|   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
 | |
|     if (ExplicitTemplateArgs) {
 | |
|       assert(!KnownValid && "Explicit template arguments?");
 | |
|       return;
 | |
|     }
 | |
|     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
 | |
|                            PartialOverloading);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (FunctionTemplateDecl *FuncTemplate
 | |
|       = dyn_cast<FunctionTemplateDecl>(Callee)) {
 | |
|     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
 | |
|                                    ExplicitTemplateArgs, Args, CandidateSet);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!KnownValid && "unhandled case in overloaded call candidate");
 | |
| }
 | |
| 
 | |
| /// \brief Add the overload candidates named by callee and/or found by argument
 | |
| /// dependent lookup to the given overload set.
 | |
| void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
 | |
|                                        ArrayRef<Expr *> Args,
 | |
|                                        OverloadCandidateSet &CandidateSet,
 | |
|                                        bool PartialOverloading) {
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify that ArgumentDependentLookup is consistent with the rules
 | |
|   // in C++0x [basic.lookup.argdep]p3:
 | |
|   //
 | |
|   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
 | |
|   //   and let Y be the lookup set produced by argument dependent
 | |
|   //   lookup (defined as follows). If X contains
 | |
|   //
 | |
|   //     -- a declaration of a class member, or
 | |
|   //
 | |
|   //     -- a block-scope function declaration that is not a
 | |
|   //        using-declaration, or
 | |
|   //
 | |
|   //     -- a declaration that is neither a function or a function
 | |
|   //        template
 | |
|   //
 | |
|   //   then Y is empty.
 | |
| 
 | |
|   if (ULE->requiresADL()) {
 | |
|     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
 | |
|            E = ULE->decls_end(); I != E; ++I) {
 | |
|       assert(!(*I)->getDeclContext()->isRecord());
 | |
|       assert(isa<UsingShadowDecl>(*I) ||
 | |
|              !(*I)->getDeclContext()->isFunctionOrMethod());
 | |
|       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // It would be nice to avoid this copy.
 | |
|   TemplateArgumentListInfo TABuffer;
 | |
|   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
 | |
|   if (ULE->hasExplicitTemplateArgs()) {
 | |
|     ULE->copyTemplateArgumentsInto(TABuffer);
 | |
|     ExplicitTemplateArgs = &TABuffer;
 | |
|   }
 | |
| 
 | |
|   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
 | |
|          E = ULE->decls_end(); I != E; ++I)
 | |
|     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
 | |
|                                CandidateSet, PartialOverloading,
 | |
|                                /*KnownValid*/ true);
 | |
| 
 | |
|   if (ULE->requiresADL())
 | |
|     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
 | |
|                                          Args, ExplicitTemplateArgs,
 | |
|                                          CandidateSet, PartialOverloading);
 | |
| }
 | |
| 
 | |
| /// Determine whether a declaration with the specified name could be moved into
 | |
| /// a different namespace.
 | |
| static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
 | |
|   switch (Name.getCXXOverloadedOperator()) {
 | |
|   case OO_New: case OO_Array_New:
 | |
|   case OO_Delete: case OO_Array_Delete:
 | |
|     return false;
 | |
| 
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Attempt to recover from an ill-formed use of a non-dependent name in a
 | |
| /// template, where the non-dependent name was declared after the template
 | |
| /// was defined. This is common in code written for a compilers which do not
 | |
| /// correctly implement two-stage name lookup.
 | |
| ///
 | |
| /// Returns true if a viable candidate was found and a diagnostic was issued.
 | |
| static bool
 | |
| DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
 | |
|                        const CXXScopeSpec &SS, LookupResult &R,
 | |
|                        OverloadCandidateSet::CandidateSetKind CSK,
 | |
|                        TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                        ArrayRef<Expr *> Args) {
 | |
|   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
 | |
|     if (DC->isTransparentContext())
 | |
|       continue;
 | |
| 
 | |
|     SemaRef.LookupQualifiedName(R, DC);
 | |
| 
 | |
|     if (!R.empty()) {
 | |
|       R.suppressDiagnostics();
 | |
| 
 | |
|       if (isa<CXXRecordDecl>(DC)) {
 | |
|         // Don't diagnose names we find in classes; we get much better
 | |
|         // diagnostics for these from DiagnoseEmptyLookup.
 | |
|         R.clear();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       OverloadCandidateSet Candidates(FnLoc, CSK);
 | |
|       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | |
|         AddOverloadedCallCandidate(SemaRef, I.getPair(),
 | |
|                                    ExplicitTemplateArgs, Args,
 | |
|                                    Candidates, false, /*KnownValid*/ false);
 | |
| 
 | |
|       OverloadCandidateSet::iterator Best;
 | |
|       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
 | |
|         // No viable functions. Don't bother the user with notes for functions
 | |
|         // which don't work and shouldn't be found anyway.
 | |
|         R.clear();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Find the namespaces where ADL would have looked, and suggest
 | |
|       // declaring the function there instead.
 | |
|       Sema::AssociatedNamespaceSet AssociatedNamespaces;
 | |
|       Sema::AssociatedClassSet AssociatedClasses;
 | |
|       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
 | |
|                                                  AssociatedNamespaces,
 | |
|                                                  AssociatedClasses);
 | |
|       Sema::AssociatedNamespaceSet SuggestedNamespaces;
 | |
|       if (canBeDeclaredInNamespace(R.getLookupName())) {
 | |
|         DeclContext *Std = SemaRef.getStdNamespace();
 | |
|         for (Sema::AssociatedNamespaceSet::iterator
 | |
|                it = AssociatedNamespaces.begin(),
 | |
|                end = AssociatedNamespaces.end(); it != end; ++it) {
 | |
|           // Never suggest declaring a function within namespace 'std'.
 | |
|           if (Std && Std->Encloses(*it))
 | |
|             continue;
 | |
| 
 | |
|           // Never suggest declaring a function within a namespace with a
 | |
|           // reserved name, like __gnu_cxx.
 | |
|           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
 | |
|           if (NS &&
 | |
|               NS->getQualifiedNameAsString().find("__") != std::string::npos)
 | |
|             continue;
 | |
| 
 | |
|           SuggestedNamespaces.insert(*it);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
 | |
|         << R.getLookupName();
 | |
|       if (SuggestedNamespaces.empty()) {
 | |
|         SemaRef.Diag(Best->Function->getLocation(),
 | |
|                      diag::note_not_found_by_two_phase_lookup)
 | |
|           << R.getLookupName() << 0;
 | |
|       } else if (SuggestedNamespaces.size() == 1) {
 | |
|         SemaRef.Diag(Best->Function->getLocation(),
 | |
|                      diag::note_not_found_by_two_phase_lookup)
 | |
|           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
 | |
|       } else {
 | |
|         // FIXME: It would be useful to list the associated namespaces here,
 | |
|         // but the diagnostics infrastructure doesn't provide a way to produce
 | |
|         // a localized representation of a list of items.
 | |
|         SemaRef.Diag(Best->Function->getLocation(),
 | |
|                      diag::note_not_found_by_two_phase_lookup)
 | |
|           << R.getLookupName() << 2;
 | |
|       }
 | |
| 
 | |
|       // Try to recover by calling this function.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     R.clear();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Attempt to recover from ill-formed use of a non-dependent operator in a
 | |
| /// template, where the non-dependent operator was declared after the template
 | |
| /// was defined.
 | |
| ///
 | |
| /// Returns true if a viable candidate was found and a diagnostic was issued.
 | |
| static bool
 | |
| DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
 | |
|                                SourceLocation OpLoc,
 | |
|                                ArrayRef<Expr *> Args) {
 | |
|   DeclarationName OpName =
 | |
|     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
 | |
|   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
 | |
|   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
 | |
|                                 OverloadCandidateSet::CSK_Operator,
 | |
|                                 /*ExplicitTemplateArgs=*/nullptr, Args);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class BuildRecoveryCallExprRAII {
 | |
|   Sema &SemaRef;
 | |
| public:
 | |
|   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
 | |
|     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
 | |
|     SemaRef.IsBuildingRecoveryCallExpr = true;
 | |
|   }
 | |
| 
 | |
|   ~BuildRecoveryCallExprRAII() {
 | |
|     SemaRef.IsBuildingRecoveryCallExpr = false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Attempts to recover from a call where no functions were found.
 | |
| ///
 | |
| /// Returns true if new candidates were found.
 | |
| static ExprResult
 | |
| BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
 | |
|                       UnresolvedLookupExpr *ULE,
 | |
|                       SourceLocation LParenLoc,
 | |
|                       MutableArrayRef<Expr *> Args,
 | |
|                       SourceLocation RParenLoc,
 | |
|                       bool EmptyLookup, bool AllowTypoCorrection) {
 | |
|   // Do not try to recover if it is already building a recovery call.
 | |
|   // This stops infinite loops for template instantiations like
 | |
|   //
 | |
|   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
 | |
|   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
 | |
|   //
 | |
|   if (SemaRef.IsBuildingRecoveryCallExpr)
 | |
|     return ExprError();
 | |
|   BuildRecoveryCallExprRAII RCE(SemaRef);
 | |
| 
 | |
|   CXXScopeSpec SS;
 | |
|   SS.Adopt(ULE->getQualifierLoc());
 | |
|   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
 | |
| 
 | |
|   TemplateArgumentListInfo TABuffer;
 | |
|   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
 | |
|   if (ULE->hasExplicitTemplateArgs()) {
 | |
|     ULE->copyTemplateArgumentsInto(TABuffer);
 | |
|     ExplicitTemplateArgs = &TABuffer;
 | |
|   }
 | |
| 
 | |
|   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
 | |
|                  Sema::LookupOrdinaryName);
 | |
|   FunctionCallFilterCCC Validator(SemaRef, Args.size(),
 | |
|                                   ExplicitTemplateArgs != nullptr,
 | |
|                                   dyn_cast<MemberExpr>(Fn));
 | |
|   NoTypoCorrectionCCC RejectAll;
 | |
|   CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
 | |
|       (CorrectionCandidateCallback*)&Validator :
 | |
|       (CorrectionCandidateCallback*)&RejectAll;
 | |
|   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
 | |
|                               OverloadCandidateSet::CSK_Normal,
 | |
|                               ExplicitTemplateArgs, Args) &&
 | |
|       (!EmptyLookup ||
 | |
|        SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
 | |
|                                    ExplicitTemplateArgs, Args)))
 | |
|     return ExprError();
 | |
| 
 | |
|   assert(!R.empty() && "lookup results empty despite recovery");
 | |
| 
 | |
|   // Build an implicit member call if appropriate.  Just drop the
 | |
|   // casts and such from the call, we don't really care.
 | |
|   ExprResult NewFn = ExprError();
 | |
|   if ((*R.begin())->isCXXClassMember())
 | |
|     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
 | |
|                                                     R, ExplicitTemplateArgs);
 | |
|   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
 | |
|     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
 | |
|                                         ExplicitTemplateArgs);
 | |
|   else
 | |
|     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
 | |
| 
 | |
|   if (NewFn.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // This shouldn't cause an infinite loop because we're giving it
 | |
|   // an expression with viable lookup results, which should never
 | |
|   // end up here.
 | |
|   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
 | |
|                                MultiExprArg(Args.data(), Args.size()),
 | |
|                                RParenLoc);
 | |
| }
 | |
| 
 | |
| /// \brief Constructs and populates an OverloadedCandidateSet from
 | |
| /// the given function.
 | |
| /// \returns true when an the ExprResult output parameter has been set.
 | |
| bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
 | |
|                                   UnresolvedLookupExpr *ULE,
 | |
|                                   MultiExprArg Args,
 | |
|                                   SourceLocation RParenLoc,
 | |
|                                   OverloadCandidateSet *CandidateSet,
 | |
|                                   ExprResult *Result) {
 | |
| #ifndef NDEBUG
 | |
|   if (ULE->requiresADL()) {
 | |
|     // To do ADL, we must have found an unqualified name.
 | |
|     assert(!ULE->getQualifier() && "qualified name with ADL");
 | |
| 
 | |
|     // We don't perform ADL for implicit declarations of builtins.
 | |
|     // Verify that this was correctly set up.
 | |
|     FunctionDecl *F;
 | |
|     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
 | |
|         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
 | |
|         F->getBuiltinID() && F->isImplicit())
 | |
|       llvm_unreachable("performing ADL for builtin");
 | |
| 
 | |
|     // We don't perform ADL in C.
 | |
|     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   UnbridgedCastsSet UnbridgedCasts;
 | |
|   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
 | |
|     *Result = ExprError();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Add the functions denoted by the callee to the set of candidate
 | |
|   // functions, including those from argument-dependent lookup.
 | |
|   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
 | |
| 
 | |
|   // If we found nothing, try to recover.
 | |
|   // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
 | |
|   // out if it fails.
 | |
|   if (CandidateSet->empty()) {
 | |
|     // In Microsoft mode, if we are inside a template class member function then
 | |
|     // create a type dependent CallExpr. The goal is to postpone name lookup
 | |
|     // to instantiation time to be able to search into type dependent base
 | |
|     // classes.
 | |
|     if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
 | |
|         (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
 | |
|       CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
 | |
|                                             Context.DependentTy, VK_RValue,
 | |
|                                             RParenLoc);
 | |
|       CE->setTypeDependent(true);
 | |
|       *Result = CE;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   UnbridgedCasts.restore();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
 | |
| /// the completed call expression. If overload resolution fails, emits
 | |
| /// diagnostics and returns ExprError()
 | |
| static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
 | |
|                                            UnresolvedLookupExpr *ULE,
 | |
|                                            SourceLocation LParenLoc,
 | |
|                                            MultiExprArg Args,
 | |
|                                            SourceLocation RParenLoc,
 | |
|                                            Expr *ExecConfig,
 | |
|                                            OverloadCandidateSet *CandidateSet,
 | |
|                                            OverloadCandidateSet::iterator *Best,
 | |
|                                            OverloadingResult OverloadResult,
 | |
|                                            bool AllowTypoCorrection) {
 | |
|   if (CandidateSet->empty())
 | |
|     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
 | |
|                                  RParenLoc, /*EmptyLookup=*/true,
 | |
|                                  AllowTypoCorrection);
 | |
| 
 | |
|   switch (OverloadResult) {
 | |
|   case OR_Success: {
 | |
|     FunctionDecl *FDecl = (*Best)->Function;
 | |
|     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
 | |
|     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
 | |
|       return ExprError();
 | |
|     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
 | |
|     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
 | |
|                                          ExecConfig);
 | |
|   }
 | |
| 
 | |
|   case OR_No_Viable_Function: {
 | |
|     // Try to recover by looking for viable functions which the user might
 | |
|     // have meant to call.
 | |
|     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
 | |
|                                                 Args, RParenLoc,
 | |
|                                                 /*EmptyLookup=*/false,
 | |
|                                                 AllowTypoCorrection);
 | |
|     if (!Recovery.isInvalid())
 | |
|       return Recovery;
 | |
| 
 | |
|     SemaRef.Diag(Fn->getLocStart(),
 | |
|          diag::err_ovl_no_viable_function_in_call)
 | |
|       << ULE->getName() << Fn->getSourceRange();
 | |
|     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
 | |
|       << ULE->getName() << Fn->getSourceRange();
 | |
|     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
 | |
|     break;
 | |
| 
 | |
|   case OR_Deleted: {
 | |
|     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
 | |
|       << (*Best)->Function->isDeleted()
 | |
|       << ULE->getName()
 | |
|       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
 | |
|       << Fn->getSourceRange();
 | |
|     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
 | |
| 
 | |
|     // We emitted an error for the unvailable/deleted function call but keep
 | |
|     // the call in the AST.
 | |
|     FunctionDecl *FDecl = (*Best)->Function;
 | |
|     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
 | |
|     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
 | |
|                                          ExecConfig);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Overload resolution failed.
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// BuildOverloadedCallExpr - Given the call expression that calls Fn
 | |
| /// (which eventually refers to the declaration Func) and the call
 | |
| /// arguments Args/NumArgs, attempt to resolve the function call down
 | |
| /// to a specific function. If overload resolution succeeds, returns
 | |
| /// the call expression produced by overload resolution.
 | |
| /// Otherwise, emits diagnostics and returns ExprError.
 | |
| ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
 | |
|                                          UnresolvedLookupExpr *ULE,
 | |
|                                          SourceLocation LParenLoc,
 | |
|                                          MultiExprArg Args,
 | |
|                                          SourceLocation RParenLoc,
 | |
|                                          Expr *ExecConfig,
 | |
|                                          bool AllowTypoCorrection) {
 | |
|   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
 | |
|                                     OverloadCandidateSet::CSK_Normal);
 | |
|   ExprResult result;
 | |
| 
 | |
|   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
 | |
|                              &result))
 | |
|     return result;
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   OverloadingResult OverloadResult =
 | |
|       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
 | |
| 
 | |
|   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
 | |
|                                   RParenLoc, ExecConfig, &CandidateSet,
 | |
|                                   &Best, OverloadResult,
 | |
|                                   AllowTypoCorrection);
 | |
| }
 | |
| 
 | |
| static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
 | |
|   return Functions.size() > 1 ||
 | |
|     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
 | |
| }
 | |
| 
 | |
| /// \brief Create a unary operation that may resolve to an overloaded
 | |
| /// operator.
 | |
| ///
 | |
| /// \param OpLoc The location of the operator itself (e.g., '*').
 | |
| ///
 | |
| /// \param OpcIn The UnaryOperator::Opcode that describes this
 | |
| /// operator.
 | |
| ///
 | |
| /// \param Fns The set of non-member functions that will be
 | |
| /// considered by overload resolution. The caller needs to build this
 | |
| /// set based on the context using, e.g.,
 | |
| /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
 | |
| /// set should not contain any member functions; those will be added
 | |
| /// by CreateOverloadedUnaryOp().
 | |
| ///
 | |
| /// \param Input The input argument.
 | |
| ExprResult
 | |
| Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
 | |
|                               const UnresolvedSetImpl &Fns,
 | |
|                               Expr *Input) {
 | |
|   UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
 | |
| 
 | |
|   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
 | |
|   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
 | |
|   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | |
|   // TODO: provide better source location info.
 | |
|   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
 | |
| 
 | |
|   if (checkPlaceholderForOverload(*this, Input))
 | |
|     return ExprError();
 | |
| 
 | |
|   Expr *Args[2] = { Input, nullptr };
 | |
|   unsigned NumArgs = 1;
 | |
| 
 | |
|   // For post-increment and post-decrement, add the implicit '0' as
 | |
|   // the second argument, so that we know this is a post-increment or
 | |
|   // post-decrement.
 | |
|   if (Opc == UO_PostInc || Opc == UO_PostDec) {
 | |
|     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
 | |
|     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
 | |
|                                      SourceLocation());
 | |
|     NumArgs = 2;
 | |
|   }
 | |
| 
 | |
|   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
 | |
| 
 | |
|   if (Input->isTypeDependent()) {
 | |
|     if (Fns.empty())
 | |
|       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
 | |
|                                          VK_RValue, OK_Ordinary, OpLoc);
 | |
| 
 | |
|     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
 | |
|     UnresolvedLookupExpr *Fn
 | |
|       = UnresolvedLookupExpr::Create(Context, NamingClass,
 | |
|                                      NestedNameSpecifierLoc(), OpNameInfo,
 | |
|                                      /*ADL*/ true, IsOverloaded(Fns),
 | |
|                                      Fns.begin(), Fns.end());
 | |
|     return new (Context)
 | |
|         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
 | |
|                             VK_RValue, OpLoc, false);
 | |
|   }
 | |
| 
 | |
|   // Build an empty overload set.
 | |
|   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
 | |
| 
 | |
|   // Add the candidates from the given function set.
 | |
|   AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
 | |
| 
 | |
|   // Add operator candidates that are member functions.
 | |
|   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
 | |
| 
 | |
|   // Add candidates from ADL.
 | |
|   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
 | |
|                                        /*ExplicitTemplateArgs*/nullptr,
 | |
|                                        CandidateSet);
 | |
| 
 | |
|   // Add builtin operator candidates.
 | |
|   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   // Perform overload resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
 | |
|   case OR_Success: {
 | |
|     // We found a built-in operator or an overloaded operator.
 | |
|     FunctionDecl *FnDecl = Best->Function;
 | |
| 
 | |
|     if (FnDecl) {
 | |
|       // We matched an overloaded operator. Build a call to that
 | |
|       // operator.
 | |
| 
 | |
|       // Convert the arguments.
 | |
|       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | |
|         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
 | |
| 
 | |
|         ExprResult InputRes =
 | |
|           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
 | |
|                                               Best->FoundDecl, Method);
 | |
|         if (InputRes.isInvalid())
 | |
|           return ExprError();
 | |
|         Input = InputRes.get();
 | |
|       } else {
 | |
|         // Convert the arguments.
 | |
|         ExprResult InputInit
 | |
|           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | |
|                                                       Context,
 | |
|                                                       FnDecl->getParamDecl(0)),
 | |
|                                       SourceLocation(),
 | |
|                                       Input);
 | |
|         if (InputInit.isInvalid())
 | |
|           return ExprError();
 | |
|         Input = InputInit.get();
 | |
|       }
 | |
| 
 | |
|       // Build the actual expression node.
 | |
|       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
 | |
|                                                 HadMultipleCandidates, OpLoc);
 | |
|       if (FnExpr.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       // Determine the result type.
 | |
|       QualType ResultTy = FnDecl->getReturnType();
 | |
|       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | |
|       ResultTy = ResultTy.getNonLValueExprType(Context);
 | |
| 
 | |
|       Args[0] = Input;
 | |
|       CallExpr *TheCall =
 | |
|         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
 | |
|                                           ResultTy, VK, OpLoc, false);
 | |
| 
 | |
|       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
 | |
|         return ExprError();
 | |
| 
 | |
|       return MaybeBindToTemporary(TheCall);
 | |
|     } else {
 | |
|       // We matched a built-in operator. Convert the arguments, then
 | |
|       // break out so that we will build the appropriate built-in
 | |
|       // operator node.
 | |
|       ExprResult InputRes =
 | |
|         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
 | |
|                                   Best->Conversions[0], AA_Passing);
 | |
|       if (InputRes.isInvalid())
 | |
|         return ExprError();
 | |
|       Input = InputRes.get();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     // This is an erroneous use of an operator which can be overloaded by
 | |
|     // a non-member function. Check for non-member operators which were
 | |
|     // defined too late to be candidates.
 | |
|     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
 | |
|       // FIXME: Recover by calling the found function.
 | |
|       return ExprError();
 | |
| 
 | |
|     // No viable function; fall through to handling this as a
 | |
|     // built-in operator, which will produce an error message for us.
 | |
|     break;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
 | |
|         << UnaryOperator::getOpcodeStr(Opc)
 | |
|         << Input->getType()
 | |
|         << Input->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
 | |
|                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
 | |
|     return ExprError();
 | |
| 
 | |
|   case OR_Deleted:
 | |
|     Diag(OpLoc, diag::err_ovl_deleted_oper)
 | |
|       << Best->Function->isDeleted()
 | |
|       << UnaryOperator::getOpcodeStr(Opc)
 | |
|       << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|       << Input->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
 | |
|                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Either we found no viable overloaded operator or we matched a
 | |
|   // built-in operator. In either case, fall through to trying to
 | |
|   // build a built-in operation.
 | |
|   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
 | |
| }
 | |
| 
 | |
| /// \brief Create a binary operation that may resolve to an overloaded
 | |
| /// operator.
 | |
| ///
 | |
| /// \param OpLoc The location of the operator itself (e.g., '+').
 | |
| ///
 | |
| /// \param OpcIn The BinaryOperator::Opcode that describes this
 | |
| /// operator.
 | |
| ///
 | |
| /// \param Fns The set of non-member functions that will be
 | |
| /// considered by overload resolution. The caller needs to build this
 | |
| /// set based on the context using, e.g.,
 | |
| /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
 | |
| /// set should not contain any member functions; those will be added
 | |
| /// by CreateOverloadedBinOp().
 | |
| ///
 | |
| /// \param LHS Left-hand argument.
 | |
| /// \param RHS Right-hand argument.
 | |
| ExprResult
 | |
| Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
 | |
|                             unsigned OpcIn,
 | |
|                             const UnresolvedSetImpl &Fns,
 | |
|                             Expr *LHS, Expr *RHS) {
 | |
|   Expr *Args[2] = { LHS, RHS };
 | |
|   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
 | |
| 
 | |
|   BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
 | |
|   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
 | |
|   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | |
| 
 | |
|   // If either side is type-dependent, create an appropriate dependent
 | |
|   // expression.
 | |
|   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
 | |
|     if (Fns.empty()) {
 | |
|       // If there are no functions to store, just build a dependent
 | |
|       // BinaryOperator or CompoundAssignment.
 | |
|       if (Opc <= BO_Assign || Opc > BO_OrAssign)
 | |
|         return new (Context) BinaryOperator(
 | |
|             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
 | |
|             OpLoc, FPFeatures.fp_contract);
 | |
| 
 | |
|       return new (Context) CompoundAssignOperator(
 | |
|           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
 | |
|           Context.DependentTy, Context.DependentTy, OpLoc,
 | |
|           FPFeatures.fp_contract);
 | |
|     }
 | |
| 
 | |
|     // FIXME: save results of ADL from here?
 | |
|     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
 | |
|     // TODO: provide better source location info in DNLoc component.
 | |
|     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
 | |
|     UnresolvedLookupExpr *Fn
 | |
|       = UnresolvedLookupExpr::Create(Context, NamingClass, 
 | |
|                                      NestedNameSpecifierLoc(), OpNameInfo, 
 | |
|                                      /*ADL*/ true, IsOverloaded(Fns),
 | |
|                                      Fns.begin(), Fns.end());
 | |
|     return new (Context)
 | |
|         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
 | |
|                             VK_RValue, OpLoc, FPFeatures.fp_contract);
 | |
|   }
 | |
| 
 | |
|   // Always do placeholder-like conversions on the RHS.
 | |
|   if (checkPlaceholderForOverload(*this, Args[1]))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Do placeholder-like conversion on the LHS; note that we should
 | |
|   // not get here with a PseudoObject LHS.
 | |
|   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
 | |
|   if (checkPlaceholderForOverload(*this, Args[0]))
 | |
|     return ExprError();
 | |
| 
 | |
|   // If this is the assignment operator, we only perform overload resolution
 | |
|   // if the left-hand side is a class or enumeration type. This is actually
 | |
|   // a hack. The standard requires that we do overload resolution between the
 | |
|   // various built-in candidates, but as DR507 points out, this can lead to
 | |
|   // problems. So we do it this way, which pretty much follows what GCC does.
 | |
|   // Note that we go the traditional code path for compound assignment forms.
 | |
|   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
 | |
|     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | |
| 
 | |
|   // If this is the .* operator, which is not overloadable, just
 | |
|   // create a built-in binary operator.
 | |
|   if (Opc == BO_PtrMemD)
 | |
|     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | |
| 
 | |
|   // Build an empty overload set.
 | |
|   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
 | |
| 
 | |
|   // Add the candidates from the given function set.
 | |
|   AddFunctionCandidates(Fns, Args, CandidateSet, false);
 | |
| 
 | |
|   // Add operator candidates that are member functions.
 | |
|   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
 | |
| 
 | |
|   // Add candidates from ADL.
 | |
|   AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
 | |
|                                        /*ExplicitTemplateArgs*/ nullptr,
 | |
|                                        CandidateSet);
 | |
| 
 | |
|   // Add builtin operator candidates.
 | |
|   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   // Perform overload resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
 | |
|     case OR_Success: {
 | |
|       // We found a built-in operator or an overloaded operator.
 | |
|       FunctionDecl *FnDecl = Best->Function;
 | |
| 
 | |
|       if (FnDecl) {
 | |
|         // We matched an overloaded operator. Build a call to that
 | |
|         // operator.
 | |
| 
 | |
|         // Convert the arguments.
 | |
|         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | |
|           // Best->Access is only meaningful for class members.
 | |
|           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
 | |
| 
 | |
|           ExprResult Arg1 =
 | |
|             PerformCopyInitialization(
 | |
|               InitializedEntity::InitializeParameter(Context,
 | |
|                                                      FnDecl->getParamDecl(0)),
 | |
|               SourceLocation(), Args[1]);
 | |
|           if (Arg1.isInvalid())
 | |
|             return ExprError();
 | |
| 
 | |
|           ExprResult Arg0 =
 | |
|             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
 | |
|                                                 Best->FoundDecl, Method);
 | |
|           if (Arg0.isInvalid())
 | |
|             return ExprError();
 | |
|           Args[0] = Arg0.getAs<Expr>();
 | |
|           Args[1] = RHS = Arg1.getAs<Expr>();
 | |
|         } else {
 | |
|           // Convert the arguments.
 | |
|           ExprResult Arg0 = PerformCopyInitialization(
 | |
|             InitializedEntity::InitializeParameter(Context,
 | |
|                                                    FnDecl->getParamDecl(0)),
 | |
|             SourceLocation(), Args[0]);
 | |
|           if (Arg0.isInvalid())
 | |
|             return ExprError();
 | |
| 
 | |
|           ExprResult Arg1 =
 | |
|             PerformCopyInitialization(
 | |
|               InitializedEntity::InitializeParameter(Context,
 | |
|                                                      FnDecl->getParamDecl(1)),
 | |
|               SourceLocation(), Args[1]);
 | |
|           if (Arg1.isInvalid())
 | |
|             return ExprError();
 | |
|           Args[0] = LHS = Arg0.getAs<Expr>();
 | |
|           Args[1] = RHS = Arg1.getAs<Expr>();
 | |
|         }
 | |
| 
 | |
|         // Build the actual expression node.
 | |
|         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
 | |
|                                                   Best->FoundDecl,
 | |
|                                                   HadMultipleCandidates, OpLoc);
 | |
|         if (FnExpr.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         // Determine the result type.
 | |
|         QualType ResultTy = FnDecl->getReturnType();
 | |
|         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | |
|         ResultTy = ResultTy.getNonLValueExprType(Context);
 | |
| 
 | |
|         CXXOperatorCallExpr *TheCall =
 | |
|           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
 | |
|                                             Args, ResultTy, VK, OpLoc,
 | |
|                                             FPFeatures.fp_contract);
 | |
| 
 | |
|         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
 | |
|                                 FnDecl))
 | |
|           return ExprError();
 | |
| 
 | |
|         ArrayRef<const Expr *> ArgsArray(Args, 2);
 | |
|         // Cut off the implicit 'this'.
 | |
|         if (isa<CXXMethodDecl>(FnDecl))
 | |
|           ArgsArray = ArgsArray.slice(1);
 | |
|         checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc, 
 | |
|                   TheCall->getSourceRange(), VariadicDoesNotApply);
 | |
| 
 | |
|         return MaybeBindToTemporary(TheCall);
 | |
|       } else {
 | |
|         // We matched a built-in operator. Convert the arguments, then
 | |
|         // break out so that we will build the appropriate built-in
 | |
|         // operator node.
 | |
|         ExprResult ArgsRes0 =
 | |
|           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
 | |
|                                     Best->Conversions[0], AA_Passing);
 | |
|         if (ArgsRes0.isInvalid())
 | |
|           return ExprError();
 | |
|         Args[0] = ArgsRes0.get();
 | |
| 
 | |
|         ExprResult ArgsRes1 =
 | |
|           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
 | |
|                                     Best->Conversions[1], AA_Passing);
 | |
|         if (ArgsRes1.isInvalid())
 | |
|           return ExprError();
 | |
|         Args[1] = ArgsRes1.get();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     case OR_No_Viable_Function: {
 | |
|       // C++ [over.match.oper]p9:
 | |
|       //   If the operator is the operator , [...] and there are no
 | |
|       //   viable functions, then the operator is assumed to be the
 | |
|       //   built-in operator and interpreted according to clause 5.
 | |
|       if (Opc == BO_Comma)
 | |
|         break;
 | |
| 
 | |
|       // For class as left operand for assignment or compound assigment
 | |
|       // operator do not fall through to handling in built-in, but report that
 | |
|       // no overloaded assignment operator found
 | |
|       ExprResult Result = ExprError();
 | |
|       if (Args[0]->getType()->isRecordType() &&
 | |
|           Opc >= BO_Assign && Opc <= BO_OrAssign) {
 | |
|         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
 | |
|              << BinaryOperator::getOpcodeStr(Opc)
 | |
|              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|         if (Args[0]->getType()->isIncompleteType()) {
 | |
|           Diag(OpLoc, diag::note_assign_lhs_incomplete)
 | |
|             << Args[0]->getType()
 | |
|             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|         }
 | |
|       } else {
 | |
|         // This is an erroneous use of an operator which can be overloaded by
 | |
|         // a non-member function. Check for non-member operators which were
 | |
|         // defined too late to be candidates.
 | |
|         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
 | |
|           // FIXME: Recover by calling the found function.
 | |
|           return ExprError();
 | |
| 
 | |
|         // No viable function; try to create a built-in operation, which will
 | |
|         // produce an error. Then, show the non-viable candidates.
 | |
|         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | |
|       }
 | |
|       assert(Result.isInvalid() &&
 | |
|              "C++ binary operator overloading is missing candidates!");
 | |
|       if (Result.isInvalid())
 | |
|         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | |
|                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     case OR_Ambiguous:
 | |
|       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
 | |
|           << BinaryOperator::getOpcodeStr(Opc)
 | |
|           << Args[0]->getType() << Args[1]->getType()
 | |
|           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
 | |
|                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
 | |
|       return ExprError();
 | |
| 
 | |
|     case OR_Deleted:
 | |
|       if (isImplicitlyDeleted(Best->Function)) {
 | |
|         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | |
|         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
 | |
|           << Context.getRecordType(Method->getParent())
 | |
|           << getSpecialMember(Method);
 | |
| 
 | |
|         // The user probably meant to call this special member. Just
 | |
|         // explain why it's deleted.
 | |
|         NoteDeletedFunction(Method);
 | |
|         return ExprError();
 | |
|       } else {
 | |
|         Diag(OpLoc, diag::err_ovl_deleted_oper)
 | |
|           << Best->Function->isDeleted()
 | |
|           << BinaryOperator::getOpcodeStr(Opc)
 | |
|           << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|       }
 | |
|       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | |
|                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // We matched a built-in operator; build it.
 | |
|   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
 | |
|                                          SourceLocation RLoc,
 | |
|                                          Expr *Base, Expr *Idx) {
 | |
|   Expr *Args[2] = { Base, Idx };
 | |
|   DeclarationName OpName =
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
 | |
| 
 | |
|   // If either side is type-dependent, create an appropriate dependent
 | |
|   // expression.
 | |
|   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
 | |
| 
 | |
|     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
 | |
|     // CHECKME: no 'operator' keyword?
 | |
|     DeclarationNameInfo OpNameInfo(OpName, LLoc);
 | |
|     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
 | |
|     UnresolvedLookupExpr *Fn
 | |
|       = UnresolvedLookupExpr::Create(Context, NamingClass,
 | |
|                                      NestedNameSpecifierLoc(), OpNameInfo,
 | |
|                                      /*ADL*/ true, /*Overloaded*/ false,
 | |
|                                      UnresolvedSetIterator(),
 | |
|                                      UnresolvedSetIterator());
 | |
|     // Can't add any actual overloads yet
 | |
| 
 | |
|     return new (Context)
 | |
|         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
 | |
|                             Context.DependentTy, VK_RValue, RLoc, false);
 | |
|   }
 | |
| 
 | |
|   // Handle placeholders on both operands.
 | |
|   if (checkPlaceholderForOverload(*this, Args[0]))
 | |
|     return ExprError();
 | |
|   if (checkPlaceholderForOverload(*this, Args[1]))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Build an empty overload set.
 | |
|   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
 | |
| 
 | |
|   // Subscript can only be overloaded as a member function.
 | |
| 
 | |
|   // Add operator candidates that are member functions.
 | |
|   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
 | |
| 
 | |
|   // Add builtin operator candidates.
 | |
|   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   // Perform overload resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
 | |
|     case OR_Success: {
 | |
|       // We found a built-in operator or an overloaded operator.
 | |
|       FunctionDecl *FnDecl = Best->Function;
 | |
| 
 | |
|       if (FnDecl) {
 | |
|         // We matched an overloaded operator. Build a call to that
 | |
|         // operator.
 | |
| 
 | |
|         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
 | |
| 
 | |
|         // Convert the arguments.
 | |
|         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
 | |
|         ExprResult Arg0 =
 | |
|           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
 | |
|                                               Best->FoundDecl, Method);
 | |
|         if (Arg0.isInvalid())
 | |
|           return ExprError();
 | |
|         Args[0] = Arg0.get();
 | |
| 
 | |
|         // Convert the arguments.
 | |
|         ExprResult InputInit
 | |
|           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | |
|                                                       Context,
 | |
|                                                       FnDecl->getParamDecl(0)),
 | |
|                                       SourceLocation(),
 | |
|                                       Args[1]);
 | |
|         if (InputInit.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         Args[1] = InputInit.getAs<Expr>();
 | |
| 
 | |
|         // Build the actual expression node.
 | |
|         DeclarationNameInfo OpLocInfo(OpName, LLoc);
 | |
|         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
 | |
|         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
 | |
|                                                   Best->FoundDecl,
 | |
|                                                   HadMultipleCandidates,
 | |
|                                                   OpLocInfo.getLoc(),
 | |
|                                                   OpLocInfo.getInfo());
 | |
|         if (FnExpr.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         // Determine the result type
 | |
|         QualType ResultTy = FnDecl->getReturnType();
 | |
|         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | |
|         ResultTy = ResultTy.getNonLValueExprType(Context);
 | |
| 
 | |
|         CXXOperatorCallExpr *TheCall =
 | |
|           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
 | |
|                                             FnExpr.get(), Args,
 | |
|                                             ResultTy, VK, RLoc,
 | |
|                                             false);
 | |
| 
 | |
|         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
 | |
|           return ExprError();
 | |
| 
 | |
|         return MaybeBindToTemporary(TheCall);
 | |
|       } else {
 | |
|         // We matched a built-in operator. Convert the arguments, then
 | |
|         // break out so that we will build the appropriate built-in
 | |
|         // operator node.
 | |
|         ExprResult ArgsRes0 =
 | |
|           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
 | |
|                                     Best->Conversions[0], AA_Passing);
 | |
|         if (ArgsRes0.isInvalid())
 | |
|           return ExprError();
 | |
|         Args[0] = ArgsRes0.get();
 | |
| 
 | |
|         ExprResult ArgsRes1 =
 | |
|           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
 | |
|                                     Best->Conversions[1], AA_Passing);
 | |
|         if (ArgsRes1.isInvalid())
 | |
|           return ExprError();
 | |
|         Args[1] = ArgsRes1.get();
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     case OR_No_Viable_Function: {
 | |
|       if (CandidateSet.empty())
 | |
|         Diag(LLoc, diag::err_ovl_no_oper)
 | |
|           << Args[0]->getType() << /*subscript*/ 0
 | |
|           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|       else
 | |
|         Diag(LLoc, diag::err_ovl_no_viable_subscript)
 | |
|           << Args[0]->getType()
 | |
|           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | |
|                                   "[]", LLoc);
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     case OR_Ambiguous:
 | |
|       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
 | |
|           << "[]"
 | |
|           << Args[0]->getType() << Args[1]->getType()
 | |
|           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
 | |
|                                   "[]", LLoc);
 | |
|       return ExprError();
 | |
| 
 | |
|     case OR_Deleted:
 | |
|       Diag(LLoc, diag::err_ovl_deleted_oper)
 | |
|         << Best->Function->isDeleted() << "[]"
 | |
|         << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | |
|                                   "[]", LLoc);
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|   // We matched a built-in operator; build it.
 | |
|   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
 | |
| }
 | |
| 
 | |
| /// BuildCallToMemberFunction - Build a call to a member
 | |
| /// function. MemExpr is the expression that refers to the member
 | |
| /// function (and includes the object parameter), Args/NumArgs are the
 | |
| /// arguments to the function call (not including the object
 | |
| /// parameter). The caller needs to validate that the member
 | |
| /// expression refers to a non-static member function or an overloaded
 | |
| /// member function.
 | |
| ExprResult
 | |
| Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
 | |
|                                 SourceLocation LParenLoc,
 | |
|                                 MultiExprArg Args,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   assert(MemExprE->getType() == Context.BoundMemberTy ||
 | |
|          MemExprE->getType() == Context.OverloadTy);
 | |
| 
 | |
|   // Dig out the member expression. This holds both the object
 | |
|   // argument and the member function we're referring to.
 | |
|   Expr *NakedMemExpr = MemExprE->IgnoreParens();
 | |
| 
 | |
|   // Determine whether this is a call to a pointer-to-member function.
 | |
|   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
 | |
|     assert(op->getType() == Context.BoundMemberTy);
 | |
|     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
 | |
| 
 | |
|     QualType fnType =
 | |
|       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
 | |
| 
 | |
|     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
 | |
|     QualType resultType = proto->getCallResultType(Context);
 | |
|     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
 | |
| 
 | |
|     // Check that the object type isn't more qualified than the
 | |
|     // member function we're calling.
 | |
|     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
 | |
| 
 | |
|     QualType objectType = op->getLHS()->getType();
 | |
|     if (op->getOpcode() == BO_PtrMemI)
 | |
|       objectType = objectType->castAs<PointerType>()->getPointeeType();
 | |
|     Qualifiers objectQuals = objectType.getQualifiers();
 | |
| 
 | |
|     Qualifiers difference = objectQuals - funcQuals;
 | |
|     difference.removeObjCGCAttr();
 | |
|     difference.removeAddressSpace();
 | |
|     if (difference) {
 | |
|       std::string qualsString = difference.getAsString();
 | |
|       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
 | |
|         << fnType.getUnqualifiedType()
 | |
|         << qualsString
 | |
|         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
 | |
|     }
 | |
| 
 | |
|     CXXMemberCallExpr *call
 | |
|       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
 | |
|                                         resultType, valueKind, RParenLoc);
 | |
| 
 | |
|     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
 | |
|                             call, nullptr))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (CheckOtherCall(call, proto))
 | |
|       return ExprError();
 | |
| 
 | |
|     return MaybeBindToTemporary(call);
 | |
|   }
 | |
| 
 | |
|   UnbridgedCastsSet UnbridgedCasts;
 | |
|   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
 | |
|     return ExprError();
 | |
| 
 | |
|   MemberExpr *MemExpr;
 | |
|   CXXMethodDecl *Method = nullptr;
 | |
|   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
 | |
|   NestedNameSpecifier *Qualifier = nullptr;
 | |
|   if (isa<MemberExpr>(NakedMemExpr)) {
 | |
|     MemExpr = cast<MemberExpr>(NakedMemExpr);
 | |
|     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
 | |
|     FoundDecl = MemExpr->getFoundDecl();
 | |
|     Qualifier = MemExpr->getQualifier();
 | |
|     UnbridgedCasts.restore();
 | |
|   } else {
 | |
|     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
 | |
|     Qualifier = UnresExpr->getQualifier();
 | |
| 
 | |
|     QualType ObjectType = UnresExpr->getBaseType();
 | |
|     Expr::Classification ObjectClassification
 | |
|       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
 | |
|                             : UnresExpr->getBase()->Classify(Context);
 | |
| 
 | |
|     // Add overload candidates
 | |
|     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
 | |
|                                       OverloadCandidateSet::CSK_Normal);
 | |
| 
 | |
|     // FIXME: avoid copy.
 | |
|     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
 | |
|     if (UnresExpr->hasExplicitTemplateArgs()) {
 | |
|       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
 | |
|       TemplateArgs = &TemplateArgsBuffer;
 | |
|     }
 | |
| 
 | |
|     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
 | |
|            E = UnresExpr->decls_end(); I != E; ++I) {
 | |
| 
 | |
|       NamedDecl *Func = *I;
 | |
|       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
 | |
|       if (isa<UsingShadowDecl>(Func))
 | |
|         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
 | |
| 
 | |
| 
 | |
|       // Microsoft supports direct constructor calls.
 | |
|       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
 | |
|         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
 | |
|                              Args, CandidateSet);
 | |
|       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
 | |
|         // If explicit template arguments were provided, we can't call a
 | |
|         // non-template member function.
 | |
|         if (TemplateArgs)
 | |
|           continue;
 | |
| 
 | |
|         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
 | |
|                            ObjectClassification, Args, CandidateSet,
 | |
|                            /*SuppressUserConversions=*/false);
 | |
|       } else {
 | |
|         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
 | |
|                                    I.getPair(), ActingDC, TemplateArgs,
 | |
|                                    ObjectType,  ObjectClassification,
 | |
|                                    Args, CandidateSet,
 | |
|                                    /*SuppressUsedConversions=*/false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DeclarationName DeclName = UnresExpr->getMemberName();
 | |
| 
 | |
|     UnbridgedCasts.restore();
 | |
| 
 | |
|     OverloadCandidateSet::iterator Best;
 | |
|     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
 | |
|                                             Best)) {
 | |
|     case OR_Success:
 | |
|       Method = cast<CXXMethodDecl>(Best->Function);
 | |
|       FoundDecl = Best->FoundDecl;
 | |
|       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
 | |
|       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
 | |
|         return ExprError();
 | |
|       // If FoundDecl is different from Method (such as if one is a template
 | |
|       // and the other a specialization), make sure DiagnoseUseOfDecl is 
 | |
|       // called on both.
 | |
|       // FIXME: This would be more comprehensively addressed by modifying
 | |
|       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
 | |
|       // being used.
 | |
|       if (Method != FoundDecl.getDecl() && 
 | |
|                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
 | |
|         return ExprError();
 | |
|       break;
 | |
| 
 | |
|     case OR_No_Viable_Function:
 | |
|       Diag(UnresExpr->getMemberLoc(),
 | |
|            diag::err_ovl_no_viable_member_function_in_call)
 | |
|         << DeclName << MemExprE->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|       // FIXME: Leaking incoming expressions!
 | |
|       return ExprError();
 | |
| 
 | |
|     case OR_Ambiguous:
 | |
|       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
 | |
|         << DeclName << MemExprE->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|       // FIXME: Leaking incoming expressions!
 | |
|       return ExprError();
 | |
| 
 | |
|     case OR_Deleted:
 | |
|       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
 | |
|         << Best->Function->isDeleted()
 | |
|         << DeclName 
 | |
|         << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|         << MemExprE->getSourceRange();
 | |
|       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|       // FIXME: Leaking incoming expressions!
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
 | |
| 
 | |
|     // If overload resolution picked a static member, build a
 | |
|     // non-member call based on that function.
 | |
|     if (Method->isStatic()) {
 | |
|       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
 | |
|                                    RParenLoc);
 | |
|     }
 | |
| 
 | |
|     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
 | |
|   }
 | |
| 
 | |
|   QualType ResultType = Method->getReturnType();
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ResultType);
 | |
|   ResultType = ResultType.getNonLValueExprType(Context);
 | |
| 
 | |
|   assert(Method && "Member call to something that isn't a method?");
 | |
|   CXXMemberCallExpr *TheCall =
 | |
|     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
 | |
|                                     ResultType, VK, RParenLoc);
 | |
| 
 | |
|   // Check for a valid return type.
 | |
|   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
 | |
|                           TheCall, Method))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Convert the object argument (for a non-static member function call).
 | |
|   // We only need to do this if there was actually an overload; otherwise
 | |
|   // it was done at lookup.
 | |
|   if (!Method->isStatic()) {
 | |
|     ExprResult ObjectArg =
 | |
|       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
 | |
|                                           FoundDecl, Method);
 | |
|     if (ObjectArg.isInvalid())
 | |
|       return ExprError();
 | |
|     MemExpr->setBase(ObjectArg.get());
 | |
|   }
 | |
| 
 | |
|   // Convert the rest of the arguments
 | |
|   const FunctionProtoType *Proto =
 | |
|     Method->getType()->getAs<FunctionProtoType>();
 | |
|   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
 | |
|                               RParenLoc))
 | |
|     return ExprError();
 | |
| 
 | |
|   DiagnoseSentinelCalls(Method, LParenLoc, Args);
 | |
| 
 | |
|   if (CheckFunctionCall(Method, TheCall, Proto))
 | |
|     return ExprError();
 | |
| 
 | |
|   if ((isa<CXXConstructorDecl>(CurContext) || 
 | |
|        isa<CXXDestructorDecl>(CurContext)) && 
 | |
|       TheCall->getMethodDecl()->isPure()) {
 | |
|     const CXXMethodDecl *MD = TheCall->getMethodDecl();
 | |
| 
 | |
|     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
 | |
|       Diag(MemExpr->getLocStart(), 
 | |
|            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
 | |
|         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
 | |
|         << MD->getParent()->getDeclName();
 | |
| 
 | |
|       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
 | |
|     }
 | |
|   }
 | |
|   return MaybeBindToTemporary(TheCall);
 | |
| }
 | |
| 
 | |
| /// BuildCallToObjectOfClassType - Build a call to an object of class
 | |
| /// type (C++ [over.call.object]), which can end up invoking an
 | |
| /// overloaded function call operator (@c operator()) or performing a
 | |
| /// user-defined conversion on the object argument.
 | |
| ExprResult
 | |
| Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
 | |
|                                    SourceLocation LParenLoc,
 | |
|                                    MultiExprArg Args,
 | |
|                                    SourceLocation RParenLoc) {
 | |
|   if (checkPlaceholderForOverload(*this, Obj))
 | |
|     return ExprError();
 | |
|   ExprResult Object = Obj;
 | |
| 
 | |
|   UnbridgedCastsSet UnbridgedCasts;
 | |
|   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
 | |
|     return ExprError();
 | |
| 
 | |
|   assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
 | |
|   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
 | |
| 
 | |
|   // C++ [over.call.object]p1:
 | |
|   //  If the primary-expression E in the function call syntax
 | |
|   //  evaluates to a class object of type "cv T", then the set of
 | |
|   //  candidate functions includes at least the function call
 | |
|   //  operators of T. The function call operators of T are obtained by
 | |
|   //  ordinary lookup of the name operator() in the context of
 | |
|   //  (E).operator().
 | |
|   OverloadCandidateSet CandidateSet(LParenLoc,
 | |
|                                     OverloadCandidateSet::CSK_Operator);
 | |
|   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
 | |
| 
 | |
|   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
 | |
|                           diag::err_incomplete_object_call, Object.get()))
 | |
|     return true;
 | |
| 
 | |
|   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
 | |
|   LookupQualifiedName(R, Record->getDecl());
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
 | |
|        Oper != OperEnd; ++Oper) {
 | |
|     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
 | |
|                        Object.get()->Classify(Context),
 | |
|                        Args, CandidateSet,
 | |
|                        /*SuppressUserConversions=*/ false);
 | |
|   }
 | |
| 
 | |
|   // C++ [over.call.object]p2:
 | |
|   //   In addition, for each (non-explicit in C++0x) conversion function 
 | |
|   //   declared in T of the form
 | |
|   //
 | |
|   //        operator conversion-type-id () cv-qualifier;
 | |
|   //
 | |
|   //   where cv-qualifier is the same cv-qualification as, or a
 | |
|   //   greater cv-qualification than, cv, and where conversion-type-id
 | |
|   //   denotes the type "pointer to function of (P1,...,Pn) returning
 | |
|   //   R", or the type "reference to pointer to function of
 | |
|   //   (P1,...,Pn) returning R", or the type "reference to function
 | |
|   //   of (P1,...,Pn) returning R", a surrogate call function [...]
 | |
|   //   is also considered as a candidate function. Similarly,
 | |
|   //   surrogate call functions are added to the set of candidate
 | |
|   //   functions for each conversion function declared in an
 | |
|   //   accessible base class provided the function is not hidden
 | |
|   //   within T by another intervening declaration.
 | |
|   std::pair<CXXRecordDecl::conversion_iterator,
 | |
|             CXXRecordDecl::conversion_iterator> Conversions
 | |
|     = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
 | |
|   for (CXXRecordDecl::conversion_iterator
 | |
|          I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
|     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|     if (isa<UsingShadowDecl>(D))
 | |
|       D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|     // Skip over templated conversion functions; they aren't
 | |
|     // surrogates.
 | |
|     if (isa<FunctionTemplateDecl>(D))
 | |
|       continue;
 | |
| 
 | |
|     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
 | |
|     if (!Conv->isExplicit()) {
 | |
|       // Strip the reference type (if any) and then the pointer type (if
 | |
|       // any) to get down to what might be a function type.
 | |
|       QualType ConvType = Conv->getConversionType().getNonReferenceType();
 | |
|       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | |
|         ConvType = ConvPtrType->getPointeeType();
 | |
| 
 | |
|       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
 | |
|       {
 | |
|         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
 | |
|                               Object.get(), Args, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   // Perform overload resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
 | |
|                              Best)) {
 | |
|   case OR_Success:
 | |
|     // Overload resolution succeeded; we'll build the appropriate call
 | |
|     // below.
 | |
|     break;
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     if (CandidateSet.empty())
 | |
|       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
 | |
|         << Object.get()->getType() << /*call*/ 1
 | |
|         << Object.get()->getSourceRange();
 | |
|     else
 | |
|       Diag(Object.get()->getLocStart(),
 | |
|            diag::err_ovl_no_viable_object_call)
 | |
|         << Object.get()->getType() << Object.get()->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|     break;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     Diag(Object.get()->getLocStart(),
 | |
|          diag::err_ovl_ambiguous_object_call)
 | |
|       << Object.get()->getType() << Object.get()->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
 | |
|     break;
 | |
| 
 | |
|   case OR_Deleted:
 | |
|     Diag(Object.get()->getLocStart(),
 | |
|          diag::err_ovl_deleted_object_call)
 | |
|       << Best->Function->isDeleted()
 | |
|       << Object.get()->getType() 
 | |
|       << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|       << Object.get()->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Best == CandidateSet.end())
 | |
|     return true;
 | |
| 
 | |
|   UnbridgedCasts.restore();
 | |
| 
 | |
|   if (Best->Function == nullptr) {
 | |
|     // Since there is no function declaration, this is one of the
 | |
|     // surrogate candidates. Dig out the conversion function.
 | |
|     CXXConversionDecl *Conv
 | |
|       = cast<CXXConversionDecl>(
 | |
|                          Best->Conversions[0].UserDefined.ConversionFunction);
 | |
| 
 | |
|     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
 | |
|                               Best->FoundDecl);
 | |
|     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
 | |
|       return ExprError();
 | |
|     assert(Conv == Best->FoundDecl.getDecl() && 
 | |
|              "Found Decl & conversion-to-functionptr should be same, right?!");
 | |
|     // We selected one of the surrogate functions that converts the
 | |
|     // object parameter to a function pointer. Perform the conversion
 | |
|     // on the object argument, then let ActOnCallExpr finish the job.
 | |
| 
 | |
|     // Create an implicit member expr to refer to the conversion operator.
 | |
|     // and then call it.
 | |
|     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
 | |
|                                              Conv, HadMultipleCandidates);
 | |
|     if (Call.isInvalid())
 | |
|       return ExprError();
 | |
|     // Record usage of conversion in an implicit cast.
 | |
|     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
 | |
|                                     CK_UserDefinedConversion, Call.get(),
 | |
|                                     nullptr, VK_RValue);
 | |
| 
 | |
|     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
 | |
| 
 | |
|   // We found an overloaded operator(). Build a CXXOperatorCallExpr
 | |
|   // that calls this method, using Object for the implicit object
 | |
|   // parameter and passing along the remaining arguments.
 | |
|   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | |
| 
 | |
|   // An error diagnostic has already been printed when parsing the declaration.
 | |
|   if (Method->isInvalidDecl())
 | |
|     return ExprError();
 | |
| 
 | |
|   const FunctionProtoType *Proto =
 | |
|     Method->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   unsigned NumParams = Proto->getNumParams();
 | |
| 
 | |
|   DeclarationNameInfo OpLocInfo(
 | |
|                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
 | |
|   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
 | |
|   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
 | |
|                                            HadMultipleCandidates,
 | |
|                                            OpLocInfo.getLoc(),
 | |
|                                            OpLocInfo.getInfo());
 | |
|   if (NewFn.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // Build the full argument list for the method call (the implicit object
 | |
|   // parameter is placed at the beginning of the list).
 | |
|   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
 | |
|   MethodArgs[0] = Object.get();
 | |
|   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
 | |
| 
 | |
|   // Once we've built TheCall, all of the expressions are properly
 | |
|   // owned.
 | |
|   QualType ResultTy = Method->getReturnType();
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | |
|   ResultTy = ResultTy.getNonLValueExprType(Context);
 | |
| 
 | |
|   CXXOperatorCallExpr *TheCall = new (Context)
 | |
|       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
 | |
|                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
 | |
|                           ResultTy, VK, RParenLoc, false);
 | |
|   MethodArgs.reset();
 | |
| 
 | |
|   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
 | |
|     return true;
 | |
| 
 | |
|   // We may have default arguments. If so, we need to allocate more
 | |
|   // slots in the call for them.
 | |
|   if (Args.size() < NumParams)
 | |
|     TheCall->setNumArgs(Context, NumParams + 1);
 | |
| 
 | |
|   bool IsError = false;
 | |
| 
 | |
|   // Initialize the implicit object parameter.
 | |
|   ExprResult ObjRes =
 | |
|     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
 | |
|                                         Best->FoundDecl, Method);
 | |
|   if (ObjRes.isInvalid())
 | |
|     IsError = true;
 | |
|   else
 | |
|     Object = ObjRes;
 | |
|   TheCall->setArg(0, Object.get());
 | |
| 
 | |
|   // Check the argument types.
 | |
|   for (unsigned i = 0; i != NumParams; i++) {
 | |
|     Expr *Arg;
 | |
|     if (i < Args.size()) {
 | |
|       Arg = Args[i];
 | |
| 
 | |
|       // Pass the argument.
 | |
| 
 | |
|       ExprResult InputInit
 | |
|         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | |
|                                                     Context,
 | |
|                                                     Method->getParamDecl(i)),
 | |
|                                     SourceLocation(), Arg);
 | |
| 
 | |
|       IsError |= InputInit.isInvalid();
 | |
|       Arg = InputInit.getAs<Expr>();
 | |
|     } else {
 | |
|       ExprResult DefArg
 | |
|         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
 | |
|       if (DefArg.isInvalid()) {
 | |
|         IsError = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       Arg = DefArg.getAs<Expr>();
 | |
|     }
 | |
| 
 | |
|     TheCall->setArg(i + 1, Arg);
 | |
|   }
 | |
| 
 | |
|   // If this is a variadic call, handle args passed through "...".
 | |
|   if (Proto->isVariadic()) {
 | |
|     // Promote the arguments (C99 6.5.2.2p7).
 | |
|     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
 | |
|       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
 | |
|                                                         nullptr);
 | |
|       IsError |= Arg.isInvalid();
 | |
|       TheCall->setArg(i + 1, Arg.get());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsError) return true;
 | |
| 
 | |
|   DiagnoseSentinelCalls(Method, LParenLoc, Args);
 | |
| 
 | |
|   if (CheckFunctionCall(Method, TheCall, Proto))
 | |
|     return true;
 | |
| 
 | |
|   return MaybeBindToTemporary(TheCall);
 | |
| }
 | |
| 
 | |
| /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
 | |
| ///  (if one exists), where @c Base is an expression of class type and
 | |
| /// @c Member is the name of the member we're trying to find.
 | |
| ExprResult
 | |
| Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
 | |
|                                bool *NoArrowOperatorFound) {
 | |
|   assert(Base->getType()->isRecordType() &&
 | |
|          "left-hand side must have class type");
 | |
| 
 | |
|   if (checkPlaceholderForOverload(*this, Base))
 | |
|     return ExprError();
 | |
| 
 | |
|   SourceLocation Loc = Base->getExprLoc();
 | |
| 
 | |
|   // C++ [over.ref]p1:
 | |
|   //
 | |
|   //   [...] An expression x->m is interpreted as (x.operator->())->m
 | |
|   //   for a class object x of type T if T::operator->() exists and if
 | |
|   //   the operator is selected as the best match function by the
 | |
|   //   overload resolution mechanism (13.3).
 | |
|   DeclarationName OpName =
 | |
|     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
 | |
|   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
 | |
|   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
 | |
| 
 | |
|   if (RequireCompleteType(Loc, Base->getType(),
 | |
|                           diag::err_typecheck_incomplete_tag, Base))
 | |
|     return ExprError();
 | |
| 
 | |
|   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
 | |
|   LookupQualifiedName(R, BaseRecord->getDecl());
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
 | |
|        Oper != OperEnd; ++Oper) {
 | |
|     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
 | |
|                        None, CandidateSet, /*SuppressUserConversions=*/false);
 | |
|   }
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   // Perform overload resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
 | |
|   case OR_Success:
 | |
|     // Overload resolution succeeded; we'll build the call below.
 | |
|     break;
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     if (CandidateSet.empty()) {
 | |
|       QualType BaseType = Base->getType();
 | |
|       if (NoArrowOperatorFound) {
 | |
|         // Report this specific error to the caller instead of emitting a
 | |
|         // diagnostic, as requested.
 | |
|         *NoArrowOperatorFound = true;
 | |
|         return ExprError();
 | |
|       }
 | |
|       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
 | |
|         << BaseType << Base->getSourceRange();
 | |
|       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
 | |
|         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
 | |
|           << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|       }
 | |
|     } else
 | |
|       Diag(OpLoc, diag::err_ovl_no_viable_oper)
 | |
|         << "operator->" << Base->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
 | |
|     return ExprError();
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
 | |
|       << "->" << Base->getType() << Base->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
 | |
|     return ExprError();
 | |
| 
 | |
|   case OR_Deleted:
 | |
|     Diag(OpLoc,  diag::err_ovl_deleted_oper)
 | |
|       << Best->Function->isDeleted()
 | |
|       << "->" 
 | |
|       << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|       << Base->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
 | |
| 
 | |
|   // Convert the object parameter.
 | |
|   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | |
|   ExprResult BaseResult =
 | |
|     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
 | |
|                                         Best->FoundDecl, Method);
 | |
|   if (BaseResult.isInvalid())
 | |
|     return ExprError();
 | |
|   Base = BaseResult.get();
 | |
| 
 | |
|   // Build the operator call.
 | |
|   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
 | |
|                                             HadMultipleCandidates, OpLoc);
 | |
|   if (FnExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType ResultTy = Method->getReturnType();
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | |
|   ResultTy = ResultTy.getNonLValueExprType(Context);
 | |
|   CXXOperatorCallExpr *TheCall =
 | |
|     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
 | |
|                                       Base, ResultTy, VK, OpLoc, false);
 | |
| 
 | |
|   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
 | |
|           return ExprError();
 | |
| 
 | |
|   return MaybeBindToTemporary(TheCall);
 | |
| }
 | |
| 
 | |
| /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
 | |
| /// a literal operator described by the provided lookup results.
 | |
| ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
 | |
|                                           DeclarationNameInfo &SuffixInfo,
 | |
|                                           ArrayRef<Expr*> Args,
 | |
|                                           SourceLocation LitEndLoc,
 | |
|                                        TemplateArgumentListInfo *TemplateArgs) {
 | |
|   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
 | |
| 
 | |
|   OverloadCandidateSet CandidateSet(UDSuffixLoc,
 | |
|                                     OverloadCandidateSet::CSK_Normal);
 | |
|   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
 | |
|                         TemplateArgs);
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   // Perform overload resolution. This will usually be trivial, but might need
 | |
|   // to perform substitutions for a literal operator template.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
 | |
|   case OR_Success:
 | |
|   case OR_Deleted:
 | |
|     break;
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
 | |
|       << R.getLookupName();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|     return ExprError();
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
 | |
|     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *FD = Best->Function;
 | |
|   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
 | |
|                                         HadMultipleCandidates,
 | |
|                                         SuffixInfo.getLoc(),
 | |
|                                         SuffixInfo.getInfo());
 | |
|   if (Fn.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // Check the argument types. This should almost always be a no-op, except
 | |
|   // that array-to-pointer decay is applied to string literals.
 | |
|   Expr *ConvArgs[2];
 | |
|   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
 | |
|     ExprResult InputInit = PerformCopyInitialization(
 | |
|       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
 | |
|       SourceLocation(), Args[ArgIdx]);
 | |
|     if (InputInit.isInvalid())
 | |
|       return true;
 | |
|     ConvArgs[ArgIdx] = InputInit.get();
 | |
|   }
 | |
| 
 | |
|   QualType ResultTy = FD->getReturnType();
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | |
|   ResultTy = ResultTy.getNonLValueExprType(Context);
 | |
| 
 | |
|   UserDefinedLiteral *UDL =
 | |
|     new (Context) UserDefinedLiteral(Context, Fn.get(),
 | |
|                                      llvm::makeArrayRef(ConvArgs, Args.size()),
 | |
|                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
 | |
| 
 | |
|   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (CheckFunctionCall(FD, UDL, nullptr))
 | |
|     return ExprError();
 | |
| 
 | |
|   return MaybeBindToTemporary(UDL);
 | |
| }
 | |
| 
 | |
| /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
 | |
| /// given LookupResult is non-empty, it is assumed to describe a member which
 | |
| /// will be invoked. Otherwise, the function will be found via argument
 | |
| /// dependent lookup.
 | |
| /// CallExpr is set to a valid expression and FRS_Success returned on success,
 | |
| /// otherwise CallExpr is set to ExprError() and some non-success value
 | |
| /// is returned.
 | |
| Sema::ForRangeStatus
 | |
| Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
 | |
|                                 SourceLocation RangeLoc, VarDecl *Decl,
 | |
|                                 BeginEndFunction BEF,
 | |
|                                 const DeclarationNameInfo &NameInfo,
 | |
|                                 LookupResult &MemberLookup,
 | |
|                                 OverloadCandidateSet *CandidateSet,
 | |
|                                 Expr *Range, ExprResult *CallExpr) {
 | |
|   CandidateSet->clear();
 | |
|   if (!MemberLookup.empty()) {
 | |
|     ExprResult MemberRef =
 | |
|         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
 | |
|                                  /*IsPtr=*/false, CXXScopeSpec(),
 | |
|                                  /*TemplateKWLoc=*/SourceLocation(),
 | |
|                                  /*FirstQualifierInScope=*/nullptr,
 | |
|                                  MemberLookup,
 | |
|                                  /*TemplateArgs=*/nullptr);
 | |
|     if (MemberRef.isInvalid()) {
 | |
|       *CallExpr = ExprError();
 | |
|       Diag(Range->getLocStart(), diag::note_in_for_range)
 | |
|           << RangeLoc << BEF << Range->getType();
 | |
|       return FRS_DiagnosticIssued;
 | |
|     }
 | |
|     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
 | |
|     if (CallExpr->isInvalid()) {
 | |
|       *CallExpr = ExprError();
 | |
|       Diag(Range->getLocStart(), diag::note_in_for_range)
 | |
|           << RangeLoc << BEF << Range->getType();
 | |
|       return FRS_DiagnosticIssued;
 | |
|     }
 | |
|   } else {
 | |
|     UnresolvedSet<0> FoundNames;
 | |
|     UnresolvedLookupExpr *Fn =
 | |
|       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
 | |
|                                    NestedNameSpecifierLoc(), NameInfo,
 | |
|                                    /*NeedsADL=*/true, /*Overloaded=*/false,
 | |
|                                    FoundNames.begin(), FoundNames.end());
 | |
| 
 | |
|     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
 | |
|                                                     CandidateSet, CallExpr);
 | |
|     if (CandidateSet->empty() || CandidateSetError) {
 | |
|       *CallExpr = ExprError();
 | |
|       return FRS_NoViableFunction;
 | |
|     }
 | |
|     OverloadCandidateSet::iterator Best;
 | |
|     OverloadingResult OverloadResult =
 | |
|         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
 | |
| 
 | |
|     if (OverloadResult == OR_No_Viable_Function) {
 | |
|       *CallExpr = ExprError();
 | |
|       return FRS_NoViableFunction;
 | |
|     }
 | |
|     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
 | |
|                                          Loc, nullptr, CandidateSet, &Best,
 | |
|                                          OverloadResult,
 | |
|                                          /*AllowTypoCorrection=*/false);
 | |
|     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
 | |
|       *CallExpr = ExprError();
 | |
|       Diag(Range->getLocStart(), diag::note_in_for_range)
 | |
|           << RangeLoc << BEF << Range->getType();
 | |
|       return FRS_DiagnosticIssued;
 | |
|     }
 | |
|   }
 | |
|   return FRS_Success;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FixOverloadedFunctionReference - E is an expression that refers to
 | |
| /// a C++ overloaded function (possibly with some parentheses and
 | |
| /// perhaps a '&' around it). We have resolved the overloaded function
 | |
| /// to the function declaration Fn, so patch up the expression E to
 | |
| /// refer (possibly indirectly) to Fn. Returns the new expr.
 | |
| Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
 | |
|                                            FunctionDecl *Fn) {
 | |
|   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
 | |
|     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
 | |
|                                                    Found, Fn);
 | |
|     if (SubExpr == PE->getSubExpr())
 | |
|       return PE;
 | |
| 
 | |
|     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
 | |
|   }
 | |
| 
 | |
|   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
 | |
|                                                    Found, Fn);
 | |
|     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
 | |
|                                SubExpr->getType()) &&
 | |
|            "Implicit cast type cannot be determined from overload");
 | |
|     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
 | |
|     if (SubExpr == ICE->getSubExpr())
 | |
|       return ICE;
 | |
| 
 | |
|     return ImplicitCastExpr::Create(Context, ICE->getType(),
 | |
|                                     ICE->getCastKind(),
 | |
|                                     SubExpr, nullptr,
 | |
|                                     ICE->getValueKind());
 | |
|   }
 | |
| 
 | |
|   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
 | |
|     assert(UnOp->getOpcode() == UO_AddrOf &&
 | |
|            "Can only take the address of an overloaded function");
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
 | |
|       if (Method->isStatic()) {
 | |
|         // Do nothing: static member functions aren't any different
 | |
|         // from non-member functions.
 | |
|       } else {
 | |
|         // Fix the subexpression, which really has to be an
 | |
|         // UnresolvedLookupExpr holding an overloaded member function
 | |
|         // or template.
 | |
|         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
 | |
|                                                        Found, Fn);
 | |
|         if (SubExpr == UnOp->getSubExpr())
 | |
|           return UnOp;
 | |
| 
 | |
|         assert(isa<DeclRefExpr>(SubExpr)
 | |
|                && "fixed to something other than a decl ref");
 | |
|         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
 | |
|                && "fixed to a member ref with no nested name qualifier");
 | |
| 
 | |
|         // We have taken the address of a pointer to member
 | |
|         // function. Perform the computation here so that we get the
 | |
|         // appropriate pointer to member type.
 | |
|         QualType ClassType
 | |
|           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
 | |
|         QualType MemPtrType
 | |
|           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
 | |
| 
 | |
|         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
 | |
|                                            VK_RValue, OK_Ordinary,
 | |
|                                            UnOp->getOperatorLoc());
 | |
|       }
 | |
|     }
 | |
|     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
 | |
|                                                    Found, Fn);
 | |
|     if (SubExpr == UnOp->getSubExpr())
 | |
|       return UnOp;
 | |
| 
 | |
|     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
 | |
|                                      Context.getPointerType(SubExpr->getType()),
 | |
|                                        VK_RValue, OK_Ordinary,
 | |
|                                        UnOp->getOperatorLoc());
 | |
|   }
 | |
| 
 | |
|   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
 | |
|     // FIXME: avoid copy.
 | |
|     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
 | |
|     if (ULE->hasExplicitTemplateArgs()) {
 | |
|       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
 | |
|       TemplateArgs = &TemplateArgsBuffer;
 | |
|     }
 | |
| 
 | |
|     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
 | |
|                                            ULE->getQualifierLoc(),
 | |
|                                            ULE->getTemplateKeywordLoc(),
 | |
|                                            Fn,
 | |
|                                            /*enclosing*/ false, // FIXME?
 | |
|                                            ULE->getNameLoc(),
 | |
|                                            Fn->getType(),
 | |
|                                            VK_LValue,
 | |
|                                            Found.getDecl(),
 | |
|                                            TemplateArgs);
 | |
|     MarkDeclRefReferenced(DRE);
 | |
|     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
 | |
|     return DRE;
 | |
|   }
 | |
| 
 | |
|   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
 | |
|     // FIXME: avoid copy.
 | |
|     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
 | |
|     if (MemExpr->hasExplicitTemplateArgs()) {
 | |
|       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
 | |
|       TemplateArgs = &TemplateArgsBuffer;
 | |
|     }
 | |
| 
 | |
|     Expr *Base;
 | |
| 
 | |
|     // If we're filling in a static method where we used to have an
 | |
|     // implicit member access, rewrite to a simple decl ref.
 | |
|     if (MemExpr->isImplicitAccess()) {
 | |
|       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
 | |
|         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
 | |
|                                                MemExpr->getQualifierLoc(),
 | |
|                                                MemExpr->getTemplateKeywordLoc(),
 | |
|                                                Fn,
 | |
|                                                /*enclosing*/ false,
 | |
|                                                MemExpr->getMemberLoc(),
 | |
|                                                Fn->getType(),
 | |
|                                                VK_LValue,
 | |
|                                                Found.getDecl(),
 | |
|                                                TemplateArgs);
 | |
|         MarkDeclRefReferenced(DRE);
 | |
|         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
 | |
|         return DRE;
 | |
|       } else {
 | |
|         SourceLocation Loc = MemExpr->getMemberLoc();
 | |
|         if (MemExpr->getQualifier())
 | |
|           Loc = MemExpr->getQualifierLoc().getBeginLoc();
 | |
|         CheckCXXThisCapture(Loc);
 | |
|         Base = new (Context) CXXThisExpr(Loc,
 | |
|                                          MemExpr->getBaseType(),
 | |
|                                          /*isImplicit=*/true);
 | |
|       }
 | |
|     } else
 | |
|       Base = MemExpr->getBase();
 | |
| 
 | |
|     ExprValueKind valueKind;
 | |
|     QualType type;
 | |
|     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
 | |
|       valueKind = VK_LValue;
 | |
|       type = Fn->getType();
 | |
|     } else {
 | |
|       valueKind = VK_RValue;
 | |
|       type = Context.BoundMemberTy;
 | |
|     }
 | |
| 
 | |
|     MemberExpr *ME = MemberExpr::Create(Context, Base,
 | |
|                                         MemExpr->isArrow(),
 | |
|                                         MemExpr->getQualifierLoc(),
 | |
|                                         MemExpr->getTemplateKeywordLoc(),
 | |
|                                         Fn,
 | |
|                                         Found,
 | |
|                                         MemExpr->getMemberNameInfo(),
 | |
|                                         TemplateArgs,
 | |
|                                         type, valueKind, OK_Ordinary);
 | |
|     ME->setHadMultipleCandidates(true);
 | |
|     MarkMemberReferenced(ME);
 | |
|     return ME;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid reference to overloaded function");
 | |
| }
 | |
| 
 | |
| ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
 | |
|                                                 DeclAccessPair Found,
 | |
|                                                 FunctionDecl *Fn) {
 | |
|   return FixOverloadedFunctionReference(E.get(), Found, Fn);
 | |
| }
 | |
| 
 | |
| } // end namespace clang
 |