490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for inline asm statements.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/MC/MCParser/MCAsmParser.h"
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
 | |
| /// ignore "noop" casts in places where an lvalue is required by an inline asm.
 | |
| /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
 | |
| /// provide a strong guidance to not use it.
 | |
| ///
 | |
| /// This method checks to see if the argument is an acceptable l-value and
 | |
| /// returns false if it is a case we can handle.
 | |
| static bool CheckAsmLValue(const Expr *E, Sema &S) {
 | |
|   // Type dependent expressions will be checked during instantiation.
 | |
|   if (E->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   if (E->isLValue())
 | |
|     return false;  // Cool, this is an lvalue.
 | |
| 
 | |
|   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
 | |
|   // are supposed to allow.
 | |
|   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
 | |
|   if (E != E2 && E2->isLValue()) {
 | |
|     if (!S.getLangOpts().HeinousExtensions)
 | |
|       S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
 | |
|         << E->getSourceRange();
 | |
|     else
 | |
|       S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
 | |
|         << E->getSourceRange();
 | |
|     // Accept, even if we emitted an error diagnostic.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // None of the above, just randomly invalid non-lvalue.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOperandMentioned - Return true if the specified operand # is mentioned
 | |
| /// anywhere in the decomposed asm string.
 | |
| static bool isOperandMentioned(unsigned OpNo,
 | |
|                          ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
 | |
|   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
 | |
|     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
 | |
|     if (!Piece.isOperand()) continue;
 | |
| 
 | |
|     // If this is a reference to the input and if the input was the smaller
 | |
|     // one, then we have to reject this asm.
 | |
|     if (Piece.getOperandNo() == OpNo)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
 | |
|                                  bool IsVolatile, unsigned NumOutputs,
 | |
|                                  unsigned NumInputs, IdentifierInfo **Names,
 | |
|                                  MultiExprArg constraints, MultiExprArg Exprs,
 | |
|                                  Expr *asmString, MultiExprArg clobbers,
 | |
|                                  SourceLocation RParenLoc) {
 | |
|   unsigned NumClobbers = clobbers.size();
 | |
|   StringLiteral **Constraints =
 | |
|     reinterpret_cast<StringLiteral**>(constraints.data());
 | |
|   StringLiteral *AsmString = cast<StringLiteral>(asmString);
 | |
|   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
 | |
| 
 | |
|   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | |
| 
 | |
|   // The parser verifies that there is a string literal here.
 | |
|   if (!AsmString->isAscii())
 | |
|     return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
 | |
|       << AsmString->getSourceRange());
 | |
| 
 | |
|   for (unsigned i = 0; i != NumOutputs; i++) {
 | |
|     StringLiteral *Literal = Constraints[i];
 | |
|     if (!Literal->isAscii())
 | |
|       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | |
|         << Literal->getSourceRange());
 | |
| 
 | |
|     StringRef OutputName;
 | |
|     if (Names[i])
 | |
|       OutputName = Names[i]->getName();
 | |
| 
 | |
|     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
 | |
|     if (!Context.getTargetInfo().validateOutputConstraint(Info))
 | |
|       return StmtError(Diag(Literal->getLocStart(),
 | |
|                             diag::err_asm_invalid_output_constraint)
 | |
|                        << Info.getConstraintStr());
 | |
| 
 | |
|     // Check that the output exprs are valid lvalues.
 | |
|     Expr *OutputExpr = Exprs[i];
 | |
|     if (CheckAsmLValue(OutputExpr, *this))
 | |
|       return StmtError(Diag(OutputExpr->getLocStart(),
 | |
|                             diag::err_asm_invalid_lvalue_in_output)
 | |
|                        << OutputExpr->getSourceRange());
 | |
| 
 | |
|     if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
 | |
|                             diag::err_dereference_incomplete_type))
 | |
|       return StmtError();
 | |
| 
 | |
|     OutputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | |
| 
 | |
|   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
 | |
|     StringLiteral *Literal = Constraints[i];
 | |
|     if (!Literal->isAscii())
 | |
|       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | |
|         << Literal->getSourceRange());
 | |
| 
 | |
|     StringRef InputName;
 | |
|     if (Names[i])
 | |
|       InputName = Names[i]->getName();
 | |
| 
 | |
|     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
 | |
|     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
 | |
|                                                 NumOutputs, Info)) {
 | |
|       return StmtError(Diag(Literal->getLocStart(),
 | |
|                             diag::err_asm_invalid_input_constraint)
 | |
|                        << Info.getConstraintStr());
 | |
|     }
 | |
| 
 | |
|     Expr *InputExpr = Exprs[i];
 | |
| 
 | |
|     // Only allow void types for memory constraints.
 | |
|     if (Info.allowsMemory() && !Info.allowsRegister()) {
 | |
|       if (CheckAsmLValue(InputExpr, *this))
 | |
|         return StmtError(Diag(InputExpr->getLocStart(),
 | |
|                               diag::err_asm_invalid_lvalue_in_input)
 | |
|                          << Info.getConstraintStr()
 | |
|                          << InputExpr->getSourceRange());
 | |
|     }
 | |
| 
 | |
|     if (Info.allowsRegister()) {
 | |
|       if (InputExpr->getType()->isVoidType()) {
 | |
|         return StmtError(Diag(InputExpr->getLocStart(),
 | |
|                               diag::err_asm_invalid_type_in_input)
 | |
|           << InputExpr->getType() << Info.getConstraintStr()
 | |
|           << InputExpr->getSourceRange());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
 | |
|     if (Result.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     Exprs[i] = Result.get();
 | |
|     InputConstraintInfos.push_back(Info);
 | |
| 
 | |
|     const Type *Ty = Exprs[i]->getType().getTypePtr();
 | |
|     if (Ty->isDependentType())
 | |
|       continue;
 | |
| 
 | |
|     if (!Ty->isVoidType() || !Info.allowsMemory())
 | |
|       if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
 | |
|                               diag::err_dereference_incomplete_type))
 | |
|         return StmtError();
 | |
| 
 | |
|     unsigned Size = Context.getTypeSize(Ty);
 | |
|     if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
 | |
|                                                    Size))
 | |
|       return StmtError(Diag(InputExpr->getLocStart(),
 | |
|                             diag::err_asm_invalid_input_size)
 | |
|                        << Info.getConstraintStr());
 | |
|   }
 | |
| 
 | |
|   // Check that the clobbers are valid.
 | |
|   for (unsigned i = 0; i != NumClobbers; i++) {
 | |
|     StringLiteral *Literal = Clobbers[i];
 | |
|     if (!Literal->isAscii())
 | |
|       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | |
|         << Literal->getSourceRange());
 | |
| 
 | |
|     StringRef Clobber = Literal->getString();
 | |
| 
 | |
|     if (!Context.getTargetInfo().isValidClobber(Clobber))
 | |
|       return StmtError(Diag(Literal->getLocStart(),
 | |
|                   diag::err_asm_unknown_register_name) << Clobber);
 | |
|   }
 | |
| 
 | |
|   GCCAsmStmt *NS =
 | |
|     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | |
|                              NumInputs, Names, Constraints, Exprs.data(),
 | |
|                              AsmString, NumClobbers, Clobbers, RParenLoc);
 | |
|   // Validate the asm string, ensuring it makes sense given the operands we
 | |
|   // have.
 | |
|   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
 | |
|   unsigned DiagOffs;
 | |
|   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
 | |
|     Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
 | |
|            << AsmString->getSourceRange();
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Validate constraints and modifiers.
 | |
|   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
 | |
|     GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
 | |
|     if (!Piece.isOperand()) continue;
 | |
| 
 | |
|     // Look for the correct constraint index.
 | |
|     unsigned Idx = 0;
 | |
|     unsigned ConstraintIdx = 0;
 | |
|     for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
 | |
|       TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
 | |
|       if (Idx == Piece.getOperandNo())
 | |
|         break;
 | |
|       ++Idx;
 | |
| 
 | |
|       if (Info.isReadWrite()) {
 | |
|         if (Idx == Piece.getOperandNo())
 | |
|           break;
 | |
|         ++Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
 | |
|       TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | |
|       if (Idx == Piece.getOperandNo())
 | |
|         break;
 | |
|       ++Idx;
 | |
| 
 | |
|       if (Info.isReadWrite()) {
 | |
|         if (Idx == Piece.getOperandNo())
 | |
|           break;
 | |
|         ++Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have the right indexes go ahead and check.
 | |
|     StringLiteral *Literal = Constraints[ConstraintIdx];
 | |
|     const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
 | |
|     if (Ty->isDependentType() || Ty->isIncompleteType())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Size = Context.getTypeSize(Ty);
 | |
|     if (!Context.getTargetInfo()
 | |
|           .validateConstraintModifier(Literal->getString(), Piece.getModifier(),
 | |
|                                       Size))
 | |
|       Diag(Exprs[ConstraintIdx]->getLocStart(),
 | |
|            diag::warn_asm_mismatched_size_modifier);
 | |
|   }
 | |
| 
 | |
|   // Validate tied input operands for type mismatches.
 | |
|   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
 | |
|     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | |
| 
 | |
|     // If this is a tied constraint, verify that the output and input have
 | |
|     // either exactly the same type, or that they are int/ptr operands with the
 | |
|     // same size (int/long, int*/long, are ok etc).
 | |
|     if (!Info.hasTiedOperand()) continue;
 | |
| 
 | |
|     unsigned TiedTo = Info.getTiedOperand();
 | |
|     unsigned InputOpNo = i+NumOutputs;
 | |
|     Expr *OutputExpr = Exprs[TiedTo];
 | |
|     Expr *InputExpr = Exprs[InputOpNo];
 | |
| 
 | |
|     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
 | |
|       continue;
 | |
| 
 | |
|     QualType InTy = InputExpr->getType();
 | |
|     QualType OutTy = OutputExpr->getType();
 | |
|     if (Context.hasSameType(InTy, OutTy))
 | |
|       continue;  // All types can be tied to themselves.
 | |
| 
 | |
|     // Decide if the input and output are in the same domain (integer/ptr or
 | |
|     // floating point.
 | |
|     enum AsmDomain {
 | |
|       AD_Int, AD_FP, AD_Other
 | |
|     } InputDomain, OutputDomain;
 | |
| 
 | |
|     if (InTy->isIntegerType() || InTy->isPointerType())
 | |
|       InputDomain = AD_Int;
 | |
|     else if (InTy->isRealFloatingType())
 | |
|       InputDomain = AD_FP;
 | |
|     else
 | |
|       InputDomain = AD_Other;
 | |
| 
 | |
|     if (OutTy->isIntegerType() || OutTy->isPointerType())
 | |
|       OutputDomain = AD_Int;
 | |
|     else if (OutTy->isRealFloatingType())
 | |
|       OutputDomain = AD_FP;
 | |
|     else
 | |
|       OutputDomain = AD_Other;
 | |
| 
 | |
|     // They are ok if they are the same size and in the same domain.  This
 | |
|     // allows tying things like:
 | |
|     //   void* to int*
 | |
|     //   void* to int            if they are the same size.
 | |
|     //   double to long double   if they are the same size.
 | |
|     //
 | |
|     uint64_t OutSize = Context.getTypeSize(OutTy);
 | |
|     uint64_t InSize = Context.getTypeSize(InTy);
 | |
|     if (OutSize == InSize && InputDomain == OutputDomain &&
 | |
|         InputDomain != AD_Other)
 | |
|       continue;
 | |
| 
 | |
|     // If the smaller input/output operand is not mentioned in the asm string,
 | |
|     // then we can promote the smaller one to a larger input and the asm string
 | |
|     // won't notice.
 | |
|     bool SmallerValueMentioned = false;
 | |
| 
 | |
|     // If this is a reference to the input and if the input was the smaller
 | |
|     // one, then we have to reject this asm.
 | |
|     if (isOperandMentioned(InputOpNo, Pieces)) {
 | |
|       // This is a use in the asm string of the smaller operand.  Since we
 | |
|       // codegen this by promoting to a wider value, the asm will get printed
 | |
|       // "wrong".
 | |
|       SmallerValueMentioned |= InSize < OutSize;
 | |
|     }
 | |
|     if (isOperandMentioned(TiedTo, Pieces)) {
 | |
|       // If this is a reference to the output, and if the output is the larger
 | |
|       // value, then it's ok because we'll promote the input to the larger type.
 | |
|       SmallerValueMentioned |= OutSize < InSize;
 | |
|     }
 | |
| 
 | |
|     // If the smaller value wasn't mentioned in the asm string, and if the
 | |
|     // output was a register, just extend the shorter one to the size of the
 | |
|     // larger one.
 | |
|     if (!SmallerValueMentioned && InputDomain != AD_Other &&
 | |
|         OutputConstraintInfos[TiedTo].allowsRegister())
 | |
|       continue;
 | |
| 
 | |
|     // Either both of the operands were mentioned or the smaller one was
 | |
|     // mentioned.  One more special case that we'll allow: if the tied input is
 | |
|     // integer, unmentioned, and is a constant, then we'll allow truncating it
 | |
|     // down to the size of the destination.
 | |
|     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
 | |
|         !isOperandMentioned(InputOpNo, Pieces) &&
 | |
|         InputExpr->isEvaluatable(Context)) {
 | |
|       CastKind castKind =
 | |
|         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
 | |
|       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
 | |
|       Exprs[InputOpNo] = InputExpr;
 | |
|       NS->setInputExpr(i, InputExpr);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Diag(InputExpr->getLocStart(),
 | |
|          diag::err_asm_tying_incompatible_types)
 | |
|       << InTy << OutTy << OutputExpr->getSourceRange()
 | |
|       << InputExpr->getSourceRange();
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   return NS;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
 | |
|                                            SourceLocation TemplateKWLoc,
 | |
|                                            UnqualifiedId &Id,
 | |
|                                            llvm::InlineAsmIdentifierInfo &Info,
 | |
|                                            bool IsUnevaluatedContext) {
 | |
|   Info.clear();
 | |
| 
 | |
|   if (IsUnevaluatedContext)
 | |
|     PushExpressionEvaluationContext(UnevaluatedAbstract,
 | |
|                                     ReuseLambdaContextDecl);
 | |
| 
 | |
|   ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
 | |
|                                         /*trailing lparen*/ false,
 | |
|                                         /*is & operand*/ false,
 | |
|                                         /*CorrectionCandidateCallback=*/nullptr,
 | |
|                                         /*IsInlineAsmIdentifier=*/ true);
 | |
| 
 | |
|   if (IsUnevaluatedContext)
 | |
|     PopExpressionEvaluationContext();
 | |
| 
 | |
|   if (!Result.isUsable()) return Result;
 | |
| 
 | |
|   Result = CheckPlaceholderExpr(Result.get());
 | |
|   if (!Result.isUsable()) return Result;
 | |
| 
 | |
|   QualType T = Result.get()->getType();
 | |
| 
 | |
|   // For now, reject dependent types.
 | |
|   if (T->isDependentType()) {
 | |
|     Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Any sort of function type is fine.
 | |
|   if (T->isFunctionType()) {
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it needs to be a complete type.
 | |
|   if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Compute the type size (and array length if applicable?).
 | |
|   Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
 | |
|   if (T->isArrayType()) {
 | |
|     const ArrayType *ATy = Context.getAsArrayType(T);
 | |
|     Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
 | |
|     Info.Length = Info.Size / Info.Type;
 | |
|   }
 | |
| 
 | |
|   // We can work with the expression as long as it's not an r-value.
 | |
|   if (!Result.get()->isRValue())
 | |
|     Info.IsVarDecl = true;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
 | |
|                                 unsigned &Offset, SourceLocation AsmLoc) {
 | |
|   Offset = 0;
 | |
|   LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
 | |
|                           LookupOrdinaryName);
 | |
| 
 | |
|   if (!LookupName(BaseResult, getCurScope()))
 | |
|     return true;
 | |
| 
 | |
|   if (!BaseResult.isSingleResult())
 | |
|     return true;
 | |
| 
 | |
|   const RecordType *RT = nullptr;
 | |
|   NamedDecl *FoundDecl = BaseResult.getFoundDecl();
 | |
|   if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
 | |
|     RT = VD->getType()->getAs<RecordType>();
 | |
|   else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl))
 | |
|     RT = TD->getUnderlyingType()->getAs<RecordType>();
 | |
|   else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
 | |
|     RT = TD->getTypeForDecl()->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return true;
 | |
| 
 | |
|   if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
 | |
|     return true;
 | |
| 
 | |
|   LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
 | |
|                            LookupMemberName);
 | |
| 
 | |
|   if (!LookupQualifiedName(FieldResult, RT->getDecl()))
 | |
|     return true;
 | |
| 
 | |
|   // FIXME: Handle IndirectFieldDecl?
 | |
|   FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
 | |
|   if (!FD)
 | |
|     return true;
 | |
| 
 | |
|   const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
 | |
|   unsigned i = FD->getFieldIndex();
 | |
|   CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
 | |
|   Offset = (unsigned)Result.getQuantity();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
 | |
|                                 ArrayRef<Token> AsmToks,
 | |
|                                 StringRef AsmString,
 | |
|                                 unsigned NumOutputs, unsigned NumInputs,
 | |
|                                 ArrayRef<StringRef> Constraints,
 | |
|                                 ArrayRef<StringRef> Clobbers,
 | |
|                                 ArrayRef<Expr*> Exprs,
 | |
|                                 SourceLocation EndLoc) {
 | |
|   bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
 | |
|   MSAsmStmt *NS =
 | |
|     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
 | |
|                             /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
 | |
|                             Constraints, Exprs, AsmString,
 | |
|                             Clobbers, EndLoc);
 | |
|   return NS;
 | |
| }
 |