10207 lines
		
	
	
		
			392 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10207 lines
		
	
	
		
			392 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements a semantic tree transformation that takes a given
 | |
| //  AST and rebuilds it, possibly transforming some nodes in the process.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
 | |
| #define LLVM_CLANG_SEMA_TREETRANSFORM_H
 | |
| 
 | |
| #include "TypeLocBuilder.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/AST/StmtOpenMP.h"
 | |
| #include "clang/Sema/Designator.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Ownership.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/SemaDiagnostic.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace clang {
 | |
| using namespace sema;
 | |
| 
 | |
| /// \brief A semantic tree transformation that allows one to transform one
 | |
| /// abstract syntax tree into another.
 | |
| ///
 | |
| /// A new tree transformation is defined by creating a new subclass \c X of
 | |
| /// \c TreeTransform<X> and then overriding certain operations to provide
 | |
| /// behavior specific to that transformation. For example, template
 | |
| /// instantiation is implemented as a tree transformation where the
 | |
| /// transformation of TemplateTypeParmType nodes involves substituting the
 | |
| /// template arguments for their corresponding template parameters; a similar
 | |
| /// transformation is performed for non-type template parameters and
 | |
| /// template template parameters.
 | |
| ///
 | |
| /// This tree-transformation template uses static polymorphism to allow
 | |
| /// subclasses to customize any of its operations. Thus, a subclass can
 | |
| /// override any of the transformation or rebuild operators by providing an
 | |
| /// operation with the same signature as the default implementation. The
 | |
| /// overridding function should not be virtual.
 | |
| ///
 | |
| /// Semantic tree transformations are split into two stages, either of which
 | |
| /// can be replaced by a subclass. The "transform" step transforms an AST node
 | |
| /// or the parts of an AST node using the various transformation functions,
 | |
| /// then passes the pieces on to the "rebuild" step, which constructs a new AST
 | |
| /// node of the appropriate kind from the pieces. The default transformation
 | |
| /// routines recursively transform the operands to composite AST nodes (e.g.,
 | |
| /// the pointee type of a PointerType node) and, if any of those operand nodes
 | |
| /// were changed by the transformation, invokes the rebuild operation to create
 | |
| /// a new AST node.
 | |
| ///
 | |
| /// Subclasses can customize the transformation at various levels. The
 | |
| /// most coarse-grained transformations involve replacing TransformType(),
 | |
| /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
 | |
| /// TransformTemplateName(), or TransformTemplateArgument() with entirely
 | |
| /// new implementations.
 | |
| ///
 | |
| /// For more fine-grained transformations, subclasses can replace any of the
 | |
| /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
 | |
| /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
 | |
| /// replacing TransformTemplateTypeParmType() allows template instantiation
 | |
| /// to substitute template arguments for their corresponding template
 | |
| /// parameters. Additionally, subclasses can override the \c RebuildXXX
 | |
| /// functions to control how AST nodes are rebuilt when their operands change.
 | |
| /// By default, \c TreeTransform will invoke semantic analysis to rebuild
 | |
| /// AST nodes. However, certain other tree transformations (e.g, cloning) may
 | |
| /// be able to use more efficient rebuild steps.
 | |
| ///
 | |
| /// There are a handful of other functions that can be overridden, allowing one
 | |
| /// to avoid traversing nodes that don't need any transformation
 | |
| /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
 | |
| /// operands have not changed (\c AlwaysRebuild()), and customize the
 | |
| /// default locations and entity names used for type-checking
 | |
| /// (\c getBaseLocation(), \c getBaseEntity()).
 | |
| template<typename Derived>
 | |
| class TreeTransform {
 | |
|   /// \brief Private RAII object that helps us forget and then re-remember
 | |
|   /// the template argument corresponding to a partially-substituted parameter
 | |
|   /// pack.
 | |
|   class ForgetPartiallySubstitutedPackRAII {
 | |
|     Derived &Self;
 | |
|     TemplateArgument Old;
 | |
| 
 | |
|   public:
 | |
|     ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
 | |
|       Old = Self.ForgetPartiallySubstitutedPack();
 | |
|     }
 | |
| 
 | |
|     ~ForgetPartiallySubstitutedPackRAII() {
 | |
|       Self.RememberPartiallySubstitutedPack(Old);
 | |
|     }
 | |
|   };
 | |
| 
 | |
| protected:
 | |
|   Sema &SemaRef;
 | |
| 
 | |
|   /// \brief The set of local declarations that have been transformed, for
 | |
|   /// cases where we are forced to build new declarations within the transformer
 | |
|   /// rather than in the subclass (e.g., lambda closure types).
 | |
|   llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
 | |
| 
 | |
| public:
 | |
|   /// \brief Initializes a new tree transformer.
 | |
|   TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
 | |
| 
 | |
|   /// \brief Retrieves a reference to the derived class.
 | |
|   Derived &getDerived() { return static_cast<Derived&>(*this); }
 | |
| 
 | |
|   /// \brief Retrieves a reference to the derived class.
 | |
|   const Derived &getDerived() const {
 | |
|     return static_cast<const Derived&>(*this);
 | |
|   }
 | |
| 
 | |
|   static inline ExprResult Owned(Expr *E) { return E; }
 | |
|   static inline StmtResult Owned(Stmt *S) { return S; }
 | |
| 
 | |
|   /// \brief Retrieves a reference to the semantic analysis object used for
 | |
|   /// this tree transform.
 | |
|   Sema &getSema() const { return SemaRef; }
 | |
| 
 | |
|   /// \brief Whether the transformation should always rebuild AST nodes, even
 | |
|   /// if none of the children have changed.
 | |
|   ///
 | |
|   /// Subclasses may override this function to specify when the transformation
 | |
|   /// should rebuild all AST nodes.
 | |
|   ///
 | |
|   /// We must always rebuild all AST nodes when performing variadic template
 | |
|   /// pack expansion, in order to avoid violating the AST invariant that each
 | |
|   /// statement node appears at most once in its containing declaration.
 | |
|   bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
 | |
| 
 | |
|   /// \brief Returns the location of the entity being transformed, if that
 | |
|   /// information was not available elsewhere in the AST.
 | |
|   ///
 | |
|   /// By default, returns no source-location information. Subclasses can
 | |
|   /// provide an alternative implementation that provides better location
 | |
|   /// information.
 | |
|   SourceLocation getBaseLocation() { return SourceLocation(); }
 | |
| 
 | |
|   /// \brief Returns the name of the entity being transformed, if that
 | |
|   /// information was not available elsewhere in the AST.
 | |
|   ///
 | |
|   /// By default, returns an empty name. Subclasses can provide an alternative
 | |
|   /// implementation with a more precise name.
 | |
|   DeclarationName getBaseEntity() { return DeclarationName(); }
 | |
| 
 | |
|   /// \brief Sets the "base" location and entity when that
 | |
|   /// information is known based on another transformation.
 | |
|   ///
 | |
|   /// By default, the source location and entity are ignored. Subclasses can
 | |
|   /// override this function to provide a customized implementation.
 | |
|   void setBase(SourceLocation Loc, DeclarationName Entity) { }
 | |
| 
 | |
|   /// \brief RAII object that temporarily sets the base location and entity
 | |
|   /// used for reporting diagnostics in types.
 | |
|   class TemporaryBase {
 | |
|     TreeTransform &Self;
 | |
|     SourceLocation OldLocation;
 | |
|     DeclarationName OldEntity;
 | |
| 
 | |
|   public:
 | |
|     TemporaryBase(TreeTransform &Self, SourceLocation Location,
 | |
|                   DeclarationName Entity) : Self(Self) {
 | |
|       OldLocation = Self.getDerived().getBaseLocation();
 | |
|       OldEntity = Self.getDerived().getBaseEntity();
 | |
| 
 | |
|       if (Location.isValid())
 | |
|         Self.getDerived().setBase(Location, Entity);
 | |
|     }
 | |
| 
 | |
|     ~TemporaryBase() {
 | |
|       Self.getDerived().setBase(OldLocation, OldEntity);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Determine whether the given type \p T has already been
 | |
|   /// transformed.
 | |
|   ///
 | |
|   /// Subclasses can provide an alternative implementation of this routine
 | |
|   /// to short-circuit evaluation when it is known that a given type will
 | |
|   /// not change. For example, template instantiation need not traverse
 | |
|   /// non-dependent types.
 | |
|   bool AlreadyTransformed(QualType T) {
 | |
|     return T.isNull();
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine whether the given call argument should be dropped, e.g.,
 | |
|   /// because it is a default argument.
 | |
|   ///
 | |
|   /// Subclasses can provide an alternative implementation of this routine to
 | |
|   /// determine which kinds of call arguments get dropped. By default,
 | |
|   /// CXXDefaultArgument nodes are dropped (prior to transformation).
 | |
|   bool DropCallArgument(Expr *E) {
 | |
|     return E->isDefaultArgument();
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine whether we should expand a pack expansion with the
 | |
|   /// given set of parameter packs into separate arguments by repeatedly
 | |
|   /// transforming the pattern.
 | |
|   ///
 | |
|   /// By default, the transformer never tries to expand pack expansions.
 | |
|   /// Subclasses can override this routine to provide different behavior.
 | |
|   ///
 | |
|   /// \param EllipsisLoc The location of the ellipsis that identifies the
 | |
|   /// pack expansion.
 | |
|   ///
 | |
|   /// \param PatternRange The source range that covers the entire pattern of
 | |
|   /// the pack expansion.
 | |
|   ///
 | |
|   /// \param Unexpanded The set of unexpanded parameter packs within the
 | |
|   /// pattern.
 | |
|   ///
 | |
|   /// \param ShouldExpand Will be set to \c true if the transformer should
 | |
|   /// expand the corresponding pack expansions into separate arguments. When
 | |
|   /// set, \c NumExpansions must also be set.
 | |
|   ///
 | |
|   /// \param RetainExpansion Whether the caller should add an unexpanded
 | |
|   /// pack expansion after all of the expanded arguments. This is used
 | |
|   /// when extending explicitly-specified template argument packs per
 | |
|   /// C++0x [temp.arg.explicit]p9.
 | |
|   ///
 | |
|   /// \param NumExpansions The number of separate arguments that will be in
 | |
|   /// the expanded form of the corresponding pack expansion. This is both an
 | |
|   /// input and an output parameter, which can be set by the caller if the
 | |
|   /// number of expansions is known a priori (e.g., due to a prior substitution)
 | |
|   /// and will be set by the callee when the number of expansions is known.
 | |
|   /// The callee must set this value when \c ShouldExpand is \c true; it may
 | |
|   /// set this value in other cases.
 | |
|   ///
 | |
|   /// \returns true if an error occurred (e.g., because the parameter packs
 | |
|   /// are to be instantiated with arguments of different lengths), false
 | |
|   /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
 | |
|   /// must be set.
 | |
|   bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
 | |
|                                SourceRange PatternRange,
 | |
|                                ArrayRef<UnexpandedParameterPack> Unexpanded,
 | |
|                                bool &ShouldExpand,
 | |
|                                bool &RetainExpansion,
 | |
|                                Optional<unsigned> &NumExpansions) {
 | |
|     ShouldExpand = false;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// \brief "Forget" about the partially-substituted pack template argument,
 | |
|   /// when performing an instantiation that must preserve the parameter pack
 | |
|   /// use.
 | |
|   ///
 | |
|   /// This routine is meant to be overridden by the template instantiator.
 | |
|   TemplateArgument ForgetPartiallySubstitutedPack() {
 | |
|     return TemplateArgument();
 | |
|   }
 | |
| 
 | |
|   /// \brief "Remember" the partially-substituted pack template argument
 | |
|   /// after performing an instantiation that must preserve the parameter pack
 | |
|   /// use.
 | |
|   ///
 | |
|   /// This routine is meant to be overridden by the template instantiator.
 | |
|   void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
 | |
| 
 | |
|   /// \brief Note to the derived class when a function parameter pack is
 | |
|   /// being expanded.
 | |
|   void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
 | |
| 
 | |
|   /// \brief Transforms the given type into another type.
 | |
|   ///
 | |
|   /// By default, this routine transforms a type by creating a
 | |
|   /// TypeSourceInfo for it and delegating to the appropriate
 | |
|   /// function.  This is expensive, but we don't mind, because
 | |
|   /// this method is deprecated anyway;  all users should be
 | |
|   /// switched to storing TypeSourceInfos.
 | |
|   ///
 | |
|   /// \returns the transformed type.
 | |
|   QualType TransformType(QualType T);
 | |
| 
 | |
|   /// \brief Transforms the given type-with-location into a new
 | |
|   /// type-with-location.
 | |
|   ///
 | |
|   /// By default, this routine transforms a type by delegating to the
 | |
|   /// appropriate TransformXXXType to build a new type.  Subclasses
 | |
|   /// may override this function (to take over all type
 | |
|   /// transformations) or some set of the TransformXXXType functions
 | |
|   /// to alter the transformation.
 | |
|   TypeSourceInfo *TransformType(TypeSourceInfo *DI);
 | |
| 
 | |
|   /// \brief Transform the given type-with-location into a new
 | |
|   /// type, collecting location information in the given builder
 | |
|   /// as necessary.
 | |
|   ///
 | |
|   QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
 | |
| 
 | |
|   /// \brief Transform the given statement.
 | |
|   ///
 | |
|   /// By default, this routine transforms a statement by delegating to the
 | |
|   /// appropriate TransformXXXStmt function to transform a specific kind of
 | |
|   /// statement or the TransformExpr() function to transform an expression.
 | |
|   /// Subclasses may override this function to transform statements using some
 | |
|   /// other mechanism.
 | |
|   ///
 | |
|   /// \returns the transformed statement.
 | |
|   StmtResult TransformStmt(Stmt *S);
 | |
| 
 | |
|   /// \brief Transform the given statement.
 | |
|   ///
 | |
|   /// By default, this routine transforms a statement by delegating to the
 | |
|   /// appropriate TransformOMPXXXClause function to transform a specific kind
 | |
|   /// of clause. Subclasses may override this function to transform statements
 | |
|   /// using some other mechanism.
 | |
|   ///
 | |
|   /// \returns the transformed OpenMP clause.
 | |
|   OMPClause *TransformOMPClause(OMPClause *S);
 | |
| 
 | |
|   /// \brief Transform the given expression.
 | |
|   ///
 | |
|   /// By default, this routine transforms an expression by delegating to the
 | |
|   /// appropriate TransformXXXExpr function to build a new expression.
 | |
|   /// Subclasses may override this function to transform expressions using some
 | |
|   /// other mechanism.
 | |
|   ///
 | |
|   /// \returns the transformed expression.
 | |
|   ExprResult TransformExpr(Expr *E);
 | |
| 
 | |
|   /// \brief Transform the given initializer.
 | |
|   ///
 | |
|   /// By default, this routine transforms an initializer by stripping off the
 | |
|   /// semantic nodes added by initialization, then passing the result to
 | |
|   /// TransformExpr or TransformExprs.
 | |
|   ///
 | |
|   /// \returns the transformed initializer.
 | |
|   ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit);
 | |
| 
 | |
|   /// \brief Transform the given list of expressions.
 | |
|   ///
 | |
|   /// This routine transforms a list of expressions by invoking
 | |
|   /// \c TransformExpr() for each subexpression. However, it also provides
 | |
|   /// support for variadic templates by expanding any pack expansions (if the
 | |
|   /// derived class permits such expansion) along the way. When pack expansions
 | |
|   /// are present, the number of outputs may not equal the number of inputs.
 | |
|   ///
 | |
|   /// \param Inputs The set of expressions to be transformed.
 | |
|   ///
 | |
|   /// \param NumInputs The number of expressions in \c Inputs.
 | |
|   ///
 | |
|   /// \param IsCall If \c true, then this transform is being performed on
 | |
|   /// function-call arguments, and any arguments that should be dropped, will
 | |
|   /// be.
 | |
|   ///
 | |
|   /// \param Outputs The transformed input expressions will be added to this
 | |
|   /// vector.
 | |
|   ///
 | |
|   /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
 | |
|   /// due to transformation.
 | |
|   ///
 | |
|   /// \returns true if an error occurred, false otherwise.
 | |
|   bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
 | |
|                       SmallVectorImpl<Expr *> &Outputs,
 | |
|                       bool *ArgChanged = nullptr);
 | |
| 
 | |
|   /// \brief Transform the given declaration, which is referenced from a type
 | |
|   /// or expression.
 | |
|   ///
 | |
|   /// By default, acts as the identity function on declarations, unless the
 | |
|   /// transformer has had to transform the declaration itself. Subclasses
 | |
|   /// may override this function to provide alternate behavior.
 | |
|   Decl *TransformDecl(SourceLocation Loc, Decl *D) {
 | |
|     llvm::DenseMap<Decl *, Decl *>::iterator Known
 | |
|       = TransformedLocalDecls.find(D);
 | |
|     if (Known != TransformedLocalDecls.end())
 | |
|       return Known->second;
 | |
| 
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   /// \brief Transform the attributes associated with the given declaration and
 | |
|   /// place them on the new declaration.
 | |
|   ///
 | |
|   /// By default, this operation does nothing. Subclasses may override this
 | |
|   /// behavior to transform attributes.
 | |
|   void transformAttrs(Decl *Old, Decl *New) { }
 | |
| 
 | |
|   /// \brief Note that a local declaration has been transformed by this
 | |
|   /// transformer.
 | |
|   ///
 | |
|   /// Local declarations are typically transformed via a call to
 | |
|   /// TransformDefinition. However, in some cases (e.g., lambda expressions),
 | |
|   /// the transformer itself has to transform the declarations. This routine
 | |
|   /// can be overridden by a subclass that keeps track of such mappings.
 | |
|   void transformedLocalDecl(Decl *Old, Decl *New) {
 | |
|     TransformedLocalDecls[Old] = New;
 | |
|   }
 | |
| 
 | |
|   /// \brief Transform the definition of the given declaration.
 | |
|   ///
 | |
|   /// By default, invokes TransformDecl() to transform the declaration.
 | |
|   /// Subclasses may override this function to provide alternate behavior.
 | |
|   Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
 | |
|     return getDerived().TransformDecl(Loc, D);
 | |
|   }
 | |
| 
 | |
|   /// \brief Transform the given declaration, which was the first part of a
 | |
|   /// nested-name-specifier in a member access expression.
 | |
|   ///
 | |
|   /// This specific declaration transformation only applies to the first
 | |
|   /// identifier in a nested-name-specifier of a member access expression, e.g.,
 | |
|   /// the \c T in \c x->T::member
 | |
|   ///
 | |
|   /// By default, invokes TransformDecl() to transform the declaration.
 | |
|   /// Subclasses may override this function to provide alternate behavior.
 | |
|   NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
 | |
|     return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
 | |
|   }
 | |
| 
 | |
|   /// \brief Transform the given nested-name-specifier with source-location
 | |
|   /// information.
 | |
|   ///
 | |
|   /// By default, transforms all of the types and declarations within the
 | |
|   /// nested-name-specifier. Subclasses may override this function to provide
 | |
|   /// alternate behavior.
 | |
|   NestedNameSpecifierLoc
 | |
|   TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
 | |
|                                   QualType ObjectType = QualType(),
 | |
|                                   NamedDecl *FirstQualifierInScope = nullptr);
 | |
| 
 | |
|   /// \brief Transform the given declaration name.
 | |
|   ///
 | |
|   /// By default, transforms the types of conversion function, constructor,
 | |
|   /// and destructor names and then (if needed) rebuilds the declaration name.
 | |
|   /// Identifiers and selectors are returned unmodified. Sublcasses may
 | |
|   /// override this function to provide alternate behavior.
 | |
|   DeclarationNameInfo
 | |
|   TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
 | |
| 
 | |
|   /// \brief Transform the given template name.
 | |
|   ///
 | |
|   /// \param SS The nested-name-specifier that qualifies the template
 | |
|   /// name. This nested-name-specifier must already have been transformed.
 | |
|   ///
 | |
|   /// \param Name The template name to transform.
 | |
|   ///
 | |
|   /// \param NameLoc The source location of the template name.
 | |
|   ///
 | |
|   /// \param ObjectType If we're translating a template name within a member
 | |
|   /// access expression, this is the type of the object whose member template
 | |
|   /// is being referenced.
 | |
|   ///
 | |
|   /// \param FirstQualifierInScope If the first part of a nested-name-specifier
 | |
|   /// also refers to a name within the current (lexical) scope, this is the
 | |
|   /// declaration it refers to.
 | |
|   ///
 | |
|   /// By default, transforms the template name by transforming the declarations
 | |
|   /// and nested-name-specifiers that occur within the template name.
 | |
|   /// Subclasses may override this function to provide alternate behavior.
 | |
|   TemplateName
 | |
|   TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
 | |
|                         SourceLocation NameLoc,
 | |
|                         QualType ObjectType = QualType(),
 | |
|                         NamedDecl *FirstQualifierInScope = nullptr);
 | |
| 
 | |
|   /// \brief Transform the given template argument.
 | |
|   ///
 | |
|   /// By default, this operation transforms the type, expression, or
 | |
|   /// declaration stored within the template argument and constructs a
 | |
|   /// new template argument from the transformed result. Subclasses may
 | |
|   /// override this function to provide alternate behavior.
 | |
|   ///
 | |
|   /// Returns true if there was an error.
 | |
|   bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
 | |
|                                  TemplateArgumentLoc &Output);
 | |
| 
 | |
|   /// \brief Transform the given set of template arguments.
 | |
|   ///
 | |
|   /// By default, this operation transforms all of the template arguments
 | |
|   /// in the input set using \c TransformTemplateArgument(), and appends
 | |
|   /// the transformed arguments to the output list.
 | |
|   ///
 | |
|   /// Note that this overload of \c TransformTemplateArguments() is merely
 | |
|   /// a convenience function. Subclasses that wish to override this behavior
 | |
|   /// should override the iterator-based member template version.
 | |
|   ///
 | |
|   /// \param Inputs The set of template arguments to be transformed.
 | |
|   ///
 | |
|   /// \param NumInputs The number of template arguments in \p Inputs.
 | |
|   ///
 | |
|   /// \param Outputs The set of transformed template arguments output by this
 | |
|   /// routine.
 | |
|   ///
 | |
|   /// Returns true if an error occurred.
 | |
|   bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
 | |
|                                   unsigned NumInputs,
 | |
|                                   TemplateArgumentListInfo &Outputs) {
 | |
|     return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Transform the given set of template arguments.
 | |
|   ///
 | |
|   /// By default, this operation transforms all of the template arguments
 | |
|   /// in the input set using \c TransformTemplateArgument(), and appends
 | |
|   /// the transformed arguments to the output list.
 | |
|   ///
 | |
|   /// \param First An iterator to the first template argument.
 | |
|   ///
 | |
|   /// \param Last An iterator one step past the last template argument.
 | |
|   ///
 | |
|   /// \param Outputs The set of transformed template arguments output by this
 | |
|   /// routine.
 | |
|   ///
 | |
|   /// Returns true if an error occurred.
 | |
|   template<typename InputIterator>
 | |
|   bool TransformTemplateArguments(InputIterator First,
 | |
|                                   InputIterator Last,
 | |
|                                   TemplateArgumentListInfo &Outputs);
 | |
| 
 | |
|   /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
 | |
|   void InventTemplateArgumentLoc(const TemplateArgument &Arg,
 | |
|                                  TemplateArgumentLoc &ArgLoc);
 | |
| 
 | |
|   /// \brief Fakes up a TypeSourceInfo for a type.
 | |
|   TypeSourceInfo *InventTypeSourceInfo(QualType T) {
 | |
|     return SemaRef.Context.getTrivialTypeSourceInfo(T,
 | |
|                        getDerived().getBaseLocation());
 | |
|   }
 | |
| 
 | |
| #define ABSTRACT_TYPELOC(CLASS, PARENT)
 | |
| #define TYPELOC(CLASS, PARENT)                                   \
 | |
|   QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
 | |
| #include "clang/AST/TypeLocNodes.def"
 | |
| 
 | |
|   QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
 | |
|                                       FunctionProtoTypeLoc TL,
 | |
|                                       CXXRecordDecl *ThisContext,
 | |
|                                       unsigned ThisTypeQuals);
 | |
| 
 | |
|   StmtResult TransformSEHHandler(Stmt *Handler);
 | |
| 
 | |
|   QualType
 | |
|   TransformTemplateSpecializationType(TypeLocBuilder &TLB,
 | |
|                                       TemplateSpecializationTypeLoc TL,
 | |
|                                       TemplateName Template);
 | |
| 
 | |
|   QualType
 | |
|   TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
 | |
|                                       DependentTemplateSpecializationTypeLoc TL,
 | |
|                                                TemplateName Template,
 | |
|                                                CXXScopeSpec &SS);
 | |
| 
 | |
|   QualType
 | |
|   TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
 | |
|                                                DependentTemplateSpecializationTypeLoc TL,
 | |
|                                          NestedNameSpecifierLoc QualifierLoc);
 | |
| 
 | |
|   /// \brief Transforms the parameters of a function type into the
 | |
|   /// given vectors.
 | |
|   ///
 | |
|   /// The result vectors should be kept in sync; null entries in the
 | |
|   /// variables vector are acceptable.
 | |
|   ///
 | |
|   /// Return true on error.
 | |
|   bool TransformFunctionTypeParams(SourceLocation Loc,
 | |
|                                    ParmVarDecl **Params, unsigned NumParams,
 | |
|                                    const QualType *ParamTypes,
 | |
|                                    SmallVectorImpl<QualType> &PTypes,
 | |
|                                    SmallVectorImpl<ParmVarDecl*> *PVars);
 | |
| 
 | |
|   /// \brief Transforms a single function-type parameter.  Return null
 | |
|   /// on error.
 | |
|   ///
 | |
|   /// \param indexAdjustment - A number to add to the parameter's
 | |
|   ///   scope index;  can be negative
 | |
|   ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
 | |
|                                           int indexAdjustment,
 | |
|                                           Optional<unsigned> NumExpansions,
 | |
|                                           bool ExpectParameterPack);
 | |
| 
 | |
|   QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
 | |
| 
 | |
|   StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
 | |
|   ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
 | |
|   
 | |
|   typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
 | |
|   /// \brief Transform the captures and body of a lambda expression.
 | |
|   ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator, 
 | |
|        ArrayRef<InitCaptureInfoTy> InitCaptureExprsAndTypes);
 | |
| 
 | |
|   TemplateParameterList *TransformTemplateParameterList(
 | |
|         TemplateParameterList *TPL) {
 | |
|     return TPL;
 | |
|   }
 | |
| 
 | |
|   ExprResult TransformAddressOfOperand(Expr *E);
 | |
| 
 | |
|   ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
 | |
|                                                 bool IsAddressOfOperand,
 | |
|                                                 TypeSourceInfo **RecoveryTSI);
 | |
| 
 | |
|   ExprResult TransformParenDependentScopeDeclRefExpr(
 | |
|       ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
 | |
|       TypeSourceInfo **RecoveryTSI);
 | |
| 
 | |
|   StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
 | |
| 
 | |
| // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
 | |
| // amount of stack usage with clang.
 | |
| #define STMT(Node, Parent)                        \
 | |
|   LLVM_ATTRIBUTE_NOINLINE \
 | |
|   StmtResult Transform##Node(Node *S);
 | |
| #define EXPR(Node, Parent)                        \
 | |
|   LLVM_ATTRIBUTE_NOINLINE \
 | |
|   ExprResult Transform##Node(Node *E);
 | |
| #define ABSTRACT_STMT(Stmt)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
| 
 | |
| #define OPENMP_CLAUSE(Name, Class)                        \
 | |
|   LLVM_ATTRIBUTE_NOINLINE \
 | |
|   OMPClause *Transform ## Class(Class *S);
 | |
| #include "clang/Basic/OpenMPKinds.def"
 | |
| 
 | |
|   /// \brief Build a new pointer type given its pointee type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the pointer type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
 | |
| 
 | |
|   /// \brief Build a new block pointer type given its pointee type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the block pointer
 | |
|   /// type. Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
 | |
| 
 | |
|   /// \brief Build a new reference type given the type it references.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the
 | |
|   /// reference type. Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   ///
 | |
|   /// \param LValue whether the type was written with an lvalue sigil
 | |
|   /// or an rvalue sigil.
 | |
|   QualType RebuildReferenceType(QualType ReferentType,
 | |
|                                 bool LValue,
 | |
|                                 SourceLocation Sigil);
 | |
| 
 | |
|   /// \brief Build a new member pointer type given the pointee type and the
 | |
|   /// class type it refers into.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the member pointer
 | |
|   /// type. Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
 | |
|                                     SourceLocation Sigil);
 | |
| 
 | |
|   /// \brief Build a new array type given the element type, size
 | |
|   /// modifier, size of the array (if known), size expression, and index type
 | |
|   /// qualifiers.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the array type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   /// Also by default, all of the other Rebuild*Array
 | |
|   QualType RebuildArrayType(QualType ElementType,
 | |
|                             ArrayType::ArraySizeModifier SizeMod,
 | |
|                             const llvm::APInt *Size,
 | |
|                             Expr *SizeExpr,
 | |
|                             unsigned IndexTypeQuals,
 | |
|                             SourceRange BracketsRange);
 | |
| 
 | |
|   /// \brief Build a new constant array type given the element type, size
 | |
|   /// modifier, (known) size of the array, and index type qualifiers.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the array type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildConstantArrayType(QualType ElementType,
 | |
|                                     ArrayType::ArraySizeModifier SizeMod,
 | |
|                                     const llvm::APInt &Size,
 | |
|                                     unsigned IndexTypeQuals,
 | |
|                                     SourceRange BracketsRange);
 | |
| 
 | |
|   /// \brief Build a new incomplete array type given the element type, size
 | |
|   /// modifier, and index type qualifiers.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the array type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildIncompleteArrayType(QualType ElementType,
 | |
|                                       ArrayType::ArraySizeModifier SizeMod,
 | |
|                                       unsigned IndexTypeQuals,
 | |
|                                       SourceRange BracketsRange);
 | |
| 
 | |
|   /// \brief Build a new variable-length array type given the element type,
 | |
|   /// size modifier, size expression, and index type qualifiers.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the array type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildVariableArrayType(QualType ElementType,
 | |
|                                     ArrayType::ArraySizeModifier SizeMod,
 | |
|                                     Expr *SizeExpr,
 | |
|                                     unsigned IndexTypeQuals,
 | |
|                                     SourceRange BracketsRange);
 | |
| 
 | |
|   /// \brief Build a new dependent-sized array type given the element type,
 | |
|   /// size modifier, size expression, and index type qualifiers.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the array type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildDependentSizedArrayType(QualType ElementType,
 | |
|                                           ArrayType::ArraySizeModifier SizeMod,
 | |
|                                           Expr *SizeExpr,
 | |
|                                           unsigned IndexTypeQuals,
 | |
|                                           SourceRange BracketsRange);
 | |
| 
 | |
|   /// \brief Build a new vector type given the element type and
 | |
|   /// number of elements.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the vector type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
 | |
|                              VectorType::VectorKind VecKind);
 | |
| 
 | |
|   /// \brief Build a new extended vector type given the element type and
 | |
|   /// number of elements.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the vector type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
 | |
|                                 SourceLocation AttributeLoc);
 | |
| 
 | |
|   /// \brief Build a new potentially dependently-sized extended vector type
 | |
|   /// given the element type and number of elements.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the vector type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildDependentSizedExtVectorType(QualType ElementType,
 | |
|                                               Expr *SizeExpr,
 | |
|                                               SourceLocation AttributeLoc);
 | |
| 
 | |
|   /// \brief Build a new function type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the function type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildFunctionProtoType(QualType T,
 | |
|                                     MutableArrayRef<QualType> ParamTypes,
 | |
|                                     const FunctionProtoType::ExtProtoInfo &EPI);
 | |
| 
 | |
|   /// \brief Build a new unprototyped function type.
 | |
|   QualType RebuildFunctionNoProtoType(QualType ResultType);
 | |
| 
 | |
|   /// \brief Rebuild an unresolved typename type, given the decl that
 | |
|   /// the UnresolvedUsingTypenameDecl was transformed to.
 | |
|   QualType RebuildUnresolvedUsingType(Decl *D);
 | |
| 
 | |
|   /// \brief Build a new typedef type.
 | |
|   QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
 | |
|     return SemaRef.Context.getTypeDeclType(Typedef);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new class/struct/union type.
 | |
|   QualType RebuildRecordType(RecordDecl *Record) {
 | |
|     return SemaRef.Context.getTypeDeclType(Record);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Enum type.
 | |
|   QualType RebuildEnumType(EnumDecl *Enum) {
 | |
|     return SemaRef.Context.getTypeDeclType(Enum);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new typeof(expr) type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the typeof type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
 | |
| 
 | |
|   /// \brief Build a new typeof(type) type.
 | |
|   ///
 | |
|   /// By default, builds a new TypeOfType with the given underlying type.
 | |
|   QualType RebuildTypeOfType(QualType Underlying);
 | |
| 
 | |
|   /// \brief Build a new unary transform type.
 | |
|   QualType RebuildUnaryTransformType(QualType BaseType,
 | |
|                                      UnaryTransformType::UTTKind UKind,
 | |
|                                      SourceLocation Loc);
 | |
| 
 | |
|   /// \brief Build a new C++11 decltype type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the decltype type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
 | |
| 
 | |
|   /// \brief Build a new C++11 auto type.
 | |
|   ///
 | |
|   /// By default, builds a new AutoType with the given deduced type.
 | |
|   QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
 | |
|     // Note, IsDependent is always false here: we implicitly convert an 'auto'
 | |
|     // which has been deduced to a dependent type into an undeduced 'auto', so
 | |
|     // that we'll retry deduction after the transformation.
 | |
|     return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto, 
 | |
|                                        /*IsDependent*/ false);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new template specialization type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the template
 | |
|   /// specialization type. Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   QualType RebuildTemplateSpecializationType(TemplateName Template,
 | |
|                                              SourceLocation TemplateLoc,
 | |
|                                              TemplateArgumentListInfo &Args);
 | |
| 
 | |
|   /// \brief Build a new parenthesized type.
 | |
|   ///
 | |
|   /// By default, builds a new ParenType type from the inner type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildParenType(QualType InnerType) {
 | |
|     return SemaRef.Context.getParenType(InnerType);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new qualified name type.
 | |
|   ///
 | |
|   /// By default, builds a new ElaboratedType type from the keyword,
 | |
|   /// the nested-name-specifier and the named type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildElaboratedType(SourceLocation KeywordLoc,
 | |
|                                  ElaboratedTypeKeyword Keyword,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  QualType Named) {
 | |
|     return SemaRef.Context.getElaboratedType(Keyword,
 | |
|                                          QualifierLoc.getNestedNameSpecifier(),
 | |
|                                              Named);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new typename type that refers to a template-id.
 | |
|   ///
 | |
|   /// By default, builds a new DependentNameType type from the
 | |
|   /// nested-name-specifier and the given type. Subclasses may override
 | |
|   /// this routine to provide different behavior.
 | |
|   QualType RebuildDependentTemplateSpecializationType(
 | |
|                                           ElaboratedTypeKeyword Keyword,
 | |
|                                           NestedNameSpecifierLoc QualifierLoc,
 | |
|                                           const IdentifierInfo *Name,
 | |
|                                           SourceLocation NameLoc,
 | |
|                                           TemplateArgumentListInfo &Args) {
 | |
|     // Rebuild the template name.
 | |
|     // TODO: avoid TemplateName abstraction
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
|     TemplateName InstName
 | |
|       = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(),
 | |
|                                          nullptr);
 | |
| 
 | |
|     if (InstName.isNull())
 | |
|       return QualType();
 | |
| 
 | |
|     // If it's still dependent, make a dependent specialization.
 | |
|     if (InstName.getAsDependentTemplateName())
 | |
|       return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
 | |
|                                           QualifierLoc.getNestedNameSpecifier(),
 | |
|                                                                     Name,
 | |
|                                                                     Args);
 | |
| 
 | |
|     // Otherwise, make an elaborated type wrapping a non-dependent
 | |
|     // specialization.
 | |
|     QualType T =
 | |
|     getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
 | |
|     if (T.isNull()) return QualType();
 | |
| 
 | |
|     if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr)
 | |
|       return T;
 | |
| 
 | |
|     return SemaRef.Context.getElaboratedType(Keyword,
 | |
|                                        QualifierLoc.getNestedNameSpecifier(),
 | |
|                                              T);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new typename type that refers to an identifier.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the typename type
 | |
|   /// (or elaborated type). Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
 | |
|                                     SourceLocation KeywordLoc,
 | |
|                                     NestedNameSpecifierLoc QualifierLoc,
 | |
|                                     const IdentifierInfo *Id,
 | |
|                                     SourceLocation IdLoc) {
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
| 
 | |
|     if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
 | |
|       // If the name is still dependent, just build a new dependent name type.
 | |
|       if (!SemaRef.computeDeclContext(SS))
 | |
|         return SemaRef.Context.getDependentNameType(Keyword,
 | |
|                                           QualifierLoc.getNestedNameSpecifier(),
 | |
|                                                     Id);
 | |
|     }
 | |
| 
 | |
|     if (Keyword == ETK_None || Keyword == ETK_Typename)
 | |
|       return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
 | |
|                                        *Id, IdLoc);
 | |
| 
 | |
|     TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
 | |
| 
 | |
|     // We had a dependent elaborated-type-specifier that has been transformed
 | |
|     // into a non-dependent elaborated-type-specifier. Find the tag we're
 | |
|     // referring to.
 | |
|     LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
 | |
|     DeclContext *DC = SemaRef.computeDeclContext(SS, false);
 | |
|     if (!DC)
 | |
|       return QualType();
 | |
| 
 | |
|     if (SemaRef.RequireCompleteDeclContext(SS, DC))
 | |
|       return QualType();
 | |
| 
 | |
|     TagDecl *Tag = nullptr;
 | |
|     SemaRef.LookupQualifiedName(Result, DC);
 | |
|     switch (Result.getResultKind()) {
 | |
|       case LookupResult::NotFound:
 | |
|       case LookupResult::NotFoundInCurrentInstantiation:
 | |
|         break;
 | |
| 
 | |
|       case LookupResult::Found:
 | |
|         Tag = Result.getAsSingle<TagDecl>();
 | |
|         break;
 | |
| 
 | |
|       case LookupResult::FoundOverloaded:
 | |
|       case LookupResult::FoundUnresolvedValue:
 | |
|         llvm_unreachable("Tag lookup cannot find non-tags");
 | |
| 
 | |
|       case LookupResult::Ambiguous:
 | |
|         // Let the LookupResult structure handle ambiguities.
 | |
|         return QualType();
 | |
|     }
 | |
| 
 | |
|     if (!Tag) {
 | |
|       // Check where the name exists but isn't a tag type and use that to emit
 | |
|       // better diagnostics.
 | |
|       LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
 | |
|       SemaRef.LookupQualifiedName(Result, DC);
 | |
|       switch (Result.getResultKind()) {
 | |
|         case LookupResult::Found:
 | |
|         case LookupResult::FoundOverloaded:
 | |
|         case LookupResult::FoundUnresolvedValue: {
 | |
|           NamedDecl *SomeDecl = Result.getRepresentativeDecl();
 | |
|           unsigned Kind = 0;
 | |
|           if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
 | |
|           else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
 | |
|           else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
 | |
|           SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
 | |
|           SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
 | |
|           break;
 | |
|         }
 | |
|         default:
 | |
|           SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
 | |
|               << Kind << Id << DC << QualifierLoc.getSourceRange();
 | |
|           break;
 | |
|       }
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
 | |
|                                               IdLoc, *Id)) {
 | |
|       SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
 | |
|       SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     // Build the elaborated-type-specifier type.
 | |
|     QualType T = SemaRef.Context.getTypeDeclType(Tag);
 | |
|     return SemaRef.Context.getElaboratedType(Keyword,
 | |
|                                          QualifierLoc.getNestedNameSpecifier(),
 | |
|                                              T);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new pack expansion type.
 | |
|   ///
 | |
|   /// By default, builds a new PackExpansionType type from the given pattern.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildPackExpansionType(QualType Pattern,
 | |
|                                     SourceRange PatternRange,
 | |
|                                     SourceLocation EllipsisLoc,
 | |
|                                     Optional<unsigned> NumExpansions) {
 | |
|     return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
 | |
|                                         NumExpansions);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new atomic type given its value type.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis when building the atomic type.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
 | |
| 
 | |
|   /// \brief Build a new template name given a nested name specifier, a flag
 | |
|   /// indicating whether the "template" keyword was provided, and the template
 | |
|   /// that the template name refers to.
 | |
|   ///
 | |
|   /// By default, builds the new template name directly. Subclasses may override
 | |
|   /// this routine to provide different behavior.
 | |
|   TemplateName RebuildTemplateName(CXXScopeSpec &SS,
 | |
|                                    bool TemplateKW,
 | |
|                                    TemplateDecl *Template);
 | |
| 
 | |
|   /// \brief Build a new template name given a nested name specifier and the
 | |
|   /// name that is referred to as a template.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to determine whether the name can
 | |
|   /// be resolved to a specific template, then builds the appropriate kind of
 | |
|   /// template name. Subclasses may override this routine to provide different
 | |
|   /// behavior.
 | |
|   TemplateName RebuildTemplateName(CXXScopeSpec &SS,
 | |
|                                    const IdentifierInfo &Name,
 | |
|                                    SourceLocation NameLoc,
 | |
|                                    QualType ObjectType,
 | |
|                                    NamedDecl *FirstQualifierInScope);
 | |
| 
 | |
|   /// \brief Build a new template name given a nested name specifier and the
 | |
|   /// overloaded operator name that is referred to as a template.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to determine whether the name can
 | |
|   /// be resolved to a specific template, then builds the appropriate kind of
 | |
|   /// template name. Subclasses may override this routine to provide different
 | |
|   /// behavior.
 | |
|   TemplateName RebuildTemplateName(CXXScopeSpec &SS,
 | |
|                                    OverloadedOperatorKind Operator,
 | |
|                                    SourceLocation NameLoc,
 | |
|                                    QualType ObjectType);
 | |
| 
 | |
|   /// \brief Build a new template name given a template template parameter pack
 | |
|   /// and the
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to determine whether the name can
 | |
|   /// be resolved to a specific template, then builds the appropriate kind of
 | |
|   /// template name. Subclasses may override this routine to provide different
 | |
|   /// behavior.
 | |
|   TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
 | |
|                                    const TemplateArgument &ArgPack) {
 | |
|     return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new compound statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
 | |
|                                        MultiStmtArg Statements,
 | |
|                                        SourceLocation RBraceLoc,
 | |
|                                        bool IsStmtExpr) {
 | |
|     return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
 | |
|                                        IsStmtExpr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new case statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
 | |
|                                    Expr *LHS,
 | |
|                                    SourceLocation EllipsisLoc,
 | |
|                                    Expr *RHS,
 | |
|                                    SourceLocation ColonLoc) {
 | |
|     return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
 | |
|                                    ColonLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Attach the body to a new case statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
 | |
|     getSema().ActOnCaseStmtBody(S, Body);
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new default statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
 | |
|                                       SourceLocation ColonLoc,
 | |
|                                       Stmt *SubStmt) {
 | |
|     return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
 | |
|                                       /*CurScope=*/nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new label statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
 | |
|                               SourceLocation ColonLoc, Stmt *SubStmt) {
 | |
|     return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new label statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
 | |
|                                    ArrayRef<const Attr*> Attrs,
 | |
|                                    Stmt *SubStmt) {
 | |
|     return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new "if" statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
 | |
|                            VarDecl *CondVar, Stmt *Then,
 | |
|                            SourceLocation ElseLoc, Stmt *Else) {
 | |
|     return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
 | |
|   }
 | |
| 
 | |
|   /// \brief Start building a new switch statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
 | |
|                                     Expr *Cond, VarDecl *CondVar) {
 | |
|     return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
 | |
|                                             CondVar);
 | |
|   }
 | |
| 
 | |
|   /// \brief Attach the body to the switch statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
 | |
|                                    Stmt *Switch, Stmt *Body) {
 | |
|     return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new while statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
 | |
|                               VarDecl *CondVar, Stmt *Body) {
 | |
|     return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new do-while statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
 | |
|                            SourceLocation WhileLoc, SourceLocation LParenLoc,
 | |
|                            Expr *Cond, SourceLocation RParenLoc) {
 | |
|     return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
 | |
|                                  Cond, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new for statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
 | |
|                             Stmt *Init, Sema::FullExprArg Cond,
 | |
|                             VarDecl *CondVar, Sema::FullExprArg Inc,
 | |
|                             SourceLocation RParenLoc, Stmt *Body) {
 | |
|     return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
 | |
|                                   CondVar, Inc, RParenLoc, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new goto statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
 | |
|                              LabelDecl *Label) {
 | |
|     return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new indirect goto statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
 | |
|                                      SourceLocation StarLoc,
 | |
|                                      Expr *Target) {
 | |
|     return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new return statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
 | |
|     return getSema().BuildReturnStmt(ReturnLoc, Result);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new declaration statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
 | |
|                              SourceLocation StartLoc, SourceLocation EndLoc) {
 | |
|     Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
 | |
|     return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new inline asm statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
 | |
|                                bool IsVolatile, unsigned NumOutputs,
 | |
|                                unsigned NumInputs, IdentifierInfo **Names,
 | |
|                                MultiExprArg Constraints, MultiExprArg Exprs,
 | |
|                                Expr *AsmString, MultiExprArg Clobbers,
 | |
|                                SourceLocation RParenLoc) {
 | |
|     return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | |
|                                      NumInputs, Names, Constraints, Exprs,
 | |
|                                      AsmString, Clobbers, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new MS style inline asm statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
 | |
|                               ArrayRef<Token> AsmToks,
 | |
|                               StringRef AsmString,
 | |
|                               unsigned NumOutputs, unsigned NumInputs,
 | |
|                               ArrayRef<StringRef> Constraints,
 | |
|                               ArrayRef<StringRef> Clobbers,
 | |
|                               ArrayRef<Expr*> Exprs,
 | |
|                               SourceLocation EndLoc) {
 | |
|     return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
 | |
|                                     NumOutputs, NumInputs,
 | |
|                                     Constraints, Clobbers, Exprs, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@try statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
 | |
|                                         Stmt *TryBody,
 | |
|                                         MultiStmtArg CatchStmts,
 | |
|                                         Stmt *Finally) {
 | |
|     return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
 | |
|                                         Finally);
 | |
|   }
 | |
| 
 | |
|   /// \brief Rebuild an Objective-C exception declaration.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new declaration.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
 | |
|                                     TypeSourceInfo *TInfo, QualType T) {
 | |
|     return getSema().BuildObjCExceptionDecl(TInfo, T,
 | |
|                                             ExceptionDecl->getInnerLocStart(),
 | |
|                                             ExceptionDecl->getLocation(),
 | |
|                                             ExceptionDecl->getIdentifier());
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@catch statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
 | |
|                                           SourceLocation RParenLoc,
 | |
|                                           VarDecl *Var,
 | |
|                                           Stmt *Body) {
 | |
|     return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
 | |
|                                           Var, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@finally statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
 | |
|                                             Stmt *Body) {
 | |
|     return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@throw statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
 | |
|                                           Expr *Operand) {
 | |
|     return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP executable directive.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
 | |
|                                            ArrayRef<OMPClause *> Clauses,
 | |
|                                            Stmt *AStmt,
 | |
|                                            SourceLocation StartLoc,
 | |
|                                            SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPExecutableDirective(Kind, Clauses, AStmt,
 | |
|                                                     StartLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'if' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPIfClause(Expr *Condition,
 | |
|                                 SourceLocation StartLoc,
 | |
|                                 SourceLocation LParenLoc,
 | |
|                                 SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPIfClause(Condition, StartLoc,
 | |
|                                          LParenLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'num_threads' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
 | |
|                                         SourceLocation StartLoc,
 | |
|                                         SourceLocation LParenLoc,
 | |
|                                         SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
 | |
|                                                  LParenLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'safelen' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
 | |
|                                      SourceLocation LParenLoc,
 | |
|                                      SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'collapse' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
 | |
|                                       SourceLocation LParenLoc,
 | |
|                                       SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc,
 | |
|                                                EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'default' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,
 | |
|                                      SourceLocation KindKwLoc,
 | |
|                                      SourceLocation StartLoc,
 | |
|                                      SourceLocation LParenLoc,
 | |
|                                      SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
 | |
|                                               StartLoc, LParenLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'proc_bind' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPProcBindClause(OpenMPProcBindClauseKind Kind,
 | |
|                                       SourceLocation KindKwLoc,
 | |
|                                       SourceLocation StartLoc,
 | |
|                                       SourceLocation LParenLoc,
 | |
|                                       SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc,
 | |
|                                                StartLoc, LParenLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'schedule' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPScheduleClause(OpenMPScheduleClauseKind Kind,
 | |
|                                       Expr *ChunkSize,
 | |
|                                       SourceLocation StartLoc,
 | |
|                                       SourceLocation LParenLoc,
 | |
|                                       SourceLocation KindLoc,
 | |
|                                       SourceLocation CommaLoc,
 | |
|                                       SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPScheduleClause(
 | |
|         Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'private' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
 | |
|                                      SourceLocation StartLoc,
 | |
|                                      SourceLocation LParenLoc,
 | |
|                                      SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
 | |
|                                               EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'firstprivate' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
 | |
|                                           SourceLocation StartLoc,
 | |
|                                           SourceLocation LParenLoc,
 | |
|                                           SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
 | |
|                                                    EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'lastprivate' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
 | |
|                                          SourceLocation StartLoc,
 | |
|                                          SourceLocation LParenLoc,
 | |
|                                          SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPLastprivateClause(VarList, StartLoc, LParenLoc,
 | |
|                                                   EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'shared' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
 | |
|                                     SourceLocation StartLoc,
 | |
|                                     SourceLocation LParenLoc,
 | |
|                                     SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
 | |
|                                              EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'reduction' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPReductionClause(ArrayRef<Expr *> VarList,
 | |
|                                        SourceLocation StartLoc,
 | |
|                                        SourceLocation LParenLoc,
 | |
|                                        SourceLocation ColonLoc,
 | |
|                                        SourceLocation EndLoc,
 | |
|                                        CXXScopeSpec &ReductionIdScopeSpec,
 | |
|                                        const DeclarationNameInfo &ReductionId) {
 | |
|     return getSema().ActOnOpenMPReductionClause(
 | |
|         VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
 | |
|         ReductionId);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'linear' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
 | |
|                                     SourceLocation StartLoc,
 | |
|                                     SourceLocation LParenLoc,
 | |
|                                     SourceLocation ColonLoc,
 | |
|                                     SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc,
 | |
|                                              ColonLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'aligned' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
 | |
|                                      SourceLocation StartLoc,
 | |
|                                      SourceLocation LParenLoc,
 | |
|                                      SourceLocation ColonLoc,
 | |
|                                      SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc,
 | |
|                                               LParenLoc, ColonLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'copyin' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
 | |
|                                     SourceLocation StartLoc,
 | |
|                                     SourceLocation LParenLoc,
 | |
|                                     SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc,
 | |
|                                              EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new OpenMP 'copyprivate' clause.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new OpenMP clause.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
 | |
|                                          SourceLocation StartLoc,
 | |
|                                          SourceLocation LParenLoc,
 | |
|                                          SourceLocation EndLoc) {
 | |
|     return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc,
 | |
|                                                   EndLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Rebuild the operand to an Objective-C \@synchronized statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
 | |
|                                               Expr *object) {
 | |
|     return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@synchronized statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
 | |
|                                            Expr *Object, Stmt *Body) {
 | |
|     return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@autoreleasepool statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
 | |
|                                             Stmt *Body) {
 | |
|     return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C fast enumeration statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
 | |
|                                           Stmt *Element,
 | |
|                                           Expr *Collection,
 | |
|                                           SourceLocation RParenLoc,
 | |
|                                           Stmt *Body) {
 | |
|     StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
 | |
|                                                 Element,
 | |
|                                                 Collection,
 | |
|                                                 RParenLoc);
 | |
|     if (ForEachStmt.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ exception declaration.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new decaration.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
 | |
|                                 TypeSourceInfo *Declarator,
 | |
|                                 SourceLocation StartLoc,
 | |
|                                 SourceLocation IdLoc,
 | |
|                                 IdentifierInfo *Id) {
 | |
|     VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
 | |
|                                                        StartLoc, IdLoc, Id);
 | |
|     if (Var)
 | |
|       getSema().CurContext->addDecl(Var);
 | |
|     return Var;
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ catch statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
 | |
|                                  VarDecl *ExceptionDecl,
 | |
|                                  Stmt *Handler) {
 | |
|     return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
 | |
|                                                       Handler));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ try statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
 | |
|                                ArrayRef<Stmt *> Handlers) {
 | |
|     return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++0x range-based for statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
 | |
|                                     SourceLocation ColonLoc,
 | |
|                                     Stmt *Range, Stmt *BeginEnd,
 | |
|                                     Expr *Cond, Expr *Inc,
 | |
|                                     Stmt *LoopVar,
 | |
|                                     SourceLocation RParenLoc) {
 | |
|     // If we've just learned that the range is actually an Objective-C
 | |
|     // collection, treat this as an Objective-C fast enumeration loop.
 | |
|     if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
 | |
|       if (RangeStmt->isSingleDecl()) {
 | |
|         if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
 | |
|           if (RangeVar->isInvalidDecl())
 | |
|             return StmtError();
 | |
| 
 | |
|           Expr *RangeExpr = RangeVar->getInit();
 | |
|           if (!RangeExpr->isTypeDependent() &&
 | |
|               RangeExpr->getType()->isObjCObjectPointerType())
 | |
|             return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr,
 | |
|                                                         RParenLoc);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
 | |
|                                           Cond, Inc, LoopVar, RParenLoc,
 | |
|                                           Sema::BFRK_Rebuild);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++0x range-based for statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
 | |
|                                           bool IsIfExists,
 | |
|                                           NestedNameSpecifierLoc QualifierLoc,
 | |
|                                           DeclarationNameInfo NameInfo,
 | |
|                                           Stmt *Nested) {
 | |
|     return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
 | |
|                                                 QualifierLoc, NameInfo, Nested);
 | |
|   }
 | |
| 
 | |
|   /// \brief Attach body to a C++0x range-based for statement.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to finish the new statement.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
 | |
|     return getSema().FinishCXXForRangeStmt(ForRange, Body);
 | |
|   }
 | |
| 
 | |
|   StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
 | |
|                                Stmt *TryBlock, Stmt *Handler) {
 | |
|     return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
 | |
|   }
 | |
| 
 | |
|   StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
 | |
|                                   Stmt *Block) {
 | |
|     return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
 | |
|   }
 | |
| 
 | |
|   StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
 | |
|     return getSema().ActOnSEHFinallyBlock(Loc, Block);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new expression that references a declaration.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
 | |
|                                         LookupResult &R,
 | |
|                                         bool RequiresADL) {
 | |
|     return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// \brief Build a new expression that references a declaration.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
 | |
|                                 ValueDecl *VD,
 | |
|                                 const DeclarationNameInfo &NameInfo,
 | |
|                                 TemplateArgumentListInfo *TemplateArgs) {
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
| 
 | |
|     // FIXME: loses template args.
 | |
| 
 | |
|     return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new expression in parentheses.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
 | |
|                                     SourceLocation RParen) {
 | |
|     return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new pseudo-destructor expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
 | |
|                                             SourceLocation OperatorLoc,
 | |
|                                             bool isArrow,
 | |
|                                             CXXScopeSpec &SS,
 | |
|                                             TypeSourceInfo *ScopeType,
 | |
|                                             SourceLocation CCLoc,
 | |
|                                             SourceLocation TildeLoc,
 | |
|                                         PseudoDestructorTypeStorage Destroyed);
 | |
| 
 | |
|   /// \brief Build a new unary operator expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
 | |
|                                         UnaryOperatorKind Opc,
 | |
|                                         Expr *SubExpr) {
 | |
|     return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new builtin offsetof expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
 | |
|                                        TypeSourceInfo *Type,
 | |
|                                        Sema::OffsetOfComponent *Components,
 | |
|                                        unsigned NumComponents,
 | |
|                                        SourceLocation RParenLoc) {
 | |
|     return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
 | |
|                                           NumComponents, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new sizeof, alignof or vec_step expression with a
 | |
|   /// type argument.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
 | |
|                                          SourceLocation OpLoc,
 | |
|                                          UnaryExprOrTypeTrait ExprKind,
 | |
|                                          SourceRange R) {
 | |
|     return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new sizeof, alignof or vec step expression with an
 | |
|   /// expression argument.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
 | |
|                                          UnaryExprOrTypeTrait ExprKind,
 | |
|                                          SourceRange R) {
 | |
|     ExprResult Result
 | |
|       = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new array subscript expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildArraySubscriptExpr(Expr *LHS,
 | |
|                                              SourceLocation LBracketLoc,
 | |
|                                              Expr *RHS,
 | |
|                                              SourceLocation RBracketLoc) {
 | |
|     return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
 | |
|                                              LBracketLoc, RHS,
 | |
|                                              RBracketLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new call expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
 | |
|                                    MultiExprArg Args,
 | |
|                                    SourceLocation RParenLoc,
 | |
|                                    Expr *ExecConfig = nullptr) {
 | |
|     return getSema().ActOnCallExpr(/*Scope=*/nullptr, Callee, LParenLoc,
 | |
|                                    Args, RParenLoc, ExecConfig);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new member access expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
 | |
|                                bool isArrow,
 | |
|                                NestedNameSpecifierLoc QualifierLoc,
 | |
|                                SourceLocation TemplateKWLoc,
 | |
|                                const DeclarationNameInfo &MemberNameInfo,
 | |
|                                ValueDecl *Member,
 | |
|                                NamedDecl *FoundDecl,
 | |
|                         const TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                                NamedDecl *FirstQualifierInScope) {
 | |
|     ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
 | |
|                                                                       isArrow);
 | |
|     if (!Member->getDeclName()) {
 | |
|       // We have a reference to an unnamed field.  This is always the
 | |
|       // base of an anonymous struct/union member access, i.e. the
 | |
|       // field is always of record type.
 | |
|       assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
 | |
|       assert(Member->getType()->isRecordType() &&
 | |
|              "unnamed member not of record type?");
 | |
| 
 | |
|       BaseResult =
 | |
|         getSema().PerformObjectMemberConversion(BaseResult.get(),
 | |
|                                                 QualifierLoc.getNestedNameSpecifier(),
 | |
|                                                 FoundDecl, Member);
 | |
|       if (BaseResult.isInvalid())
 | |
|         return ExprError();
 | |
|       Base = BaseResult.get();
 | |
|       ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
 | |
|       MemberExpr *ME =
 | |
|         new (getSema().Context) MemberExpr(Base, isArrow,
 | |
|                                            Member, MemberNameInfo,
 | |
|                                            cast<FieldDecl>(Member)->getType(),
 | |
|                                            VK, OK_Ordinary);
 | |
|       return ME;
 | |
|     }
 | |
| 
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
| 
 | |
|     Base = BaseResult.get();
 | |
|     QualType BaseType = Base->getType();
 | |
| 
 | |
|     // FIXME: this involves duplicating earlier analysis in a lot of
 | |
|     // cases; we should avoid this when possible.
 | |
|     LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
 | |
|     R.addDecl(FoundDecl);
 | |
|     R.resolveKind();
 | |
| 
 | |
|     return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
 | |
|                                               SS, TemplateKWLoc,
 | |
|                                               FirstQualifierInScope,
 | |
|                                               R, ExplicitTemplateArgs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new binary operator expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
 | |
|                                          BinaryOperatorKind Opc,
 | |
|                                          Expr *LHS, Expr *RHS) {
 | |
|     return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new conditional operator expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildConditionalOperator(Expr *Cond,
 | |
|                                         SourceLocation QuestionLoc,
 | |
|                                         Expr *LHS,
 | |
|                                         SourceLocation ColonLoc,
 | |
|                                         Expr *RHS) {
 | |
|     return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
 | |
|                                         LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C-style cast expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
 | |
|                                          TypeSourceInfo *TInfo,
 | |
|                                          SourceLocation RParenLoc,
 | |
|                                          Expr *SubExpr) {
 | |
|     return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
 | |
|                                          SubExpr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new compound literal expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
 | |
|                                               TypeSourceInfo *TInfo,
 | |
|                                               SourceLocation RParenLoc,
 | |
|                                               Expr *Init) {
 | |
|     return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
 | |
|                                               Init);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new extended vector element access expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildExtVectorElementExpr(Expr *Base,
 | |
|                                                SourceLocation OpLoc,
 | |
|                                                SourceLocation AccessorLoc,
 | |
|                                                IdentifierInfo &Accessor) {
 | |
| 
 | |
|     CXXScopeSpec SS;
 | |
|     DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
 | |
|     return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
 | |
|                                               OpLoc, /*IsArrow*/ false,
 | |
|                                               SS, SourceLocation(),
 | |
|                                               /*FirstQualifierInScope*/ nullptr,
 | |
|                                               NameInfo,
 | |
|                                               /* TemplateArgs */ nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new initializer list expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildInitList(SourceLocation LBraceLoc,
 | |
|                              MultiExprArg Inits,
 | |
|                              SourceLocation RBraceLoc,
 | |
|                              QualType ResultTy) {
 | |
|     ExprResult Result
 | |
|       = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc);
 | |
|     if (Result.isInvalid() || ResultTy->isDependentType())
 | |
|       return Result;
 | |
| 
 | |
|     // Patch in the result type we were given, which may have been computed
 | |
|     // when the initial InitListExpr was built.
 | |
|     InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
 | |
|     ILE->setType(ResultTy);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new designated initializer expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildDesignatedInitExpr(Designation &Desig,
 | |
|                                              MultiExprArg ArrayExprs,
 | |
|                                              SourceLocation EqualOrColonLoc,
 | |
|                                              bool GNUSyntax,
 | |
|                                              Expr *Init) {
 | |
|     ExprResult Result
 | |
|       = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
 | |
|                                            Init);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new value-initialized expression.
 | |
|   ///
 | |
|   /// By default, builds the implicit value initialization without performing
 | |
|   /// any semantic analysis. Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   ExprResult RebuildImplicitValueInitExpr(QualType T) {
 | |
|     return new (SemaRef.Context) ImplicitValueInitExpr(T);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new \c va_arg expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
 | |
|                                     Expr *SubExpr, TypeSourceInfo *TInfo,
 | |
|                                     SourceLocation RParenLoc) {
 | |
|     return getSema().BuildVAArgExpr(BuiltinLoc,
 | |
|                                     SubExpr, TInfo,
 | |
|                                     RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new expression list in parentheses.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
 | |
|                                   MultiExprArg SubExprs,
 | |
|                                   SourceLocation RParenLoc) {
 | |
|     return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new address-of-label expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis, using the name of the label
 | |
|   /// rather than attempting to map the label statement itself.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
 | |
|                                   SourceLocation LabelLoc, LabelDecl *Label) {
 | |
|     return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new GNU statement expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
 | |
|                                    Stmt *SubStmt,
 | |
|                                    SourceLocation RParenLoc) {
 | |
|     return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new __builtin_choose_expr expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
 | |
|                                      Expr *Cond, Expr *LHS, Expr *RHS,
 | |
|                                      SourceLocation RParenLoc) {
 | |
|     return SemaRef.ActOnChooseExpr(BuiltinLoc,
 | |
|                                    Cond, LHS, RHS,
 | |
|                                    RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new generic selection expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
 | |
|                                          SourceLocation DefaultLoc,
 | |
|                                          SourceLocation RParenLoc,
 | |
|                                          Expr *ControllingExpr,
 | |
|                                          ArrayRef<TypeSourceInfo *> Types,
 | |
|                                          ArrayRef<Expr *> Exprs) {
 | |
|     return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
 | |
|                                                 ControllingExpr, Types, Exprs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new overloaded operator call expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// The semantic analysis provides the behavior of template instantiation,
 | |
|   /// copying with transformations that turn what looks like an overloaded
 | |
|   /// operator call into a use of a builtin operator, performing
 | |
|   /// argument-dependent lookup, etc. Subclasses may override this routine to
 | |
|   /// provide different behavior.
 | |
|   ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
 | |
|                                               SourceLocation OpLoc,
 | |
|                                               Expr *Callee,
 | |
|                                               Expr *First,
 | |
|                                               Expr *Second);
 | |
| 
 | |
|   /// \brief Build a new C++ "named" cast expression, such as static_cast or
 | |
|   /// reinterpret_cast.
 | |
|   ///
 | |
|   /// By default, this routine dispatches to one of the more-specific routines
 | |
|   /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
 | |
|                                            Stmt::StmtClass Class,
 | |
|                                            SourceLocation LAngleLoc,
 | |
|                                            TypeSourceInfo *TInfo,
 | |
|                                            SourceLocation RAngleLoc,
 | |
|                                            SourceLocation LParenLoc,
 | |
|                                            Expr *SubExpr,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|     switch (Class) {
 | |
|     case Stmt::CXXStaticCastExprClass:
 | |
|       return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
 | |
|                                                    RAngleLoc, LParenLoc,
 | |
|                                                    SubExpr, RParenLoc);
 | |
| 
 | |
|     case Stmt::CXXDynamicCastExprClass:
 | |
|       return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
 | |
|                                                     RAngleLoc, LParenLoc,
 | |
|                                                     SubExpr, RParenLoc);
 | |
| 
 | |
|     case Stmt::CXXReinterpretCastExprClass:
 | |
|       return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
 | |
|                                                         RAngleLoc, LParenLoc,
 | |
|                                                         SubExpr,
 | |
|                                                         RParenLoc);
 | |
| 
 | |
|     case Stmt::CXXConstCastExprClass:
 | |
|       return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
 | |
|                                                    RAngleLoc, LParenLoc,
 | |
|                                                    SubExpr, RParenLoc);
 | |
| 
 | |
|     default:
 | |
|       llvm_unreachable("Invalid C++ named cast");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ static_cast expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
 | |
|                                             SourceLocation LAngleLoc,
 | |
|                                             TypeSourceInfo *TInfo,
 | |
|                                             SourceLocation RAngleLoc,
 | |
|                                             SourceLocation LParenLoc,
 | |
|                                             Expr *SubExpr,
 | |
|                                             SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
 | |
|                                        TInfo, SubExpr,
 | |
|                                        SourceRange(LAngleLoc, RAngleLoc),
 | |
|                                        SourceRange(LParenLoc, RParenLoc));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ dynamic_cast expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
 | |
|                                              SourceLocation LAngleLoc,
 | |
|                                              TypeSourceInfo *TInfo,
 | |
|                                              SourceLocation RAngleLoc,
 | |
|                                              SourceLocation LParenLoc,
 | |
|                                              Expr *SubExpr,
 | |
|                                              SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
 | |
|                                        TInfo, SubExpr,
 | |
|                                        SourceRange(LAngleLoc, RAngleLoc),
 | |
|                                        SourceRange(LParenLoc, RParenLoc));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ reinterpret_cast expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
 | |
|                                                  SourceLocation LAngleLoc,
 | |
|                                                  TypeSourceInfo *TInfo,
 | |
|                                                  SourceLocation RAngleLoc,
 | |
|                                                  SourceLocation LParenLoc,
 | |
|                                                  Expr *SubExpr,
 | |
|                                                  SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
 | |
|                                        TInfo, SubExpr,
 | |
|                                        SourceRange(LAngleLoc, RAngleLoc),
 | |
|                                        SourceRange(LParenLoc, RParenLoc));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ const_cast expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
 | |
|                                            SourceLocation LAngleLoc,
 | |
|                                            TypeSourceInfo *TInfo,
 | |
|                                            SourceLocation RAngleLoc,
 | |
|                                            SourceLocation LParenLoc,
 | |
|                                            Expr *SubExpr,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
 | |
|                                        TInfo, SubExpr,
 | |
|                                        SourceRange(LAngleLoc, RAngleLoc),
 | |
|                                        SourceRange(LParenLoc, RParenLoc));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ functional-style cast expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
 | |
|                                           SourceLocation LParenLoc,
 | |
|                                           Expr *Sub,
 | |
|                                           SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
 | |
|                                                MultiExprArg(&Sub, 1),
 | |
|                                                RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ typeid(type) expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
 | |
|                                         SourceLocation TypeidLoc,
 | |
|                                         TypeSourceInfo *Operand,
 | |
|                                         SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
 | |
|                                     RParenLoc);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// \brief Build a new C++ typeid(expr) expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
 | |
|                                         SourceLocation TypeidLoc,
 | |
|                                         Expr *Operand,
 | |
|                                         SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
 | |
|                                     RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ __uuidof(type) expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
 | |
|                                         SourceLocation TypeidLoc,
 | |
|                                         TypeSourceInfo *Operand,
 | |
|                                         SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
 | |
|                                     RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ __uuidof(expr) expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
 | |
|                                         SourceLocation TypeidLoc,
 | |
|                                         Expr *Operand,
 | |
|                                         SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
 | |
|                                     RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ "this" expression.
 | |
|   ///
 | |
|   /// By default, builds a new "this" expression without performing any
 | |
|   /// semantic analysis. Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
 | |
|                                 QualType ThisType,
 | |
|                                 bool isImplicit) {
 | |
|     getSema().CheckCXXThisCapture(ThisLoc);
 | |
|     return new (getSema().Context) CXXThisExpr(ThisLoc, ThisType, isImplicit);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ throw expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
 | |
|                                  bool IsThrownVariableInScope) {
 | |
|     return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ default-argument expression.
 | |
|   ///
 | |
|   /// By default, builds a new default-argument expression, which does not
 | |
|   /// require any semantic analysis. Subclasses may override this routine to
 | |
|   /// provide different behavior.
 | |
|   ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
 | |
|                                             ParmVarDecl *Param) {
 | |
|     return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++11 default-initialization expression.
 | |
|   ///
 | |
|   /// By default, builds a new default field initialization expression, which
 | |
|   /// does not require any semantic analysis. Subclasses may override this
 | |
|   /// routine to provide different behavior.
 | |
|   ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
 | |
|                                        FieldDecl *Field) {
 | |
|     return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ zero-initialization expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
 | |
|                                            SourceLocation LParenLoc,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
 | |
|                                                None, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ "new" expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
 | |
|                                bool UseGlobal,
 | |
|                                SourceLocation PlacementLParen,
 | |
|                                MultiExprArg PlacementArgs,
 | |
|                                SourceLocation PlacementRParen,
 | |
|                                SourceRange TypeIdParens,
 | |
|                                QualType AllocatedType,
 | |
|                                TypeSourceInfo *AllocatedTypeInfo,
 | |
|                                Expr *ArraySize,
 | |
|                                SourceRange DirectInitRange,
 | |
|                                Expr *Initializer) {
 | |
|     return getSema().BuildCXXNew(StartLoc, UseGlobal,
 | |
|                                  PlacementLParen,
 | |
|                                  PlacementArgs,
 | |
|                                  PlacementRParen,
 | |
|                                  TypeIdParens,
 | |
|                                  AllocatedType,
 | |
|                                  AllocatedTypeInfo,
 | |
|                                  ArraySize,
 | |
|                                  DirectInitRange,
 | |
|                                  Initializer);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new C++ "delete" expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
 | |
|                                         bool IsGlobalDelete,
 | |
|                                         bool IsArrayForm,
 | |
|                                         Expr *Operand) {
 | |
|     return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
 | |
|                                     Operand);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new type trait expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildTypeTrait(TypeTrait Trait,
 | |
|                               SourceLocation StartLoc,
 | |
|                               ArrayRef<TypeSourceInfo *> Args,
 | |
|                               SourceLocation RParenLoc) {
 | |
|     return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new array type trait expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
 | |
|                                    SourceLocation StartLoc,
 | |
|                                    TypeSourceInfo *TSInfo,
 | |
|                                    Expr *DimExpr,
 | |
|                                    SourceLocation RParenLoc) {
 | |
|     return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new expression trait expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
 | |
|                                    SourceLocation StartLoc,
 | |
|                                    Expr *Queried,
 | |
|                                    SourceLocation RParenLoc) {
 | |
|     return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new (previously unresolved) declaration reference
 | |
|   /// expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildDependentScopeDeclRefExpr(
 | |
|                                           NestedNameSpecifierLoc QualifierLoc,
 | |
|                                           SourceLocation TemplateKWLoc,
 | |
|                                        const DeclarationNameInfo &NameInfo,
 | |
|                               const TemplateArgumentListInfo *TemplateArgs,
 | |
|                                           bool IsAddressOfOperand,
 | |
|                                           TypeSourceInfo **RecoveryTSI) {
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
| 
 | |
|     if (TemplateArgs || TemplateKWLoc.isValid())
 | |
|       return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo,
 | |
|                                                     TemplateArgs);
 | |
| 
 | |
|     return getSema().BuildQualifiedDeclarationNameExpr(
 | |
|         SS, NameInfo, IsAddressOfOperand, RecoveryTSI);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new template-id expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
 | |
|                                    SourceLocation TemplateKWLoc,
 | |
|                                    LookupResult &R,
 | |
|                                    bool RequiresADL,
 | |
|                               const TemplateArgumentListInfo *TemplateArgs) {
 | |
|     return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
 | |
|                                          TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new object-construction expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXConstructExpr(QualType T,
 | |
|                                      SourceLocation Loc,
 | |
|                                      CXXConstructorDecl *Constructor,
 | |
|                                      bool IsElidable,
 | |
|                                      MultiExprArg Args,
 | |
|                                      bool HadMultipleCandidates,
 | |
|                                      bool ListInitialization,
 | |
|                                      bool RequiresZeroInit,
 | |
|                              CXXConstructExpr::ConstructionKind ConstructKind,
 | |
|                                      SourceRange ParenRange) {
 | |
|     SmallVector<Expr*, 8> ConvertedArgs;
 | |
|     if (getSema().CompleteConstructorCall(Constructor, Args, Loc,
 | |
|                                           ConvertedArgs))
 | |
|       return ExprError();
 | |
| 
 | |
|     return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
 | |
|                                            ConvertedArgs,
 | |
|                                            HadMultipleCandidates,
 | |
|                                            ListInitialization,
 | |
|                                            RequiresZeroInit, ConstructKind,
 | |
|                                            ParenRange);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new object-construction expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
 | |
|                                            SourceLocation LParenLoc,
 | |
|                                            MultiExprArg Args,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXTypeConstructExpr(TSInfo,
 | |
|                                                LParenLoc,
 | |
|                                                Args,
 | |
|                                                RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new object-construction expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
 | |
|                                                SourceLocation LParenLoc,
 | |
|                                                MultiExprArg Args,
 | |
|                                                SourceLocation RParenLoc) {
 | |
|     return getSema().BuildCXXTypeConstructExpr(TSInfo,
 | |
|                                                LParenLoc,
 | |
|                                                Args,
 | |
|                                                RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new member reference expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
 | |
|                                                 QualType BaseType,
 | |
|                                                 bool IsArrow,
 | |
|                                                 SourceLocation OperatorLoc,
 | |
|                                           NestedNameSpecifierLoc QualifierLoc,
 | |
|                                                 SourceLocation TemplateKWLoc,
 | |
|                                             NamedDecl *FirstQualifierInScope,
 | |
|                                    const DeclarationNameInfo &MemberNameInfo,
 | |
|                               const TemplateArgumentListInfo *TemplateArgs) {
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
| 
 | |
|     return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
 | |
|                                             OperatorLoc, IsArrow,
 | |
|                                             SS, TemplateKWLoc,
 | |
|                                             FirstQualifierInScope,
 | |
|                                             MemberNameInfo,
 | |
|                                             TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new member reference expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
 | |
|                                          SourceLocation OperatorLoc,
 | |
|                                          bool IsArrow,
 | |
|                                          NestedNameSpecifierLoc QualifierLoc,
 | |
|                                          SourceLocation TemplateKWLoc,
 | |
|                                          NamedDecl *FirstQualifierInScope,
 | |
|                                          LookupResult &R,
 | |
|                                 const TemplateArgumentListInfo *TemplateArgs) {
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
| 
 | |
|     return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
 | |
|                                             OperatorLoc, IsArrow,
 | |
|                                             SS, TemplateKWLoc,
 | |
|                                             FirstQualifierInScope,
 | |
|                                             R, TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new noexcept expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
 | |
|     return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new expression to compute the length of a parameter pack.
 | |
|   ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
 | |
|                                    SourceLocation PackLoc,
 | |
|                                    SourceLocation RParenLoc,
 | |
|                                    Optional<unsigned> Length) {
 | |
|     if (Length)
 | |
|       return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
 | |
|                                                   OperatorLoc, Pack, PackLoc,
 | |
|                                                   RParenLoc, *Length);
 | |
| 
 | |
|     return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
 | |
|                                                 OperatorLoc, Pack, PackLoc,
 | |
|                                                 RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C boxed expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
 | |
|     return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C array literal.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCArrayLiteral(SourceRange Range,
 | |
|                                      Expr **Elements, unsigned NumElements) {
 | |
|     return getSema().BuildObjCArrayLiteral(Range,
 | |
|                                            MultiExprArg(Elements, NumElements));
 | |
|   }
 | |
| 
 | |
|   ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
 | |
|                                          Expr *Base, Expr *Key,
 | |
|                                          ObjCMethodDecl *getterMethod,
 | |
|                                          ObjCMethodDecl *setterMethod) {
 | |
|     return  getSema().BuildObjCSubscriptExpression(RB, Base, Key,
 | |
|                                                    getterMethod, setterMethod);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C dictionary literal.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
 | |
|                                           ObjCDictionaryElement *Elements,
 | |
|                                           unsigned NumElements) {
 | |
|     return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C \@encode expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
 | |
|                                          TypeSourceInfo *EncodeTypeInfo,
 | |
|                                          SourceLocation RParenLoc) {
 | |
|     return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C class message.
 | |
|   ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
 | |
|                                           Selector Sel,
 | |
|                                           ArrayRef<SourceLocation> SelectorLocs,
 | |
|                                           ObjCMethodDecl *Method,
 | |
|                                           SourceLocation LBracLoc,
 | |
|                                           MultiExprArg Args,
 | |
|                                           SourceLocation RBracLoc) {
 | |
|     return SemaRef.BuildClassMessage(ReceiverTypeInfo,
 | |
|                                      ReceiverTypeInfo->getType(),
 | |
|                                      /*SuperLoc=*/SourceLocation(),
 | |
|                                      Sel, Method, LBracLoc, SelectorLocs,
 | |
|                                      RBracLoc, Args);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C instance message.
 | |
|   ExprResult RebuildObjCMessageExpr(Expr *Receiver,
 | |
|                                           Selector Sel,
 | |
|                                           ArrayRef<SourceLocation> SelectorLocs,
 | |
|                                           ObjCMethodDecl *Method,
 | |
|                                           SourceLocation LBracLoc,
 | |
|                                           MultiExprArg Args,
 | |
|                                           SourceLocation RBracLoc) {
 | |
|     return SemaRef.BuildInstanceMessage(Receiver,
 | |
|                                         Receiver->getType(),
 | |
|                                         /*SuperLoc=*/SourceLocation(),
 | |
|                                         Sel, Method, LBracLoc, SelectorLocs,
 | |
|                                         RBracLoc, Args);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C ivar reference expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
 | |
|                                           SourceLocation IvarLoc,
 | |
|                                           bool IsArrow, bool IsFreeIvar) {
 | |
|     // FIXME: We lose track of the IsFreeIvar bit.
 | |
|     CXXScopeSpec SS;
 | |
|     DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
 | |
|     return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
 | |
|                                               /*FIXME:*/IvarLoc, IsArrow,
 | |
|                                               SS, SourceLocation(),
 | |
|                                               /*FirstQualifierInScope=*/nullptr,
 | |
|                                               NameInfo,
 | |
|                                               /*TemplateArgs=*/nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C property reference expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
 | |
|                                         ObjCPropertyDecl *Property,
 | |
|                                         SourceLocation PropertyLoc) {
 | |
|     CXXScopeSpec SS;
 | |
|     DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
 | |
|     return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
 | |
|                                               /*FIXME:*/PropertyLoc,
 | |
|                                               /*IsArrow=*/false,
 | |
|                                               SS, SourceLocation(),
 | |
|                                               /*FirstQualifierInScope=*/nullptr,
 | |
|                                               NameInfo,
 | |
|                                               /*TemplateArgs=*/nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C property reference expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
 | |
|                                         ObjCMethodDecl *Getter,
 | |
|                                         ObjCMethodDecl *Setter,
 | |
|                                         SourceLocation PropertyLoc) {
 | |
|     // Since these expressions can only be value-dependent, we do not
 | |
|     // need to perform semantic analysis again.
 | |
|     return Owned(
 | |
|       new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
 | |
|                                                   VK_LValue, OK_ObjCProperty,
 | |
|                                                   PropertyLoc, Base));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new Objective-C "isa" expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
 | |
|                                 SourceLocation OpLoc, bool IsArrow) {
 | |
|     CXXScopeSpec SS;
 | |
|     DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
 | |
|     return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
 | |
|                                               OpLoc, IsArrow,
 | |
|                                               SS, SourceLocation(),
 | |
|                                               /*FirstQualifierInScope=*/nullptr,
 | |
|                                               NameInfo,
 | |
|                                               /*TemplateArgs=*/nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new shuffle vector expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
 | |
|                                       MultiExprArg SubExprs,
 | |
|                                       SourceLocation RParenLoc) {
 | |
|     // Find the declaration for __builtin_shufflevector
 | |
|     const IdentifierInfo &Name
 | |
|       = SemaRef.Context.Idents.get("__builtin_shufflevector");
 | |
|     TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
 | |
|     DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
 | |
|     assert(!Lookup.empty() && "No __builtin_shufflevector?");
 | |
| 
 | |
|     // Build a reference to the __builtin_shufflevector builtin
 | |
|     FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
 | |
|     Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false,
 | |
|                                                   SemaRef.Context.BuiltinFnTy,
 | |
|                                                   VK_RValue, BuiltinLoc);
 | |
|     QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
 | |
|     Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
 | |
|                                        CK_BuiltinFnToFnPtr).get();
 | |
| 
 | |
|     // Build the CallExpr
 | |
|     ExprResult TheCall = new (SemaRef.Context) CallExpr(
 | |
|         SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
 | |
|         Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc);
 | |
| 
 | |
|     // Type-check the __builtin_shufflevector expression.
 | |
|     return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new convert vector expression.
 | |
|   ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
 | |
|                                       Expr *SrcExpr, TypeSourceInfo *DstTInfo,
 | |
|                                       SourceLocation RParenLoc) {
 | |
|     return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
 | |
|                                          BuiltinLoc, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new template argument pack expansion.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build a new pack expansion
 | |
|   /// for a template argument. Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
 | |
|                                            SourceLocation EllipsisLoc,
 | |
|                                            Optional<unsigned> NumExpansions) {
 | |
|     switch (Pattern.getArgument().getKind()) {
 | |
|     case TemplateArgument::Expression: {
 | |
|       ExprResult Result
 | |
|         = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
 | |
|                                        EllipsisLoc, NumExpansions);
 | |
|       if (Result.isInvalid())
 | |
|         return TemplateArgumentLoc();
 | |
| 
 | |
|       return TemplateArgumentLoc(Result.get(), Result.get());
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|       return TemplateArgumentLoc(TemplateArgument(
 | |
|                                           Pattern.getArgument().getAsTemplate(),
 | |
|                                                   NumExpansions),
 | |
|                                  Pattern.getTemplateQualifierLoc(),
 | |
|                                  Pattern.getTemplateNameLoc(),
 | |
|                                  EllipsisLoc);
 | |
| 
 | |
|     case TemplateArgument::Null:
 | |
|     case TemplateArgument::Integral:
 | |
|     case TemplateArgument::Declaration:
 | |
|     case TemplateArgument::Pack:
 | |
|     case TemplateArgument::TemplateExpansion:
 | |
|     case TemplateArgument::NullPtr:
 | |
|       llvm_unreachable("Pack expansion pattern has no parameter packs");
 | |
| 
 | |
|     case TemplateArgument::Type:
 | |
|       if (TypeSourceInfo *Expansion
 | |
|             = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
 | |
|                                            EllipsisLoc,
 | |
|                                            NumExpansions))
 | |
|         return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
 | |
|                                    Expansion);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return TemplateArgumentLoc();
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new expression pack expansion.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build a new pack expansion
 | |
|   /// for an expression. Subclasses may override this routine to provide
 | |
|   /// different behavior.
 | |
|   ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
 | |
|                                   Optional<unsigned> NumExpansions) {
 | |
|     return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build a new atomic operation expression.
 | |
|   ///
 | |
|   /// By default, performs semantic analysis to build the new expression.
 | |
|   /// Subclasses may override this routine to provide different behavior.
 | |
|   ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc,
 | |
|                                MultiExprArg SubExprs,
 | |
|                                QualType RetTy,
 | |
|                                AtomicExpr::AtomicOp Op,
 | |
|                                SourceLocation RParenLoc) {
 | |
|     // Just create the expression; there is not any interesting semantic
 | |
|     // analysis here because we can't actually build an AtomicExpr until
 | |
|     // we are sure it is semantically sound.
 | |
|     return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op,
 | |
|                                             RParenLoc);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   TypeLoc TransformTypeInObjectScope(TypeLoc TL,
 | |
|                                      QualType ObjectType,
 | |
|                                      NamedDecl *FirstQualifierInScope,
 | |
|                                      CXXScopeSpec &SS);
 | |
| 
 | |
|   TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
 | |
|                                              QualType ObjectType,
 | |
|                                              NamedDecl *FirstQualifierInScope,
 | |
|                                              CXXScopeSpec &SS);
 | |
| 
 | |
|   TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
 | |
|                                             NamedDecl *FirstQualifierInScope,
 | |
|                                             CXXScopeSpec &SS);
 | |
| };
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
 | |
|   if (!S)
 | |
|     return S;
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|   case Stmt::NoStmtClass: break;
 | |
| 
 | |
|   // Transform individual statement nodes
 | |
| #define STMT(Node, Parent)                                              \
 | |
|   case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
 | |
| #define ABSTRACT_STMT(Node)
 | |
| #define EXPR(Node, Parent)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
| 
 | |
|   // Transform expressions by calling TransformExpr.
 | |
| #define STMT(Node, Parent)
 | |
| #define ABSTRACT_STMT(Stmt)
 | |
| #define EXPR(Node, Parent) case Stmt::Node##Class:
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|     {
 | |
|       ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
 | |
|       if (E.isInvalid())
 | |
|         return StmtError();
 | |
| 
 | |
|       return getSema().ActOnExprStmt(E);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
 | |
|   if (!S)
 | |
|     return S;
 | |
| 
 | |
|   switch (S->getClauseKind()) {
 | |
|   default: break;
 | |
|   // Transform individual clause nodes
 | |
| #define OPENMP_CLAUSE(Name, Class)                                             \
 | |
|   case OMPC_ ## Name :                                                         \
 | |
|     return getDerived().Transform ## Class(cast<Class>(S));
 | |
| #include "clang/Basic/OpenMPKinds.def"
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
 | |
|   if (!E)
 | |
|     return E;
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|     case Stmt::NoStmtClass: break;
 | |
| #define STMT(Node, Parent) case Stmt::Node##Class: break;
 | |
| #define ABSTRACT_STMT(Stmt)
 | |
| #define EXPR(Node, Parent)                                              \
 | |
|     case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   }
 | |
| 
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
 | |
|                                                         bool CXXDirectInit) {
 | |
|   // Initializers are instantiated like expressions, except that various outer
 | |
|   // layers are stripped.
 | |
|   if (!Init)
 | |
|     return Init;
 | |
| 
 | |
|   if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
 | |
|     Init = ExprTemp->getSubExpr();
 | |
| 
 | |
|   if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
 | |
|     Init = MTE->GetTemporaryExpr();
 | |
| 
 | |
|   while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
 | |
|     Init = Binder->getSubExpr();
 | |
| 
 | |
|   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
 | |
|     Init = ICE->getSubExprAsWritten();
 | |
| 
 | |
|   if (CXXStdInitializerListExpr *ILE =
 | |
|           dyn_cast<CXXStdInitializerListExpr>(Init))
 | |
|     return TransformInitializer(ILE->getSubExpr(), CXXDirectInit);
 | |
| 
 | |
|   // If this is not a direct-initializer, we only need to reconstruct
 | |
|   // InitListExprs. Other forms of copy-initialization will be a no-op if
 | |
|   // the initializer is already the right type.
 | |
|   CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
 | |
|   if (!CXXDirectInit && !(Construct && Construct->isListInitialization()))
 | |
|     return getDerived().TransformExpr(Init);
 | |
| 
 | |
|   // Revert value-initialization back to empty parens.
 | |
|   if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
 | |
|     SourceRange Parens = VIE->getSourceRange();
 | |
|     return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
 | |
|                                              Parens.getEnd());
 | |
|   }
 | |
| 
 | |
|   // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
 | |
|   if (isa<ImplicitValueInitExpr>(Init))
 | |
|     return getDerived().RebuildParenListExpr(SourceLocation(), None,
 | |
|                                              SourceLocation());
 | |
| 
 | |
|   // Revert initialization by constructor back to a parenthesized or braced list
 | |
|   // of expressions. Any other form of initializer can just be reused directly.
 | |
|   if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
 | |
|     return getDerived().TransformExpr(Init);
 | |
| 
 | |
|   SmallVector<Expr*, 8> NewArgs;
 | |
|   bool ArgChanged = false;
 | |
|   if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
 | |
|                      /*IsCall*/true, NewArgs, &ArgChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   // If this was list initialization, revert to list form.
 | |
|   if (Construct->isListInitialization())
 | |
|     return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs,
 | |
|                                         Construct->getLocEnd(),
 | |
|                                         Construct->getType());
 | |
| 
 | |
|   // Build a ParenListExpr to represent anything else.
 | |
|   SourceRange Parens = Construct->getParenOrBraceRange();
 | |
|   return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
 | |
|                                            Parens.getEnd());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
 | |
|                                             unsigned NumInputs,
 | |
|                                             bool IsCall,
 | |
|                                       SmallVectorImpl<Expr *> &Outputs,
 | |
|                                             bool *ArgChanged) {
 | |
|   for (unsigned I = 0; I != NumInputs; ++I) {
 | |
|     // If requested, drop call arguments that need to be dropped.
 | |
|     if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
 | |
|       if (ArgChanged)
 | |
|         *ArgChanged = true;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
 | |
|       Expr *Pattern = Expansion->getPattern();
 | |
| 
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | |
|       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
 | |
| 
 | |
|       // Determine whether the set of unexpanded parameter packs can and should
 | |
|       // be expanded.
 | |
|       bool Expand = true;
 | |
|       bool RetainExpansion = false;
 | |
|       Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
 | |
|       Optional<unsigned> NumExpansions = OrigNumExpansions;
 | |
|       if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
 | |
|                                                Pattern->getSourceRange(),
 | |
|                                                Unexpanded,
 | |
|                                                Expand, RetainExpansion,
 | |
|                                                NumExpansions))
 | |
|         return true;
 | |
| 
 | |
|       if (!Expand) {
 | |
|         // The transform has determined that we should perform a simple
 | |
|         // transformation on the pack expansion, producing another pack
 | |
|         // expansion.
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
 | |
|         ExprResult OutPattern = getDerived().TransformExpr(Pattern);
 | |
|         if (OutPattern.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
 | |
|                                                 Expansion->getEllipsisLoc(),
 | |
|                                                            NumExpansions);
 | |
|         if (Out.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         if (ArgChanged)
 | |
|           *ArgChanged = true;
 | |
|         Outputs.push_back(Out.get());
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Record right away that the argument was changed.  This needs
 | |
|       // to happen even if the array expands to nothing.
 | |
|       if (ArgChanged) *ArgChanged = true;
 | |
| 
 | |
|       // The transform has determined that we should perform an elementwise
 | |
|       // expansion of the pattern. Do so.
 | |
|       for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
 | |
|         ExprResult Out = getDerived().TransformExpr(Pattern);
 | |
|         if (Out.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         // FIXME: Can this happen? We should not try to expand the pack
 | |
|         // in this case.
 | |
|         if (Out.get()->containsUnexpandedParameterPack()) {
 | |
|           Out = getDerived().RebuildPackExpansion(
 | |
|               Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
 | |
|           if (Out.isInvalid())
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         Outputs.push_back(Out.get());
 | |
|       }
 | |
| 
 | |
|       // If we're supposed to retain a pack expansion, do so by temporarily
 | |
|       // forgetting the partially-substituted parameter pack.
 | |
|       if (RetainExpansion) {
 | |
|         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
 | |
| 
 | |
|         ExprResult Out = getDerived().TransformExpr(Pattern);
 | |
|         if (Out.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         Out = getDerived().RebuildPackExpansion(
 | |
|             Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
 | |
|         if (Out.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         Outputs.push_back(Out.get());
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ExprResult Result =
 | |
|       IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
 | |
|              : getDerived().TransformExpr(Inputs[I]);
 | |
|     if (Result.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     if (Result.get() != Inputs[I] && ArgChanged)
 | |
|       *ArgChanged = true;
 | |
| 
 | |
|     Outputs.push_back(Result.get());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| NestedNameSpecifierLoc
 | |
| TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
 | |
|                                                     NestedNameSpecifierLoc NNS,
 | |
|                                                      QualType ObjectType,
 | |
|                                              NamedDecl *FirstQualifierInScope) {
 | |
|   SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
 | |
|   for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
 | |
|        Qualifier = Qualifier.getPrefix())
 | |
|     Qualifiers.push_back(Qualifier);
 | |
| 
 | |
|   CXXScopeSpec SS;
 | |
|   while (!Qualifiers.empty()) {
 | |
|     NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
 | |
|     NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
 | |
| 
 | |
|     switch (QNNS->getKind()) {
 | |
|     case NestedNameSpecifier::Identifier:
 | |
|       if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr,
 | |
|                                               *QNNS->getAsIdentifier(),
 | |
|                                               Q.getLocalBeginLoc(),
 | |
|                                               Q.getLocalEndLoc(),
 | |
|                                               ObjectType, false, SS,
 | |
|                                               FirstQualifierInScope, false))
 | |
|         return NestedNameSpecifierLoc();
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case NestedNameSpecifier::Namespace: {
 | |
|       NamespaceDecl *NS
 | |
|         = cast_or_null<NamespaceDecl>(
 | |
|                                     getDerived().TransformDecl(
 | |
|                                                           Q.getLocalBeginLoc(),
 | |
|                                                        QNNS->getAsNamespace()));
 | |
|       SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case NestedNameSpecifier::NamespaceAlias: {
 | |
|       NamespaceAliasDecl *Alias
 | |
|         = cast_or_null<NamespaceAliasDecl>(
 | |
|                       getDerived().TransformDecl(Q.getLocalBeginLoc(),
 | |
|                                                  QNNS->getAsNamespaceAlias()));
 | |
|       SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
 | |
|                 Q.getLocalEndLoc());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case NestedNameSpecifier::Global:
 | |
|       // There is no meaningful transformation that one could perform on the
 | |
|       // global scope.
 | |
|       SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
 | |
|       break;
 | |
| 
 | |
|     case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|     case NestedNameSpecifier::TypeSpec: {
 | |
|       TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
 | |
|                                               FirstQualifierInScope, SS);
 | |
| 
 | |
|       if (!TL)
 | |
|         return NestedNameSpecifierLoc();
 | |
| 
 | |
|       if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
 | |
|           (SemaRef.getLangOpts().CPlusPlus11 &&
 | |
|            TL.getType()->isEnumeralType())) {
 | |
|         assert(!TL.getType().hasLocalQualifiers() &&
 | |
|                "Can't get cv-qualifiers here");
 | |
|         if (TL.getType()->isEnumeralType())
 | |
|           SemaRef.Diag(TL.getBeginLoc(),
 | |
|                        diag::warn_cxx98_compat_enum_nested_name_spec);
 | |
|         SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
 | |
|                   Q.getLocalEndLoc());
 | |
|         break;
 | |
|       }
 | |
|       // If the nested-name-specifier is an invalid type def, don't emit an
 | |
|       // error because a previous error should have already been emitted.
 | |
|       TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
 | |
|       if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
 | |
|         SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
 | |
|           << TL.getType() << SS.getRange();
 | |
|       }
 | |
|       return NestedNameSpecifierLoc();
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // The qualifier-in-scope and object type only apply to the leftmost entity.
 | |
|     FirstQualifierInScope = nullptr;
 | |
|     ObjectType = QualType();
 | |
|   }
 | |
| 
 | |
|   // Don't rebuild the nested-name-specifier if we don't have to.
 | |
|   if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
 | |
|       !getDerived().AlwaysRebuild())
 | |
|     return NNS;
 | |
| 
 | |
|   // If we can re-use the source-location data from the original
 | |
|   // nested-name-specifier, do so.
 | |
|   if (SS.location_size() == NNS.getDataLength() &&
 | |
|       memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
 | |
|     return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
 | |
| 
 | |
|   // Allocate new nested-name-specifier location information.
 | |
|   return SS.getWithLocInContext(SemaRef.Context);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| DeclarationNameInfo
 | |
| TreeTransform<Derived>
 | |
| ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   if (!Name)
 | |
|     return DeclarationNameInfo();
 | |
| 
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::Identifier:
 | |
|   case DeclarationName::ObjCZeroArgSelector:
 | |
|   case DeclarationName::ObjCOneArgSelector:
 | |
|   case DeclarationName::ObjCMultiArgSelector:
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|   case DeclarationName::CXXLiteralOperatorName:
 | |
|   case DeclarationName::CXXUsingDirective:
 | |
|     return NameInfo;
 | |
| 
 | |
|   case DeclarationName::CXXConstructorName:
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|   case DeclarationName::CXXConversionFunctionName: {
 | |
|     TypeSourceInfo *NewTInfo;
 | |
|     CanQualType NewCanTy;
 | |
|     if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
 | |
|       NewTInfo = getDerived().TransformType(OldTInfo);
 | |
|       if (!NewTInfo)
 | |
|         return DeclarationNameInfo();
 | |
|       NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
 | |
|     }
 | |
|     else {
 | |
|       NewTInfo = nullptr;
 | |
|       TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
 | |
|       QualType NewT = getDerived().TransformType(Name.getCXXNameType());
 | |
|       if (NewT.isNull())
 | |
|         return DeclarationNameInfo();
 | |
|       NewCanTy = SemaRef.Context.getCanonicalType(NewT);
 | |
|     }
 | |
| 
 | |
|     DeclarationName NewName
 | |
|       = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
 | |
|                                                            NewCanTy);
 | |
|     DeclarationNameInfo NewNameInfo(NameInfo);
 | |
|     NewNameInfo.setName(NewName);
 | |
|     NewNameInfo.setNamedTypeInfo(NewTInfo);
 | |
|     return NewNameInfo;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown name kind.");
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TemplateName
 | |
| TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
 | |
|                                               TemplateName Name,
 | |
|                                               SourceLocation NameLoc,
 | |
|                                               QualType ObjectType,
 | |
|                                               NamedDecl *FirstQualifierInScope) {
 | |
|   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
 | |
|     TemplateDecl *Template = QTN->getTemplateDecl();
 | |
|     assert(Template && "qualified template name must refer to a template");
 | |
| 
 | |
|     TemplateDecl *TransTemplate
 | |
|       = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
 | |
|                                                               Template));
 | |
|     if (!TransTemplate)
 | |
|       return TemplateName();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         SS.getScopeRep() == QTN->getQualifier() &&
 | |
|         TransTemplate == Template)
 | |
|       return Name;
 | |
| 
 | |
|     return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
 | |
|                                             TransTemplate);
 | |
|   }
 | |
| 
 | |
|   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
 | |
|     if (SS.getScopeRep()) {
 | |
|       // These apply to the scope specifier, not the template.
 | |
|       ObjectType = QualType();
 | |
|       FirstQualifierInScope = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         SS.getScopeRep() == DTN->getQualifier() &&
 | |
|         ObjectType.isNull())
 | |
|       return Name;
 | |
| 
 | |
|     if (DTN->isIdentifier()) {
 | |
|       return getDerived().RebuildTemplateName(SS,
 | |
|                                               *DTN->getIdentifier(),
 | |
|                                               NameLoc,
 | |
|                                               ObjectType,
 | |
|                                               FirstQualifierInScope);
 | |
|     }
 | |
| 
 | |
|     return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
 | |
|                                             ObjectType);
 | |
|   }
 | |
| 
 | |
|   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | |
|     TemplateDecl *TransTemplate
 | |
|       = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
 | |
|                                                               Template));
 | |
|     if (!TransTemplate)
 | |
|       return TemplateName();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         TransTemplate == Template)
 | |
|       return Name;
 | |
| 
 | |
|     return TemplateName(TransTemplate);
 | |
|   }
 | |
| 
 | |
|   if (SubstTemplateTemplateParmPackStorage *SubstPack
 | |
|       = Name.getAsSubstTemplateTemplateParmPack()) {
 | |
|     TemplateTemplateParmDecl *TransParam
 | |
|     = cast_or_null<TemplateTemplateParmDecl>(
 | |
|             getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
 | |
|     if (!TransParam)
 | |
|       return TemplateName();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         TransParam == SubstPack->getParameterPack())
 | |
|       return Name;
 | |
| 
 | |
|     return getDerived().RebuildTemplateName(TransParam,
 | |
|                                             SubstPack->getArgumentPack());
 | |
|   }
 | |
| 
 | |
|   // These should be getting filtered out before they reach the AST.
 | |
|   llvm_unreachable("overloaded function decl survived to here");
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| void TreeTransform<Derived>::InventTemplateArgumentLoc(
 | |
|                                          const TemplateArgument &Arg,
 | |
|                                          TemplateArgumentLoc &Output) {
 | |
|   SourceLocation Loc = getDerived().getBaseLocation();
 | |
|   switch (Arg.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|     llvm_unreachable("null template argument in TreeTransform");
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Type:
 | |
|     Output = TemplateArgumentLoc(Arg,
 | |
|                SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
 | |
| 
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Template:
 | |
|   case TemplateArgument::TemplateExpansion: {
 | |
|     NestedNameSpecifierLocBuilder Builder;
 | |
|     TemplateName Template = Arg.getAsTemplate();
 | |
|     if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
 | |
|       Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
 | |
|     else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | |
|       Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
 | |
| 
 | |
|     if (Arg.getKind() == TemplateArgument::Template)
 | |
|       Output = TemplateArgumentLoc(Arg,
 | |
|                                    Builder.getWithLocInContext(SemaRef.Context),
 | |
|                                    Loc);
 | |
|     else
 | |
|       Output = TemplateArgumentLoc(Arg,
 | |
|                                    Builder.getWithLocInContext(SemaRef.Context),
 | |
|                                    Loc, Loc);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::Expression:
 | |
|     Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Declaration:
 | |
|   case TemplateArgument::Integral:
 | |
|   case TemplateArgument::Pack:
 | |
|   case TemplateArgument::NullPtr:
 | |
|     Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| bool TreeTransform<Derived>::TransformTemplateArgument(
 | |
|                                          const TemplateArgumentLoc &Input,
 | |
|                                          TemplateArgumentLoc &Output) {
 | |
|   const TemplateArgument &Arg = Input.getArgument();
 | |
|   switch (Arg.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|   case TemplateArgument::Integral:
 | |
|   case TemplateArgument::Pack:
 | |
|   case TemplateArgument::Declaration:
 | |
|   case TemplateArgument::NullPtr:
 | |
|     llvm_unreachable("Unexpected TemplateArgument");
 | |
| 
 | |
|   case TemplateArgument::Type: {
 | |
|     TypeSourceInfo *DI = Input.getTypeSourceInfo();
 | |
|     if (!DI)
 | |
|       DI = InventTypeSourceInfo(Input.getArgument().getAsType());
 | |
| 
 | |
|     DI = getDerived().TransformType(DI);
 | |
|     if (!DI) return true;
 | |
| 
 | |
|     Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::Template: {
 | |
|     NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
 | |
|     if (QualifierLoc) {
 | |
|       QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
 | |
|       if (!QualifierLoc)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     CXXScopeSpec SS;
 | |
|     SS.Adopt(QualifierLoc);
 | |
|     TemplateName Template
 | |
|       = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
 | |
|                                            Input.getTemplateNameLoc());
 | |
|     if (Template.isNull())
 | |
|       return true;
 | |
| 
 | |
|     Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
 | |
|                                  Input.getTemplateNameLoc());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     llvm_unreachable("Caller should expand pack expansions");
 | |
| 
 | |
|   case TemplateArgument::Expression: {
 | |
|     // Template argument expressions are constant expressions.
 | |
|     EnterExpressionEvaluationContext Unevaluated(getSema(),
 | |
|                                                  Sema::ConstantEvaluated);
 | |
| 
 | |
|     Expr *InputExpr = Input.getSourceExpression();
 | |
|     if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
 | |
| 
 | |
|     ExprResult E = getDerived().TransformExpr(InputExpr);
 | |
|     E = SemaRef.ActOnConstantExpression(E);
 | |
|     if (E.isInvalid()) return true;
 | |
|     Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get());
 | |
|     return false;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Work around bogus GCC warning
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Iterator adaptor that invents template argument location information
 | |
| /// for each of the template arguments in its underlying iterator.
 | |
| template<typename Derived, typename InputIterator>
 | |
| class TemplateArgumentLocInventIterator {
 | |
|   TreeTransform<Derived> &Self;
 | |
|   InputIterator Iter;
 | |
| 
 | |
| public:
 | |
|   typedef TemplateArgumentLoc value_type;
 | |
|   typedef TemplateArgumentLoc reference;
 | |
|   typedef typename std::iterator_traits<InputIterator>::difference_type
 | |
|     difference_type;
 | |
|   typedef std::input_iterator_tag iterator_category;
 | |
| 
 | |
|   class pointer {
 | |
|     TemplateArgumentLoc Arg;
 | |
| 
 | |
|   public:
 | |
|     explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
 | |
| 
 | |
|     const TemplateArgumentLoc *operator->() const { return &Arg; }
 | |
|   };
 | |
| 
 | |
|   TemplateArgumentLocInventIterator() { }
 | |
| 
 | |
|   explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
 | |
|                                              InputIterator Iter)
 | |
|     : Self(Self), Iter(Iter) { }
 | |
| 
 | |
|   TemplateArgumentLocInventIterator &operator++() {
 | |
|     ++Iter;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentLocInventIterator operator++(int) {
 | |
|     TemplateArgumentLocInventIterator Old(*this);
 | |
|     ++(*this);
 | |
|     return Old;
 | |
|   }
 | |
| 
 | |
|   reference operator*() const {
 | |
|     TemplateArgumentLoc Result;
 | |
|     Self.InventTemplateArgumentLoc(*Iter, Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   pointer operator->() const { return pointer(**this); }
 | |
| 
 | |
|   friend bool operator==(const TemplateArgumentLocInventIterator &X,
 | |
|                          const TemplateArgumentLocInventIterator &Y) {
 | |
|     return X.Iter == Y.Iter;
 | |
|   }
 | |
| 
 | |
|   friend bool operator!=(const TemplateArgumentLocInventIterator &X,
 | |
|                          const TemplateArgumentLocInventIterator &Y) {
 | |
|     return X.Iter != Y.Iter;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename Derived>
 | |
| template<typename InputIterator>
 | |
| bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
 | |
|                                                         InputIterator Last,
 | |
|                                             TemplateArgumentListInfo &Outputs) {
 | |
|   for (; First != Last; ++First) {
 | |
|     TemplateArgumentLoc Out;
 | |
|     TemplateArgumentLoc In = *First;
 | |
| 
 | |
|     if (In.getArgument().getKind() == TemplateArgument::Pack) {
 | |
|       // Unpack argument packs, which we translate them into separate
 | |
|       // arguments.
 | |
|       // FIXME: We could do much better if we could guarantee that the
 | |
|       // TemplateArgumentLocInfo for the pack expansion would be usable for
 | |
|       // all of the template arguments in the argument pack.
 | |
|       typedef TemplateArgumentLocInventIterator<Derived,
 | |
|                                                 TemplateArgument::pack_iterator>
 | |
|         PackLocIterator;
 | |
|       if (TransformTemplateArguments(PackLocIterator(*this,
 | |
|                                                  In.getArgument().pack_begin()),
 | |
|                                      PackLocIterator(*this,
 | |
|                                                    In.getArgument().pack_end()),
 | |
|                                      Outputs))
 | |
|         return true;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (In.getArgument().isPackExpansion()) {
 | |
|       // We have a pack expansion, for which we will be substituting into
 | |
|       // the pattern.
 | |
|       SourceLocation Ellipsis;
 | |
|       Optional<unsigned> OrigNumExpansions;
 | |
|       TemplateArgumentLoc Pattern
 | |
|         = getSema().getTemplateArgumentPackExpansionPattern(
 | |
|               In, Ellipsis, OrigNumExpansions);
 | |
| 
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | |
|       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
 | |
| 
 | |
|       // Determine whether the set of unexpanded parameter packs can and should
 | |
|       // be expanded.
 | |
|       bool Expand = true;
 | |
|       bool RetainExpansion = false;
 | |
|       Optional<unsigned> NumExpansions = OrigNumExpansions;
 | |
|       if (getDerived().TryExpandParameterPacks(Ellipsis,
 | |
|                                                Pattern.getSourceRange(),
 | |
|                                                Unexpanded,
 | |
|                                                Expand,
 | |
|                                                RetainExpansion,
 | |
|                                                NumExpansions))
 | |
|         return true;
 | |
| 
 | |
|       if (!Expand) {
 | |
|         // The transform has determined that we should perform a simple
 | |
|         // transformation on the pack expansion, producing another pack
 | |
|         // expansion.
 | |
|         TemplateArgumentLoc OutPattern;
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
 | |
|         if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
 | |
|           return true;
 | |
| 
 | |
|         Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
 | |
|                                                 NumExpansions);
 | |
|         if (Out.getArgument().isNull())
 | |
|           return true;
 | |
| 
 | |
|         Outputs.addArgument(Out);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // The transform has determined that we should perform an elementwise
 | |
|       // expansion of the pattern. Do so.
 | |
|       for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
 | |
| 
 | |
|         if (getDerived().TransformTemplateArgument(Pattern, Out))
 | |
|           return true;
 | |
| 
 | |
|         if (Out.getArgument().containsUnexpandedParameterPack()) {
 | |
|           Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
 | |
|                                                   OrigNumExpansions);
 | |
|           if (Out.getArgument().isNull())
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         Outputs.addArgument(Out);
 | |
|       }
 | |
| 
 | |
|       // If we're supposed to retain a pack expansion, do so by temporarily
 | |
|       // forgetting the partially-substituted parameter pack.
 | |
|       if (RetainExpansion) {
 | |
|         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
 | |
| 
 | |
|         if (getDerived().TransformTemplateArgument(Pattern, Out))
 | |
|           return true;
 | |
| 
 | |
|         Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
 | |
|                                                 OrigNumExpansions);
 | |
|         if (Out.getArgument().isNull())
 | |
|           return true;
 | |
| 
 | |
|         Outputs.addArgument(Out);
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The simple case:
 | |
|     if (getDerived().TransformTemplateArgument(In, Out))
 | |
|       return true;
 | |
| 
 | |
|     Outputs.addArgument(Out);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Type transformation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformType(QualType T) {
 | |
|   if (getDerived().AlreadyTransformed(T))
 | |
|     return T;
 | |
| 
 | |
|   // Temporary workaround.  All of these transformations should
 | |
|   // eventually turn into transformations on TypeLocs.
 | |
|   TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
 | |
|                                                 getDerived().getBaseLocation());
 | |
| 
 | |
|   TypeSourceInfo *NewDI = getDerived().TransformType(DI);
 | |
| 
 | |
|   if (!NewDI)
 | |
|     return QualType();
 | |
| 
 | |
|   return NewDI->getType();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
 | |
|   // Refine the base location to the type's location.
 | |
|   TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
 | |
|                        getDerived().getBaseEntity());
 | |
|   if (getDerived().AlreadyTransformed(DI->getType()))
 | |
|     return DI;
 | |
| 
 | |
|   TypeLocBuilder TLB;
 | |
| 
 | |
|   TypeLoc TL = DI->getTypeLoc();
 | |
|   TLB.reserve(TL.getFullDataSize());
 | |
| 
 | |
|   QualType Result = getDerived().TransformType(TLB, TL);
 | |
|   if (Result.isNull())
 | |
|     return nullptr;
 | |
| 
 | |
|   return TLB.getTypeSourceInfo(SemaRef.Context, Result);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
 | |
|   switch (T.getTypeLocClass()) {
 | |
| #define ABSTRACT_TYPELOC(CLASS, PARENT)
 | |
| #define TYPELOC(CLASS, PARENT)                                                 \
 | |
|   case TypeLoc::CLASS:                                                         \
 | |
|     return getDerived().Transform##CLASS##Type(TLB,                            \
 | |
|                                                T.castAs<CLASS##TypeLoc>());
 | |
| #include "clang/AST/TypeLocNodes.def"
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unhandled type loc!");
 | |
| }
 | |
| 
 | |
| /// FIXME: By default, this routine adds type qualifiers only to types
 | |
| /// that can have qualifiers, and silently suppresses those qualifiers
 | |
| /// that are not permitted (e.g., qualifiers on reference or function
 | |
| /// types). This is the right thing for template instantiation, but
 | |
| /// probably not for other clients.
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
 | |
|                                                QualifiedTypeLoc T) {
 | |
|   Qualifiers Quals = T.getType().getLocalQualifiers();
 | |
| 
 | |
|   QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
 | |
|   if (Result.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   // Silently suppress qualifiers if the result type can't be qualified.
 | |
|   // FIXME: this is the right thing for template instantiation, but
 | |
|   // probably not for other clients.
 | |
|   if (Result->isFunctionType() || Result->isReferenceType())
 | |
|     return Result;
 | |
| 
 | |
|   // Suppress Objective-C lifetime qualifiers if they don't make sense for the
 | |
|   // resulting type.
 | |
|   if (Quals.hasObjCLifetime()) {
 | |
|     if (!Result->isObjCLifetimeType() && !Result->isDependentType())
 | |
|       Quals.removeObjCLifetime();
 | |
|     else if (Result.getObjCLifetime()) {
 | |
|       // Objective-C ARC:
 | |
|       //   A lifetime qualifier applied to a substituted template parameter
 | |
|       //   overrides the lifetime qualifier from the template argument.
 | |
|       const AutoType *AutoTy;
 | |
|       if (const SubstTemplateTypeParmType *SubstTypeParam
 | |
|                                 = dyn_cast<SubstTemplateTypeParmType>(Result)) {
 | |
|         QualType Replacement = SubstTypeParam->getReplacementType();
 | |
|         Qualifiers Qs = Replacement.getQualifiers();
 | |
|         Qs.removeObjCLifetime();
 | |
|         Replacement
 | |
|           = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
 | |
|                                              Qs);
 | |
|         Result = SemaRef.Context.getSubstTemplateTypeParmType(
 | |
|                                         SubstTypeParam->getReplacedParameter(),
 | |
|                                                               Replacement);
 | |
|         TLB.TypeWasModifiedSafely(Result);
 | |
|       } else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) {
 | |
|         // 'auto' types behave the same way as template parameters.
 | |
|         QualType Deduced = AutoTy->getDeducedType();
 | |
|         Qualifiers Qs = Deduced.getQualifiers();
 | |
|         Qs.removeObjCLifetime();
 | |
|         Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
 | |
|                                                    Qs);
 | |
|         Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto(), 
 | |
|                                 AutoTy->isDependentType());
 | |
|         TLB.TypeWasModifiedSafely(Result);
 | |
|       } else {
 | |
|         // Otherwise, complain about the addition of a qualifier to an
 | |
|         // already-qualified type.
 | |
|         SourceRange R = T.getUnqualifiedLoc().getSourceRange();
 | |
|         SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
 | |
|           << Result << R;
 | |
| 
 | |
|         Quals.removeObjCLifetime();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!Quals.empty()) {
 | |
|     Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
 | |
|     // BuildQualifiedType might not add qualifiers if they are invalid.
 | |
|     if (Result.hasLocalQualifiers())
 | |
|       TLB.push<QualifiedTypeLoc>(Result);
 | |
|     // No location information to preserve.
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TypeLoc
 | |
| TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
 | |
|                                                    QualType ObjectType,
 | |
|                                                    NamedDecl *UnqualLookup,
 | |
|                                                    CXXScopeSpec &SS) {
 | |
|   if (getDerived().AlreadyTransformed(TL.getType()))
 | |
|     return TL;
 | |
| 
 | |
|   TypeSourceInfo *TSI =
 | |
|       TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
 | |
|   if (TSI)
 | |
|     return TSI->getTypeLoc();
 | |
|   return TypeLoc();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TypeSourceInfo *
 | |
| TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
 | |
|                                                    QualType ObjectType,
 | |
|                                                    NamedDecl *UnqualLookup,
 | |
|                                                    CXXScopeSpec &SS) {
 | |
|   if (getDerived().AlreadyTransformed(TSInfo->getType()))
 | |
|     return TSInfo;
 | |
| 
 | |
|   return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
 | |
|                                    UnqualLookup, SS);
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
 | |
|     TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
 | |
|     CXXScopeSpec &SS) {
 | |
|   QualType T = TL.getType();
 | |
|   assert(!getDerived().AlreadyTransformed(T));
 | |
| 
 | |
|   TypeLocBuilder TLB;
 | |
|   QualType Result;
 | |
| 
 | |
|   if (isa<TemplateSpecializationType>(T)) {
 | |
|     TemplateSpecializationTypeLoc SpecTL =
 | |
|         TL.castAs<TemplateSpecializationTypeLoc>();
 | |
| 
 | |
|     TemplateName Template
 | |
|     = getDerived().TransformTemplateName(SS,
 | |
|                                          SpecTL.getTypePtr()->getTemplateName(),
 | |
|                                          SpecTL.getTemplateNameLoc(),
 | |
|                                          ObjectType, UnqualLookup);
 | |
|     if (Template.isNull())
 | |
|       return nullptr;
 | |
| 
 | |
|     Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
 | |
|                                                               Template);
 | |
|   } else if (isa<DependentTemplateSpecializationType>(T)) {
 | |
|     DependentTemplateSpecializationTypeLoc SpecTL =
 | |
|         TL.castAs<DependentTemplateSpecializationTypeLoc>();
 | |
| 
 | |
|     TemplateName Template
 | |
|       = getDerived().RebuildTemplateName(SS,
 | |
|                                          *SpecTL.getTypePtr()->getIdentifier(),
 | |
|                                          SpecTL.getTemplateNameLoc(),
 | |
|                                          ObjectType, UnqualLookup);
 | |
|     if (Template.isNull())
 | |
|       return nullptr;
 | |
| 
 | |
|     Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
 | |
|                                                                        SpecTL,
 | |
|                                                                        Template,
 | |
|                                                                        SS);
 | |
|   } else {
 | |
|     // Nothing special needs to be done for these.
 | |
|     Result = getDerived().TransformType(TLB, TL);
 | |
|   }
 | |
| 
 | |
|   if (Result.isNull())
 | |
|     return nullptr;
 | |
| 
 | |
|   return TLB.getTypeSourceInfo(SemaRef.Context, Result);
 | |
| }
 | |
| 
 | |
| template <class TyLoc> static inline
 | |
| QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
 | |
|   TyLoc NewT = TLB.push<TyLoc>(T.getType());
 | |
|   NewT.setNameLoc(T.getNameLoc());
 | |
|   return T.getType();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
 | |
|                                                       BuiltinTypeLoc T) {
 | |
|   BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
 | |
|   NewT.setBuiltinLoc(T.getBuiltinLoc());
 | |
|   if (T.needsExtraLocalData())
 | |
|     NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
 | |
|   return T.getType();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
 | |
|                                                       ComplexTypeLoc T) {
 | |
|   // FIXME: recurse?
 | |
|   return TransformTypeSpecType(TLB, T);
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
 | |
|                                                        AdjustedTypeLoc TL) {
 | |
|   // Adjustments applied during transformation are handled elsewhere.
 | |
|   return getDerived().TransformType(TLB, TL.getOriginalLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
 | |
|                                                       DecayedTypeLoc TL) {
 | |
|   QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
 | |
|   if (OriginalType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       OriginalType != TL.getOriginalLoc().getType())
 | |
|     Result = SemaRef.Context.getDecayedType(OriginalType);
 | |
|   TLB.push<DecayedTypeLoc>(Result);
 | |
|   // Nothing to set for DecayedTypeLoc.
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
 | |
|                                                       PointerTypeLoc TL) {
 | |
|   QualType PointeeType
 | |
|     = getDerived().TransformType(TLB, TL.getPointeeLoc());
 | |
|   if (PointeeType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (PointeeType->getAs<ObjCObjectType>()) {
 | |
|     // A dependent pointer type 'T *' has is being transformed such
 | |
|     // that an Objective-C class type is being replaced for 'T'. The
 | |
|     // resulting pointer type is an ObjCObjectPointerType, not a
 | |
|     // PointerType.
 | |
|     Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
 | |
| 
 | |
|     ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
 | |
|     NewT.setStarLoc(TL.getStarLoc());
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       PointeeType != TL.getPointeeLoc().getType()) {
 | |
|     Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // Objective-C ARC can add lifetime qualifiers to the type that we're
 | |
|   // pointing to.
 | |
|   TLB.TypeWasModifiedSafely(Result->getPointeeType());
 | |
| 
 | |
|   PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
 | |
|   NewT.setSigilLoc(TL.getSigilLoc());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
 | |
|                                                   BlockPointerTypeLoc TL) {
 | |
|   QualType PointeeType
 | |
|     = getDerived().TransformType(TLB, TL.getPointeeLoc());
 | |
|   if (PointeeType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       PointeeType != TL.getPointeeLoc().getType()) {
 | |
|     Result = getDerived().RebuildBlockPointerType(PointeeType,
 | |
|                                                   TL.getSigilLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
 | |
|   NewT.setSigilLoc(TL.getSigilLoc());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Transforms a reference type.  Note that somewhat paradoxically we
 | |
| /// don't care whether the type itself is an l-value type or an r-value
 | |
| /// type;  we only care if the type was *written* as an l-value type
 | |
| /// or an r-value type.
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
 | |
|                                                ReferenceTypeLoc TL) {
 | |
|   const ReferenceType *T = TL.getTypePtr();
 | |
| 
 | |
|   // Note that this works with the pointee-as-written.
 | |
|   QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
 | |
|   if (PointeeType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       PointeeType != T->getPointeeTypeAsWritten()) {
 | |
|     Result = getDerived().RebuildReferenceType(PointeeType,
 | |
|                                                T->isSpelledAsLValue(),
 | |
|                                                TL.getSigilLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // Objective-C ARC can add lifetime qualifiers to the type that we're
 | |
|   // referring to.
 | |
|   TLB.TypeWasModifiedSafely(
 | |
|                      Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
 | |
| 
 | |
|   // r-value references can be rebuilt as l-value references.
 | |
|   ReferenceTypeLoc NewTL;
 | |
|   if (isa<LValueReferenceType>(Result))
 | |
|     NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
 | |
|   else
 | |
|     NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
 | |
|   NewTL.setSigilLoc(TL.getSigilLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
 | |
|                                                  LValueReferenceTypeLoc TL) {
 | |
|   return TransformReferenceType(TLB, TL);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
 | |
|                                                  RValueReferenceTypeLoc TL) {
 | |
|   return TransformReferenceType(TLB, TL);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
 | |
|                                                    MemberPointerTypeLoc TL) {
 | |
|   QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
 | |
|   if (PointeeType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
 | |
|   TypeSourceInfo *NewClsTInfo = nullptr;
 | |
|   if (OldClsTInfo) {
 | |
|     NewClsTInfo = getDerived().TransformType(OldClsTInfo);
 | |
|     if (!NewClsTInfo)
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   const MemberPointerType *T = TL.getTypePtr();
 | |
|   QualType OldClsType = QualType(T->getClass(), 0);
 | |
|   QualType NewClsType;
 | |
|   if (NewClsTInfo)
 | |
|     NewClsType = NewClsTInfo->getType();
 | |
|   else {
 | |
|     NewClsType = getDerived().TransformType(OldClsType);
 | |
|     if (NewClsType.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       PointeeType != T->getPointeeType() ||
 | |
|       NewClsType != OldClsType) {
 | |
|     Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
 | |
|                                                    TL.getStarLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // If we had to adjust the pointee type when building a member pointer, make
 | |
|   // sure to push TypeLoc info for it.
 | |
|   const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
 | |
|   if (MPT && PointeeType != MPT->getPointeeType()) {
 | |
|     assert(isa<AdjustedType>(MPT->getPointeeType()));
 | |
|     TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
 | |
|   }
 | |
| 
 | |
|   MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
 | |
|   NewTL.setSigilLoc(TL.getSigilLoc());
 | |
|   NewTL.setClassTInfo(NewClsTInfo);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
 | |
|                                                    ConstantArrayTypeLoc TL) {
 | |
|   const ConstantArrayType *T = TL.getTypePtr();
 | |
|   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType()) {
 | |
|     Result = getDerived().RebuildConstantArrayType(ElementType,
 | |
|                                                    T->getSizeModifier(),
 | |
|                                                    T->getSize(),
 | |
|                                              T->getIndexTypeCVRQualifiers(),
 | |
|                                                    TL.getBracketsRange());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // We might have either a ConstantArrayType or a VariableArrayType now:
 | |
|   // a ConstantArrayType is allowed to have an element type which is a
 | |
|   // VariableArrayType if the type is dependent.  Fortunately, all array
 | |
|   // types have the same location layout.
 | |
|   ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
 | |
|   NewTL.setLBracketLoc(TL.getLBracketLoc());
 | |
|   NewTL.setRBracketLoc(TL.getRBracketLoc());
 | |
| 
 | |
|   Expr *Size = TL.getSizeExpr();
 | |
|   if (Size) {
 | |
|     EnterExpressionEvaluationContext Unevaluated(SemaRef,
 | |
|                                                  Sema::ConstantEvaluated);
 | |
|     Size = getDerived().TransformExpr(Size).template getAs<Expr>();
 | |
|     Size = SemaRef.ActOnConstantExpression(Size).get();
 | |
|   }
 | |
|   NewTL.setSizeExpr(Size);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformIncompleteArrayType(
 | |
|                                               TypeLocBuilder &TLB,
 | |
|                                               IncompleteArrayTypeLoc TL) {
 | |
|   const IncompleteArrayType *T = TL.getTypePtr();
 | |
|   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType()) {
 | |
|     Result = getDerived().RebuildIncompleteArrayType(ElementType,
 | |
|                                                      T->getSizeModifier(),
 | |
|                                            T->getIndexTypeCVRQualifiers(),
 | |
|                                                      TL.getBracketsRange());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
 | |
|   NewTL.setLBracketLoc(TL.getLBracketLoc());
 | |
|   NewTL.setRBracketLoc(TL.getRBracketLoc());
 | |
|   NewTL.setSizeExpr(nullptr);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
 | |
|                                                    VariableArrayTypeLoc TL) {
 | |
|   const VariableArrayType *T = TL.getTypePtr();
 | |
|   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   ExprResult SizeResult
 | |
|     = getDerived().TransformExpr(T->getSizeExpr());
 | |
|   if (SizeResult.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   Expr *Size = SizeResult.get();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType() ||
 | |
|       Size != T->getSizeExpr()) {
 | |
|     Result = getDerived().RebuildVariableArrayType(ElementType,
 | |
|                                                    T->getSizeModifier(),
 | |
|                                                    Size,
 | |
|                                              T->getIndexTypeCVRQualifiers(),
 | |
|                                                    TL.getBracketsRange());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // We might have constant size array now, but fortunately it has the same
 | |
|   // location layout.
 | |
|   ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
 | |
|   NewTL.setLBracketLoc(TL.getLBracketLoc());
 | |
|   NewTL.setRBracketLoc(TL.getRBracketLoc());
 | |
|   NewTL.setSizeExpr(Size);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
 | |
|                                              DependentSizedArrayTypeLoc TL) {
 | |
|   const DependentSizedArrayType *T = TL.getTypePtr();
 | |
|   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   // Array bounds are constant expressions.
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef,
 | |
|                                                Sema::ConstantEvaluated);
 | |
| 
 | |
|   // Prefer the expression from the TypeLoc;  the other may have been uniqued.
 | |
|   Expr *origSize = TL.getSizeExpr();
 | |
|   if (!origSize) origSize = T->getSizeExpr();
 | |
| 
 | |
|   ExprResult sizeResult
 | |
|     = getDerived().TransformExpr(origSize);
 | |
|   sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
 | |
|   if (sizeResult.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   Expr *size = sizeResult.get();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType() ||
 | |
|       size != origSize) {
 | |
|     Result = getDerived().RebuildDependentSizedArrayType(ElementType,
 | |
|                                                          T->getSizeModifier(),
 | |
|                                                          size,
 | |
|                                                 T->getIndexTypeCVRQualifiers(),
 | |
|                                                         TL.getBracketsRange());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // We might have any sort of array type now, but fortunately they
 | |
|   // all have the same location layout.
 | |
|   ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
 | |
|   NewTL.setLBracketLoc(TL.getLBracketLoc());
 | |
|   NewTL.setRBracketLoc(TL.getRBracketLoc());
 | |
|   NewTL.setSizeExpr(size);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
 | |
|                                       TypeLocBuilder &TLB,
 | |
|                                       DependentSizedExtVectorTypeLoc TL) {
 | |
|   const DependentSizedExtVectorType *T = TL.getTypePtr();
 | |
| 
 | |
|   // FIXME: ext vector locs should be nested
 | |
|   QualType ElementType = getDerived().TransformType(T->getElementType());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   // Vector sizes are constant expressions.
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef,
 | |
|                                                Sema::ConstantEvaluated);
 | |
| 
 | |
|   ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
 | |
|   Size = SemaRef.ActOnConstantExpression(Size);
 | |
|   if (Size.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType() ||
 | |
|       Size.get() != T->getSizeExpr()) {
 | |
|     Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
 | |
|                                                              Size.get(),
 | |
|                                                          T->getAttributeLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // Result might be dependent or not.
 | |
|   if (isa<DependentSizedExtVectorType>(Result)) {
 | |
|     DependentSizedExtVectorTypeLoc NewTL
 | |
|       = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
 | |
|     NewTL.setNameLoc(TL.getNameLoc());
 | |
|   } else {
 | |
|     ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
 | |
|     NewTL.setNameLoc(TL.getNameLoc());
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
 | |
|                                                      VectorTypeLoc TL) {
 | |
|   const VectorType *T = TL.getTypePtr();
 | |
|   QualType ElementType = getDerived().TransformType(T->getElementType());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType()) {
 | |
|     Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
 | |
|                                             T->getVectorKind());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
 | |
|                                                         ExtVectorTypeLoc TL) {
 | |
|   const VectorType *T = TL.getTypePtr();
 | |
|   QualType ElementType = getDerived().TransformType(T->getElementType());
 | |
|   if (ElementType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ElementType != T->getElementType()) {
 | |
|     Result = getDerived().RebuildExtVectorType(ElementType,
 | |
|                                                T->getNumElements(),
 | |
|                                                /*FIXME*/ SourceLocation());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
 | |
|     ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
 | |
|     bool ExpectParameterPack) {
 | |
|   TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
 | |
|   TypeSourceInfo *NewDI = nullptr;
 | |
| 
 | |
|   if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
 | |
|     // If we're substituting into a pack expansion type and we know the
 | |
|     // length we want to expand to, just substitute for the pattern.
 | |
|     TypeLoc OldTL = OldDI->getTypeLoc();
 | |
|     PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
 | |
| 
 | |
|     TypeLocBuilder TLB;
 | |
|     TypeLoc NewTL = OldDI->getTypeLoc();
 | |
|     TLB.reserve(NewTL.getFullDataSize());
 | |
| 
 | |
|     QualType Result = getDerived().TransformType(TLB,
 | |
|                                                OldExpansionTL.getPatternLoc());
 | |
|     if (Result.isNull())
 | |
|       return nullptr;
 | |
| 
 | |
|     Result = RebuildPackExpansionType(Result,
 | |
|                                 OldExpansionTL.getPatternLoc().getSourceRange(),
 | |
|                                       OldExpansionTL.getEllipsisLoc(),
 | |
|                                       NumExpansions);
 | |
|     if (Result.isNull())
 | |
|       return nullptr;
 | |
| 
 | |
|     PackExpansionTypeLoc NewExpansionTL
 | |
|       = TLB.push<PackExpansionTypeLoc>(Result);
 | |
|     NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
 | |
|     NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
 | |
|   } else
 | |
|     NewDI = getDerived().TransformType(OldDI);
 | |
|   if (!NewDI)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (NewDI == OldDI && indexAdjustment == 0)
 | |
|     return OldParm;
 | |
| 
 | |
|   ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
 | |
|                                              OldParm->getDeclContext(),
 | |
|                                              OldParm->getInnerLocStart(),
 | |
|                                              OldParm->getLocation(),
 | |
|                                              OldParm->getIdentifier(),
 | |
|                                              NewDI->getType(),
 | |
|                                              NewDI,
 | |
|                                              OldParm->getStorageClass(),
 | |
|                                              /* DefArg */ nullptr);
 | |
|   newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
 | |
|                         OldParm->getFunctionScopeIndex() + indexAdjustment);
 | |
|   return newParm;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| bool TreeTransform<Derived>::
 | |
|   TransformFunctionTypeParams(SourceLocation Loc,
 | |
|                               ParmVarDecl **Params, unsigned NumParams,
 | |
|                               const QualType *ParamTypes,
 | |
|                               SmallVectorImpl<QualType> &OutParamTypes,
 | |
|                               SmallVectorImpl<ParmVarDecl*> *PVars) {
 | |
|   int indexAdjustment = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumParams; ++i) {
 | |
|     if (ParmVarDecl *OldParm = Params[i]) {
 | |
|       assert(OldParm->getFunctionScopeIndex() == i);
 | |
| 
 | |
|       Optional<unsigned> NumExpansions;
 | |
|       ParmVarDecl *NewParm = nullptr;
 | |
|       if (OldParm->isParameterPack()) {
 | |
|         // We have a function parameter pack that may need to be expanded.
 | |
|         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
| 
 | |
|         // Find the parameter packs that could be expanded.
 | |
|         TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
 | |
|         PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
 | |
|         TypeLoc Pattern = ExpansionTL.getPatternLoc();
 | |
|         SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | |
|         assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
 | |
| 
 | |
|         // Determine whether we should expand the parameter packs.
 | |
|         bool ShouldExpand = false;
 | |
|         bool RetainExpansion = false;
 | |
|         Optional<unsigned> OrigNumExpansions =
 | |
|             ExpansionTL.getTypePtr()->getNumExpansions();
 | |
|         NumExpansions = OrigNumExpansions;
 | |
|         if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
 | |
|                                                  Pattern.getSourceRange(),
 | |
|                                                  Unexpanded,
 | |
|                                                  ShouldExpand,
 | |
|                                                  RetainExpansion,
 | |
|                                                  NumExpansions)) {
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (ShouldExpand) {
 | |
|           // Expand the function parameter pack into multiple, separate
 | |
|           // parameters.
 | |
|           getDerived().ExpandingFunctionParameterPack(OldParm);
 | |
|           for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|             Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
 | |
|             ParmVarDecl *NewParm
 | |
|               = getDerived().TransformFunctionTypeParam(OldParm,
 | |
|                                                         indexAdjustment++,
 | |
|                                                         OrigNumExpansions,
 | |
|                                                 /*ExpectParameterPack=*/false);
 | |
|             if (!NewParm)
 | |
|               return true;
 | |
| 
 | |
|             OutParamTypes.push_back(NewParm->getType());
 | |
|             if (PVars)
 | |
|               PVars->push_back(NewParm);
 | |
|           }
 | |
| 
 | |
|           // If we're supposed to retain a pack expansion, do so by temporarily
 | |
|           // forgetting the partially-substituted parameter pack.
 | |
|           if (RetainExpansion) {
 | |
|             ForgetPartiallySubstitutedPackRAII Forget(getDerived());
 | |
|             ParmVarDecl *NewParm
 | |
|               = getDerived().TransformFunctionTypeParam(OldParm,
 | |
|                                                         indexAdjustment++,
 | |
|                                                         OrigNumExpansions,
 | |
|                                                 /*ExpectParameterPack=*/false);
 | |
|             if (!NewParm)
 | |
|               return true;
 | |
| 
 | |
|             OutParamTypes.push_back(NewParm->getType());
 | |
|             if (PVars)
 | |
|               PVars->push_back(NewParm);
 | |
|           }
 | |
| 
 | |
|           // The next parameter should have the same adjustment as the
 | |
|           // last thing we pushed, but we post-incremented indexAdjustment
 | |
|           // on every push.  Also, if we push nothing, the adjustment should
 | |
|           // go down by one.
 | |
|           indexAdjustment--;
 | |
| 
 | |
|           // We're done with the pack expansion.
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // We'll substitute the parameter now without expanding the pack
 | |
|         // expansion.
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
 | |
|         NewParm = getDerived().TransformFunctionTypeParam(OldParm,
 | |
|                                                           indexAdjustment,
 | |
|                                                           NumExpansions,
 | |
|                                                   /*ExpectParameterPack=*/true);
 | |
|       } else {
 | |
|         NewParm = getDerived().TransformFunctionTypeParam(
 | |
|             OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
 | |
|       }
 | |
| 
 | |
|       if (!NewParm)
 | |
|         return true;
 | |
| 
 | |
|       OutParamTypes.push_back(NewParm->getType());
 | |
|       if (PVars)
 | |
|         PVars->push_back(NewParm);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Deal with the possibility that we don't have a parameter
 | |
|     // declaration for this parameter.
 | |
|     QualType OldType = ParamTypes[i];
 | |
|     bool IsPackExpansion = false;
 | |
|     Optional<unsigned> NumExpansions;
 | |
|     QualType NewType;
 | |
|     if (const PackExpansionType *Expansion
 | |
|                                        = dyn_cast<PackExpansionType>(OldType)) {
 | |
|       // We have a function parameter pack that may need to be expanded.
 | |
|       QualType Pattern = Expansion->getPattern();
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | |
| 
 | |
|       // Determine whether we should expand the parameter packs.
 | |
|       bool ShouldExpand = false;
 | |
|       bool RetainExpansion = false;
 | |
|       if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
 | |
|                                                Unexpanded,
 | |
|                                                ShouldExpand,
 | |
|                                                RetainExpansion,
 | |
|                                                NumExpansions)) {
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (ShouldExpand) {
 | |
|         // Expand the function parameter pack into multiple, separate
 | |
|         // parameters.
 | |
|         for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|           Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
 | |
|           QualType NewType = getDerived().TransformType(Pattern);
 | |
|           if (NewType.isNull())
 | |
|             return true;
 | |
| 
 | |
|           OutParamTypes.push_back(NewType);
 | |
|           if (PVars)
 | |
|             PVars->push_back(nullptr);
 | |
|         }
 | |
| 
 | |
|         // We're done with the pack expansion.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we're supposed to retain a pack expansion, do so by temporarily
 | |
|       // forgetting the partially-substituted parameter pack.
 | |
|       if (RetainExpansion) {
 | |
|         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
 | |
|         QualType NewType = getDerived().TransformType(Pattern);
 | |
|         if (NewType.isNull())
 | |
|           return true;
 | |
| 
 | |
|         OutParamTypes.push_back(NewType);
 | |
|         if (PVars)
 | |
|           PVars->push_back(nullptr);
 | |
|       }
 | |
| 
 | |
|       // We'll substitute the parameter now without expanding the pack
 | |
|       // expansion.
 | |
|       OldType = Expansion->getPattern();
 | |
|       IsPackExpansion = true;
 | |
|       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
 | |
|       NewType = getDerived().TransformType(OldType);
 | |
|     } else {
 | |
|       NewType = getDerived().TransformType(OldType);
 | |
|     }
 | |
| 
 | |
|     if (NewType.isNull())
 | |
|       return true;
 | |
| 
 | |
|     if (IsPackExpansion)
 | |
|       NewType = getSema().Context.getPackExpansionType(NewType,
 | |
|                                                        NumExpansions);
 | |
| 
 | |
|     OutParamTypes.push_back(NewType);
 | |
|     if (PVars)
 | |
|       PVars->push_back(nullptr);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (PVars) {
 | |
|     for (unsigned i = 0, e = PVars->size(); i != e; ++i)
 | |
|       if (ParmVarDecl *parm = (*PVars)[i])
 | |
|         assert(parm->getFunctionScopeIndex() == i);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
 | |
|                                                    FunctionProtoTypeLoc TL) {
 | |
|   return getDerived().TransformFunctionProtoType(TLB, TL, nullptr, 0);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
 | |
|                                                    FunctionProtoTypeLoc TL,
 | |
|                                                    CXXRecordDecl *ThisContext,
 | |
|                                                    unsigned ThisTypeQuals) {
 | |
|   // Transform the parameters and return type.
 | |
|   //
 | |
|   // We are required to instantiate the params and return type in source order.
 | |
|   // When the function has a trailing return type, we instantiate the
 | |
|   // parameters before the return type,  since the return type can then refer
 | |
|   // to the parameters themselves (via decltype, sizeof, etc.).
 | |
|   //
 | |
|   SmallVector<QualType, 4> ParamTypes;
 | |
|   SmallVector<ParmVarDecl*, 4> ParamDecls;
 | |
|   const FunctionProtoType *T = TL.getTypePtr();
 | |
| 
 | |
|   QualType ResultType;
 | |
| 
 | |
|   if (T->hasTrailingReturn()) {
 | |
|     if (getDerived().TransformFunctionTypeParams(
 | |
|             TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(),
 | |
|             TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls))
 | |
|       return QualType();
 | |
| 
 | |
|     {
 | |
|       // C++11 [expr.prim.general]p3:
 | |
|       //   If a declaration declares a member function or member function
 | |
|       //   template of a class X, the expression this is a prvalue of type
 | |
|       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
 | |
|       //   and the end of the function-definition, member-declarator, or
 | |
|       //   declarator.
 | |
|       Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
 | |
| 
 | |
|       ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
 | |
|       if (ResultType.isNull())
 | |
|         return QualType();
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
 | |
|     if (ResultType.isNull())
 | |
|       return QualType();
 | |
| 
 | |
|     if (getDerived().TransformFunctionTypeParams(
 | |
|             TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(),
 | |
|             TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls))
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // FIXME: Need to transform the exception-specification too.
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
 | |
|       T->getNumParams() != ParamTypes.size() ||
 | |
|       !std::equal(T->param_type_begin(), T->param_type_end(),
 | |
|                   ParamTypes.begin())) {
 | |
|     Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes,
 | |
|                                                    T->getExtProtoInfo());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
 | |
|   NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
 | |
|   NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|   NewTL.setRParenLoc(TL.getRParenLoc());
 | |
|   NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
 | |
|   for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
 | |
|     NewTL.setParam(i, ParamDecls[i]);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
 | |
|                                                  TypeLocBuilder &TLB,
 | |
|                                                  FunctionNoProtoTypeLoc TL) {
 | |
|   const FunctionNoProtoType *T = TL.getTypePtr();
 | |
|   QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
 | |
|   if (ResultType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
 | |
|     Result = getDerived().RebuildFunctionNoProtoType(ResultType);
 | |
| 
 | |
|   FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
 | |
|   NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
 | |
|   NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|   NewTL.setRParenLoc(TL.getRParenLoc());
 | |
|   NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived> QualType
 | |
| TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
 | |
|                                                  UnresolvedUsingTypeLoc TL) {
 | |
|   const UnresolvedUsingType *T = TL.getTypePtr();
 | |
|   Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
 | |
|   if (!D)
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
 | |
|     Result = getDerived().RebuildUnresolvedUsingType(D);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // We might get an arbitrary type spec type back.  We should at
 | |
|   // least always get a type spec type, though.
 | |
|   TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
 | |
|                                                       TypedefTypeLoc TL) {
 | |
|   const TypedefType *T = TL.getTypePtr();
 | |
|   TypedefNameDecl *Typedef
 | |
|     = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
 | |
|                                                                T->getDecl()));
 | |
|   if (!Typedef)
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       Typedef != T->getDecl()) {
 | |
|     Result = getDerived().RebuildTypedefType(Typedef);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
 | |
|                                                       TypeOfExprTypeLoc TL) {
 | |
|   // typeof expressions are not potentially evaluated contexts
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
 | |
|                                                Sema::ReuseLambdaContextDecl);
 | |
| 
 | |
|   ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
 | |
|   if (E.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
 | |
|   if (E.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       E.get() != TL.getUnderlyingExpr()) {
 | |
|     Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
|   else E.get();
 | |
| 
 | |
|   TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
 | |
|   NewTL.setTypeofLoc(TL.getTypeofLoc());
 | |
|   NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|   NewTL.setRParenLoc(TL.getRParenLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
 | |
|                                                      TypeOfTypeLoc TL) {
 | |
|   TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
 | |
|   TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
 | |
|   if (!New_Under_TI)
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
 | |
|     Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
 | |
|   NewTL.setTypeofLoc(TL.getTypeofLoc());
 | |
|   NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|   NewTL.setRParenLoc(TL.getRParenLoc());
 | |
|   NewTL.setUnderlyingTInfo(New_Under_TI);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
 | |
|                                                        DecltypeTypeLoc TL) {
 | |
|   const DecltypeType *T = TL.getTypePtr();
 | |
| 
 | |
|   // decltype expressions are not potentially evaluated contexts
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
 | |
|                                                nullptr, /*IsDecltype=*/ true);
 | |
| 
 | |
|   ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
 | |
|   if (E.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   E = getSema().ActOnDecltypeExpression(E.get());
 | |
|   if (E.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       E.get() != T->getUnderlyingExpr()) {
 | |
|     Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
|   else E.get();
 | |
| 
 | |
|   DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformUnaryTransformType(
 | |
|                                                             TypeLocBuilder &TLB,
 | |
|                                                      UnaryTransformTypeLoc TL) {
 | |
|   QualType Result = TL.getType();
 | |
|   if (Result->isDependentType()) {
 | |
|     const UnaryTransformType *T = TL.getTypePtr();
 | |
|     QualType NewBase =
 | |
|       getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
 | |
|     Result = getDerived().RebuildUnaryTransformType(NewBase,
 | |
|                                                     T->getUTTKind(),
 | |
|                                                     TL.getKWLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
 | |
|   NewTL.setKWLoc(TL.getKWLoc());
 | |
|   NewTL.setParensRange(TL.getParensRange());
 | |
|   NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
 | |
|                                                    AutoTypeLoc TL) {
 | |
|   const AutoType *T = TL.getTypePtr();
 | |
|   QualType OldDeduced = T->getDeducedType();
 | |
|   QualType NewDeduced;
 | |
|   if (!OldDeduced.isNull()) {
 | |
|     NewDeduced = getDerived().TransformType(OldDeduced);
 | |
|     if (NewDeduced.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
 | |
|       T->isDependentType()) {
 | |
|     Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
 | |
|                                                      RecordTypeLoc TL) {
 | |
|   const RecordType *T = TL.getTypePtr();
 | |
|   RecordDecl *Record
 | |
|     = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
 | |
|                                                           T->getDecl()));
 | |
|   if (!Record)
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       Record != T->getDecl()) {
 | |
|     Result = getDerived().RebuildRecordType(Record);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
 | |
|                                                    EnumTypeLoc TL) {
 | |
|   const EnumType *T = TL.getTypePtr();
 | |
|   EnumDecl *Enum
 | |
|     = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
 | |
|                                                         T->getDecl()));
 | |
|   if (!Enum)
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       Enum != T->getDecl()) {
 | |
|     Result = getDerived().RebuildEnumType(Enum);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformInjectedClassNameType(
 | |
|                                          TypeLocBuilder &TLB,
 | |
|                                          InjectedClassNameTypeLoc TL) {
 | |
|   Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
 | |
|                                        TL.getTypePtr()->getDecl());
 | |
|   if (!D) return QualType();
 | |
| 
 | |
|   QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
 | |
|   TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
 | |
|                                                 TypeLocBuilder &TLB,
 | |
|                                                 TemplateTypeParmTypeLoc TL) {
 | |
|   return TransformTypeSpecType(TLB, TL);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
 | |
|                                          TypeLocBuilder &TLB,
 | |
|                                          SubstTemplateTypeParmTypeLoc TL) {
 | |
|   const SubstTemplateTypeParmType *T = TL.getTypePtr();
 | |
| 
 | |
|   // Substitute into the replacement type, which itself might involve something
 | |
|   // that needs to be transformed. This only tends to occur with default
 | |
|   // template arguments of template template parameters.
 | |
|   TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
 | |
|   QualType Replacement = getDerived().TransformType(T->getReplacementType());
 | |
|   if (Replacement.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   // Always canonicalize the replacement type.
 | |
|   Replacement = SemaRef.Context.getCanonicalType(Replacement);
 | |
|   QualType Result
 | |
|     = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
 | |
|                                                    Replacement);
 | |
| 
 | |
|   // Propagate type-source information.
 | |
|   SubstTemplateTypeParmTypeLoc NewTL
 | |
|     = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
 | |
|   NewTL.setNameLoc(TL.getNameLoc());
 | |
|   return Result;
 | |
| 
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
 | |
|                                           TypeLocBuilder &TLB,
 | |
|                                           SubstTemplateTypeParmPackTypeLoc TL) {
 | |
|   return TransformTypeSpecType(TLB, TL);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
 | |
|                                                         TypeLocBuilder &TLB,
 | |
|                                            TemplateSpecializationTypeLoc TL) {
 | |
|   const TemplateSpecializationType *T = TL.getTypePtr();
 | |
| 
 | |
|   // The nested-name-specifier never matters in a TemplateSpecializationType,
 | |
|   // because we can't have a dependent nested-name-specifier anyway.
 | |
|   CXXScopeSpec SS;
 | |
|   TemplateName Template
 | |
|     = getDerived().TransformTemplateName(SS, T->getTemplateName(),
 | |
|                                          TL.getTemplateNameLoc());
 | |
|   if (Template.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
 | |
|                                                      AtomicTypeLoc TL) {
 | |
|   QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
 | |
|   if (ValueType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       ValueType != TL.getValueLoc().getType()) {
 | |
|     Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
 | |
|   NewTL.setKWLoc(TL.getKWLoc());
 | |
|   NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|   NewTL.setRParenLoc(TL.getRParenLoc());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
|   /// \brief Simple iterator that traverses the template arguments in a
 | |
|   /// container that provides a \c getArgLoc() member function.
 | |
|   ///
 | |
|   /// This iterator is intended to be used with the iterator form of
 | |
|   /// \c TreeTransform<Derived>::TransformTemplateArguments().
 | |
|   template<typename ArgLocContainer>
 | |
|   class TemplateArgumentLocContainerIterator {
 | |
|     ArgLocContainer *Container;
 | |
|     unsigned Index;
 | |
| 
 | |
|   public:
 | |
|     typedef TemplateArgumentLoc value_type;
 | |
|     typedef TemplateArgumentLoc reference;
 | |
|     typedef int difference_type;
 | |
|     typedef std::input_iterator_tag iterator_category;
 | |
| 
 | |
|     class pointer {
 | |
|       TemplateArgumentLoc Arg;
 | |
| 
 | |
|     public:
 | |
|       explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
 | |
| 
 | |
|       const TemplateArgumentLoc *operator->() const {
 | |
|         return &Arg;
 | |
|       }
 | |
|     };
 | |
| 
 | |
| 
 | |
|     TemplateArgumentLocContainerIterator() {}
 | |
| 
 | |
|     TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
 | |
|                                  unsigned Index)
 | |
|       : Container(&Container), Index(Index) { }
 | |
| 
 | |
|     TemplateArgumentLocContainerIterator &operator++() {
 | |
|       ++Index;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     TemplateArgumentLocContainerIterator operator++(int) {
 | |
|       TemplateArgumentLocContainerIterator Old(*this);
 | |
|       ++(*this);
 | |
|       return Old;
 | |
|     }
 | |
| 
 | |
|     TemplateArgumentLoc operator*() const {
 | |
|       return Container->getArgLoc(Index);
 | |
|     }
 | |
| 
 | |
|     pointer operator->() const {
 | |
|       return pointer(Container->getArgLoc(Index));
 | |
|     }
 | |
| 
 | |
|     friend bool operator==(const TemplateArgumentLocContainerIterator &X,
 | |
|                            const TemplateArgumentLocContainerIterator &Y) {
 | |
|       return X.Container == Y.Container && X.Index == Y.Index;
 | |
|     }
 | |
| 
 | |
|     friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
 | |
|                            const TemplateArgumentLocContainerIterator &Y) {
 | |
|       return !(X == Y);
 | |
|     }
 | |
|   };
 | |
| 
 | |
| 
 | |
| template <typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
 | |
|                                                         TypeLocBuilder &TLB,
 | |
|                                            TemplateSpecializationTypeLoc TL,
 | |
|                                                       TemplateName Template) {
 | |
|   TemplateArgumentListInfo NewTemplateArgs;
 | |
|   NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
 | |
|   NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
 | |
|   typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
 | |
|     ArgIterator;
 | |
|   if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
 | |
|                                               ArgIterator(TL, TL.getNumArgs()),
 | |
|                                               NewTemplateArgs))
 | |
|     return QualType();
 | |
| 
 | |
|   // FIXME: maybe don't rebuild if all the template arguments are the same.
 | |
| 
 | |
|   QualType Result =
 | |
|     getDerived().RebuildTemplateSpecializationType(Template,
 | |
|                                                    TL.getTemplateNameLoc(),
 | |
|                                                    NewTemplateArgs);
 | |
| 
 | |
|   if (!Result.isNull()) {
 | |
|     // Specializations of template template parameters are represented as
 | |
|     // TemplateSpecializationTypes, and substitution of type alias templates
 | |
|     // within a dependent context can transform them into
 | |
|     // DependentTemplateSpecializationTypes.
 | |
|     if (isa<DependentTemplateSpecializationType>(Result)) {
 | |
|       DependentTemplateSpecializationTypeLoc NewTL
 | |
|         = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
 | |
|       NewTL.setElaboratedKeywordLoc(SourceLocation());
 | |
|       NewTL.setQualifierLoc(NestedNameSpecifierLoc());
 | |
|       NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|       NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|       NewTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|       NewTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|       for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
 | |
|         NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     TemplateSpecializationTypeLoc NewTL
 | |
|       = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | |
|     NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|     NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|     NewTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|     NewTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|     for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
 | |
|       NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
 | |
|                                      TypeLocBuilder &TLB,
 | |
|                                      DependentTemplateSpecializationTypeLoc TL,
 | |
|                                      TemplateName Template,
 | |
|                                      CXXScopeSpec &SS) {
 | |
|   TemplateArgumentListInfo NewTemplateArgs;
 | |
|   NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
 | |
|   NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
 | |
|   typedef TemplateArgumentLocContainerIterator<
 | |
|             DependentTemplateSpecializationTypeLoc> ArgIterator;
 | |
|   if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
 | |
|                                               ArgIterator(TL, TL.getNumArgs()),
 | |
|                                               NewTemplateArgs))
 | |
|     return QualType();
 | |
| 
 | |
|   // FIXME: maybe don't rebuild if all the template arguments are the same.
 | |
| 
 | |
|   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | |
|     QualType Result
 | |
|       = getSema().Context.getDependentTemplateSpecializationType(
 | |
|                                                 TL.getTypePtr()->getKeyword(),
 | |
|                                                          DTN->getQualifier(),
 | |
|                                                          DTN->getIdentifier(),
 | |
|                                                                NewTemplateArgs);
 | |
| 
 | |
|     DependentTemplateSpecializationTypeLoc NewTL
 | |
|       = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
 | |
|     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
 | |
|     NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
 | |
|     NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|     NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|     NewTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|     NewTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|     for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
 | |
|       NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   QualType Result
 | |
|     = getDerived().RebuildTemplateSpecializationType(Template,
 | |
|                                                      TL.getTemplateNameLoc(),
 | |
|                                                      NewTemplateArgs);
 | |
| 
 | |
|   if (!Result.isNull()) {
 | |
|     /// FIXME: Wrap this in an elaborated-type-specifier?
 | |
|     TemplateSpecializationTypeLoc NewTL
 | |
|       = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | |
|     NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|     NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|     NewTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|     NewTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|     for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
 | |
|       NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
 | |
|                                                 ElaboratedTypeLoc TL) {
 | |
|   const ElaboratedType *T = TL.getTypePtr();
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   // NOTE: the qualifier in an ElaboratedType is optional.
 | |
|   if (TL.getQualifierLoc()) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
 | |
|   if (NamedT.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   // C++0x [dcl.type.elab]p2:
 | |
|   //   If the identifier resolves to a typedef-name or the simple-template-id
 | |
|   //   resolves to an alias template specialization, the
 | |
|   //   elaborated-type-specifier is ill-formed.
 | |
|   if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
 | |
|     if (const TemplateSpecializationType *TST =
 | |
|           NamedT->getAs<TemplateSpecializationType>()) {
 | |
|       TemplateName Template = TST->getTemplateName();
 | |
|       if (TypeAliasTemplateDecl *TAT =
 | |
|           dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
 | |
|         SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
 | |
|                      diag::err_tag_reference_non_tag) << 4;
 | |
|         SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       QualifierLoc != TL.getQualifierLoc() ||
 | |
|       NamedT != T->getNamedType()) {
 | |
|     Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
 | |
|                                                 T->getKeyword(),
 | |
|                                                 QualifierLoc, NamedT);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
 | |
|   NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
 | |
|   NewTL.setQualifierLoc(QualifierLoc);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformAttributedType(
 | |
|                                                 TypeLocBuilder &TLB,
 | |
|                                                 AttributedTypeLoc TL) {
 | |
|   const AttributedType *oldType = TL.getTypePtr();
 | |
|   QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
 | |
|   if (modifiedType.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType result = TL.getType();
 | |
| 
 | |
|   // FIXME: dependent operand expressions?
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       modifiedType != oldType->getModifiedType()) {
 | |
|     // TODO: this is really lame; we should really be rebuilding the
 | |
|     // equivalent type from first principles.
 | |
|     QualType equivalentType
 | |
|       = getDerived().TransformType(oldType->getEquivalentType());
 | |
|     if (equivalentType.isNull())
 | |
|       return QualType();
 | |
|     result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
 | |
|                                                modifiedType,
 | |
|                                                equivalentType);
 | |
|   }
 | |
| 
 | |
|   AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
 | |
|   newTL.setAttrNameLoc(TL.getAttrNameLoc());
 | |
|   if (TL.hasAttrOperand())
 | |
|     newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
 | |
|   if (TL.hasAttrExprOperand())
 | |
|     newTL.setAttrExprOperand(TL.getAttrExprOperand());
 | |
|   else if (TL.hasAttrEnumOperand())
 | |
|     newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
 | |
|                                            ParenTypeLoc TL) {
 | |
|   QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
 | |
|   if (Inner.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       Inner != TL.getInnerLoc().getType()) {
 | |
|     Result = getDerived().RebuildParenType(Inner);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
 | |
|   NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|   NewTL.setRParenLoc(TL.getRParenLoc());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
 | |
|                                                       DependentNameTypeLoc TL) {
 | |
|   const DependentNameType *T = TL.getTypePtr();
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc
 | |
|     = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
 | |
|   if (!QualifierLoc)
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result
 | |
|     = getDerived().RebuildDependentNameType(T->getKeyword(),
 | |
|                                             TL.getElaboratedKeywordLoc(),
 | |
|                                             QualifierLoc,
 | |
|                                             T->getIdentifier(),
 | |
|                                             TL.getNameLoc());
 | |
|   if (Result.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
 | |
|     QualType NamedT = ElabT->getNamedType();
 | |
|     TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
 | |
| 
 | |
|     ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
 | |
|     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
 | |
|     NewTL.setQualifierLoc(QualifierLoc);
 | |
|   } else {
 | |
|     DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
 | |
|     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
 | |
|     NewTL.setQualifierLoc(QualifierLoc);
 | |
|     NewTL.setNameLoc(TL.getNameLoc());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::
 | |
|           TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
 | |
|                                  DependentTemplateSpecializationTypeLoc TL) {
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (TL.getQualifierLoc()) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   return getDerived()
 | |
|            .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::
 | |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
 | |
|                                    DependentTemplateSpecializationTypeLoc TL,
 | |
|                                        NestedNameSpecifierLoc QualifierLoc) {
 | |
|   const DependentTemplateSpecializationType *T = TL.getTypePtr();
 | |
| 
 | |
|   TemplateArgumentListInfo NewTemplateArgs;
 | |
|   NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
 | |
|   NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
 | |
| 
 | |
|   typedef TemplateArgumentLocContainerIterator<
 | |
|   DependentTemplateSpecializationTypeLoc> ArgIterator;
 | |
|   if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
 | |
|                                               ArgIterator(TL, TL.getNumArgs()),
 | |
|                                               NewTemplateArgs))
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result
 | |
|     = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
 | |
|                                                               QualifierLoc,
 | |
|                                                             T->getIdentifier(),
 | |
|                                                        TL.getTemplateNameLoc(),
 | |
|                                                             NewTemplateArgs);
 | |
|   if (Result.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
 | |
|     QualType NamedT = ElabT->getNamedType();
 | |
| 
 | |
|     // Copy information relevant to the template specialization.
 | |
|     TemplateSpecializationTypeLoc NamedTL
 | |
|       = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
 | |
|     NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|     NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|     NamedTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|     NamedTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|     for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
 | |
|       NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
 | |
| 
 | |
|     // Copy information relevant to the elaborated type.
 | |
|     ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
 | |
|     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
 | |
|     NewTL.setQualifierLoc(QualifierLoc);
 | |
|   } else if (isa<DependentTemplateSpecializationType>(Result)) {
 | |
|     DependentTemplateSpecializationTypeLoc SpecTL
 | |
|       = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
 | |
|     SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
 | |
|     SpecTL.setQualifierLoc(QualifierLoc);
 | |
|     SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|     SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|     SpecTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|     SpecTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|     for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
 | |
|       SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
 | |
|   } else {
 | |
|     TemplateSpecializationTypeLoc SpecTL
 | |
|       = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | |
|     SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
 | |
|     SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
 | |
|     SpecTL.setLAngleLoc(TL.getLAngleLoc());
 | |
|     SpecTL.setRAngleLoc(TL.getRAngleLoc());
 | |
|     for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
 | |
|       SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
 | |
|                                                       PackExpansionTypeLoc TL) {
 | |
|   QualType Pattern
 | |
|     = getDerived().TransformType(TLB, TL.getPatternLoc());
 | |
|   if (Pattern.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType Result = TL.getType();
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       Pattern != TL.getPatternLoc().getType()) {
 | |
|     Result = getDerived().RebuildPackExpansionType(Pattern,
 | |
|                                            TL.getPatternLoc().getSourceRange(),
 | |
|                                                    TL.getEllipsisLoc(),
 | |
|                                            TL.getTypePtr()->getNumExpansions());
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
 | |
|   NewT.setEllipsisLoc(TL.getEllipsisLoc());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
 | |
|                                                    ObjCInterfaceTypeLoc TL) {
 | |
|   // ObjCInterfaceType is never dependent.
 | |
|   TLB.pushFullCopy(TL);
 | |
|   return TL.getType();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
 | |
|                                                 ObjCObjectTypeLoc TL) {
 | |
|   // ObjCObjectType is never dependent.
 | |
|   TLB.pushFullCopy(TL);
 | |
|   return TL.getType();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
 | |
|                                                ObjCObjectPointerTypeLoc TL) {
 | |
|   // ObjCObjectPointerType is never dependent.
 | |
|   TLB.pushFullCopy(TL);
 | |
|   return TL.getType();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Statement transformation
 | |
| //===----------------------------------------------------------------------===//
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
 | |
|   return getDerived().TransformCompoundStmt(S, false);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
 | |
|                                               bool IsStmtExpr) {
 | |
|   Sema::CompoundScopeRAII CompoundScope(getSema());
 | |
| 
 | |
|   bool SubStmtInvalid = false;
 | |
|   bool SubStmtChanged = false;
 | |
|   SmallVector<Stmt*, 8> Statements;
 | |
|   for (auto *B : S->body()) {
 | |
|     StmtResult Result = getDerived().TransformStmt(B);
 | |
|     if (Result.isInvalid()) {
 | |
|       // Immediately fail if this was a DeclStmt, since it's very
 | |
|       // likely that this will cause problems for future statements.
 | |
|       if (isa<DeclStmt>(B))
 | |
|         return StmtError();
 | |
| 
 | |
|       // Otherwise, just keep processing substatements and fail later.
 | |
|       SubStmtInvalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SubStmtChanged = SubStmtChanged || Result.get() != B;
 | |
|     Statements.push_back(Result.getAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   if (SubStmtInvalid)
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       !SubStmtChanged)
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
 | |
|                                           Statements,
 | |
|                                           S->getRBracLoc(),
 | |
|                                           IsStmtExpr);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
 | |
|   ExprResult LHS, RHS;
 | |
|   {
 | |
|     EnterExpressionEvaluationContext Unevaluated(SemaRef,
 | |
|                                                  Sema::ConstantEvaluated);
 | |
| 
 | |
|     // Transform the left-hand case value.
 | |
|     LHS = getDerived().TransformExpr(S->getLHS());
 | |
|     LHS = SemaRef.ActOnConstantExpression(LHS);
 | |
|     if (LHS.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     // Transform the right-hand case value (for the GNU case-range extension).
 | |
|     RHS = getDerived().TransformExpr(S->getRHS());
 | |
|     RHS = SemaRef.ActOnConstantExpression(RHS);
 | |
|     if (RHS.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Build the case statement.
 | |
|   // Case statements are always rebuilt so that they will attached to their
 | |
|   // transformed switch statement.
 | |
|   StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
 | |
|                                                        LHS.get(),
 | |
|                                                        S->getEllipsisLoc(),
 | |
|                                                        RHS.get(),
 | |
|                                                        S->getColonLoc());
 | |
|   if (Case.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the statement following the case
 | |
|   StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
 | |
|   if (SubStmt.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Attach the body to the case statement
 | |
|   return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
 | |
|   // Transform the statement following the default case
 | |
|   StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
 | |
|   if (SubStmt.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Default statements are always rebuilt
 | |
|   return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
 | |
|                                          SubStmt.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
 | |
|   StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
 | |
|   if (SubStmt.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
 | |
|                                         S->getDecl());
 | |
|   if (!LD)
 | |
|     return StmtError();
 | |
| 
 | |
| 
 | |
|   // FIXME: Pass the real colon location in.
 | |
|   return getDerived().RebuildLabelStmt(S->getIdentLoc(),
 | |
|                                        cast<LabelDecl>(LD), SourceLocation(),
 | |
|                                        SubStmt.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) {
 | |
|   StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
 | |
|   if (SubStmt.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // TODO: transform attributes
 | |
|   if (SubStmt.get() == S->getSubStmt() /* && attrs are the same */)
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildAttributedStmt(S->getAttrLoc(),
 | |
|                                             S->getAttrs(),
 | |
|                                             SubStmt.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
 | |
|   // Transform the condition
 | |
|   ExprResult Cond;
 | |
|   VarDecl *ConditionVar = nullptr;
 | |
|   if (S->getConditionVariable()) {
 | |
|     ConditionVar
 | |
|       = cast_or_null<VarDecl>(
 | |
|                    getDerived().TransformDefinition(
 | |
|                                       S->getConditionVariable()->getLocation(),
 | |
|                                                     S->getConditionVariable()));
 | |
|     if (!ConditionVar)
 | |
|       return StmtError();
 | |
|   } else {
 | |
|     Cond = getDerived().TransformExpr(S->getCond());
 | |
| 
 | |
|     if (Cond.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     // Convert the condition to a boolean value.
 | |
|     if (S->getCond()) {
 | |
|       ExprResult CondE = getSema().ActOnBooleanCondition(nullptr, S->getIfLoc(),
 | |
|                                                          Cond.get());
 | |
|       if (CondE.isInvalid())
 | |
|         return StmtError();
 | |
| 
 | |
|       Cond = CondE.get();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
 | |
|   if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the "then" branch.
 | |
|   StmtResult Then = getDerived().TransformStmt(S->getThen());
 | |
|   if (Then.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the "else" branch.
 | |
|   StmtResult Else = getDerived().TransformStmt(S->getElse());
 | |
|   if (Else.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       FullCond.get() == S->getCond() &&
 | |
|       ConditionVar == S->getConditionVariable() &&
 | |
|       Then.get() == S->getThen() &&
 | |
|       Else.get() == S->getElse())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
 | |
|                                     Then.get(),
 | |
|                                     S->getElseLoc(), Else.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
 | |
|   // Transform the condition.
 | |
|   ExprResult Cond;
 | |
|   VarDecl *ConditionVar = nullptr;
 | |
|   if (S->getConditionVariable()) {
 | |
|     ConditionVar
 | |
|       = cast_or_null<VarDecl>(
 | |
|                    getDerived().TransformDefinition(
 | |
|                                       S->getConditionVariable()->getLocation(),
 | |
|                                                     S->getConditionVariable()));
 | |
|     if (!ConditionVar)
 | |
|       return StmtError();
 | |
|   } else {
 | |
|     Cond = getDerived().TransformExpr(S->getCond());
 | |
| 
 | |
|     if (Cond.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Rebuild the switch statement.
 | |
|   StmtResult Switch
 | |
|     = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
 | |
|                                           ConditionVar);
 | |
|   if (Switch.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the body of the switch statement.
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Complete the switch statement.
 | |
|   return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
 | |
|                                             Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
 | |
|   // Transform the condition
 | |
|   ExprResult Cond;
 | |
|   VarDecl *ConditionVar = nullptr;
 | |
|   if (S->getConditionVariable()) {
 | |
|     ConditionVar
 | |
|       = cast_or_null<VarDecl>(
 | |
|                    getDerived().TransformDefinition(
 | |
|                                       S->getConditionVariable()->getLocation(),
 | |
|                                                     S->getConditionVariable()));
 | |
|     if (!ConditionVar)
 | |
|       return StmtError();
 | |
|   } else {
 | |
|     Cond = getDerived().TransformExpr(S->getCond());
 | |
| 
 | |
|     if (Cond.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     if (S->getCond()) {
 | |
|       // Convert the condition to a boolean value.
 | |
|       ExprResult CondE = getSema().ActOnBooleanCondition(nullptr,
 | |
|                                                          S->getWhileLoc(),
 | |
|                                                          Cond.get());
 | |
|       if (CondE.isInvalid())
 | |
|         return StmtError();
 | |
|       Cond = CondE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
 | |
|   if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the body
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       FullCond.get() == S->getCond() &&
 | |
|       ConditionVar == S->getConditionVariable() &&
 | |
|       Body.get() == S->getBody())
 | |
|     return Owned(S);
 | |
| 
 | |
|   return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
 | |
|                                        ConditionVar, Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
 | |
|   // Transform the body
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the condition
 | |
|   ExprResult Cond = getDerived().TransformExpr(S->getCond());
 | |
|   if (Cond.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Cond.get() == S->getCond() &&
 | |
|       Body.get() == S->getBody())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
 | |
|                                     /*FIXME:*/S->getWhileLoc(), Cond.get(),
 | |
|                                     S->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
 | |
|   // Transform the initialization statement
 | |
|   StmtResult Init = getDerived().TransformStmt(S->getInit());
 | |
|   if (Init.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the condition
 | |
|   ExprResult Cond;
 | |
|   VarDecl *ConditionVar = nullptr;
 | |
|   if (S->getConditionVariable()) {
 | |
|     ConditionVar
 | |
|       = cast_or_null<VarDecl>(
 | |
|                    getDerived().TransformDefinition(
 | |
|                                       S->getConditionVariable()->getLocation(),
 | |
|                                                     S->getConditionVariable()));
 | |
|     if (!ConditionVar)
 | |
|       return StmtError();
 | |
|   } else {
 | |
|     Cond = getDerived().TransformExpr(S->getCond());
 | |
| 
 | |
|     if (Cond.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     if (S->getCond()) {
 | |
|       // Convert the condition to a boolean value.
 | |
|       ExprResult CondE = getSema().ActOnBooleanCondition(nullptr,
 | |
|                                                          S->getForLoc(),
 | |
|                                                          Cond.get());
 | |
|       if (CondE.isInvalid())
 | |
|         return StmtError();
 | |
| 
 | |
|       Cond = CondE.get();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
 | |
|   if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the increment
 | |
|   ExprResult Inc = getDerived().TransformExpr(S->getInc());
 | |
|   if (Inc.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
 | |
|   if (S->getInc() && !FullInc.get())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the body
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Init.get() == S->getInit() &&
 | |
|       FullCond.get() == S->getCond() &&
 | |
|       Inc.get() == S->getInc() &&
 | |
|       Body.get() == S->getBody())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
 | |
|                                      Init.get(), FullCond, ConditionVar,
 | |
|                                      FullInc, S->getRParenLoc(), Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
 | |
|   Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
 | |
|                                         S->getLabel());
 | |
|   if (!LD)
 | |
|     return StmtError();
 | |
| 
 | |
|   // Goto statements must always be rebuilt, to resolve the label.
 | |
|   return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
 | |
|                                       cast<LabelDecl>(LD));
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
 | |
|   ExprResult Target = getDerived().TransformExpr(S->getTarget());
 | |
|   if (Target.isInvalid())
 | |
|     return StmtError();
 | |
|   Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Target.get() == S->getTarget())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
 | |
|                                               Target.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
 | |
|   ExprResult Result = getDerived().TransformExpr(S->getRetValue());
 | |
|   if (Result.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // FIXME: We always rebuild the return statement because there is no way
 | |
|   // to tell whether the return type of the function has changed.
 | |
|   return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
 | |
|   bool DeclChanged = false;
 | |
|   SmallVector<Decl *, 4> Decls;
 | |
|   for (auto *D : S->decls()) {
 | |
|     Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
 | |
|     if (!Transformed)
 | |
|       return StmtError();
 | |
| 
 | |
|     if (Transformed != D)
 | |
|       DeclChanged = true;
 | |
| 
 | |
|     Decls.push_back(Transformed);
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !DeclChanged)
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildDeclStmt(Decls, S->getStartLoc(), S->getEndLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
 | |
| 
 | |
|   SmallVector<Expr*, 8> Constraints;
 | |
|   SmallVector<Expr*, 8> Exprs;
 | |
|   SmallVector<IdentifierInfo *, 4> Names;
 | |
| 
 | |
|   ExprResult AsmString;
 | |
|   SmallVector<Expr*, 8> Clobbers;
 | |
| 
 | |
|   bool ExprsChanged = false;
 | |
| 
 | |
|   // Go through the outputs.
 | |
|   for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
 | |
|     Names.push_back(S->getOutputIdentifier(I));
 | |
| 
 | |
|     // No need to transform the constraint literal.
 | |
|     Constraints.push_back(S->getOutputConstraintLiteral(I));
 | |
| 
 | |
|     // Transform the output expr.
 | |
|     Expr *OutputExpr = S->getOutputExpr(I);
 | |
|     ExprResult Result = getDerived().TransformExpr(OutputExpr);
 | |
|     if (Result.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     ExprsChanged |= Result.get() != OutputExpr;
 | |
| 
 | |
|     Exprs.push_back(Result.get());
 | |
|   }
 | |
| 
 | |
|   // Go through the inputs.
 | |
|   for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
 | |
|     Names.push_back(S->getInputIdentifier(I));
 | |
| 
 | |
|     // No need to transform the constraint literal.
 | |
|     Constraints.push_back(S->getInputConstraintLiteral(I));
 | |
| 
 | |
|     // Transform the input expr.
 | |
|     Expr *InputExpr = S->getInputExpr(I);
 | |
|     ExprResult Result = getDerived().TransformExpr(InputExpr);
 | |
|     if (Result.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     ExprsChanged |= Result.get() != InputExpr;
 | |
| 
 | |
|     Exprs.push_back(Result.get());
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !ExprsChanged)
 | |
|     return S;
 | |
| 
 | |
|   // Go through the clobbers.
 | |
|   for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
 | |
|     Clobbers.push_back(S->getClobberStringLiteral(I));
 | |
| 
 | |
|   // No need to transform the asm string literal.
 | |
|   AsmString = S->getAsmString();
 | |
|   return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
 | |
|                                         S->isVolatile(), S->getNumOutputs(),
 | |
|                                         S->getNumInputs(), Names.data(),
 | |
|                                         Constraints, Exprs, AsmString.get(),
 | |
|                                         Clobbers, S->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
 | |
|   ArrayRef<Token> AsmToks =
 | |
|     llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
 | |
| 
 | |
|   bool HadError = false, HadChange = false;
 | |
| 
 | |
|   ArrayRef<Expr*> SrcExprs = S->getAllExprs();
 | |
|   SmallVector<Expr*, 8> TransformedExprs;
 | |
|   TransformedExprs.reserve(SrcExprs.size());
 | |
|   for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
 | |
|     ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
 | |
|     if (!Result.isUsable()) {
 | |
|       HadError = true;
 | |
|     } else {
 | |
|       HadChange |= (Result.get() != SrcExprs[i]);
 | |
|       TransformedExprs.push_back(Result.get());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HadError) return StmtError();
 | |
|   if (!HadChange && !getDerived().AlwaysRebuild())
 | |
|     return Owned(S);
 | |
| 
 | |
|   return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
 | |
|                                        AsmToks, S->getAsmString(),
 | |
|                                        S->getNumOutputs(), S->getNumInputs(),
 | |
|                                        S->getAllConstraints(), S->getClobbers(),
 | |
|                                        TransformedExprs, S->getEndLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
 | |
|   // Transform the body of the @try.
 | |
|   StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
 | |
|   if (TryBody.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the @catch statements (if present).
 | |
|   bool AnyCatchChanged = false;
 | |
|   SmallVector<Stmt*, 8> CatchStmts;
 | |
|   for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
 | |
|     StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
 | |
|     if (Catch.isInvalid())
 | |
|       return StmtError();
 | |
|     if (Catch.get() != S->getCatchStmt(I))
 | |
|       AnyCatchChanged = true;
 | |
|     CatchStmts.push_back(Catch.get());
 | |
|   }
 | |
| 
 | |
|   // Transform the @finally statement (if present).
 | |
|   StmtResult Finally;
 | |
|   if (S->getFinallyStmt()) {
 | |
|     Finally = getDerived().TransformStmt(S->getFinallyStmt());
 | |
|     if (Finally.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   // If nothing changed, just retain this statement.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       TryBody.get() == S->getTryBody() &&
 | |
|       !AnyCatchChanged &&
 | |
|       Finally.get() == S->getFinallyStmt())
 | |
|     return S;
 | |
| 
 | |
|   // Build a new statement.
 | |
|   return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
 | |
|                                            CatchStmts, Finally.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
 | |
|   // Transform the @catch parameter, if there is one.
 | |
|   VarDecl *Var = nullptr;
 | |
|   if (VarDecl *FromVar = S->getCatchParamDecl()) {
 | |
|     TypeSourceInfo *TSInfo = nullptr;
 | |
|     if (FromVar->getTypeSourceInfo()) {
 | |
|       TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
 | |
|       if (!TSInfo)
 | |
|         return StmtError();
 | |
|     }
 | |
| 
 | |
|     QualType T;
 | |
|     if (TSInfo)
 | |
|       T = TSInfo->getType();
 | |
|     else {
 | |
|       T = getDerived().TransformType(FromVar->getType());
 | |
|       if (T.isNull())
 | |
|         return StmtError();
 | |
|     }
 | |
| 
 | |
|     Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
 | |
|     if (!Var)
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
 | |
|                                              S->getRParenLoc(),
 | |
|                                              Var, Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
 | |
|   // Transform the body.
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // If nothing changed, just retain this statement.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Body.get() == S->getFinallyBody())
 | |
|     return S;
 | |
| 
 | |
|   // Build a new statement.
 | |
|   return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
 | |
|                                                Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
 | |
|   ExprResult Operand;
 | |
|   if (S->getThrowExpr()) {
 | |
|     Operand = getDerived().TransformExpr(S->getThrowExpr());
 | |
|     if (Operand.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Operand.get() == S->getThrowExpr())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
 | |
|                                                   ObjCAtSynchronizedStmt *S) {
 | |
|   // Transform the object we are locking.
 | |
|   ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
 | |
|   if (Object.isInvalid())
 | |
|     return StmtError();
 | |
|   Object =
 | |
|     getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
 | |
|                                                   Object.get());
 | |
|   if (Object.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the body.
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // If nothing change, just retain the current statement.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Object.get() == S->getSynchExpr() &&
 | |
|       Body.get() == S->getSynchBody())
 | |
|     return S;
 | |
| 
 | |
|   // Build a new statement.
 | |
|   return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
 | |
|                                                     Object.get(), Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
 | |
|                                               ObjCAutoreleasePoolStmt *S) {
 | |
|   // Transform the body.
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // If nothing changed, just retain this statement.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Body.get() == S->getSubStmt())
 | |
|     return S;
 | |
| 
 | |
|   // Build a new statement.
 | |
|   return getDerived().RebuildObjCAutoreleasePoolStmt(
 | |
|                         S->getAtLoc(), Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformObjCForCollectionStmt(
 | |
|                                                   ObjCForCollectionStmt *S) {
 | |
|   // Transform the element statement.
 | |
|   StmtResult Element = getDerived().TransformStmt(S->getElement());
 | |
|   if (Element.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the collection expression.
 | |
|   ExprResult Collection = getDerived().TransformExpr(S->getCollection());
 | |
|   if (Collection.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the body.
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // If nothing changed, just retain this statement.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Element.get() == S->getElement() &&
 | |
|       Collection.get() == S->getCollection() &&
 | |
|       Body.get() == S->getBody())
 | |
|     return S;
 | |
| 
 | |
|   // Build a new statement.
 | |
|   return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
 | |
|                                                    Element.get(),
 | |
|                                                    Collection.get(),
 | |
|                                                    S->getRParenLoc(),
 | |
|                                                    Body.get());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
 | |
|   // Transform the exception declaration, if any.
 | |
|   VarDecl *Var = nullptr;
 | |
|   if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
 | |
|     TypeSourceInfo *T =
 | |
|         getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
 | |
|     if (!T)
 | |
|       return StmtError();
 | |
| 
 | |
|     Var = getDerived().RebuildExceptionDecl(
 | |
|         ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
 | |
|         ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
 | |
|     if (!Var || Var->isInvalidDecl())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Transform the actual exception handler.
 | |
|   StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
 | |
|   if (Handler.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !Var &&
 | |
|       Handler.get() == S->getHandlerBlock())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
 | |
|   // Transform the try block itself.
 | |
|   StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
 | |
|   if (TryBlock.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Transform the handlers.
 | |
|   bool HandlerChanged = false;
 | |
|   SmallVector<Stmt *, 8> Handlers;
 | |
|   for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
 | |
|     StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
 | |
|     if (Handler.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
 | |
|     Handlers.push_back(Handler.getAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
 | |
|       !HandlerChanged)
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
 | |
|                                         Handlers);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
 | |
|   StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
 | |
|   if (Range.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
 | |
|   if (BeginEnd.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   ExprResult Cond = getDerived().TransformExpr(S->getCond());
 | |
|   if (Cond.isInvalid())
 | |
|     return StmtError();
 | |
|   if (Cond.get())
 | |
|     Cond = SemaRef.CheckBooleanCondition(Cond.get(), S->getColonLoc());
 | |
|   if (Cond.isInvalid())
 | |
|     return StmtError();
 | |
|   if (Cond.get())
 | |
|     Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
 | |
| 
 | |
|   ExprResult Inc = getDerived().TransformExpr(S->getInc());
 | |
|   if (Inc.isInvalid())
 | |
|     return StmtError();
 | |
|   if (Inc.get())
 | |
|     Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
 | |
| 
 | |
|   StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
 | |
|   if (LoopVar.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   StmtResult NewStmt = S;
 | |
|   if (getDerived().AlwaysRebuild() ||
 | |
|       Range.get() != S->getRangeStmt() ||
 | |
|       BeginEnd.get() != S->getBeginEndStmt() ||
 | |
|       Cond.get() != S->getCond() ||
 | |
|       Inc.get() != S->getInc() ||
 | |
|       LoopVar.get() != S->getLoopVarStmt()) {
 | |
|     NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
 | |
|                                                   S->getColonLoc(), Range.get(),
 | |
|                                                   BeginEnd.get(), Cond.get(),
 | |
|                                                   Inc.get(), LoopVar.get(),
 | |
|                                                   S->getRParenLoc());
 | |
|     if (NewStmt.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   StmtResult Body = getDerived().TransformStmt(S->getBody());
 | |
|   if (Body.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // Body has changed but we didn't rebuild the for-range statement. Rebuild
 | |
|   // it now so we have a new statement to attach the body to.
 | |
|   if (Body.get() != S->getBody() && NewStmt.get() == S) {
 | |
|     NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
 | |
|                                                   S->getColonLoc(), Range.get(),
 | |
|                                                   BeginEnd.get(), Cond.get(),
 | |
|                                                   Inc.get(), LoopVar.get(),
 | |
|                                                   S->getRParenLoc());
 | |
|     if (NewStmt.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   if (NewStmt.get() == S)
 | |
|     return S;
 | |
| 
 | |
|   return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformMSDependentExistsStmt(
 | |
|                                                     MSDependentExistsStmt *S) {
 | |
|   // Transform the nested-name-specifier, if any.
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (S->getQualifierLoc()) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Transform the declaration name.
 | |
|   DeclarationNameInfo NameInfo = S->getNameInfo();
 | |
|   if (NameInfo.getName()) {
 | |
|     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
 | |
|     if (!NameInfo.getName())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Check whether anything changed.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       QualifierLoc == S->getQualifierLoc() &&
 | |
|       NameInfo.getName() == S->getNameInfo().getName())
 | |
|     return S;
 | |
| 
 | |
|   // Determine whether this name exists, if we can.
 | |
|   CXXScopeSpec SS;
 | |
|   SS.Adopt(QualifierLoc);
 | |
|   bool Dependent = false;
 | |
|   switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
 | |
|   case Sema::IER_Exists:
 | |
|     if (S->isIfExists())
 | |
|       break;
 | |
| 
 | |
|     return new (getSema().Context) NullStmt(S->getKeywordLoc());
 | |
| 
 | |
|   case Sema::IER_DoesNotExist:
 | |
|     if (S->isIfNotExists())
 | |
|       break;
 | |
| 
 | |
|     return new (getSema().Context) NullStmt(S->getKeywordLoc());
 | |
| 
 | |
|   case Sema::IER_Dependent:
 | |
|     Dependent = true;
 | |
|     break;
 | |
| 
 | |
|   case Sema::IER_Error:
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   // We need to continue with the instantiation, so do so now.
 | |
|   StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
 | |
|   if (SubStmt.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   // If we have resolved the name, just transform to the substatement.
 | |
|   if (!Dependent)
 | |
|     return SubStmt;
 | |
| 
 | |
|   // The name is still dependent, so build a dependent expression again.
 | |
|   return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
 | |
|                                                    S->isIfExists(),
 | |
|                                                    QualifierLoc,
 | |
|                                                    NameInfo,
 | |
|                                                    SubStmt.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (E->getQualifierLoc()) {
 | |
|     QualifierLoc
 | |
|     = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
 | |
|     getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
 | |
|   if (!PD)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   return new (SemaRef.getASTContext())
 | |
|       MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
 | |
|                         SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
 | |
|                         QualifierLoc, E->getMemberLoc());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
 | |
|   StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
 | |
|   if (TryBlock.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
 | |
|   if (Handler.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
 | |
|       Handler.get() == S->getHandler())
 | |
|     return S;
 | |
| 
 | |
|   return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
 | |
|                                         TryBlock.get(), Handler.get());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
 | |
|   StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
 | |
|   if (Block.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
 | |
|   ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
 | |
|   if (FilterExpr.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
 | |
|   if (Block.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
 | |
|                                            Block.get());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
 | |
|   if (isa<SEHFinallyStmt>(Handler))
 | |
|     return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
 | |
|   else
 | |
|     return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // OpenMP directive transformation
 | |
| //===----------------------------------------------------------------------===//
 | |
| template <typename Derived>
 | |
| StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
 | |
|     OMPExecutableDirective *D) {
 | |
| 
 | |
|   // Transform the clauses
 | |
|   llvm::SmallVector<OMPClause *, 16> TClauses;
 | |
|   ArrayRef<OMPClause *> Clauses = D->clauses();
 | |
|   TClauses.reserve(Clauses.size());
 | |
|   for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
 | |
|        I != E; ++I) {
 | |
|     if (*I) {
 | |
|       OMPClause *Clause = getDerived().TransformOMPClause(*I);
 | |
|       if (Clause)
 | |
|         TClauses.push_back(Clause);
 | |
|     } else {
 | |
|       TClauses.push_back(nullptr);
 | |
|     }
 | |
|   }
 | |
|   if (!D->getAssociatedStmt()) {
 | |
|     return StmtError();
 | |
|   }
 | |
|   StmtResult AssociatedStmt =
 | |
|       getDerived().TransformStmt(D->getAssociatedStmt());
 | |
|   if (AssociatedStmt.isInvalid() || TClauses.size() != Clauses.size()) {
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildOMPExecutableDirective(
 | |
|       D->getDirectiveKind(), TClauses, AssociatedStmt.get(), D->getLocStart(),
 | |
|       D->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
 | |
|   DeclarationNameInfo DirName;
 | |
|   getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr,
 | |
|                                              D->getLocStart());
 | |
|   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
 | |
|   getDerived().getSema().EndOpenMPDSABlock(Res.get());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
 | |
|   DeclarationNameInfo DirName;
 | |
|   getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr,
 | |
|                                              D->getLocStart());
 | |
|   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
 | |
|   getDerived().getSema().EndOpenMPDSABlock(Res.get());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
 | |
|   DeclarationNameInfo DirName;
 | |
|   getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr,
 | |
|                                              D->getLocStart());
 | |
|   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
 | |
|   getDerived().getSema().EndOpenMPDSABlock(Res.get());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
 | |
|   DeclarationNameInfo DirName;
 | |
|   getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr,
 | |
|                                              D->getLocStart());
 | |
|   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
 | |
|   getDerived().getSema().EndOpenMPDSABlock(Res.get());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
 | |
|   DeclarationNameInfo DirName;
 | |
|   getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr,
 | |
|                                              D->getLocStart());
 | |
|   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
 | |
|   getDerived().getSema().EndOpenMPDSABlock(Res.get());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
 | |
|   DeclarationNameInfo DirName;
 | |
|   getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr,
 | |
|                                              D->getLocStart());
 | |
|   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
 | |
|   getDerived().getSema().EndOpenMPDSABlock(Res.get());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // OpenMP clause transformation
 | |
| //===----------------------------------------------------------------------===//
 | |
| template <typename Derived>
 | |
| OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
 | |
|   ExprResult Cond = getDerived().TransformExpr(C->getCondition());
 | |
|   if (Cond.isInvalid())
 | |
|     return nullptr;
 | |
|   return getDerived().RebuildOMPIfClause(Cond.get(), C->getLocStart(),
 | |
|                                          C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
 | |
|   ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
 | |
|   if (NumThreads.isInvalid())
 | |
|     return nullptr;
 | |
|   return getDerived().RebuildOMPNumThreadsClause(
 | |
|       NumThreads.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
 | |
|   ExprResult E = getDerived().TransformExpr(C->getSafelen());
 | |
|   if (E.isInvalid())
 | |
|     return nullptr;
 | |
|   return getDerived().RebuildOMPSafelenClause(
 | |
|       E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
 | |
|   ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
 | |
|   if (E.isInvalid())
 | |
|     return 0;
 | |
|   return getDerived().RebuildOMPCollapseClause(
 | |
|       E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
 | |
|   return getDerived().RebuildOMPDefaultClause(
 | |
|       C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getLocStart(),
 | |
|       C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
 | |
|   return getDerived().RebuildOMPProcBindClause(
 | |
|       C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getLocStart(),
 | |
|       C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
 | |
|   ExprResult E = getDerived().TransformExpr(C->getChunkSize());
 | |
|   if (E.isInvalid())
 | |
|     return nullptr;
 | |
|   return getDerived().RebuildOMPScheduleClause(
 | |
|       C->getScheduleKind(), E.get(), C->getLocStart(), C->getLParenLoc(),
 | |
|       C->getScheduleKindLoc(), C->getCommaLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
 | |
|   // No need to rebuild this clause, no template-dependent parameters.
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
 | |
|   // No need to rebuild this clause, no template-dependent parameters.
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   return getDerived().RebuildOMPPrivateClause(
 | |
|       Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
 | |
|     OMPFirstprivateClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   return getDerived().RebuildOMPFirstprivateClause(
 | |
|       Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   return getDerived().RebuildOMPLastprivateClause(
 | |
|       Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   return getDerived().RebuildOMPSharedClause(Vars, C->getLocStart(),
 | |
|                                              C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   CXXScopeSpec ReductionIdScopeSpec;
 | |
|   ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
 | |
| 
 | |
|   DeclarationNameInfo NameInfo = C->getNameInfo();
 | |
|   if (NameInfo.getName()) {
 | |
|     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
 | |
|     if (!NameInfo.getName())
 | |
|       return nullptr;
 | |
|   }
 | |
|   return getDerived().RebuildOMPReductionClause(
 | |
|       Vars, C->getLocStart(), C->getLParenLoc(), C->getColonLoc(),
 | |
|       C->getLocEnd(), ReductionIdScopeSpec, NameInfo);
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   ExprResult Step = getDerived().TransformExpr(C->getStep());
 | |
|   if (Step.isInvalid())
 | |
|     return nullptr;
 | |
|   return getDerived().RebuildOMPLinearClause(Vars, Step.get(), C->getLocStart(),
 | |
|                                              C->getLParenLoc(),
 | |
|                                              C->getColonLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
 | |
|   if (Alignment.isInvalid())
 | |
|     return nullptr;
 | |
|   return getDerived().RebuildOMPAlignedClause(
 | |
|       Vars, Alignment.get(), C->getLocStart(), C->getLParenLoc(),
 | |
|       C->getColonLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   return getDerived().RebuildOMPCopyinClause(Vars, C->getLocStart(),
 | |
|                                              C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| OMPClause *
 | |
| TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
 | |
|   llvm::SmallVector<Expr *, 16> Vars;
 | |
|   Vars.reserve(C->varlist_size());
 | |
|   for (auto *VE : C->varlists()) {
 | |
|     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
 | |
|     if (EVar.isInvalid())
 | |
|       return nullptr;
 | |
|     Vars.push_back(EVar.get());
 | |
|   }
 | |
|   return getDerived().RebuildOMPCopyprivateClause(
 | |
|       Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Expression transformation
 | |
| //===----------------------------------------------------------------------===//
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (E->getQualifierLoc()) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   ValueDecl *ND
 | |
|     = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
 | |
|                                                          E->getDecl()));
 | |
|   if (!ND)
 | |
|     return ExprError();
 | |
| 
 | |
|   DeclarationNameInfo NameInfo = E->getNameInfo();
 | |
|   if (NameInfo.getName()) {
 | |
|     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
 | |
|     if (!NameInfo.getName())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       QualifierLoc == E->getQualifierLoc() &&
 | |
|       ND == E->getDecl() &&
 | |
|       NameInfo.getName() == E->getDecl()->getDeclName() &&
 | |
|       !E->hasExplicitTemplateArgs()) {
 | |
| 
 | |
|     // Mark it referenced in the new context regardless.
 | |
|     // FIXME: this is a bit instantiation-specific.
 | |
|     SemaRef.MarkDeclRefReferenced(E);
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
 | |
|   if (E->hasExplicitTemplateArgs()) {
 | |
|     TemplateArgs = &TransArgs;
 | |
|     TransArgs.setLAngleLoc(E->getLAngleLoc());
 | |
|     TransArgs.setRAngleLoc(E->getRAngleLoc());
 | |
|     if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
 | |
|                                                 E->getNumTemplateArgs(),
 | |
|                                                 TransArgs))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
 | |
|                                          TemplateArgs);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
 | |
|   if (FunctionDecl *FD = E->getDirectCallee())
 | |
|     SemaRef.MarkFunctionReferenced(E->getLocStart(), FD);
 | |
|   return SemaRef.MaybeBindToTemporary(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
 | |
|   ExprResult ControllingExpr =
 | |
|     getDerived().TransformExpr(E->getControllingExpr());
 | |
|   if (ControllingExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   SmallVector<Expr *, 4> AssocExprs;
 | |
|   SmallVector<TypeSourceInfo *, 4> AssocTypes;
 | |
|   for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
 | |
|     TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
 | |
|     if (TS) {
 | |
|       TypeSourceInfo *AssocType = getDerived().TransformType(TS);
 | |
|       if (!AssocType)
 | |
|         return ExprError();
 | |
|       AssocTypes.push_back(AssocType);
 | |
|     } else {
 | |
|       AssocTypes.push_back(nullptr);
 | |
|     }
 | |
| 
 | |
|     ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
 | |
|     if (AssocExpr.isInvalid())
 | |
|       return ExprError();
 | |
|     AssocExprs.push_back(AssocExpr.get());
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
 | |
|                                                   E->getDefaultLoc(),
 | |
|                                                   E->getRParenLoc(),
 | |
|                                                   ControllingExpr.get(),
 | |
|                                                   AssocTypes,
 | |
|                                                   AssocExprs);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
 | |
|                                        E->getRParen());
 | |
| }
 | |
| 
 | |
| /// \brief The operand of a unary address-of operator has special rules: it's
 | |
| /// allowed to refer to a non-static member of a class even if there's no 'this'
 | |
| /// object available.
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
 | |
|   if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
 | |
|     return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr);
 | |
|   else
 | |
|     return getDerived().TransformExpr(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
 | |
|   ExprResult SubExpr;
 | |
|   if (E->getOpcode() == UO_AddrOf)
 | |
|     SubExpr = TransformAddressOfOperand(E->getSubExpr());
 | |
|   else
 | |
|     SubExpr = TransformExpr(E->getSubExpr());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
 | |
|                                            E->getOpcode(),
 | |
|                                            SubExpr.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
 | |
|   // Transform the type.
 | |
|   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
 | |
|   if (!Type)
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform all of the components into components similar to what the
 | |
|   // parser uses.
 | |
|   // FIXME: It would be slightly more efficient in the non-dependent case to
 | |
|   // just map FieldDecls, rather than requiring the rebuilder to look for
 | |
|   // the fields again. However, __builtin_offsetof is rare enough in
 | |
|   // template code that we don't care.
 | |
|   bool ExprChanged = false;
 | |
|   typedef Sema::OffsetOfComponent Component;
 | |
|   typedef OffsetOfExpr::OffsetOfNode Node;
 | |
|   SmallVector<Component, 4> Components;
 | |
|   for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
 | |
|     const Node &ON = E->getComponent(I);
 | |
|     Component Comp;
 | |
|     Comp.isBrackets = true;
 | |
|     Comp.LocStart = ON.getSourceRange().getBegin();
 | |
|     Comp.LocEnd = ON.getSourceRange().getEnd();
 | |
|     switch (ON.getKind()) {
 | |
|     case Node::Array: {
 | |
|       Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
 | |
|       ExprResult Index = getDerived().TransformExpr(FromIndex);
 | |
|       if (Index.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       ExprChanged = ExprChanged || Index.get() != FromIndex;
 | |
|       Comp.isBrackets = true;
 | |
|       Comp.U.E = Index.get();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Node::Field:
 | |
|     case Node::Identifier:
 | |
|       Comp.isBrackets = false;
 | |
|       Comp.U.IdentInfo = ON.getFieldName();
 | |
|       if (!Comp.U.IdentInfo)
 | |
|         continue;
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case Node::Base:
 | |
|       // Will be recomputed during the rebuild.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Components.push_back(Comp);
 | |
|   }
 | |
| 
 | |
|   // If nothing changed, retain the existing expression.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Type == E->getTypeSourceInfo() &&
 | |
|       !ExprChanged)
 | |
|     return E;
 | |
| 
 | |
|   // Build a new offsetof expression.
 | |
|   return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
 | |
|                                           Components.data(), Components.size(),
 | |
|                                           E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
 | |
|   assert(getDerived().AlreadyTransformed(E->getType()) &&
 | |
|          "opaque value expression requires transformation");
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
 | |
|   // Rebuild the syntactic form.  The original syntactic form has
 | |
|   // opaque-value expressions in it, so strip those away and rebuild
 | |
|   // the result.  This is a really awful way of doing this, but the
 | |
|   // better solution (rebuilding the semantic expressions and
 | |
|   // rebinding OVEs as necessary) doesn't work; we'd need
 | |
|   // TreeTransform to not strip away implicit conversions.
 | |
|   Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
 | |
|   ExprResult result = getDerived().TransformExpr(newSyntacticForm);
 | |
|   if (result.isInvalid()) return ExprError();
 | |
| 
 | |
|   // If that gives us a pseudo-object result back, the pseudo-object
 | |
|   // expression must have been an lvalue-to-rvalue conversion which we
 | |
|   // should reapply.
 | |
|   if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
 | |
|     result = SemaRef.checkPseudoObjectRValue(result.get());
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
 | |
|                                                 UnaryExprOrTypeTraitExpr *E) {
 | |
|   if (E->isArgumentType()) {
 | |
|     TypeSourceInfo *OldT = E->getArgumentTypeInfo();
 | |
| 
 | |
|     TypeSourceInfo *NewT = getDerived().TransformType(OldT);
 | |
|     if (!NewT)
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() && OldT == NewT)
 | |
|       return E;
 | |
| 
 | |
|     return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
 | |
|                                                     E->getKind(),
 | |
|                                                     E->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   // C++0x [expr.sizeof]p1:
 | |
|   //   The operand is either an expression, which is an unevaluated operand
 | |
|   //   [...]
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
 | |
|                                                Sema::ReuseLambdaContextDecl);
 | |
| 
 | |
|   // Try to recover if we have something like sizeof(T::X) where X is a type.
 | |
|   // Notably, there must be *exactly* one set of parens if X is a type.
 | |
|   TypeSourceInfo *RecoveryTSI = nullptr;
 | |
|   ExprResult SubExpr;
 | |
|   auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
 | |
|   if (auto *DRE =
 | |
|           PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
 | |
|     SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
 | |
|         PE, DRE, false, &RecoveryTSI);
 | |
|   else
 | |
|     SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
 | |
| 
 | |
|   if (RecoveryTSI) {
 | |
|     return getDerived().RebuildUnaryExprOrTypeTrait(
 | |
|         RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
 | |
|   } else if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
 | |
|                                                   E->getOperatorLoc(),
 | |
|                                                   E->getKind(),
 | |
|                                                   E->getSourceRange());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
 | |
|   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
 | |
|   if (LHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
 | |
|   if (RHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       LHS.get() == E->getLHS() &&
 | |
|       RHS.get() == E->getRHS())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildArraySubscriptExpr(LHS.get(),
 | |
|                                            /*FIXME:*/E->getLHS()->getLocStart(),
 | |
|                                                 RHS.get(),
 | |
|                                                 E->getRBracketLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
 | |
|   // Transform the callee.
 | |
|   ExprResult Callee = getDerived().TransformExpr(E->getCallee());
 | |
|   if (Callee.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform arguments.
 | |
|   bool ArgChanged = false;
 | |
|   SmallVector<Expr*, 8> Args;
 | |
|   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
 | |
|                                   &ArgChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Callee.get() == E->getCallee() &&
 | |
|       !ArgChanged)
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   // FIXME: Wrong source location information for the '('.
 | |
|   SourceLocation FakeLParenLoc
 | |
|     = ((Expr *)Callee.get())->getSourceRange().getBegin();
 | |
|   return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
 | |
|                                       Args,
 | |
|                                       E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBase());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (E->hasQualifier()) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
 | |
| 
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
|   }
 | |
|   SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
 | |
| 
 | |
|   ValueDecl *Member
 | |
|     = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
 | |
|                                                          E->getMemberDecl()));
 | |
|   if (!Member)
 | |
|     return ExprError();
 | |
| 
 | |
|   NamedDecl *FoundDecl = E->getFoundDecl();
 | |
|   if (FoundDecl == E->getMemberDecl()) {
 | |
|     FoundDecl = Member;
 | |
|   } else {
 | |
|     FoundDecl = cast_or_null<NamedDecl>(
 | |
|                    getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
 | |
|     if (!FoundDecl)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Base.get() == E->getBase() &&
 | |
|       QualifierLoc == E->getQualifierLoc() &&
 | |
|       Member == E->getMemberDecl() &&
 | |
|       FoundDecl == E->getFoundDecl() &&
 | |
|       !E->hasExplicitTemplateArgs()) {
 | |
| 
 | |
|     // Mark it referenced in the new context regardless.
 | |
|     // FIXME: this is a bit instantiation-specific.
 | |
|     SemaRef.MarkMemberReferenced(E);
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo TransArgs;
 | |
|   if (E->hasExplicitTemplateArgs()) {
 | |
|     TransArgs.setLAngleLoc(E->getLAngleLoc());
 | |
|     TransArgs.setRAngleLoc(E->getRAngleLoc());
 | |
|     if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
 | |
|                                                 E->getNumTemplateArgs(),
 | |
|                                                 TransArgs))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // FIXME: Bogus source location for the operator
 | |
|   SourceLocation FakeOperatorLoc =
 | |
|       SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
 | |
| 
 | |
|   // FIXME: to do this check properly, we will need to preserve the
 | |
|   // first-qualifier-in-scope here, just in case we had a dependent
 | |
|   // base (and therefore couldn't do the check) and a
 | |
|   // nested-name-qualifier (and therefore could do the lookup).
 | |
|   NamedDecl *FirstQualifierInScope = nullptr;
 | |
| 
 | |
|   return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
 | |
|                                         E->isArrow(),
 | |
|                                         QualifierLoc,
 | |
|                                         TemplateKWLoc,
 | |
|                                         E->getMemberNameInfo(),
 | |
|                                         Member,
 | |
|                                         FoundDecl,
 | |
|                                         (E->hasExplicitTemplateArgs()
 | |
|                                            ? &TransArgs : nullptr),
 | |
|                                         FirstQualifierInScope);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
 | |
|   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
 | |
|   if (LHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
 | |
|   if (RHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       LHS.get() == E->getLHS() &&
 | |
|       RHS.get() == E->getRHS())
 | |
|     return E;
 | |
| 
 | |
|   Sema::FPContractStateRAII FPContractState(getSema());
 | |
|   getSema().FPFeatures.fp_contract = E->isFPContractable();
 | |
| 
 | |
|   return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
 | |
|                                             LHS.get(), RHS.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCompoundAssignOperator(
 | |
|                                                       CompoundAssignOperator *E) {
 | |
|   return getDerived().TransformBinaryOperator(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult TreeTransform<Derived>::
 | |
| TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
 | |
|   // Just rebuild the common and RHS expressions and see whether we
 | |
|   // get any changes.
 | |
| 
 | |
|   ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
 | |
|   if (commonExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
 | |
|   if (rhs.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       commonExpr.get() == e->getCommon() &&
 | |
|       rhs.get() == e->getFalseExpr())
 | |
|     return e;
 | |
| 
 | |
|   return getDerived().RebuildConditionalOperator(commonExpr.get(),
 | |
|                                                  e->getQuestionLoc(),
 | |
|                                                  nullptr,
 | |
|                                                  e->getColonLoc(),
 | |
|                                                  rhs.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
 | |
|   ExprResult Cond = getDerived().TransformExpr(E->getCond());
 | |
|   if (Cond.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
 | |
|   if (LHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
 | |
|   if (RHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Cond.get() == E->getCond() &&
 | |
|       LHS.get() == E->getLHS() &&
 | |
|       RHS.get() == E->getRHS())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildConditionalOperator(Cond.get(),
 | |
|                                                  E->getQuestionLoc(),
 | |
|                                                  LHS.get(),
 | |
|                                                  E->getColonLoc(),
 | |
|                                                  RHS.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
 | |
|   // Implicit casts are eliminated during transformation, since they
 | |
|   // will be recomputed by semantic analysis after transformation.
 | |
|   return getDerived().TransformExpr(E->getSubExprAsWritten());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
 | |
|   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
 | |
|   if (!Type)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult SubExpr
 | |
|     = getDerived().TransformExpr(E->getSubExprAsWritten());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Type == E->getTypeInfoAsWritten() &&
 | |
|       SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
 | |
|                                             Type,
 | |
|                                             E->getRParenLoc(),
 | |
|                                             SubExpr.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | |
|   TypeSourceInfo *OldT = E->getTypeSourceInfo();
 | |
|   TypeSourceInfo *NewT = getDerived().TransformType(OldT);
 | |
|   if (!NewT)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult Init = getDerived().TransformExpr(E->getInitializer());
 | |
|   if (Init.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       OldT == NewT &&
 | |
|       Init.get() == E->getInitializer())
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   // Note: the expression type doesn't necessarily match the
 | |
|   // type-as-written, but that's okay, because it should always be
 | |
|   // derivable from the initializer.
 | |
| 
 | |
|   return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
 | |
|                                    /*FIXME:*/E->getInitializer()->getLocEnd(),
 | |
|                                                  Init.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBase());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Base.get() == E->getBase())
 | |
|     return E;
 | |
| 
 | |
|   // FIXME: Bad source location
 | |
|   SourceLocation FakeOperatorLoc =
 | |
|       SemaRef.getLocForEndOfToken(E->getBase()->getLocEnd());
 | |
|   return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
 | |
|                                                   E->getAccessorLoc(),
 | |
|                                                   E->getAccessor());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
 | |
|   bool InitChanged = false;
 | |
| 
 | |
|   SmallVector<Expr*, 4> Inits;
 | |
|   if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
 | |
|                                   Inits, &InitChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !InitChanged)
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
 | |
|                                       E->getRBraceLoc(), E->getType());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
 | |
|   Designation Desig;
 | |
| 
 | |
|   // transform the initializer value
 | |
|   ExprResult Init = getDerived().TransformExpr(E->getInit());
 | |
|   if (Init.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // transform the designators.
 | |
|   SmallVector<Expr*, 4> ArrayExprs;
 | |
|   bool ExprChanged = false;
 | |
|   for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
 | |
|                                              DEnd = E->designators_end();
 | |
|        D != DEnd; ++D) {
 | |
|     if (D->isFieldDesignator()) {
 | |
|       Desig.AddDesignator(Designator::getField(D->getFieldName(),
 | |
|                                                D->getDotLoc(),
 | |
|                                                D->getFieldLoc()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (D->isArrayDesignator()) {
 | |
|       ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
 | |
|       if (Index.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       Desig.AddDesignator(Designator::getArray(Index.get(),
 | |
|                                                D->getLBracketLoc()));
 | |
| 
 | |
|       ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
 | |
|       ArrayExprs.push_back(Index.get());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(D->isArrayRangeDesignator() && "New kind of designator?");
 | |
|     ExprResult Start
 | |
|       = getDerived().TransformExpr(E->getArrayRangeStart(*D));
 | |
|     if (Start.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
 | |
|     if (End.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     Desig.AddDesignator(Designator::getArrayRange(Start.get(),
 | |
|                                                   End.get(),
 | |
|                                                   D->getLBracketLoc(),
 | |
|                                                   D->getEllipsisLoc()));
 | |
| 
 | |
|     ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
 | |
|       End.get() != E->getArrayRangeEnd(*D);
 | |
| 
 | |
|     ArrayExprs.push_back(Start.get());
 | |
|     ArrayExprs.push_back(End.get());
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Init.get() == E->getInit() &&
 | |
|       !ExprChanged)
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
 | |
|                                                 E->getEqualOrColonLoc(),
 | |
|                                                 E->usesGNUSyntax(), Init.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformImplicitValueInitExpr(
 | |
|                                                      ImplicitValueInitExpr *E) {
 | |
|   TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
 | |
| 
 | |
|   // FIXME: Will we ever have proper type location here? Will we actually
 | |
|   // need to transform the type?
 | |
|   QualType T = getDerived().TransformType(E->getType());
 | |
|   if (T.isNull())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       T == E->getType())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildImplicitValueInitExpr(T);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
 | |
|   TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
 | |
|   if (!TInfo)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       TInfo == E->getWrittenTypeInfo() &&
 | |
|       SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
 | |
|                                        TInfo, E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 4> Inits;
 | |
|   if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
 | |
|                      &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   return getDerived().RebuildParenListExpr(E->getLParenLoc(),
 | |
|                                            Inits,
 | |
|                                            E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| /// \brief Transform an address-of-label expression.
 | |
| ///
 | |
| /// By default, the transformation of an address-of-label expression always
 | |
| /// rebuilds the expression, so that the label identifier can be resolved to
 | |
| /// the corresponding label statement by semantic analysis.
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
 | |
|   Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
 | |
|                                         E->getLabel());
 | |
|   if (!LD)
 | |
|     return ExprError();
 | |
| 
 | |
|   return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
 | |
|                                            cast<LabelDecl>(LD));
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
 | |
|   SemaRef.ActOnStartStmtExpr();
 | |
|   StmtResult SubStmt
 | |
|     = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
 | |
|   if (SubStmt.isInvalid()) {
 | |
|     SemaRef.ActOnStmtExprError();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       SubStmt.get() == E->getSubStmt()) {
 | |
|     // Calling this an 'error' is unintuitive, but it does the right thing.
 | |
|     SemaRef.ActOnStmtExprError();
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildStmtExpr(E->getLParenLoc(),
 | |
|                                       SubStmt.get(),
 | |
|                                       E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
 | |
|   ExprResult Cond = getDerived().TransformExpr(E->getCond());
 | |
|   if (Cond.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
 | |
|   if (LHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
 | |
|   if (RHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Cond.get() == E->getCond() &&
 | |
|       LHS.get() == E->getLHS() &&
 | |
|       RHS.get() == E->getRHS())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
 | |
|                                         Cond.get(), LHS.get(), RHS.get(),
 | |
|                                         E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
 | |
|   switch (E->getOperator()) {
 | |
|   case OO_New:
 | |
|   case OO_Delete:
 | |
|   case OO_Array_New:
 | |
|   case OO_Array_Delete:
 | |
|     llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
 | |
| 
 | |
|   case OO_Call: {
 | |
|     // This is a call to an object's operator().
 | |
|     assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
 | |
| 
 | |
|     // Transform the object itself.
 | |
|     ExprResult Object = getDerived().TransformExpr(E->getArg(0));
 | |
|     if (Object.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // FIXME: Poor location information
 | |
|     SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
 | |
|         static_cast<Expr *>(Object.get())->getLocEnd());
 | |
| 
 | |
|     // Transform the call arguments.
 | |
|     SmallVector<Expr*, 8> Args;
 | |
|     if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
 | |
|                                     Args))
 | |
|       return ExprError();
 | |
| 
 | |
|     return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
 | |
|                                         Args,
 | |
|                                         E->getLocEnd());
 | |
|   }
 | |
| 
 | |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
 | |
|   case OO_##Name:
 | |
| #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
 | |
| #include "clang/Basic/OperatorKinds.def"
 | |
|   case OO_Subscript:
 | |
|     // Handled below.
 | |
|     break;
 | |
| 
 | |
|   case OO_Conditional:
 | |
|     llvm_unreachable("conditional operator is not actually overloadable");
 | |
| 
 | |
|   case OO_None:
 | |
|   case NUM_OVERLOADED_OPERATORS:
 | |
|     llvm_unreachable("not an overloaded operator?");
 | |
|   }
 | |
| 
 | |
|   ExprResult Callee = getDerived().TransformExpr(E->getCallee());
 | |
|   if (Callee.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult First;
 | |
|   if (E->getOperator() == OO_Amp)
 | |
|     First = getDerived().TransformAddressOfOperand(E->getArg(0));
 | |
|   else
 | |
|     First = getDerived().TransformExpr(E->getArg(0));
 | |
|   if (First.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult Second;
 | |
|   if (E->getNumArgs() == 2) {
 | |
|     Second = getDerived().TransformExpr(E->getArg(1));
 | |
|     if (Second.isInvalid())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Callee.get() == E->getCallee() &&
 | |
|       First.get() == E->getArg(0) &&
 | |
|       (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   Sema::FPContractStateRAII FPContractState(getSema());
 | |
|   getSema().FPFeatures.fp_contract = E->isFPContractable();
 | |
| 
 | |
|   return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
 | |
|                                                  E->getOperatorLoc(),
 | |
|                                                  Callee.get(),
 | |
|                                                  First.get(),
 | |
|                                                  Second.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
 | |
|   return getDerived().TransformCallExpr(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
 | |
|   // Transform the callee.
 | |
|   ExprResult Callee = getDerived().TransformExpr(E->getCallee());
 | |
|   if (Callee.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform exec config.
 | |
|   ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
 | |
|   if (EC.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform arguments.
 | |
|   bool ArgChanged = false;
 | |
|   SmallVector<Expr*, 8> Args;
 | |
|   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
 | |
|                                   &ArgChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Callee.get() == E->getCallee() &&
 | |
|       !ArgChanged)
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   // FIXME: Wrong source location information for the '('.
 | |
|   SourceLocation FakeLParenLoc
 | |
|     = ((Expr *)Callee.get())->getSourceRange().getBegin();
 | |
|   return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
 | |
|                                       Args,
 | |
|                                       E->getRParenLoc(), EC.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
 | |
|   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
 | |
|   if (!Type)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult SubExpr
 | |
|     = getDerived().TransformExpr(E->getSubExprAsWritten());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Type == E->getTypeInfoAsWritten() &&
 | |
|       SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
|   return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
 | |
|                                               E->getStmtClass(),
 | |
|                                               E->getAngleBrackets().getBegin(),
 | |
|                                               Type,
 | |
|                                               E->getAngleBrackets().getEnd(),
 | |
|                                               // FIXME. this should be '(' location
 | |
|                                               E->getAngleBrackets().getEnd(),
 | |
|                                               SubExpr.get(),
 | |
|                                               E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
 | |
|   return getDerived().TransformCXXNamedCastExpr(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
 | |
|   return getDerived().TransformCXXNamedCastExpr(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
 | |
|                                                       CXXReinterpretCastExpr *E) {
 | |
|   return getDerived().TransformCXXNamedCastExpr(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
 | |
|   return getDerived().TransformCXXNamedCastExpr(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
 | |
|                                                      CXXFunctionalCastExpr *E) {
 | |
|   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
 | |
|   if (!Type)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult SubExpr
 | |
|     = getDerived().TransformExpr(E->getSubExprAsWritten());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Type == E->getTypeInfoAsWritten() &&
 | |
|       SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXFunctionalCastExpr(Type,
 | |
|                                                    E->getLParenLoc(),
 | |
|                                                    SubExpr.get(),
 | |
|                                                    E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
 | |
|   if (E->isTypeOperand()) {
 | |
|     TypeSourceInfo *TInfo
 | |
|       = getDerived().TransformType(E->getTypeOperandSourceInfo());
 | |
|     if (!TInfo)
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         TInfo == E->getTypeOperandSourceInfo())
 | |
|       return E;
 | |
| 
 | |
|     return getDerived().RebuildCXXTypeidExpr(E->getType(),
 | |
|                                              E->getLocStart(),
 | |
|                                              TInfo,
 | |
|                                              E->getLocEnd());
 | |
|   }
 | |
| 
 | |
|   // We don't know whether the subexpression is potentially evaluated until
 | |
|   // after we perform semantic analysis.  We speculatively assume it is
 | |
|   // unevaluated; it will get fixed later if the subexpression is in fact
 | |
|   // potentially evaluated.
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
 | |
|                                                Sema::ReuseLambdaContextDecl);
 | |
| 
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       SubExpr.get() == E->getExprOperand())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXTypeidExpr(E->getType(),
 | |
|                                            E->getLocStart(),
 | |
|                                            SubExpr.get(),
 | |
|                                            E->getLocEnd());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
 | |
|   if (E->isTypeOperand()) {
 | |
|     TypeSourceInfo *TInfo
 | |
|       = getDerived().TransformType(E->getTypeOperandSourceInfo());
 | |
|     if (!TInfo)
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         TInfo == E->getTypeOperandSourceInfo())
 | |
|       return E;
 | |
| 
 | |
|     return getDerived().RebuildCXXUuidofExpr(E->getType(),
 | |
|                                              E->getLocStart(),
 | |
|                                              TInfo,
 | |
|                                              E->getLocEnd());
 | |
|   }
 | |
| 
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
 | |
| 
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       SubExpr.get() == E->getExprOperand())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXUuidofExpr(E->getType(),
 | |
|                                            E->getLocStart(),
 | |
|                                            SubExpr.get(),
 | |
|                                            E->getLocEnd());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
 | |
|                                                      CXXNullPtrLiteralExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
 | |
|   QualType T = getSema().getCurrentThisType();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && T == E->getType()) {
 | |
|     // Make sure that we capture 'this'.
 | |
|     getSema().CheckCXXThisCapture(E->getLocStart());
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
 | |
|                                           E->isThrownVariableInScope());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
 | |
|   ParmVarDecl *Param
 | |
|     = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                            E->getParam()));
 | |
|   if (!Param)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Param == E->getParam())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
 | |
|   FieldDecl *Field
 | |
|     = cast_or_null<FieldDecl>(getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                          E->getField()));
 | |
|   if (!Field)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && Field == E->getField())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
 | |
|                                                     CXXScalarValueInitExpr *E) {
 | |
|   TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
 | |
|   if (!T)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       T == E->getTypeSourceInfo())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXScalarValueInitExpr(T,
 | |
|                                           /*FIXME:*/T->getTypeLoc().getEndLoc(),
 | |
|                                                     E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
 | |
|   // Transform the type that we're allocating
 | |
|   TypeSourceInfo *AllocTypeInfo
 | |
|     = getDerived().TransformType(E->getAllocatedTypeSourceInfo());
 | |
|   if (!AllocTypeInfo)
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform the size of the array we're allocating (if any).
 | |
|   ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
 | |
|   if (ArraySize.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform the placement arguments (if any).
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 8> PlacementArgs;
 | |
|   if (getDerived().TransformExprs(E->getPlacementArgs(),
 | |
|                                   E->getNumPlacementArgs(), true,
 | |
|                                   PlacementArgs, &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform the initializer (if any).
 | |
|   Expr *OldInit = E->getInitializer();
 | |
|   ExprResult NewInit;
 | |
|   if (OldInit)
 | |
|     NewInit = getDerived().TransformExpr(OldInit);
 | |
|   if (NewInit.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform new operator and delete operator.
 | |
|   FunctionDecl *OperatorNew = nullptr;
 | |
|   if (E->getOperatorNew()) {
 | |
|     OperatorNew = cast_or_null<FunctionDecl>(
 | |
|                                  getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                          E->getOperatorNew()));
 | |
|     if (!OperatorNew)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *OperatorDelete = nullptr;
 | |
|   if (E->getOperatorDelete()) {
 | |
|     OperatorDelete = cast_or_null<FunctionDecl>(
 | |
|                                    getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                        E->getOperatorDelete()));
 | |
|     if (!OperatorDelete)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
 | |
|       ArraySize.get() == E->getArraySize() &&
 | |
|       NewInit.get() == OldInit &&
 | |
|       OperatorNew == E->getOperatorNew() &&
 | |
|       OperatorDelete == E->getOperatorDelete() &&
 | |
|       !ArgumentChanged) {
 | |
|     // Mark any declarations we need as referenced.
 | |
|     // FIXME: instantiation-specific.
 | |
|     if (OperatorNew)
 | |
|       SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew);
 | |
|     if (OperatorDelete)
 | |
|       SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
 | |
| 
 | |
|     if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
 | |
|       QualType ElementType
 | |
|         = SemaRef.Context.getBaseElementType(E->getAllocatedType());
 | |
|       if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
 | |
|         CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
 | |
|         if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
 | |
|           SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   QualType AllocType = AllocTypeInfo->getType();
 | |
|   if (!ArraySize.get()) {
 | |
|     // If no array size was specified, but the new expression was
 | |
|     // instantiated with an array type (e.g., "new T" where T is
 | |
|     // instantiated with "int[4]"), extract the outer bound from the
 | |
|     // array type as our array size. We do this with constant and
 | |
|     // dependently-sized array types.
 | |
|     const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
 | |
|     if (!ArrayT) {
 | |
|       // Do nothing
 | |
|     } else if (const ConstantArrayType *ConsArrayT
 | |
|                                      = dyn_cast<ConstantArrayType>(ArrayT)) {
 | |
|       ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
 | |
|                                          SemaRef.Context.getSizeType(),
 | |
|                                          /*FIXME:*/ E->getLocStart());
 | |
|       AllocType = ConsArrayT->getElementType();
 | |
|     } else if (const DependentSizedArrayType *DepArrayT
 | |
|                               = dyn_cast<DependentSizedArrayType>(ArrayT)) {
 | |
|       if (DepArrayT->getSizeExpr()) {
 | |
|         ArraySize = DepArrayT->getSizeExpr();
 | |
|         AllocType = DepArrayT->getElementType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildCXXNewExpr(E->getLocStart(),
 | |
|                                         E->isGlobalNew(),
 | |
|                                         /*FIXME:*/E->getLocStart(),
 | |
|                                         PlacementArgs,
 | |
|                                         /*FIXME:*/E->getLocStart(),
 | |
|                                         E->getTypeIdParens(),
 | |
|                                         AllocType,
 | |
|                                         AllocTypeInfo,
 | |
|                                         ArraySize.get(),
 | |
|                                         E->getDirectInitRange(),
 | |
|                                         NewInit.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
 | |
|   ExprResult Operand = getDerived().TransformExpr(E->getArgument());
 | |
|   if (Operand.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform the delete operator, if known.
 | |
|   FunctionDecl *OperatorDelete = nullptr;
 | |
|   if (E->getOperatorDelete()) {
 | |
|     OperatorDelete = cast_or_null<FunctionDecl>(
 | |
|                                    getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                        E->getOperatorDelete()));
 | |
|     if (!OperatorDelete)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Operand.get() == E->getArgument() &&
 | |
|       OperatorDelete == E->getOperatorDelete()) {
 | |
|     // Mark any declarations we need as referenced.
 | |
|     // FIXME: instantiation-specific.
 | |
|     if (OperatorDelete)
 | |
|       SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
 | |
| 
 | |
|     if (!E->getArgument()->isTypeDependent()) {
 | |
|       QualType Destroyed = SemaRef.Context.getBaseElementType(
 | |
|                                                          E->getDestroyedType());
 | |
|       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
 | |
|         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
 | |
|         SemaRef.MarkFunctionReferenced(E->getLocStart(),
 | |
|                                        SemaRef.LookupDestructor(Record));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
 | |
|                                            E->isGlobalDelete(),
 | |
|                                            E->isArrayForm(),
 | |
|                                            Operand.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
 | |
|                                                      CXXPseudoDestructorExpr *E) {
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBase());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   ParsedType ObjectTypePtr;
 | |
|   bool MayBePseudoDestructor = false;
 | |
|   Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
 | |
|                                               E->getOperatorLoc(),
 | |
|                                         E->isArrow()? tok::arrow : tok::period,
 | |
|                                               ObjectTypePtr,
 | |
|                                               MayBePseudoDestructor);
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType ObjectType = ObjectTypePtr.get();
 | |
|   NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
 | |
|   if (QualifierLoc) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
|   }
 | |
|   CXXScopeSpec SS;
 | |
|   SS.Adopt(QualifierLoc);
 | |
| 
 | |
|   PseudoDestructorTypeStorage Destroyed;
 | |
|   if (E->getDestroyedTypeInfo()) {
 | |
|     TypeSourceInfo *DestroyedTypeInfo
 | |
|       = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
 | |
|                                                 ObjectType, nullptr, SS);
 | |
|     if (!DestroyedTypeInfo)
 | |
|       return ExprError();
 | |
|     Destroyed = DestroyedTypeInfo;
 | |
|   } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
 | |
|     // We aren't likely to be able to resolve the identifier down to a type
 | |
|     // now anyway, so just retain the identifier.
 | |
|     Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
 | |
|                                             E->getDestroyedTypeLoc());
 | |
|   } else {
 | |
|     // Look for a destructor known with the given name.
 | |
|     ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
 | |
|                                               *E->getDestroyedTypeIdentifier(),
 | |
|                                                 E->getDestroyedTypeLoc(),
 | |
|                                                 /*Scope=*/nullptr,
 | |
|                                                 SS, ObjectTypePtr,
 | |
|                                                 false);
 | |
|     if (!T)
 | |
|       return ExprError();
 | |
| 
 | |
|     Destroyed
 | |
|       = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
 | |
|                                                  E->getDestroyedTypeLoc());
 | |
|   }
 | |
| 
 | |
|   TypeSourceInfo *ScopeTypeInfo = nullptr;
 | |
|   if (E->getScopeTypeInfo()) {
 | |
|     CXXScopeSpec EmptySS;
 | |
|     ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
 | |
|                       E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
 | |
|     if (!ScopeTypeInfo)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
 | |
|                                                      E->getOperatorLoc(),
 | |
|                                                      E->isArrow(),
 | |
|                                                      SS,
 | |
|                                                      ScopeTypeInfo,
 | |
|                                                      E->getColonColonLoc(),
 | |
|                                                      E->getTildeLoc(),
 | |
|                                                      Destroyed);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformUnresolvedLookupExpr(
 | |
|                                                   UnresolvedLookupExpr *Old) {
 | |
|   LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
 | |
|                  Sema::LookupOrdinaryName);
 | |
| 
 | |
|   // Transform all the decls.
 | |
|   for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
 | |
|          E = Old->decls_end(); I != E; ++I) {
 | |
|     NamedDecl *InstD = static_cast<NamedDecl*>(
 | |
|                                  getDerived().TransformDecl(Old->getNameLoc(),
 | |
|                                                             *I));
 | |
|     if (!InstD) {
 | |
|       // Silently ignore these if a UsingShadowDecl instantiated to nothing.
 | |
|       // This can happen because of dependent hiding.
 | |
|       if (isa<UsingShadowDecl>(*I))
 | |
|         continue;
 | |
|       else {
 | |
|         R.clear();
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Expand using declarations.
 | |
|     if (isa<UsingDecl>(InstD)) {
 | |
|       UsingDecl *UD = cast<UsingDecl>(InstD);
 | |
|       for (auto *I : UD->shadows())
 | |
|         R.addDecl(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     R.addDecl(InstD);
 | |
|   }
 | |
| 
 | |
|   // Resolve a kind, but don't do any further analysis.  If it's
 | |
|   // ambiguous, the callee needs to deal with it.
 | |
|   R.resolveKind();
 | |
| 
 | |
|   // Rebuild the nested-name qualifier, if present.
 | |
|   CXXScopeSpec SS;
 | |
|   if (Old->getQualifierLoc()) {
 | |
|     NestedNameSpecifierLoc QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
| 
 | |
|     SS.Adopt(QualifierLoc);
 | |
|   }
 | |
| 
 | |
|   if (Old->getNamingClass()) {
 | |
|     CXXRecordDecl *NamingClass
 | |
|       = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
 | |
|                                                             Old->getNameLoc(),
 | |
|                                                         Old->getNamingClass()));
 | |
|     if (!NamingClass) {
 | |
|       R.clear();
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     R.setNamingClass(NamingClass);
 | |
|   }
 | |
| 
 | |
|   SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
 | |
| 
 | |
|   // If we have neither explicit template arguments, nor the template keyword,
 | |
|   // it's a normal declaration name.
 | |
|   if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
 | |
|     return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
 | |
| 
 | |
|   // If we have template arguments, rebuild them, then rebuild the
 | |
|   // templateid expression.
 | |
|   TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
 | |
|   if (Old->hasExplicitTemplateArgs() &&
 | |
|       getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
 | |
|                                               Old->getNumTemplateArgs(),
 | |
|                                               TransArgs)) {
 | |
|     R.clear();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
 | |
|                                             Old->requiresADL(), &TransArgs);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
 | |
|   bool ArgChanged = false;
 | |
|   SmallVector<TypeSourceInfo *, 4> Args;
 | |
|   for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
 | |
|     TypeSourceInfo *From = E->getArg(I);
 | |
|     TypeLoc FromTL = From->getTypeLoc();
 | |
|     if (!FromTL.getAs<PackExpansionTypeLoc>()) {
 | |
|       TypeLocBuilder TLB;
 | |
|       TLB.reserve(FromTL.getFullDataSize());
 | |
|       QualType To = getDerived().TransformType(TLB, FromTL);
 | |
|       if (To.isNull())
 | |
|         return ExprError();
 | |
| 
 | |
|       if (To == From->getType())
 | |
|         Args.push_back(From);
 | |
|       else {
 | |
|         Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
 | |
|         ArgChanged = true;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ArgChanged = true;
 | |
| 
 | |
|     // We have a pack expansion. Instantiate it.
 | |
|     PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
 | |
|     TypeLoc PatternTL = ExpansionTL.getPatternLoc();
 | |
|     SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|     SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
 | |
| 
 | |
|     // Determine whether the set of unexpanded parameter packs can and should
 | |
|     // be expanded.
 | |
|     bool Expand = true;
 | |
|     bool RetainExpansion = false;
 | |
|     Optional<unsigned> OrigNumExpansions =
 | |
|         ExpansionTL.getTypePtr()->getNumExpansions();
 | |
|     Optional<unsigned> NumExpansions = OrigNumExpansions;
 | |
|     if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
 | |
|                                              PatternTL.getSourceRange(),
 | |
|                                              Unexpanded,
 | |
|                                              Expand, RetainExpansion,
 | |
|                                              NumExpansions))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!Expand) {
 | |
|       // The transform has determined that we should perform a simple
 | |
|       // transformation on the pack expansion, producing another pack
 | |
|       // expansion.
 | |
|       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
 | |
| 
 | |
|       TypeLocBuilder TLB;
 | |
|       TLB.reserve(From->getTypeLoc().getFullDataSize());
 | |
| 
 | |
|       QualType To = getDerived().TransformType(TLB, PatternTL);
 | |
|       if (To.isNull())
 | |
|         return ExprError();
 | |
| 
 | |
|       To = getDerived().RebuildPackExpansionType(To,
 | |
|                                                  PatternTL.getSourceRange(),
 | |
|                                                  ExpansionTL.getEllipsisLoc(),
 | |
|                                                  NumExpansions);
 | |
|       if (To.isNull())
 | |
|         return ExprError();
 | |
| 
 | |
|       PackExpansionTypeLoc ToExpansionTL
 | |
|         = TLB.push<PackExpansionTypeLoc>(To);
 | |
|       ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
 | |
|       Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Expand the pack expansion by substituting for each argument in the
 | |
|     // pack(s).
 | |
|     for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
 | |
|       TypeLocBuilder TLB;
 | |
|       TLB.reserve(PatternTL.getFullDataSize());
 | |
|       QualType To = getDerived().TransformType(TLB, PatternTL);
 | |
|       if (To.isNull())
 | |
|         return ExprError();
 | |
| 
 | |
|       if (To->containsUnexpandedParameterPack()) {
 | |
|         To = getDerived().RebuildPackExpansionType(To,
 | |
|                                                    PatternTL.getSourceRange(),
 | |
|                                                    ExpansionTL.getEllipsisLoc(),
 | |
|                                                    NumExpansions);
 | |
|         if (To.isNull())
 | |
|           return ExprError();
 | |
| 
 | |
|         PackExpansionTypeLoc ToExpansionTL
 | |
|           = TLB.push<PackExpansionTypeLoc>(To);
 | |
|         ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
 | |
|       }
 | |
| 
 | |
|       Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
 | |
|     }
 | |
| 
 | |
|     if (!RetainExpansion)
 | |
|       continue;
 | |
| 
 | |
|     // If we're supposed to retain a pack expansion, do so by temporarily
 | |
|     // forgetting the partially-substituted parameter pack.
 | |
|     ForgetPartiallySubstitutedPackRAII Forget(getDerived());
 | |
| 
 | |
|     TypeLocBuilder TLB;
 | |
|     TLB.reserve(From->getTypeLoc().getFullDataSize());
 | |
| 
 | |
|     QualType To = getDerived().TransformType(TLB, PatternTL);
 | |
|     if (To.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     To = getDerived().RebuildPackExpansionType(To,
 | |
|                                                PatternTL.getSourceRange(),
 | |
|                                                ExpansionTL.getEllipsisLoc(),
 | |
|                                                NumExpansions);
 | |
|     if (To.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     PackExpansionTypeLoc ToExpansionTL
 | |
|       = TLB.push<PackExpansionTypeLoc>(To);
 | |
|     ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
 | |
|     Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !ArgChanged)
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildTypeTrait(E->getTrait(),
 | |
|                                        E->getLocStart(),
 | |
|                                        Args,
 | |
|                                        E->getLocEnd());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
 | |
|   TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
 | |
|   if (!T)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       T == E->getQueriedTypeSourceInfo())
 | |
|     return E;
 | |
| 
 | |
|   ExprResult SubExpr;
 | |
|   {
 | |
|     EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
 | |
|     SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
 | |
|     if (SubExpr.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
 | |
|       return E;
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildArrayTypeTrait(E->getTrait(),
 | |
|                                             E->getLocStart(),
 | |
|                                             T,
 | |
|                                             SubExpr.get(),
 | |
|                                             E->getLocEnd());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
 | |
|   ExprResult SubExpr;
 | |
|   {
 | |
|     EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
 | |
|     SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
 | |
|     if (SubExpr.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
 | |
|       return E;
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildExpressionTrait(
 | |
|       E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
 | |
|     ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
 | |
|     TypeSourceInfo **RecoveryTSI) {
 | |
|   ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
 | |
|       DRE, AddrTaken, RecoveryTSI);
 | |
| 
 | |
|   // Propagate both errors and recovered types, which return ExprEmpty.
 | |
|   if (!NewDRE.isUsable())
 | |
|     return NewDRE;
 | |
| 
 | |
|   // We got an expr, wrap it up in parens.
 | |
|   if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
 | |
|     return PE;
 | |
|   return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
 | |
|                                        PE->getRParen());
 | |
| }
 | |
| 
 | |
| template <typename Derived>
 | |
| ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
 | |
|     DependentScopeDeclRefExpr *E) {
 | |
|   return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
 | |
|                                             nullptr);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
 | |
|                                                DependentScopeDeclRefExpr *E,
 | |
|                                                bool IsAddressOfOperand,
 | |
|                                                TypeSourceInfo **RecoveryTSI) {
 | |
|   assert(E->getQualifierLoc());
 | |
|   NestedNameSpecifierLoc QualifierLoc
 | |
|   = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
 | |
|   if (!QualifierLoc)
 | |
|     return ExprError();
 | |
|   SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
 | |
| 
 | |
|   // TODO: If this is a conversion-function-id, verify that the
 | |
|   // destination type name (if present) resolves the same way after
 | |
|   // instantiation as it did in the local scope.
 | |
| 
 | |
|   DeclarationNameInfo NameInfo
 | |
|     = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
 | |
|   if (!NameInfo.getName())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!E->hasExplicitTemplateArgs()) {
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         QualifierLoc == E->getQualifierLoc() &&
 | |
|         // Note: it is sufficient to compare the Name component of NameInfo:
 | |
|         // if name has not changed, DNLoc has not changed either.
 | |
|         NameInfo.getName() == E->getDeclName())
 | |
|       return E;
 | |
| 
 | |
|     return getDerived().RebuildDependentScopeDeclRefExpr(
 | |
|         QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
 | |
|         IsAddressOfOperand, RecoveryTSI);
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
 | |
|   if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
 | |
|                                               E->getNumTemplateArgs(),
 | |
|                                               TransArgs))
 | |
|     return ExprError();
 | |
| 
 | |
|   return getDerived().RebuildDependentScopeDeclRefExpr(
 | |
|       QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
 | |
|       RecoveryTSI);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
 | |
|   // CXXConstructExprs other than for list-initialization and
 | |
|   // CXXTemporaryObjectExpr are always implicit, so when we have
 | |
|   // a 1-argument construction we just transform that argument.
 | |
|   if ((E->getNumArgs() == 1 ||
 | |
|        (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
 | |
|       (!getDerived().DropCallArgument(E->getArg(0))) &&
 | |
|       !E->isListInitialization())
 | |
|     return getDerived().TransformExpr(E->getArg(0));
 | |
| 
 | |
|   TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
 | |
| 
 | |
|   QualType T = getDerived().TransformType(E->getType());
 | |
|   if (T.isNull())
 | |
|     return ExprError();
 | |
| 
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = cast_or_null<CXXConstructorDecl>(
 | |
|                                 getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                          E->getConstructor()));
 | |
|   if (!Constructor)
 | |
|     return ExprError();
 | |
| 
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 8> Args;
 | |
|   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
 | |
|                                   &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       T == E->getType() &&
 | |
|       Constructor == E->getConstructor() &&
 | |
|       !ArgumentChanged) {
 | |
|     // Mark the constructor as referenced.
 | |
|     // FIXME: Instantiation-specific
 | |
|     SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
 | |
|                                               Constructor, E->isElidable(),
 | |
|                                               Args,
 | |
|                                               E->hadMultipleCandidates(),
 | |
|                                               E->isListInitialization(),
 | |
|                                               E->requiresZeroInitialization(),
 | |
|                                               E->getConstructionKind(),
 | |
|                                               E->getParenOrBraceRange());
 | |
| }
 | |
| 
 | |
| /// \brief Transform a C++ temporary-binding expression.
 | |
| ///
 | |
| /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
 | |
| /// transform the subexpression and return that.
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
 | |
|   return getDerived().TransformExpr(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| /// \brief Transform a C++ expression that contains cleanups that should
 | |
| /// be run after the expression is evaluated.
 | |
| ///
 | |
| /// Since ExprWithCleanups nodes are implicitly generated, we
 | |
| /// just transform the subexpression and return that.
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
 | |
|   return getDerived().TransformExpr(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
 | |
|                                                     CXXTemporaryObjectExpr *E) {
 | |
|   TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
 | |
|   if (!T)
 | |
|     return ExprError();
 | |
| 
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = cast_or_null<CXXConstructorDecl>(
 | |
|                                   getDerived().TransformDecl(E->getLocStart(),
 | |
|                                                          E->getConstructor()));
 | |
|   if (!Constructor)
 | |
|     return ExprError();
 | |
| 
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 8> Args;
 | |
|   Args.reserve(E->getNumArgs());
 | |
|   if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
 | |
|                      &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       T == E->getTypeSourceInfo() &&
 | |
|       Constructor == E->getConstructor() &&
 | |
|       !ArgumentChanged) {
 | |
|     // FIXME: Instantiation-specific
 | |
|     SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Pass in E->isListInitialization().
 | |
|   return getDerived().RebuildCXXTemporaryObjectExpr(T,
 | |
|                                           /*FIXME:*/T->getTypeLoc().getEndLoc(),
 | |
|                                                     Args,
 | |
|                                                     E->getLocEnd());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
 | |
|    
 | |
|   // Transform any init-capture expressions before entering the scope of the 
 | |
|   // lambda body, because they are not semantically within that scope.
 | |
|   SmallVector<InitCaptureInfoTy, 8> InitCaptureExprsAndTypes;
 | |
|   InitCaptureExprsAndTypes.resize(E->explicit_capture_end() -
 | |
|       E->explicit_capture_begin());
 | |
|   
 | |
|   for (LambdaExpr::capture_iterator C = E->capture_begin(),
 | |
|       CEnd = E->capture_end();
 | |
|       C != CEnd; ++C) {
 | |
|     if (!C->isInitCapture())
 | |
|       continue;
 | |
|     EnterExpressionEvaluationContext  EEEC(getSema(), 
 | |
|         Sema::PotentiallyEvaluated);    
 | |
|     ExprResult NewExprInitResult = getDerived().TransformInitializer(
 | |
|         C->getCapturedVar()->getInit(),
 | |
|         C->getCapturedVar()->getInitStyle() == VarDecl::CallInit);
 | |
|     
 | |
|     if (NewExprInitResult.isInvalid())
 | |
|       return ExprError();
 | |
|     Expr *NewExprInit = NewExprInitResult.get();
 | |
|       
 | |
|     VarDecl *OldVD = C->getCapturedVar();
 | |
|     QualType NewInitCaptureType = 
 | |
|         getSema().performLambdaInitCaptureInitialization(C->getLocation(), 
 | |
|             OldVD->getType()->isReferenceType(), OldVD->getIdentifier(), 
 | |
|             NewExprInit);
 | |
|     NewExprInitResult = NewExprInit;
 | |
|     InitCaptureExprsAndTypes[C - E->capture_begin()] =
 | |
|         std::make_pair(NewExprInitResult, NewInitCaptureType);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   LambdaScopeInfo *LSI = getSema().PushLambdaScope();
 | |
|   // Transform the template parameters, and add them to the current
 | |
|   // instantiation scope. The null case is handled correctly.
 | |
|   LSI->GLTemplateParameterList = getDerived().TransformTemplateParameterList(
 | |
|       E->getTemplateParameterList());
 | |
| 
 | |
|   // Check to see if the TypeSourceInfo of the call operator needs to
 | |
|   // be transformed, and if so do the transformation in the 
 | |
|   // CurrentInstantiationScope.
 | |
| 
 | |
|   TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
 | |
|   FunctionProtoTypeLoc OldCallOpFPTL = 
 | |
|       OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
 | |
|   TypeSourceInfo *NewCallOpTSI = nullptr;
 | |
| 
 | |
|   const bool CallOpWasAlreadyTransformed = 
 | |
|       getDerived().AlreadyTransformed(OldCallOpTSI->getType()); 
 | |
|   
 | |
|   // Use the Old Call Operator's TypeSourceInfo if it is already transformed.
 | |
|   if (CallOpWasAlreadyTransformed)  
 | |
|     NewCallOpTSI = OldCallOpTSI;  
 | |
|   else {
 | |
|     // Transform the TypeSourceInfo of the Original Lambda's Call Operator.
 | |
|     // The transformation MUST be done in the CurrentInstantiationScope since
 | |
|     // it introduces a mapping of the original to the newly created 
 | |
|     // transformed parameters.
 | |
| 
 | |
|     TypeLocBuilder NewCallOpTLBuilder;
 | |
|     QualType NewCallOpType = TransformFunctionProtoType(NewCallOpTLBuilder, 
 | |
|                                                         OldCallOpFPTL, 
 | |
|                                                         nullptr, 0);
 | |
|     NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
 | |
|                                                         NewCallOpType);
 | |
|   }
 | |
|   // Extract the ParmVarDecls from the NewCallOpTSI and add them to
 | |
|   // the vector below - this will be used to synthesize the 
 | |
|   // NewCallOperator.  Additionally, add the parameters of the untransformed 
 | |
|   // lambda call operator to the CurrentInstantiationScope.
 | |
|   SmallVector<ParmVarDecl *, 4> Params;  
 | |
|   {
 | |
|     FunctionProtoTypeLoc NewCallOpFPTL = 
 | |
|         NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
 | |
|     ParmVarDecl **NewParamDeclArray = NewCallOpFPTL.getParmArray();
 | |
|     const unsigned NewNumArgs = NewCallOpFPTL.getNumParams();
 | |
| 
 | |
|     for (unsigned I = 0; I < NewNumArgs; ++I) {
 | |
|       // If this call operator's type does not require transformation, 
 | |
|       // the parameters do not get added to the current instantiation scope, 
 | |
|       // - so ADD them! This allows the following to compile when the enclosing
 | |
|       // template is specialized and the entire lambda expression has to be
 | |
|       // transformed. 
 | |
|       // template<class T> void foo(T t) {
 | |
|       //   auto L = [](auto a) {
 | |
|       //       auto M = [](char b) { <-- note: non-generic lambda
 | |
|       //         auto N = [](auto c) {
 | |
|       //            int x = sizeof(a);
 | |
|       //            x = sizeof(b); <-- specifically this line
 | |
|       //            x = sizeof(c);
 | |
|       //          };
 | |
|       //        };
 | |
|       //      };
 | |
|       //    }
 | |
|       // foo('a')
 | |
|       if (CallOpWasAlreadyTransformed)
 | |
|         getDerived().transformedLocalDecl(NewParamDeclArray[I],
 | |
|                                           NewParamDeclArray[I]);
 | |
|       // Add to Params array, so these parameters can be used to create
 | |
|       // the newly transformed call operator.
 | |
|       Params.push_back(NewParamDeclArray[I]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!NewCallOpTSI)
 | |
|     return ExprError();
 | |
| 
 | |
|   // Create the local class that will describe the lambda.
 | |
|   CXXRecordDecl *Class
 | |
|     = getSema().createLambdaClosureType(E->getIntroducerRange(),
 | |
|                                         NewCallOpTSI,
 | |
|                                         /*KnownDependent=*/false,
 | |
|                                         E->getCaptureDefault());
 | |
| 
 | |
|   getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
 | |
| 
 | |
|   // Build the call operator.
 | |
|   CXXMethodDecl *NewCallOperator
 | |
|     = getSema().startLambdaDefinition(Class, E->getIntroducerRange(),
 | |
|                                       NewCallOpTSI,
 | |
|                                       E->getCallOperator()->getLocEnd(),
 | |
|                                       Params);
 | |
|   LSI->CallOperator = NewCallOperator;
 | |
| 
 | |
|   getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
 | |
| 
 | |
|   return getDerived().TransformLambdaScope(E, NewCallOperator, 
 | |
|       InitCaptureExprsAndTypes);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E,
 | |
|     CXXMethodDecl *CallOperator, 
 | |
|     ArrayRef<InitCaptureInfoTy> InitCaptureExprsAndTypes) {
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // Introduce the context of the call operator.
 | |
|   Sema::ContextRAII SavedContext(getSema(), CallOperator,
 | |
|                                  /*NewThisContext*/false);
 | |
| 
 | |
|   LambdaScopeInfo *const LSI = getSema().getCurLambda();
 | |
|   // Enter the scope of the lambda.
 | |
|   getSema().buildLambdaScope(LSI, CallOperator, E->getIntroducerRange(),
 | |
|                                  E->getCaptureDefault(),
 | |
|                                  E->getCaptureDefaultLoc(),
 | |
|                                  E->hasExplicitParameters(),
 | |
|                                  E->hasExplicitResultType(),
 | |
|                                  E->isMutable());
 | |
| 
 | |
|   // Transform captures.
 | |
|   bool FinishedExplicitCaptures = false;
 | |
|   for (LambdaExpr::capture_iterator C = E->capture_begin(),
 | |
|                                  CEnd = E->capture_end();
 | |
|        C != CEnd; ++C) {
 | |
|     // When we hit the first implicit capture, tell Sema that we've finished
 | |
|     // the list of explicit captures.
 | |
|     if (!FinishedExplicitCaptures && C->isImplicit()) {
 | |
|       getSema().finishLambdaExplicitCaptures(LSI);
 | |
|       FinishedExplicitCaptures = true;
 | |
|     }
 | |
| 
 | |
|     // Capturing 'this' is trivial.
 | |
|     if (C->capturesThis()) {
 | |
|       getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Rebuild init-captures, including the implied field declaration.
 | |
|     if (C->isInitCapture()) {
 | |
|       
 | |
|       InitCaptureInfoTy InitExprTypePair = 
 | |
|           InitCaptureExprsAndTypes[C - E->capture_begin()];
 | |
|       ExprResult Init = InitExprTypePair.first;
 | |
|       QualType InitQualType = InitExprTypePair.second;
 | |
|       if (Init.isInvalid() || InitQualType.isNull()) {
 | |
|         Invalid = true;
 | |
|         continue;
 | |
|       }
 | |
|       VarDecl *OldVD = C->getCapturedVar();
 | |
|       VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
 | |
|           OldVD->getLocation(), InitExprTypePair.second, 
 | |
|           OldVD->getIdentifier(), Init.get());
 | |
|       if (!NewVD)
 | |
|         Invalid = true;
 | |
|       else {
 | |
|         getDerived().transformedLocalDecl(OldVD, NewVD);
 | |
|       }
 | |
|       getSema().buildInitCaptureField(LSI, NewVD);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(C->capturesVariable() && "unexpected kind of lambda capture");
 | |
| 
 | |
|     // Determine the capture kind for Sema.
 | |
|     Sema::TryCaptureKind Kind
 | |
|       = C->isImplicit()? Sema::TryCapture_Implicit
 | |
|                        : C->getCaptureKind() == LCK_ByCopy
 | |
|                            ? Sema::TryCapture_ExplicitByVal
 | |
|                            : Sema::TryCapture_ExplicitByRef;
 | |
|     SourceLocation EllipsisLoc;
 | |
|     if (C->isPackExpansion()) {
 | |
|       UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
 | |
|       bool ShouldExpand = false;
 | |
|       bool RetainExpansion = false;
 | |
|       Optional<unsigned> NumExpansions;
 | |
|       if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
 | |
|                                                C->getLocation(),
 | |
|                                                Unexpanded,
 | |
|                                                ShouldExpand, RetainExpansion,
 | |
|                                                NumExpansions)) {
 | |
|         Invalid = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (ShouldExpand) {
 | |
|         // The transform has determined that we should perform an expansion;
 | |
|         // transform and capture each of the arguments.
 | |
|         // expansion of the pattern. Do so.
 | |
|         VarDecl *Pack = C->getCapturedVar();
 | |
|         for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|           Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
 | |
|           VarDecl *CapturedVar
 | |
|             = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
 | |
|                                                                Pack));
 | |
|           if (!CapturedVar) {
 | |
|             Invalid = true;
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // Capture the transformed variable.
 | |
|           getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
 | |
|         }
 | |
| 
 | |
|         // FIXME: Retain a pack expansion if RetainExpansion is true.
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       EllipsisLoc = C->getEllipsisLoc();
 | |
|     }
 | |
| 
 | |
|     // Transform the captured variable.
 | |
|     VarDecl *CapturedVar
 | |
|       = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
 | |
|                                                          C->getCapturedVar()));
 | |
|     if (!CapturedVar) {
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Capture the transformed variable.
 | |
|     getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
 | |
|   }
 | |
|   if (!FinishedExplicitCaptures)
 | |
|     getSema().finishLambdaExplicitCaptures(LSI);
 | |
| 
 | |
| 
 | |
|   // Enter a new evaluation context to insulate the lambda from any
 | |
|   // cleanups from the enclosing full-expression.
 | |
|   getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
 | |
| 
 | |
|   if (Invalid) {
 | |
|     getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr,
 | |
|                                /*IsInstantiation=*/true);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Instantiate the body of the lambda expression.
 | |
|   StmtResult Body = getDerived().TransformStmt(E->getBody());
 | |
|   if (Body.isInvalid()) {
 | |
|     getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr,
 | |
|                                /*IsInstantiation=*/true);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   return getSema().ActOnLambdaExpr(E->getLocStart(), Body.get(),
 | |
|                                    /*CurScope=*/nullptr,
 | |
|                                    /*IsInstantiation=*/true);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
 | |
|                                                   CXXUnresolvedConstructExpr *E) {
 | |
|   TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
 | |
|   if (!T)
 | |
|     return ExprError();
 | |
| 
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 8> Args;
 | |
|   Args.reserve(E->arg_size());
 | |
|   if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
 | |
|                                   &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       T == E->getTypeSourceInfo() &&
 | |
|       !ArgumentChanged)
 | |
|     return E;
 | |
| 
 | |
|   // FIXME: we're faking the locations of the commas
 | |
|   return getDerived().RebuildCXXUnresolvedConstructExpr(T,
 | |
|                                                         E->getLParenLoc(),
 | |
|                                                         Args,
 | |
|                                                         E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
 | |
|                                              CXXDependentScopeMemberExpr *E) {
 | |
|   // Transform the base of the expression.
 | |
|   ExprResult Base((Expr*) nullptr);
 | |
|   Expr *OldBase;
 | |
|   QualType BaseType;
 | |
|   QualType ObjectType;
 | |
|   if (!E->isImplicitAccess()) {
 | |
|     OldBase = E->getBase();
 | |
|     Base = getDerived().TransformExpr(OldBase);
 | |
|     if (Base.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Start the member reference and compute the object's type.
 | |
|     ParsedType ObjectTy;
 | |
|     bool MayBePseudoDestructor = false;
 | |
|     Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
 | |
|                                                 E->getOperatorLoc(),
 | |
|                                       E->isArrow()? tok::arrow : tok::period,
 | |
|                                                 ObjectTy,
 | |
|                                                 MayBePseudoDestructor);
 | |
|     if (Base.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     ObjectType = ObjectTy.get();
 | |
|     BaseType = ((Expr*) Base.get())->getType();
 | |
|   } else {
 | |
|     OldBase = nullptr;
 | |
|     BaseType = getDerived().TransformType(E->getBaseType());
 | |
|     ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   // Transform the first part of the nested-name-specifier that qualifies
 | |
|   // the member name.
 | |
|   NamedDecl *FirstQualifierInScope
 | |
|     = getDerived().TransformFirstQualifierInScope(
 | |
|                                             E->getFirstQualifierFoundInScope(),
 | |
|                                             E->getQualifierLoc().getBeginLoc());
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (E->getQualifier()) {
 | |
|     QualifierLoc
 | |
|       = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
 | |
|                                                      ObjectType,
 | |
|                                                      FirstQualifierInScope);
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
 | |
| 
 | |
|   // TODO: If this is a conversion-function-id, verify that the
 | |
|   // destination type name (if present) resolves the same way after
 | |
|   // instantiation as it did in the local scope.
 | |
| 
 | |
|   DeclarationNameInfo NameInfo
 | |
|     = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
 | |
|   if (!NameInfo.getName())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!E->hasExplicitTemplateArgs()) {
 | |
|     // This is a reference to a member without an explicitly-specified
 | |
|     // template argument list. Optimize for this common case.
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         Base.get() == OldBase &&
 | |
|         BaseType == E->getBaseType() &&
 | |
|         QualifierLoc == E->getQualifierLoc() &&
 | |
|         NameInfo.getName() == E->getMember() &&
 | |
|         FirstQualifierInScope == E->getFirstQualifierFoundInScope())
 | |
|       return E;
 | |
| 
 | |
|     return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
 | |
|                                                        BaseType,
 | |
|                                                        E->isArrow(),
 | |
|                                                        E->getOperatorLoc(),
 | |
|                                                        QualifierLoc,
 | |
|                                                        TemplateKWLoc,
 | |
|                                                        FirstQualifierInScope,
 | |
|                                                        NameInfo,
 | |
|                                                        /*TemplateArgs*/nullptr);
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
 | |
|   if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
 | |
|                                               E->getNumTemplateArgs(),
 | |
|                                               TransArgs))
 | |
|     return ExprError();
 | |
| 
 | |
|   return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
 | |
|                                                      BaseType,
 | |
|                                                      E->isArrow(),
 | |
|                                                      E->getOperatorLoc(),
 | |
|                                                      QualifierLoc,
 | |
|                                                      TemplateKWLoc,
 | |
|                                                      FirstQualifierInScope,
 | |
|                                                      NameInfo,
 | |
|                                                      &TransArgs);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
 | |
|   // Transform the base of the expression.
 | |
|   ExprResult Base((Expr*) nullptr);
 | |
|   QualType BaseType;
 | |
|   if (!Old->isImplicitAccess()) {
 | |
|     Base = getDerived().TransformExpr(Old->getBase());
 | |
|     if (Base.isInvalid())
 | |
|       return ExprError();
 | |
|     Base = getSema().PerformMemberExprBaseConversion(Base.get(),
 | |
|                                                      Old->isArrow());
 | |
|     if (Base.isInvalid())
 | |
|       return ExprError();
 | |
|     BaseType = Base.get()->getType();
 | |
|   } else {
 | |
|     BaseType = getDerived().TransformType(Old->getBaseType());
 | |
|   }
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   if (Old->getQualifierLoc()) {
 | |
|     QualifierLoc
 | |
|     = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
 | |
|     if (!QualifierLoc)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
 | |
| 
 | |
|   LookupResult R(SemaRef, Old->getMemberNameInfo(),
 | |
|                  Sema::LookupOrdinaryName);
 | |
| 
 | |
|   // Transform all the decls.
 | |
|   for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
 | |
|          E = Old->decls_end(); I != E; ++I) {
 | |
|     NamedDecl *InstD = static_cast<NamedDecl*>(
 | |
|                                 getDerived().TransformDecl(Old->getMemberLoc(),
 | |
|                                                            *I));
 | |
|     if (!InstD) {
 | |
|       // Silently ignore these if a UsingShadowDecl instantiated to nothing.
 | |
|       // This can happen because of dependent hiding.
 | |
|       if (isa<UsingShadowDecl>(*I))
 | |
|         continue;
 | |
|       else {
 | |
|         R.clear();
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Expand using declarations.
 | |
|     if (isa<UsingDecl>(InstD)) {
 | |
|       UsingDecl *UD = cast<UsingDecl>(InstD);
 | |
|       for (auto *I : UD->shadows())
 | |
|         R.addDecl(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     R.addDecl(InstD);
 | |
|   }
 | |
| 
 | |
|   R.resolveKind();
 | |
| 
 | |
|   // Determine the naming class.
 | |
|   if (Old->getNamingClass()) {
 | |
|     CXXRecordDecl *NamingClass
 | |
|       = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
 | |
|                                                           Old->getMemberLoc(),
 | |
|                                                         Old->getNamingClass()));
 | |
|     if (!NamingClass)
 | |
|       return ExprError();
 | |
| 
 | |
|     R.setNamingClass(NamingClass);
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo TransArgs;
 | |
|   if (Old->hasExplicitTemplateArgs()) {
 | |
|     TransArgs.setLAngleLoc(Old->getLAngleLoc());
 | |
|     TransArgs.setRAngleLoc(Old->getRAngleLoc());
 | |
|     if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
 | |
|                                                 Old->getNumTemplateArgs(),
 | |
|                                                 TransArgs))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // FIXME: to do this check properly, we will need to preserve the
 | |
|   // first-qualifier-in-scope here, just in case we had a dependent
 | |
|   // base (and therefore couldn't do the check) and a
 | |
|   // nested-name-qualifier (and therefore could do the lookup).
 | |
|   NamedDecl *FirstQualifierInScope = nullptr;
 | |
| 
 | |
|   return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
 | |
|                                                   BaseType,
 | |
|                                                   Old->getOperatorLoc(),
 | |
|                                                   Old->isArrow(),
 | |
|                                                   QualifierLoc,
 | |
|                                                   TemplateKWLoc,
 | |
|                                                   FirstQualifierInScope,
 | |
|                                                   R,
 | |
|                                               (Old->hasExplicitTemplateArgs()
 | |
|                                                   ? &TransArgs : nullptr));
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
 | |
|   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
 | |
|   ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
 | |
|   if (Pattern.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
 | |
|                                            E->getNumExpansions());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
 | |
|   // If E is not value-dependent, then nothing will change when we transform it.
 | |
|   // Note: This is an instantiation-centric view.
 | |
|   if (!E->isValueDependent())
 | |
|     return E;
 | |
| 
 | |
|   // Note: None of the implementations of TryExpandParameterPacks can ever
 | |
|   // produce a diagnostic when given only a single unexpanded parameter pack,
 | |
|   // so
 | |
|   UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
 | |
|   bool ShouldExpand = false;
 | |
|   bool RetainExpansion = false;
 | |
|   Optional<unsigned> NumExpansions;
 | |
|   if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
 | |
|                                            Unexpanded,
 | |
|                                            ShouldExpand, RetainExpansion,
 | |
|                                            NumExpansions))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (RetainExpansion)
 | |
|     return E;
 | |
| 
 | |
|   NamedDecl *Pack = E->getPack();
 | |
|   if (!ShouldExpand) {
 | |
|     Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(),
 | |
|                                                               Pack));
 | |
|     if (!Pack)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // We now know the length of the parameter pack, so build a new expression
 | |
|   // that stores that length.
 | |
|   return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
 | |
|                                             E->getPackLoc(), E->getRParenLoc(),
 | |
|                                             NumExpansions);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
 | |
|                                           SubstNonTypeTemplateParmPackExpr *E) {
 | |
|   // Default behavior is to do nothing with this transformation.
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
 | |
|                                           SubstNonTypeTemplateParmExpr *E) {
 | |
|   // Default behavior is to do nothing with this transformation.
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
 | |
|   // Default behavior is to do nothing with this transformation.
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
 | |
|                                                   MaterializeTemporaryExpr *E) {
 | |
|   return getDerived().TransformExpr(E->GetTemporaryExpr());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
 | |
|     CXXStdInitializerListExpr *E) {
 | |
|   return getDerived().TransformExpr(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
 | |
|   return SemaRef.MaybeBindToTemporary(E);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
 | |
|   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       SubExpr.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
 | |
|   // Transform each of the elements.
 | |
|   SmallVector<Expr *, 8> Elements;
 | |
|   bool ArgChanged = false;
 | |
|   if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
 | |
|                                   /*IsCall=*/false, Elements, &ArgChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !ArgChanged)
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
 | |
|                                               Elements.data(),
 | |
|                                               Elements.size());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCDictionaryLiteral(
 | |
|                                                     ObjCDictionaryLiteral *E) {
 | |
|   // Transform each of the elements.
 | |
|   SmallVector<ObjCDictionaryElement, 8> Elements;
 | |
|   bool ArgChanged = false;
 | |
|   for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
 | |
|     ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
 | |
| 
 | |
|     if (OrigElement.isPackExpansion()) {
 | |
|       // This key/value element is a pack expansion.
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
 | |
|       getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
 | |
|       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
 | |
| 
 | |
|       // Determine whether the set of unexpanded parameter packs can
 | |
|       // and should be expanded.
 | |
|       bool Expand = true;
 | |
|       bool RetainExpansion = false;
 | |
|       Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
 | |
|       Optional<unsigned> NumExpansions = OrigNumExpansions;
 | |
|       SourceRange PatternRange(OrigElement.Key->getLocStart(),
 | |
|                                OrigElement.Value->getLocEnd());
 | |
|      if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
 | |
|                                                PatternRange,
 | |
|                                                Unexpanded,
 | |
|                                                Expand, RetainExpansion,
 | |
|                                                NumExpansions))
 | |
|         return ExprError();
 | |
| 
 | |
|       if (!Expand) {
 | |
|         // The transform has determined that we should perform a simple
 | |
|         // transformation on the pack expansion, producing another pack
 | |
|         // expansion.
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
 | |
|         ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
 | |
|         if (Key.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         if (Key.get() != OrigElement.Key)
 | |
|           ArgChanged = true;
 | |
| 
 | |
|         ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
 | |
|         if (Value.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         if (Value.get() != OrigElement.Value)
 | |
|           ArgChanged = true;
 | |
| 
 | |
|         ObjCDictionaryElement Expansion = {
 | |
|           Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
 | |
|         };
 | |
|         Elements.push_back(Expansion);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Record right away that the argument was changed.  This needs
 | |
|       // to happen even if the array expands to nothing.
 | |
|       ArgChanged = true;
 | |
| 
 | |
|       // The transform has determined that we should perform an elementwise
 | |
|       // expansion of the pattern. Do so.
 | |
|       for (unsigned I = 0; I != *NumExpansions; ++I) {
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
 | |
|         ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
 | |
|         if (Key.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
 | |
|         if (Value.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         ObjCDictionaryElement Element = {
 | |
|           Key.get(), Value.get(), SourceLocation(), NumExpansions
 | |
|         };
 | |
| 
 | |
|         // If any unexpanded parameter packs remain, we still have a
 | |
|         // pack expansion.
 | |
|         // FIXME: Can this really happen?
 | |
|         if (Key.get()->containsUnexpandedParameterPack() ||
 | |
|             Value.get()->containsUnexpandedParameterPack())
 | |
|           Element.EllipsisLoc = OrigElement.EllipsisLoc;
 | |
| 
 | |
|         Elements.push_back(Element);
 | |
|       }
 | |
| 
 | |
|       // FIXME: Retain a pack expansion if RetainExpansion is true.
 | |
| 
 | |
|       // We've finished with this pack expansion.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Transform and check key.
 | |
|     ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
 | |
|     if (Key.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (Key.get() != OrigElement.Key)
 | |
|       ArgChanged = true;
 | |
| 
 | |
|     // Transform and check value.
 | |
|     ExprResult Value
 | |
|       = getDerived().TransformExpr(OrigElement.Value);
 | |
|     if (Value.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (Value.get() != OrigElement.Value)
 | |
|       ArgChanged = true;
 | |
| 
 | |
|     ObjCDictionaryElement Element = {
 | |
|       Key.get(), Value.get(), SourceLocation(), None
 | |
|     };
 | |
|     Elements.push_back(Element);
 | |
|   }
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() && !ArgChanged)
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
 | |
|                                                    Elements.data(),
 | |
|                                                    Elements.size());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
 | |
|   TypeSourceInfo *EncodedTypeInfo
 | |
|     = getDerived().TransformType(E->getEncodedTypeSourceInfo());
 | |
|   if (!EncodedTypeInfo)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       EncodedTypeInfo == E->getEncodedTypeSourceInfo())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
 | |
|                                             EncodedTypeInfo,
 | |
|                                             E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult TreeTransform<Derived>::
 | |
| TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
 | |
|   // This is a kind of implicit conversion, and it needs to get dropped
 | |
|   // and recomputed for the same general reasons that ImplicitCastExprs
 | |
|   // do, as well a more specific one: this expression is only valid when
 | |
|   // it appears *immediately* as an argument expression.
 | |
|   return getDerived().TransformExpr(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult TreeTransform<Derived>::
 | |
| TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
 | |
|   TypeSourceInfo *TSInfo
 | |
|     = getDerived().TransformType(E->getTypeInfoAsWritten());
 | |
|   if (!TSInfo)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
 | |
|   if (Result.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       TSInfo == E->getTypeInfoAsWritten() &&
 | |
|       Result.get() == E->getSubExpr())
 | |
|     return E;
 | |
| 
 | |
|   return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
 | |
|                                       E->getBridgeKeywordLoc(), TSInfo,
 | |
|                                       Result.get());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
 | |
|   // Transform arguments.
 | |
|   bool ArgChanged = false;
 | |
|   SmallVector<Expr*, 8> Args;
 | |
|   Args.reserve(E->getNumArgs());
 | |
|   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
 | |
|                                   &ArgChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (E->getReceiverKind() == ObjCMessageExpr::Class) {
 | |
|     // Class message: transform the receiver type.
 | |
|     TypeSourceInfo *ReceiverTypeInfo
 | |
|       = getDerived().TransformType(E->getClassReceiverTypeInfo());
 | |
|     if (!ReceiverTypeInfo)
 | |
|       return ExprError();
 | |
| 
 | |
|     // If nothing changed, just retain the existing message send.
 | |
|     if (!getDerived().AlwaysRebuild() &&
 | |
|         ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
 | |
|       return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|     // Build a new class message send.
 | |
|     SmallVector<SourceLocation, 16> SelLocs;
 | |
|     E->getSelectorLocs(SelLocs);
 | |
|     return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
 | |
|                                                E->getSelector(),
 | |
|                                                SelLocs,
 | |
|                                                E->getMethodDecl(),
 | |
|                                                E->getLeftLoc(),
 | |
|                                                Args,
 | |
|                                                E->getRightLoc());
 | |
|   }
 | |
| 
 | |
|   // Instance message: transform the receiver
 | |
|   assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
 | |
|          "Only class and instance messages may be instantiated");
 | |
|   ExprResult Receiver
 | |
|     = getDerived().TransformExpr(E->getInstanceReceiver());
 | |
|   if (Receiver.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // If nothing changed, just retain the existing message send.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
 | |
|     return SemaRef.MaybeBindToTemporary(E);
 | |
| 
 | |
|   // Build a new instance message send.
 | |
|   SmallVector<SourceLocation, 16> SelLocs;
 | |
|   E->getSelectorLocs(SelLocs);
 | |
|   return getDerived().RebuildObjCMessageExpr(Receiver.get(),
 | |
|                                              E->getSelector(),
 | |
|                                              SelLocs,
 | |
|                                              E->getMethodDecl(),
 | |
|                                              E->getLeftLoc(),
 | |
|                                              Args,
 | |
|                                              E->getRightLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | |
|   // Transform the base expression.
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBase());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // We don't need to transform the ivar; it will never change.
 | |
| 
 | |
|   // If nothing changed, just retain the existing expression.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Base.get() == E->getBase())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
 | |
|                                              E->getLocation(),
 | |
|                                              E->isArrow(), E->isFreeIvar());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
 | |
|   // 'super' and types never change. Property never changes. Just
 | |
|   // retain the existing expression.
 | |
|   if (!E->isObjectReceiver())
 | |
|     return E;
 | |
| 
 | |
|   // Transform the base expression.
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBase());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // We don't need to transform the property; it will never change.
 | |
| 
 | |
|   // If nothing changed, just retain the existing expression.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Base.get() == E->getBase())
 | |
|     return E;
 | |
| 
 | |
|   if (E->isExplicitProperty())
 | |
|     return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
 | |
|                                                    E->getExplicitProperty(),
 | |
|                                                    E->getLocation());
 | |
| 
 | |
|   return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
 | |
|                                                  SemaRef.Context.PseudoObjectTy,
 | |
|                                                  E->getImplicitPropertyGetter(),
 | |
|                                                  E->getImplicitPropertySetter(),
 | |
|                                                  E->getLocation());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
 | |
|   // Transform the base expression.
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Transform the key expression.
 | |
|   ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
 | |
|   if (Key.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // If nothing changed, just retain the existing expression.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
 | |
|                                                   Base.get(), Key.get(),
 | |
|                                                   E->getAtIndexMethodDecl(),
 | |
|                                                   E->setAtIndexMethodDecl());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
 | |
|   // Transform the base expression.
 | |
|   ExprResult Base = getDerived().TransformExpr(E->getBase());
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // If nothing changed, just retain the existing expression.
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Base.get() == E->getBase())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
 | |
|                                          E->getOpLoc(),
 | |
|                                          E->isArrow());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 8> SubExprs;
 | |
|   SubExprs.reserve(E->getNumSubExprs());
 | |
|   if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
 | |
|                                   SubExprs, &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       !ArgumentChanged)
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
 | |
|                                                SubExprs,
 | |
|                                                E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
 | |
|   ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
 | |
|   if (SrcExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
 | |
|   if (!Type)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       Type == E->getTypeSourceInfo() &&
 | |
|       SrcExpr.get() == E->getSrcExpr())
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
 | |
|                                                SrcExpr.get(), Type,
 | |
|                                                E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
 | |
|   BlockDecl *oldBlock = E->getBlockDecl();
 | |
| 
 | |
|   SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
 | |
|   BlockScopeInfo *blockScope = SemaRef.getCurBlock();
 | |
| 
 | |
|   blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
 | |
|   blockScope->TheDecl->setBlockMissingReturnType(
 | |
|                          oldBlock->blockMissingReturnType());
 | |
| 
 | |
|   SmallVector<ParmVarDecl*, 4> params;
 | |
|   SmallVector<QualType, 4> paramTypes;
 | |
| 
 | |
|   // Parameter substitution.
 | |
|   if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
 | |
|                                                oldBlock->param_begin(),
 | |
|                                                oldBlock->param_size(),
 | |
|                                                nullptr, paramTypes, ¶ms)) {
 | |
|     getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *exprFunctionType = E->getFunctionType();
 | |
|   QualType exprResultType =
 | |
|       getDerived().TransformType(exprFunctionType->getReturnType());
 | |
| 
 | |
|   QualType functionType =
 | |
|     getDerived().RebuildFunctionProtoType(exprResultType, paramTypes,
 | |
|                                           exprFunctionType->getExtProtoInfo());
 | |
|   blockScope->FunctionType = functionType;
 | |
| 
 | |
|   // Set the parameters on the block decl.
 | |
|   if (!params.empty())
 | |
|     blockScope->TheDecl->setParams(params);
 | |
| 
 | |
|   if (!oldBlock->blockMissingReturnType()) {
 | |
|     blockScope->HasImplicitReturnType = false;
 | |
|     blockScope->ReturnType = exprResultType;
 | |
|   }
 | |
| 
 | |
|   // Transform the body
 | |
|   StmtResult body = getDerived().TransformStmt(E->getBody());
 | |
|   if (body.isInvalid()) {
 | |
|     getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In builds with assertions, make sure that we captured everything we
 | |
|   // captured before.
 | |
|   if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
 | |
|     for (const auto &I : oldBlock->captures()) {
 | |
|       VarDecl *oldCapture = I.getVariable();
 | |
| 
 | |
|       // Ignore parameter packs.
 | |
|       if (isa<ParmVarDecl>(oldCapture) &&
 | |
|           cast<ParmVarDecl>(oldCapture)->isParameterPack())
 | |
|         continue;
 | |
| 
 | |
|       VarDecl *newCapture =
 | |
|         cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
 | |
|                                                  oldCapture));
 | |
|       assert(blockScope->CaptureMap.count(newCapture));
 | |
|     }
 | |
|     assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
 | |
|                                     /*Scope=*/nullptr);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
 | |
|   llvm_unreachable("Cannot transform asType expressions yet");
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
 | |
|   QualType RetTy = getDerived().TransformType(E->getType());
 | |
|   bool ArgumentChanged = false;
 | |
|   SmallVector<Expr*, 8> SubExprs;
 | |
|   SubExprs.reserve(E->getNumSubExprs());
 | |
|   if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
 | |
|                                   SubExprs, &ArgumentChanged))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!getDerived().AlwaysRebuild() &&
 | |
|       !ArgumentChanged)
 | |
|     return E;
 | |
| 
 | |
|   return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
 | |
|                                         RetTy, E->getOp(), E->getRParenLoc());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Type reconstruction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
 | |
|                                                     SourceLocation Star) {
 | |
|   return SemaRef.BuildPointerType(PointeeType, Star,
 | |
|                                   getDerived().getBaseEntity());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
 | |
|                                                          SourceLocation Star) {
 | |
|   return SemaRef.BuildBlockPointerType(PointeeType, Star,
 | |
|                                        getDerived().getBaseEntity());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
 | |
|                                              bool WrittenAsLValue,
 | |
|                                              SourceLocation Sigil) {
 | |
|   return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
 | |
|                                     Sigil, getDerived().getBaseEntity());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
 | |
|                                                  QualType ClassType,
 | |
|                                                  SourceLocation Sigil) {
 | |
|   return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil,
 | |
|                                         getDerived().getBaseEntity());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
 | |
|                                          ArrayType::ArraySizeModifier SizeMod,
 | |
|                                          const llvm::APInt *Size,
 | |
|                                          Expr *SizeExpr,
 | |
|                                          unsigned IndexTypeQuals,
 | |
|                                          SourceRange BracketsRange) {
 | |
|   if (SizeExpr || !Size)
 | |
|     return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
 | |
|                                   IndexTypeQuals, BracketsRange,
 | |
|                                   getDerived().getBaseEntity());
 | |
| 
 | |
|   QualType Types[] = {
 | |
|     SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
 | |
|     SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
 | |
|     SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
 | |
|   };
 | |
|   const unsigned NumTypes = llvm::array_lengthof(Types);
 | |
|   QualType SizeType;
 | |
|   for (unsigned I = 0; I != NumTypes; ++I)
 | |
|     if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
 | |
|       SizeType = Types[I];
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Note that we can return a VariableArrayType here in the case where
 | |
|   // the element type was a dependent VariableArrayType.
 | |
|   IntegerLiteral *ArraySize
 | |
|       = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
 | |
|                                /*FIXME*/BracketsRange.getBegin());
 | |
|   return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
 | |
|                                 IndexTypeQuals, BracketsRange,
 | |
|                                 getDerived().getBaseEntity());
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
 | |
|                                                  ArrayType::ArraySizeModifier SizeMod,
 | |
|                                                  const llvm::APInt &Size,
 | |
|                                                  unsigned IndexTypeQuals,
 | |
|                                                  SourceRange BracketsRange) {
 | |
|   return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, nullptr,
 | |
|                                         IndexTypeQuals, BracketsRange);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
 | |
|                                           ArrayType::ArraySizeModifier SizeMod,
 | |
|                                                  unsigned IndexTypeQuals,
 | |
|                                                    SourceRange BracketsRange) {
 | |
|   return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
 | |
|                                        IndexTypeQuals, BracketsRange);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
 | |
|                                           ArrayType::ArraySizeModifier SizeMod,
 | |
|                                                  Expr *SizeExpr,
 | |
|                                                  unsigned IndexTypeQuals,
 | |
|                                                  SourceRange BracketsRange) {
 | |
|   return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
 | |
|                                        SizeExpr,
 | |
|                                        IndexTypeQuals, BracketsRange);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
 | |
|                                           ArrayType::ArraySizeModifier SizeMod,
 | |
|                                                        Expr *SizeExpr,
 | |
|                                                        unsigned IndexTypeQuals,
 | |
|                                                    SourceRange BracketsRange) {
 | |
|   return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
 | |
|                                        SizeExpr,
 | |
|                                        IndexTypeQuals, BracketsRange);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
 | |
|                                                unsigned NumElements,
 | |
|                                                VectorType::VectorKind VecKind) {
 | |
|   // FIXME: semantic checking!
 | |
|   return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
 | |
|                                                       unsigned NumElements,
 | |
|                                                  SourceLocation AttributeLoc) {
 | |
|   llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
 | |
|                           NumElements, true);
 | |
|   IntegerLiteral *VectorSize
 | |
|     = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
 | |
|                              AttributeLoc);
 | |
|   return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType
 | |
| TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
 | |
|                                                            Expr *SizeExpr,
 | |
|                                                   SourceLocation AttributeLoc) {
 | |
|   return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildFunctionProtoType(
 | |
|     QualType T,
 | |
|     MutableArrayRef<QualType> ParamTypes,
 | |
|     const FunctionProtoType::ExtProtoInfo &EPI) {
 | |
|   return SemaRef.BuildFunctionType(T, ParamTypes,
 | |
|                                    getDerived().getBaseLocation(),
 | |
|                                    getDerived().getBaseEntity(),
 | |
|                                    EPI);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
 | |
|   return SemaRef.Context.getFunctionNoProtoType(T);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
 | |
|   assert(D && "no decl found");
 | |
|   if (D->isInvalidDecl()) return QualType();
 | |
| 
 | |
|   // FIXME: Doesn't account for ObjCInterfaceDecl!
 | |
|   TypeDecl *Ty;
 | |
|   if (isa<UsingDecl>(D)) {
 | |
|     UsingDecl *Using = cast<UsingDecl>(D);
 | |
|     assert(Using->hasTypename() &&
 | |
|            "UnresolvedUsingTypenameDecl transformed to non-typename using");
 | |
| 
 | |
|     // A valid resolved using typename decl points to exactly one type decl.
 | |
|     assert(++Using->shadow_begin() == Using->shadow_end());
 | |
|     Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
 | |
| 
 | |
|   } else {
 | |
|     assert(isa<UnresolvedUsingTypenameDecl>(D) &&
 | |
|            "UnresolvedUsingTypenameDecl transformed to non-using decl");
 | |
|     Ty = cast<UnresolvedUsingTypenameDecl>(D);
 | |
|   }
 | |
| 
 | |
|   return SemaRef.Context.getTypeDeclType(Ty);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
 | |
|                                                        SourceLocation Loc) {
 | |
|   return SemaRef.BuildTypeofExprType(E, Loc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
 | |
|   return SemaRef.Context.getTypeOfType(Underlying);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
 | |
|                                                      SourceLocation Loc) {
 | |
|   return SemaRef.BuildDecltypeType(E, Loc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
 | |
|                                             UnaryTransformType::UTTKind UKind,
 | |
|                                             SourceLocation Loc) {
 | |
|   return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
 | |
|                                                       TemplateName Template,
 | |
|                                              SourceLocation TemplateNameLoc,
 | |
|                                      TemplateArgumentListInfo &TemplateArgs) {
 | |
|   return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
 | |
|                                                    SourceLocation KWLoc) {
 | |
|   return SemaRef.BuildAtomicType(ValueType, KWLoc);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TemplateName
 | |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
 | |
|                                             bool TemplateKW,
 | |
|                                             TemplateDecl *Template) {
 | |
|   return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
 | |
|                                                   Template);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TemplateName
 | |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
 | |
|                                             const IdentifierInfo &Name,
 | |
|                                             SourceLocation NameLoc,
 | |
|                                             QualType ObjectType,
 | |
|                                             NamedDecl *FirstQualifierInScope) {
 | |
|   UnqualifiedId TemplateName;
 | |
|   TemplateName.setIdentifier(&Name, NameLoc);
 | |
|   Sema::TemplateTy Template;
 | |
|   SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
 | |
|   getSema().ActOnDependentTemplateName(/*Scope=*/nullptr,
 | |
|                                        SS, TemplateKWLoc, TemplateName,
 | |
|                                        ParsedType::make(ObjectType),
 | |
|                                        /*EnteringContext=*/false,
 | |
|                                        Template);
 | |
|   return Template.get();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| TemplateName
 | |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
 | |
|                                             OverloadedOperatorKind Operator,
 | |
|                                             SourceLocation NameLoc,
 | |
|                                             QualType ObjectType) {
 | |
|   UnqualifiedId Name;
 | |
|   // FIXME: Bogus location information.
 | |
|   SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
 | |
|   Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
 | |
|   SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
 | |
|   Sema::TemplateTy Template;
 | |
|   getSema().ActOnDependentTemplateName(/*Scope=*/nullptr,
 | |
|                                        SS, TemplateKWLoc, Name,
 | |
|                                        ParsedType::make(ObjectType),
 | |
|                                        /*EnteringContext=*/false,
 | |
|                                        Template);
 | |
|   return Template.get();
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
 | |
|                                                    SourceLocation OpLoc,
 | |
|                                                    Expr *OrigCallee,
 | |
|                                                    Expr *First,
 | |
|                                                    Expr *Second) {
 | |
|   Expr *Callee = OrigCallee->IgnoreParenCasts();
 | |
|   bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
 | |
| 
 | |
|   if (First->getObjectKind() == OK_ObjCProperty) {
 | |
|     BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
 | |
|     if (BinaryOperator::isAssignmentOp(Opc))
 | |
|       return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc,
 | |
|                                                  First, Second);
 | |
|     ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
|     First = Result.get();
 | |
|   }
 | |
| 
 | |
|   if (Second && Second->getObjectKind() == OK_ObjCProperty) {
 | |
|     ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
|     Second = Result.get();
 | |
|   }
 | |
| 
 | |
|   // Determine whether this should be a builtin operation.
 | |
|   if (Op == OO_Subscript) {
 | |
|     if (!First->getType()->isOverloadableType() &&
 | |
|         !Second->getType()->isOverloadableType())
 | |
|       return getSema().CreateBuiltinArraySubscriptExpr(First,
 | |
|                                                        Callee->getLocStart(),
 | |
|                                                        Second, OpLoc);
 | |
|   } else if (Op == OO_Arrow) {
 | |
|     // -> is never a builtin operation.
 | |
|     return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
 | |
|   } else if (Second == nullptr || isPostIncDec) {
 | |
|     if (!First->getType()->isOverloadableType()) {
 | |
|       // The argument is not of overloadable type, so try to create a
 | |
|       // built-in unary operation.
 | |
|       UnaryOperatorKind Opc
 | |
|         = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
 | |
| 
 | |
|       return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
 | |
|     }
 | |
|   } else {
 | |
|     if (!First->getType()->isOverloadableType() &&
 | |
|         !Second->getType()->isOverloadableType()) {
 | |
|       // Neither of the arguments is an overloadable type, so try to
 | |
|       // create a built-in binary operation.
 | |
|       BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
 | |
|       ExprResult Result
 | |
|         = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
 | |
|       if (Result.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute the transformed set of functions (and function templates) to be
 | |
|   // used during overload resolution.
 | |
|   UnresolvedSet<16> Functions;
 | |
| 
 | |
|   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
 | |
|     assert(ULE->requiresADL());
 | |
|     Functions.append(ULE->decls_begin(), ULE->decls_end());
 | |
|   } else {
 | |
|     // If we've resolved this to a particular non-member function, just call
 | |
|     // that function. If we resolved it to a member function,
 | |
|     // CreateOverloaded* will find that function for us.
 | |
|     NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
 | |
|     if (!isa<CXXMethodDecl>(ND))
 | |
|       Functions.addDecl(ND);
 | |
|   }
 | |
| 
 | |
|   // Add any functions found via argument-dependent lookup.
 | |
|   Expr *Args[2] = { First, Second };
 | |
|   unsigned NumArgs = 1 + (Second != nullptr);
 | |
| 
 | |
|   // Create the overloaded operator invocation for unary operators.
 | |
|   if (NumArgs == 1 || isPostIncDec) {
 | |
|     UnaryOperatorKind Opc
 | |
|       = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
 | |
|     return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
 | |
|   }
 | |
| 
 | |
|   if (Op == OO_Subscript) {
 | |
|     SourceLocation LBrace;
 | |
|     SourceLocation RBrace;
 | |
| 
 | |
|     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
 | |
|         DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo();
 | |
|         LBrace = SourceLocation::getFromRawEncoding(
 | |
|                     NameLoc.CXXOperatorName.BeginOpNameLoc);
 | |
|         RBrace = SourceLocation::getFromRawEncoding(
 | |
|                     NameLoc.CXXOperatorName.EndOpNameLoc);
 | |
|     } else {
 | |
|         LBrace = Callee->getLocStart();
 | |
|         RBrace = OpLoc;
 | |
|     }
 | |
| 
 | |
|     return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
 | |
|                                                       First, Second);
 | |
|   }
 | |
| 
 | |
|   // Create the overloaded operator invocation for binary operators.
 | |
|   BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
 | |
|   ExprResult Result
 | |
|     = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
 | |
|   if (Result.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| ExprResult
 | |
| TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
 | |
|                                                      SourceLocation OperatorLoc,
 | |
|                                                        bool isArrow,
 | |
|                                                        CXXScopeSpec &SS,
 | |
|                                                      TypeSourceInfo *ScopeType,
 | |
|                                                        SourceLocation CCLoc,
 | |
|                                                        SourceLocation TildeLoc,
 | |
|                                         PseudoDestructorTypeStorage Destroyed) {
 | |
|   QualType BaseType = Base->getType();
 | |
|   if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
 | |
|       (!isArrow && !BaseType->getAs<RecordType>()) ||
 | |
|       (isArrow && BaseType->getAs<PointerType>() &&
 | |
|        !BaseType->getAs<PointerType>()->getPointeeType()
 | |
|                                               ->template getAs<RecordType>())){
 | |
|     // This pseudo-destructor expression is still a pseudo-destructor.
 | |
|     return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc,
 | |
|                                              isArrow? tok::arrow : tok::period,
 | |
|                                              SS, ScopeType, CCLoc, TildeLoc,
 | |
|                                              Destroyed,
 | |
|                                              /*FIXME?*/true);
 | |
|   }
 | |
| 
 | |
|   TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
 | |
|   DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
 | |
|                  SemaRef.Context.getCanonicalType(DestroyedType->getType())));
 | |
|   DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
 | |
|   NameInfo.setNamedTypeInfo(DestroyedType);
 | |
| 
 | |
|   // The scope type is now known to be a valid nested name specifier
 | |
|   // component. Tack it on to the end of the nested name specifier.
 | |
|   if (ScopeType)
 | |
|     SS.Extend(SemaRef.Context, SourceLocation(),
 | |
|               ScopeType->getTypeLoc(), CCLoc);
 | |
| 
 | |
|   SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
 | |
|   return getSema().BuildMemberReferenceExpr(Base, BaseType,
 | |
|                                             OperatorLoc, isArrow,
 | |
|                                             SS, TemplateKWLoc,
 | |
|                                             /*FIXME: FirstQualifier*/ nullptr,
 | |
|                                             NameInfo,
 | |
|                                             /*TemplateArgs*/ nullptr);
 | |
| }
 | |
| 
 | |
| template<typename Derived>
 | |
| StmtResult
 | |
| TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
 | |
|   SourceLocation Loc = S->getLocStart();
 | |
|   CapturedDecl *CD = S->getCapturedDecl();
 | |
|   unsigned NumParams = CD->getNumParams();
 | |
|   unsigned ContextParamPos = CD->getContextParamPosition();
 | |
|   SmallVector<Sema::CapturedParamNameType, 4> Params;
 | |
|   for (unsigned I = 0; I < NumParams; ++I) {
 | |
|     if (I != ContextParamPos) {
 | |
|       Params.push_back(
 | |
|              std::make_pair(
 | |
|                   CD->getParam(I)->getName(),
 | |
|                   getDerived().TransformType(CD->getParam(I)->getType())));
 | |
|     } else {
 | |
|       Params.push_back(std::make_pair(StringRef(), QualType()));
 | |
|     }
 | |
|   }
 | |
|   getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
 | |
|                                      S->getCapturedRegionKind(), Params);
 | |
|   StmtResult Body;
 | |
|   {
 | |
|     Sema::CompoundScopeRAII CompoundScope(getSema());
 | |
|     Body = getDerived().TransformStmt(S->getCapturedStmt());
 | |
|   }
 | |
| 
 | |
|   if (Body.isInvalid()) {
 | |
|     getSema().ActOnCapturedRegionError();
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   return getSema().ActOnCapturedRegionEnd(Body.get());
 | |
| }
 | |
| 
 | |
| } // end namespace clang
 | |
| 
 | |
| #endif // LLVM_CLANG_SEMA_TREETRANSFORM_H
 |